

Implementation of a Loosely-Coupled Lockstep Approach in the Xilinx
Zynq-7000 All Programmable SoC™ for High Consequence Applications

Ryan D. Kral, Johanna S. Chong, Anita L. Schreiber
Sandia National Laboratories

Albuquerque, New Mexico, USA
SAND2017-0395 C

Contact Author Email: rdkral@sandia.gov

Abstract: For high consequence applications requiring
information assurance, the architecture of the Xilinx Zynq-
7000 All Programmable SoC™ precludes a tightly-coupled
lockstep approach between the two processors. Therefore,
a loosely-coupled lockstep approach implemented by a
transaction checker residing in the Programmable Logic
portion of the Zynq device will be discussed along with
implementation results and latency measurements.

Keywords: embedded systems; loosely-coupled lockstep;
lockstep; high consequence; Zynq; Processing System;
Programmable Logic; Transaction Checker Architecture;
interrupt handling; AXI; comparator; event bus.

Introduction
In high consequence applications, information assurance is
a vital practice applied to ensure that valid data is used only
by the specific targets for which it is intended. Sending
invalid data to a correct target or valid data to an incorrect
target results in an information assurance violation. This
violation results in an error, which can potentially lead to
catastrophic failures in high consequence applications.

Multi-processor lockstep systems can be used in an effort
to increase information assurance in high consequence
applications. A tightly-coupled lockstep system is one in
which two or more processors synchronously run identical
code. Before each instruction is executed, a hardware
comparator is used to determine that each processor is in
fact running the same instruction. In this way, bit flips,
single processor hardware failures, and other errors are
identified immediately, and the application can be halted or
reset before any incorrect data is used.

In systems which lack the necessary hardware, or do not
require the level of rigor that a tightly-coupled lockstep
architecture provides, a loosely-coupled lockstep design
can be used. In this case, processor data is only compared
before it leaves or enters the immediate system. This does
not ensure that each instruction is executed properly, but
errors are caught before they are allowed to leave the
processors and propagate to other devices. This can also
lead to performance boosts over tightly-coupled lockstep
designs because fewer comparisons are performed.

The Xilinx Zynq-7000 All Programmable SoC™ precludes
a tightly-coupled lockstep approach between its processors
because no hardware comparator is built into the device.

However, a loosely-coupled lockstep approach is
achievable through the creation and use of a transaction
checker residing in the Programmable Logic portion of the
Zynq device. The transaction checker can be combined
with specific processor configurations, interrupt handling
schemes, and communication channels to create the
Transaction Checker Architecture which allows the Zynq to
operate as a loosely-coupled lockstep device. The design,
implementation details, performance results, and future
work of the Transaction Checker Architecture will be
discussed in the remainder of this paper.

Transaction Checker Architecture
Implementation of a loosely-coupled lockstep design
using the Xilinx Zynq-7000 All Programmable SoC™ is
made possible through the use of ARM® Cortex™-A9
MPCore™ Asymmetric Multiprocessing; processor
configurations utilizing the On-Chip Memory, L2 Cache,
Memory Management Unit, and Snoop Control Unit;
dedicated Programmable Logic IP; the Processor Event
Bus; various Advanced eXtensible Interface (AXI) bus
ports; the AXI Interrupt Controller Programmable Logic
IP; and the Generic Interrupt Controller. These elements
and their specific configurations make up the Transaction
Checker Architecture.

Xilinx Zynq-7000 All Programmable SoC: The Zynq
device has several key features which are required for a
hardware implementation of this loosely-coupled lockstep
architecture. Most importantly, the Zynq contains a dual-
core ARM Cortex-A9 MPCore based Processing System
(PS) and Programmable Logic (PL) portions. These
features allow for two processors to run identical code in
the PS with a comparator located in the PL. In addition,
there are a number of communication channels which exist
so that the PS and PL can easily interface with one another;
these include AXI bus interfaces and discrete signals [1].

Asymmetric Multiprocessing (AMP): In order to run an
application using a loosely-coupled lockstep architecture,
two processors must be configured to execute identical
code. To achieve this, the Zynq was configured for AMP
with each processor running separate, identical copies of
the application code. During the boot sequence, the
application code copies are loaded into separate memories.
Following the boot sequence, each processor begins
executing its respective code copy.

Distribution A: Approved for public release; distribution unlimited.

146

Processor Memory Management: In order to help ensure
that each processor executes independently of the other,
separate memories and memory management must be used
in the Zynq PS. The code for one processor is run from On-
Chip Memory (OCM). The code for the second processor is
run from a locked L2 Cache (L2C) from which instructions
cannot be evicted.

The PS Memory Management Units (MMUs) and Snoop
Control Unit (SCU) are used to limit the range of addresses
and ports that each processor can access. If a processor
attempts to access a blocked address or port, an abort error
occurs, and the application is halted [1]. This strategy
ensures that a processor cannot see the memory of the other
processor.

Transaction Checker Programmable Logic IP: Each
peripheral access that the processors attempt to perform
must be compared between processors to create a loosely-
coupled lockstep system. To perform this comparison on
data from two separate memories, a comparator is needed.
The Transaction Checker PL IP (which will be referred to
as the Checker IP moving forward) was developed to act as
a comparator in addition to several other functions.

