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Abstract: We present CMOS-based ‘stochastically 
spiking neural network’ for optimization under 
uncertainties. We discuss a ‘scenario generation’ circuit to 
non-parametrically estimate/emulate statistics of uncertain 
cost/constraints variables in an optimization problem. We 
also present a ‘spiking neural network’ for linear/quadratic 
programming. Scenario generation block stochastically 
controls spiking neural network to extract optimal solution 
of an optimization problem minimizing its expected cost. 
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Introduction 
This work presents CMOS-based ‘stochastically spiking 
neural network’ for optimization under uncertainties. In 
several real-world problems (such as demand-supply and 
networking), constraints and/or cost functions of the 
optimization problem are uncertain and only statistically 
defined [1] [Fig. 1]. Stochastic programming algorithms 
(such as sample average approximations [2], stochastic 
decomposition [3]) have been developed to extract optimal 
variables minimizing expected value of cost under such 
uncertainties. However, a purely algorithmic 
implementation of stochastic programming is inefficient in 
power and performance, and especially for large scale 
problems. This work presents a stochastically spiking 
neural network for a large scale, high performance 
optimization under uncertainties. The following key 
novelties are explored: (1) We discuss a ‘scenario 
generation’ circuit to non-parametrically estimate and 

emulate statistics of uncertain cost/constraints variables. (2) 
We present a ‘spiking neural network’ for linear and 
quadratic programming. Scenario generation block and 
spiking neural network are integrated for a stochastically 
spiking neural network which extracts optimal variables 
minimizing expected cost in an optimization problem with 
uncertainties. The discussed mixed-signal, CMOS-based 
architecture of stochastically spiking neural network 
minimizes area/power of each cell and enables a large scale 
integration [Fig. 2]. 

Scenario Generation Module  
Kernel density method can non-parametrically estimate 
density of a random variable based on its observed 

 
 

Figure 1: Cost function scenarios under uncertain and
statistically defined cost function variables and/or
constraints. 

 

 
Figure 2: System diagram integrating scenario generation 
units, spiking neural network, and stochastic decomposition.
 

 
 

Figure 3: IOUT-VIN of Operational Transconductance
Amplifier (OTA) is utilized for Kernel function estimation. 
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samples. Cumulative density function (CDF), F(x), of a 
random variable (x) is expressed as  

. Here, Xi are the observed 

samples of x, and N are the total number of samples. G(x) is 
the Kernel function for CDF estimation having a local 
density, and h is the Kernel function width. We utilize an 
operational transconductance amplifier (OTA) [4] to 
physically implement a Kernel function. Output current, 
IOUT, of an OTA follows inverse tangent characteristics at 
varying input voltage (VIN) [Fig. 3], thereby it is suitable 
for Kernel function implementation. By varying bias 
current of OTA, IOUT-VIN characteristics can be modulated 
to realize varying Kernel function width. Fig. 4 shows CDF 
estimation through an OTA column. OTAs in the column 
are connected in parallel. One of the input terminal of 
OTAs receives test voltage, VX, and the other observed 
sample voltage, Xi. An OP-AMP at the output of the 
column integrates currents from various OTAs. Output of 
the OP-AMP represents CDF value at VX. Scenarios on 
cost function/constraint variables are generated based on 
inverse transform on CDF. In Fig. 5, F-1(u) for uniformly 
distributed random number u [0, 1] extracts random 
samples of x varying with CDF of F(x). In Fig. 6, we 
present a successive approximation (SA) circuit to evaluate 
inverse transform on CDF. A uniform random number 

 

 
Figure 4: OTA column (a) adds current from each cell to 
estimate CDF at x in (b). 

  

 
 
Figure 5: (a) Inverse transform on CDF to extract random 
sample of variable x. (b) Histogram of samples. 
 

 
 

 
Figure 6: (a) Successive approximation circuit for inverse 
transform evaluation on CDF. (b) Inverse transform 
transients. 
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generator (RNG) generates a sample value u. SA circuit 
evaluates F(xin) with an initial estimate xin. The estimate is 
updated in each clock cycle by comparing F(xin) with u. 
Most significant to least significant bits in the digital 
representation of xin are updated in each clock cycle for 
F(xin) = u in Fig. 6(b). Thereby, with a random uniform 
distribution of u, random samples of x are extracted 
following CDF = F(x).      

Stochastically Spiking Neural Network for 
Optimization 
We explore spiking neural network implementation of 
linear and quadratic programming algorithms presented in 
[5]. Fig. 7(a) shows a spike generation circuit with linearly 
increasing spike rate at increasing input voltage. The circuit 
utilizes a chain of series connected NMOS to realize 
linearly voltage-controlled current by pushing the 
transistors in the chain in a deep linear region. In Fig. 7(b), 
Spike rate linearly increases with increasing input voltage, 
VIN, beyond a cut-off of ~0.2V. Voltage at ‘TC CTRL’ in 
Fig. 7(a) proportionally increases or reduces spike rate at a 
VIN to program time-constant of the network, and enables 
power-performance trade-off. Circuit in Fig. 8(a) is 
triggered by a spike, and produces a pulse controlled by a 
digital weight-bits D [transient waveforms in Fig. 8(b)]. 
The circuit in Fig. 9(a) receives input pulses from the pulse 

modulator. Depending on the weight sign bit, these pulses 
charge or discharge the membrane capacitance to generate 
an analog output. This analog output is applied to the spike 
generator block to produce corresponding spike frequency. 
Another critical unit for the linear/quadratic programming 
algorithm in [5] is a derivative sign unit, i.e., sign(dx/dt) for 
input variable x. Circuit schematic in Fig. 9(b) computes 
sign of derivative of its input. Based on clock signals 
CLK/CLKB successive samples of x are sensed and 
compared to determine sign of its derivative. Fig. 10 shows 
the architecture of stochastic neural network for 
optimization. The network follows computation steps in 
[5], however, with stochastically controlled cost and 
constraints variables. Fig. 10(b) demonstrates transient 
evaluation of optimal solutions for primary and dual 
problem. In conjunction with stochastic decomposition, 
architecture in Fig. 10(a) computes the optimal solution 
minimizing expected cost for an optimization problem 
under uncertainty. 

Conclusions 
We have discussed a CMOS-based mixed-signal 
architecture for solving optimization problems under 
uncertainties. OTA-based Kernel implementation is 

  

 
 
Figure 7: OTA column (a) adds current from each cell to 
estimate CDF at x in (b). 

  

 
 
Figure 8: (a) Pulse width modulation circuit. (b) Pulse width 
control at varying digital weight bits <D2D1D0>. 

263



discussed for on-chip learning and mimicking of statistics 
of uncertain (random) variables in the optimization 
problem. The discussed mixed-signal stochastically spiking 
neural network minimizes area of computing cells while 
facilitates easier integration and scalability. 
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Figure 9: (a) Pulse integrator circuit. (b) Circuit module to determine sign of derivative of input variable, i.e., sign of dVIN/dt.. 

 

 
 

Figure 10: Architecture of stochastically spiking neural network. 
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