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Abstract: For high consequence applications requiring 
information assurance, the architecture of the Xilinx Zynq-
7000 All Programmable SoC™ precludes a tightly-coupled 
lockstep approach between the two processors. Therefore, 
a loosely-coupled lockstep approach implemented by a 
transaction checker residing in the Programmable Logic 
portion of the Zynq device will be discussed along with 
implementation results and latency measurements. 
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Introduction 
In high consequence applications, information assurance is 
a vital practice applied to ensure that valid data is used only 
by the specific targets for which it is intended. Sending 
invalid data to a correct target or valid data to an incorrect 
target results in an information assurance violation. This 
violation results in an error, which can potentially lead to 
catastrophic failures in high consequence applications. 

Multi-processor lockstep systems can be used in an effort 
to increase information assurance in high consequence 
applications. A tightly-coupled lockstep system is one in 
which two or more processors synchronously run identical 
code. Before each instruction is executed, a hardware 
comparator is used to determine that each processor is in 
fact running the same instruction. In this way, bit flips, 
single processor hardware failures, and other errors are 
identified immediately, and the application can be halted or 
reset before any incorrect data is used. 

In systems which lack the necessary hardware, or do not 
require the level of rigor that a tightly-coupled lockstep 
architecture provides, a loosely-coupled lockstep design 
can be used. In this case, processor data is only compared 
before it leaves or enters the immediate system. This does 
not ensure that each instruction is executed properly, but 
errors are caught before they are allowed to leave the 
processors and propagate to other devices. This can also 
lead to performance boosts over tightly-coupled lockstep 
designs because fewer comparisons are performed. 

The Xilinx Zynq-7000 All Programmable SoC™ precludes 
a tightly-coupled lockstep approach between its processors 
because no hardware comparator is built into the device. 

However, a loosely-coupled lockstep approach is 
achievable through the creation and use of a transaction 
checker residing in the Programmable Logic portion of the 
Zynq device. The transaction checker can be combined 
with specific processor configurations, interrupt handling 
schemes, and communication channels to create the 
Transaction Checker Architecture which allows the Zynq to 
operate as a loosely-coupled lockstep device. The design, 
implementation details, performance results, and future 
work of the Transaction Checker Architecture will be 
discussed in the remainder of this paper. 

Transaction Checker Architecture 
Implementation of a loosely-coupled lockstep design 
using the Xilinx Zynq-7000 All Programmable SoC™ is 
made possible through the use of ARM® Cortex™-A9 
MPCore™ Asymmetric Multiprocessing; processor 
configurations utilizing the On-Chip Memory, L2 Cache, 
Memory Management Unit, and Snoop Control Unit; 
dedicated Programmable Logic IP; the Processor Event 
Bus; various Advanced eXtensible Interface (AXI) bus 
ports; the AXI Interrupt Controller Programmable Logic 
IP; and the Generic Interrupt Controller. These elements 
and their specific configurations make up the Transaction 
Checker Architecture. 

Xilinx Zynq-7000 All Programmable SoC: The Zynq 
device has several key features which are required for a 
hardware implementation of this loosely-coupled lockstep 
architecture. Most importantly, the Zynq contains a dual-
core ARM Cortex-A9 MPCore based Processing System 
(PS) and Programmable Logic (PL) portions. These 
features allow for two processors to run identical code in 
the PS with a comparator located in the PL. In addition, 
there are a number of communication channels which exist 
so that the PS and PL can easily interface with one another; 
these include AXI bus interfaces and discrete signals [1].  

Asymmetric Multiprocessing (AMP): In order to run an 
application using a loosely-coupled lockstep architecture, 
two processors must be configured to execute identical 
code. To achieve this, the Zynq was configured for AMP 
with each processor running separate, identical copies of 
the application code. During the boot sequence, the 
application code copies are loaded into separate memories. 
Following the boot sequence, each processor begins 
executing its respective code copy. 
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Processor Memory Management: In order to help ensure 
that each processor executes independently of the other, 
separate memories and memory management must be used 
in the Zynq PS. The code for one processor is run from On-
Chip Memory (OCM). The code for the second processor is 
run from a locked L2 Cache (L2C) from which instructions 
cannot be evicted. 