The primary functions of the Checker IP are the following:

 Validate that the peripheral accesses each processor
intends to perform are identical to one another

 Read from or write to the target peripheral in the way
described by the processors

 Allow for interactions with a PL-based interrupt
controller, referred to as the Fabric Interrupt Controller
(FIC)

 Detect and report any error conditions and cause an
alarm if necessary

While the comparator function of the Checker IP is clearly
necessary, the other three functions are also important. The
Checker IP must be the sole initiator of any peripheral
reads or writes so that no single processor can access
peripherals on its own. Interrupts will be partially handled
in the PL, so the Checker IP must also be able to configure
the FIC, fetch interrupt addresses, and acknowledge the
FIC on behalf of the processors. Finally, the checker must
detect errors and prevent them from propagating to other
devices by either halting or resetting the system.

Shadow Registers: The processors use shadow registers to
communicate the form of read and write peripheral
accesses to the Checker IP. Shadow registers are 32-bit data
words located at constant memory addresses. Physical to
virtual address mapping is used so that each processor
accesses the same virtual addresses for their shadow
registers. However, the Checker IP uses separate physical
addresses to access the shadow registers from OCM and
L2C.

Figure 1: The Zynq-based Transaction Checker Architecture block diagram. The Zynq Processing
System is described in the upper portion and the Programmable Logic is shown in the lower portion.

147

Each processor has a set of 20 shadow registers: one for
status, one for address, two for control, and 16 for data. The
status register provides a way for the Checker IP to give the
processors successful or failed transaction codes. The 32-
bit address shadow register allows the processors to specify
the address of the pending read or write. The control
registers allow the processors to specify things such as read
or write type, transaction length, AXI burst type, etc.
Finally, the data registers are used to send and receive data.
There are sixteen 32-bit data registers due to the constraints
imposed from the combination of AXI3 protocol [2] and
the GP AXI ports [1].

Processor Event Bus: The processor event bus is used to
notify the Checker IP when the processors have requested a
transaction that needs to be compared. This prevents the
Checker IP from continually reading the shadow registers
and comparing them between processors. The event bus
contains a handful of discrete signals that travel between
the PS and PL; in particular, the wait for event (WFE)
signals and the event input signal were utilized. Each
processor controls a WFE signal which is low when the
processor is active and high when the processor is waiting
for an event [1]. When a processor has configured its
shadow registers and is ready for a peripheral transaction, it
begins waiting for an event which halts its execution. It
then resumes execution on the receipt of a toggled event
input signal [1].

In the Transaction Checker Architecture, the WFE signals
are used to indicate to the Checker IP that each processor is
halted and ready for a transaction. The shadow registers are
then read by the Checker IP, and the transaction begins.
Upon completion of a full transaction, the Checker IP
toggles the event input signal which causes each processor
to resume execution.

AXI Communication Ports: The Zynq has a number of
AXI3 interfaces for burst data transfer at the PS-PL
boundary. The Transaction Checker Architecture requires
three access points at the PS-PL boundary for moving data
between the Checker IP and the OCM, L2C, and IO
Peripherals (IOP). The 64-bit Accelerator Coherency Port
(ACP) provides a low latency path between L2C and a PL
master. A 64-bit High Performance (HP) slave port is used
as the interface to the OCM. By using 64-bit wide ports,
AXI bursts to the processors are as wide as possible.
However, accessing the IOP from the PL is limited to a 32-
bit General Purpose (GP) port [1]. This means that AXI
bursts to peripherals are limited to 32-bit wide transfers.

In total, the Checker IP is equipped with two 64-bit masters
to communicate with two sets of shadow registers, one 32-
bit master to transfer data to and from the IOP, and one 32-
bit master to communicate with the FIC and any other
peripherals which reside in the PL.

IO Peripherals: The Zynq IOP contains a number of
peripheral registers which can be used to configure General
Purpose IO (GPIO), Universal Asynchronous

Receiver/Transmitter (UART) controllers, Controller Area
Network (CAN) controllers, and many others.
Configuration of these peripherals is handled entirely
through register writes and reads which are routed
exclusively through the Checker IP. From the Checker IP,
these accesses travel through the GP AXI slave ports, are
routed through various interconnects, and terminate at the
appropriate end peripherals.

Interrupt Handling: The Zynq architecture utilizes the
ARM Generic Interrupt Controller (GIC) for interrupt
handling. The GIC allows either processor to service
Shared Peripheral Interrupts (SPIs) in an AMP system [1].
While this facilitates a distribution of the workload, it is
necessary to bypass this capability in a loosely-coupled
lockstep design. If only one processor services an interrupt,
the two processors will no longer be running identical code.
This violates the key principle of a lockstep design. To
avoid this, Private Peripheral Interrupts (PPIs) are used.
Each processor in the Zynq has a set of PPIs that are
leveraged to ensure that both processors receive and service
the same interrupts and that data transfers resulting from
interrupts are compared in the Checker IP before entering
or leaving the chip.