The PS Memory Management Units (MMUs) and Snoop 
Control Unit (SCU) are used to limit the range of addresses 
and ports that each processor can access. If a processor 
attempts to access a blocked address or port, an abort error 
occurs, and the application is halted [1]. This strategy 
ensures that a processor cannot see the memory of the other 
processor.  

Transaction Checker Programmable Logic IP: Each 
peripheral access that the processors attempt to perform 
must be compared between processors to create a loosely-
coupled lockstep system. To perform this comparison on 
data from two separate memories, a comparator is needed. 
The Transaction Checker PL IP (which will be referred to 
as the Checker IP moving forward) was developed to act as 
a comparator in addition to several other functions.  

The primary functions of the Checker IP are the following: 

 Validate that the peripheral accesses each processor 
intends to perform are identical to one another 

 Read from or write to the target peripheral in the way 
described by the processors 

 Allow for interactions with a PL-based interrupt 
controller, referred to as the Fabric Interrupt Controller 
(FIC) 

 Detect and report any error conditions and cause an 
alarm if necessary 

While the comparator function of the Checker IP is clearly 
necessary, the other three functions are also important. The 
Checker IP must be the sole initiator of any peripheral 
reads or writes so that no single processor can access 
peripherals on its own. Interrupts will be partially handled 
in the PL, so the Checker IP must also be able to configure 
the FIC, fetch interrupt addresses, and acknowledge the 
FIC on behalf of the processors. Finally, the checker must 
detect errors and prevent them from propagating to other 
devices by either halting or resetting the system. 

Shadow Registers: The processors use shadow registers to 
communicate the form of read and write peripheral 
accesses to the Checker IP. Shadow registers are 32-bit data 
words located at constant memory addresses. Physical to 
virtual address mapping is used so that each processor 
accesses the same virtual addresses for their shadow 
registers. However, the Checker IP uses separate physical 
addresses to access the shadow registers from OCM and 
L2C.  

Figure 1: The Zynq-based Transaction Checker Architecture block diagram. The Zynq Processing 
System is described in the upper portion and the Programmable Logic is shown in the lower portion. 
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Each processor has a set of 20 shadow registers: one for 
status, one for address, two for control, and 16 for data. The 
status register provides a way for the Checker IP to give the 
processors successful or failed transaction codes. The 32-
bit address shadow register allows the processors to specify 
the address of the pending read or write. The control 
registers allow the processors to specify things such as read 
or write type, transaction length, AXI burst type, etc. 
Finally, the data registers are used to send and receive data. 
There are sixteen 32-bit data registers due to the constraints 
imposed from the combination of AXI3 protocol [2] and 
the GP AXI ports [1]. 

Processor Event Bus: The processor event bus is used to 
notify the Checker IP when the processors have requested a 
transaction that needs to be compared. This prevents the 
Checker IP from continually reading the shadow registers 
and comparing them between processors. The event bus 
contains a handful of discrete signals that travel between 
the PS and PL; in particular, the wait for event (WFE) 
signals and the event input signal were utilized. Each 
processor controls a WFE signal which is low when the 
processor is active and high when the processor is waiting 
for an event [1]. When a processor has configured its 
shadow registers and is ready for a peripheral transaction, it 
begins waiting for an event which halts its execution. It 
then resumes execution on the receipt of a toggled event 
input signal [1].  

In the Transaction Checker Architecture, the WFE signals 
are used to indicate to the Checker IP that each processor is 
halted and ready for a transaction. The shadow registers are 
then read by the Checker IP, and the transaction begins. 
Upon completion of a full transaction, the Checker IP 
toggles the event input signal which causes each processor 
to resume execution. 