Disabling the SPI capability eliminates the processors’
direct access to the IOP interrupts. As a result, the
peripheral interrupt lines are routed into the PL portion of
the Zynq, and an FIC is needed to act on the rerouted
interrupt lines. It receives the interrupts and forwards them
on to the processors as PPIs. This design uses a commercial
AXI Interrupt Controller PL IP from Xilinx® as the FIC. It
handles up to 32 unique interrupt sources and has a Fast
Interrupt Mode in which the IP can send an address over a
bus. The interrupt IDs and addresses are programmed by
the processors over an AXI-Lite slave interface [3].

Upon receipt of a peripheral interrupt, the FIC generates
PPIs to both processors and forwards the interrupt address
to the Checker IP. This address specifies the location of the
peripheral interrupt handler in memory. The interrupt
service routines (ISRs) for the PPIs are handled by the GIC.
The ISR of each processor directs it to retrieve the interrupt
address through the Checker IP which writes the interrupt
address to the processors’ shadow registers. The processors
then call the appropriate function based on the received
interrupt address. At completion, both processors fill their
respective shadow registers to indicate to the Checker IP
that the interrupt in the FIC can be cleared.

Results
Hardware Testing: The Transaction Checker Architecture
was developed and implemented in hardware. Test
software was then generated for the architecture which
configured GPIO pins and a UART port. Multiple GPIO
pins were configured as outputs and used to toggle LEDs in
a predefined pattern which was then manually verified. The
UART controller was configured for a baud rate of

148

 Figure 2: The average checker transaction latencies
starting when both processors have WFE set high and
ending when the processor event bus event input signal
toggles. This is the time that both processors are halted.

115,200, and test messages were sent. The interrupt
handling flow was tested using UART interrupts and
Virtual IO interrupt events to toggle LEDs. The failed
comparison error signal was tested with intentionally bad
shadow register values. Overall, the architecture performed
as intended with no detriment to application functionality.

Latency Measurements: The latency added due to the
Transaction Checker Architecture was analyzed and found
to be acceptable. The number of fabric clock cycles when
running at 100 MHz was measured. This measurement
began when both WFE signals were high and ended when
the processor event bus event input signal was toggled.
This means that the measured checker transaction latency is
equivalent to the time that both processors were halted. The
checker transaction latency was calculated based on the
number of measured clock cycles and the clock period.

To collect latencies, an application was used which
configured GPIO pins for outputs and toggled LEDs in a
known pattern. This application was run several times and
average measurements were gathered. The results can be
seen in Figure 2. For this specific application, the average
transaction took 808 ns. When broken down, 1-word
transactions took an average of 761 ns, while 8-word
transactions took 1095 ns. The timing increase for larger
transaction lengths is primarily due to the increased amount
of data beats in an AXI burst, as well as an increased AXI
response time.

Read or write speeds were also analyzed. A transaction
consisting of one 32-bit word takes 761 ns. This translates
to a data transfer speed of 42 Mbit/sec. For larger
transactions of eight 32-bit words, the transfer speed is 233
Mbit/sec. This architecture does introduce additional delays

which are not accounted for in these measurements such as
the time for the processors to fill the shadow registers and
the synchronization time delay between the two processors.
However, these delays are comparable to what would be
seen in an application which does not use the Transaction
Checker Architecture and would only slightly reduce the
transfer speeds. Even with these delays considered, the data
transfer speeds are well within reason for a large number of
applications, and therefore this architecture can be viewed
as a practical loosely-coupled lockstep approach.

Future Work
There are several potential areas for improvement in this
design. Continuing efforts to minimize system latency will
lead to optimization of both hardware and software
techniques. In addition, latency results detailing more
complicated peripheral transactions and interrupt events
will better characterize the system performance.

There is also further opportunity to expand the Checker
IP’s AXI3 capabilities. The protocol allows for a number of
features which are not yet employed in this design such as
the ability to interleave messages and perform concurrent
reads and writes. The intelligent use of generics as well as
AXI ID and USER bits can make the architecture more
flexible to meet various application requirements.

It is also necessary to make the Transaction Checker
Architecture more robust. A processor synchronization
capability using the Checker IP will be implemented to
tackle the potential problems of latency differences
between L2C and OCM accesses. A deeper analysis of
failure modes and error handling will determine the
design’s resilience against unexpected and potentially
catastrophic events.

Acknowledgements
The authors would like to acknowledge and thank Xilinx,
Inc.® for their support during the development of this
architecture.

References
1. "Zynq-7000 All Programmable SoC Technical

Reference Manual," 2016. [Online]. Available:
https://www.xilinx.com/support/documentation/user_g
uides/ug585-Zynq-7000-TRM.pdf.

2. "AMBA® AXI™ and ACE™ Protocol," 2011.
[Online]. Available:
http://www.gstitt.ece.ufl.edu/courses/fall15/eel4720_5
572/labs/refs/AXI4_specification.pdf.

3. "LogiCORE IP AXI Interrupt Controller (INTC) v4.1,
Product Guide for Vivado Design Suite," 2013.
[Online]. Available:
https://www.xilinx.com/support/documentation/ip.../ax
i_intc/v4.../pg099-axi-intc.pdf

149