AXI Communication Ports: The Zynq has a number of 
AXI3 interfaces for burst data transfer at the PS-PL 
boundary. The Transaction Checker Architecture requires 
three access points at the PS-PL boundary for moving data 
between the Checker IP and the OCM, L2C, and IO 
Peripherals (IOP). The 64-bit Accelerator Coherency Port 
(ACP) provides a low latency path between L2C and a PL 
master. A 64-bit High Performance (HP) slave port is used 
as the interface to the OCM. By using 64-bit wide ports, 
AXI bursts to the processors are as wide as possible. 
However, accessing the IOP from the PL is limited to a 32-
bit General Purpose (GP) port [1]. This means that AXI 
bursts to peripherals are limited to 32-bit wide transfers. 

In total, the Checker IP is equipped with two 64-bit masters 
to communicate with two sets of shadow registers, one 32-
bit master to transfer data to and from the IOP, and one 32-
bit master to communicate with the FIC and any other 
peripherals which reside in the PL. 

IO Peripherals: The Zynq IOP contains a number of 
peripheral registers which can be used to configure General 
Purpose IO (GPIO), Universal Asynchronous 

Receiver/Transmitter (UART) controllers, Controller Area 
Network (CAN) controllers, and many others. 
Configuration of these peripherals is handled entirely 
through register writes and reads which are routed 
exclusively through the Checker IP. From the Checker IP, 
these accesses travel through the GP AXI slave ports, are 
routed through various interconnects, and terminate at the 
appropriate end peripherals. 

Interrupt Handling: The Zynq architecture utilizes the 
ARM Generic Interrupt Controller (GIC) for interrupt 
handling. The GIC allows either processor to service 
Shared Peripheral Interrupts (SPIs) in an AMP system [1]. 
While this facilitates a distribution of the workload, it is 
necessary to bypass this capability in a loosely-coupled 
lockstep design. If only one processor services an interrupt, 
the two processors will no longer be running identical code. 
This violates the key principle of a lockstep design. To 
avoid this, Private Peripheral Interrupts (PPIs) are used. 
Each processor in the Zynq has a set of PPIs that are 
leveraged to ensure that both processors receive and service 
the same interrupts and that data transfers resulting from 
interrupts are compared in the Checker IP before entering 
or leaving the chip. 

Disabling the SPI capability eliminates the processors’ 
direct access to the IOP interrupts. As a result, the 
peripheral interrupt lines are routed into the PL portion of 
the Zynq, and an FIC is needed to act on the rerouted 
interrupt lines. It receives the interrupts and forwards them 
on to the processors as PPIs. This design uses a commercial 
AXI Interrupt Controller PL IP from Xilinx® as the FIC. It 
handles up to 32 unique interrupt sources and has a Fast 
Interrupt Mode in which the IP can send an address over a 
bus. The interrupt IDs and addresses are programmed by 
the processors over an AXI-Lite slave interface [3].  

Upon receipt of a peripheral interrupt, the FIC generates 
PPIs to both processors and forwards the interrupt address 
to the Checker IP. This address specifies the location of the 
peripheral interrupt handler in memory. The interrupt 
service routines (ISRs) for the PPIs are handled by the GIC. 
The ISR of each processor directs it to retrieve the interrupt 
address through the Checker IP which writes the interrupt 
address to the processors’ shadow registers. The processors 
then call the appropriate function based on the received 
interrupt address. At completion, both processors fill their 
respective shadow registers to indicate to the Checker IP 
that the interrupt in the FIC can be cleared. 

Results 
Hardware Testing: The Transaction Checker Architecture 
was developed and implemented in hardware. Test 
software was then generated for the architecture which 
configured GPIO pins and a UART port. Multiple GPIO 
pins were configured as outputs and used to toggle LEDs in 
a predefined pattern which was then manually verified. The 
UART controller was configured for a baud rate of  
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 Figure 2: The average checker transaction latencies 
starting when both processors have WFE set high and 
ending when the processor event bus event input signal 
toggles. This is the time that both processors are halted. 

115,200, and test messages were sent. The interrupt 
handling flow was tested using UART interrupts and 
Virtual IO interrupt events to toggle LEDs. The failed 
comparison error signal was tested with intentionally bad 
shadow register values. Overall, the architecture performed 
as intended with no detriment to application functionality. 

Latency Measurements: The latency added due to the 
Transaction Checker Architecture was analyzed and found 
to be acceptable. The number of fabric clock cycles when 
running at 100 MHz was measured. This measurement 
began when both WFE signals were high and ended when 
the processor event bus event input signal was toggled. 
This means that the measured checker transaction latency is 
equivalent to the time that both processors were halted. The 
checker transaction latency was calculated based on the 
number of measured clock cycles and the clock period.  

To collect latencies, an application was used which 
configured GPIO pins for outputs and toggled LEDs in a 
known pattern. This application was run several times and 
average measurements were gathered. The results can be 
seen in Figure 2. For this specific application, the average 
transaction took 808 ns. When broken down, 1-word 
transactions took an average of 761 ns, while 8-word 
transactions took 1095 ns. The timing increase for larger 
transaction lengths is primarily due to the increased amount 
of data beats in an AXI burst, as well as an increased AXI 
response time. 

Read or write speeds were also analyzed. A transaction 
consisting of one 32-bit word takes 761 ns. This translates 
to a data transfer speed of 42 Mbit/sec. For larger 
transactions of eight 32-bit words, the transfer speed is 233 
Mbit/sec. This architecture does introduce additional delays 

which are not accounted for in these measurements such as 
the time for the processors to fill the shadow registers and 
the synchronization time delay between the two processors. 
However, these delays are comparable to what would be 
seen in an application which does not use the Transaction 
Checker Architecture and would only slightly reduce the 
transfer speeds. Even with these delays considered, the data 
transfer speeds are well within reason for a large number of 
applications, and therefore this architecture can be viewed 
as a practical loosely-coupled lockstep approach. 

Future Work 
There are several potential areas for improvement in this 
design. Continuing efforts to minimize system latency will 
lead to optimization of both hardware and software 
techniques. In addition, latency results detailing more 
complicated peripheral transactions and interrupt events 
will better characterize the system performance.  

There is also further opportunity to expand the Checker 
IP’s AXI3 capabilities. The protocol allows for a number of 
features which are not yet employed in this design such as 
the ability to interleave messages and perform concurrent 
reads and writes. The intelligent use of generics as well as 
AXI ID and USER bits can make the architecture more 
flexible to meet various application requirements. 

It is also necessary to make the Transaction Checker 
Architecture more robust. A processor synchronization 
capability using the Checker IP will be implemented to 
tackle the potential problems of latency differences 
between L2C and OCM accesses. A deeper analysis of 
failure modes and error handling will determine the 
design’s resilience against unexpected and potentially 
catastrophic events.  

Acknowledgements 
The authors would like to acknowledge and thank Xilinx, 
Inc.® for their support during the development of this 
architecture. 

References 
1. "Zynq-7000 All Programmable SoC Technical 

Reference Manual," 2016. [Online]. Available: 
https://www.xilinx.com/support/documentation/user_g
uides/ug585-Zynq-7000-TRM.pdf. 

2. "AMBA® AXI™ and ACE™ Protocol," 2011. 
[Online]. Available: 
http://www.gstitt.ece.ufl.edu/courses/fall15/eel4720_5
572/labs/refs/AXI4_specification.pdf. 

3. "LogiCORE IP AXI Interrupt Controller (INTC) v4.1, 
Product Guide for Vivado Design Suite," 2013. 
[Online]. Available: 
https://www.xilinx.com/support/documentation/ip.../ax
i_intc/v4.../pg099-axi-intc.pdf 

 

149




