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1. Introduction 

The threat of vehicle-borne improvised explosive devices is a pervasive one for 
deployed US forces and is increasingly a potential threat domestically. A standoff 
method to identify vehicles carrying these devices or that are part of the supply 
chain to build such devices is crucial to ensuring the safety of US personnel. UV 
Raman scattering spectroscopy has been proposed as a candidate technique to meet 
this need.1–3 

Numerous other methods have been examined to detect explosives in the 
environment and on surfaces. Among the techniques used are a group of techniques 
based on recognition elements immobilized on sensor surfaces that capture and 
respond to the presence of explosives including antibodies,4 immunoassays,5 
differential chemical recognition (electronic nose concepts),6 aptamer-based 
assays,7 surface-modified cantilever-based sensors,8 and surface plasmon 
resonance sensors.9 Both traditional mass spectrometry10 and ion mobility 
spectrometry11 have been examined. Optical methods12 have also been proposed 
including standoff IR,13,14 light detection and ranging (LIDAR),15 laser-induced 
breakdown spectroscopy (LIBS),16–19 and photothermal methods.20 In addition, 
time-resolved Raman spectroscopy,21 visible Raman scattering spectroscopy,22–26 
stimulated Raman scattering,27 surface-enhanced Raman spectroscopy,28–36 
coherent-anti-Stokes Raman spectroscopy,37 and Raman spectroscopy combined 
with LIBS38–40 have been investigated. UV Raman spectroscopy41–57 has also been 
demonstrated both alone and in combination with LIBS.40,58–62 

UV Raman provides several advantages over other methods.63 When UV Raman is 
used below 300 nm, it takes advantage of the “solar blind” region where sunlight is 
absorbed by the ozone layer and little background is observed. In addition, the 
potential fluorescence background that frequently plagues Raman spectroscopy is 
reduced by excitation below 250 nm, by either not being excited or being shifted to 
sufficiently high wavelengths such that the Raman signal is background-free. While 
UV light is more strongly absorbed by the atmosphere, standoff ranges in the tens 
of meters have been reported. 

The testing of UV Raman spectroscopy systems for standoff UV Raman 
spectroscopy has been generally limited to bare metal, white, black, and a small 
number of colored targets.58–62 To fully test the capability of UV Raman 
spectroscopy to detect explosive traces on surfaces, it will be necessary to test 
substrates with additional colors. The goal of this project is to determine whether 
colored substrates will interfere with the ability of UV Raman spectroscopy to 
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detect traces of explosives on surfaces. This report describes our initial results 
examining over a dozen Ford standard panels for their background signals in the 
visible and UV. 

2. Experiment 

2.1 Materials 

The color panels used were Ford Color Standards (ACT Test Panels). Fourteen 
different colors were chosen for these tests based on the number of models of 
vehicles using them and the frequency with which they are observed on the roads. 
Table 1 lists the colors and their M-code numbers. The panels were used as 
received. Examples of the panels are shown in Fig. 1. The following chemicals were 
obtained from Sigma Aldrich and were used as received, without further 
purification: 2,4-dinitrotoluene (2,4-DNT), 2,6-dinitrotoluene (2,6-DNT), 
acetonitrile, and tetrahydrofuran.  

Table 1 Ford standard panels used in experiments 

Standard M-code 

School Bus Yellow M6284 
Vermillion Red M6470 

Pueblo Gold M7113 
Sterling Gray Metallic M7205 
Ingot Silver Metallic M7226 

Ginger Ale M7262 
Green Gem M7289 

Oxford White M6466 
Dark Pearl Blue M7083 

White Titanium Tricoat M7204 
Tuxedo Black Metallic M7211 

Kodiak Brown M7261 
Ruby Red M7283 

Deep Impact Blue M7296 
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Fig. 1 Examples of Ford standard panels being dried after deposition of 2,4-DNT and  
2,6-DNT from acetonitrile slurry 

2.2 Instrumentation 

IR spectra were collected on a Jasco FT/IR-4100 (Easton, MD) with a Jasco ATR-
PRO450-S diamond single-pass attenuated total reflection (ATR) assembly 
(Easton, MD). Spectra were collected with 4 cm‒1 resolution and 64 accumulations. 
Two different Raman systems were utilized in these experiments. The visible 
Raman system used a Lexel 95L argon (Ar) ion laser (Cambridge Lasers 
Laboratories, Fremont, CA) at 488 nm with an Acton SP2500A 500-mm focal 
length monochromator and a PIXIS 400 × 3048 pixel charge-coupled device (CCD) 
camera (Princeton Instruments, Trenton, NJ). An InPhotonics 488-nm RamanProbe 
Raman fiber-optic assembly (InPhotonics, Norwood, MA) was used to deliver the 
excitation and collect the Raman scattered light. The fiber probe contains filters to 
remove the Rayleigh scattered light before it enters the emission fiber. Spectra were 
collected with 90-mW of excitation power at the laser head, 1-s integration time, 
and 100 accumulations. Figure 2 shows the optical arrangement for this system.  
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Fig. 2 Visible Raman optical train 

The UV Raman spectra were collected using a Lexel 95-SHG frequency doubled 
Ar ion laser (Cambridge Lasers Laboratories, Fremont, CA) with an Acton TriVista 
555 triple monochromator (Princeton Instruments, Trenton, NJ) and a PIXIS 
2KBUV, 2048 × 512 pixel, UV-enhanced, backthinned CCD camera (Princeton 
Instruments, Trenton, NJ). The TriVista triple monochromator was equipped with 
UV-enhanced gratings with 1,800 grooves/mm in the first 2 monochromators, 
which comprise the filter stage, and 3,600 grooves/mm in the third monochromator, 
which serves as the spectrograph stage. Spectra were collected with 1- to 5-s 
integration times, depending on the signal level, and 100 accumulations. Spectra 
were collected of the blank panels at 229-, 244-, and 257.23-nm excitation 
wavelengths by changing the doubling crystal in the laser to change the excitation 
wavelength. The power of the laser was also varied with spectra collected at 1-,  
5-, 10-, and 25-mW excitation power, when the power level desired was available. 
The initial background study was performed with the collection optics in a 150° 
backscatter arrangement. Figure 3 shows the optical arrangement of this system. 
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Fig. 3 Optical train for 150° backscattering arrangement. A) The frequency doubled Ar-
ion laser is located in the lower left corner of the image. The triple monochromator is located 
in the upper left corner of the image. B) The frequency doubled Ar-ion laser is located in the 
upper left corner of the image. The Princeton Instruments TriVista triple monochromator is 
located in the center of the image. 

Later work was performed using an off-axis parabolic mirror (MPD249HF01SP, 
Thor Labs, Newton, NJ) to collect Raman scattering at 180°. The move to 180° 
backscattering was precipitated by difficulty obtaining UV Raman spectra from 
solid samples. It was also determined that the height adjustment needed to be 
separated from changing the beam path to preserve the vertical polarization of the 
excitation beam. The TriVista system UV-enhanced gratings have a highly 
polarization-dependent response, so it was necessary to ensure that the excitation 
and collected Raman photons had the vertical polarization to match the highest 
throughput of the monochromator system. Figure 4 shows this optical arrangement. 

 

Fig. 4 Optical arrangement for UV Raman 180° backscattering measurements. Blue line 
indicates laser excitation path and green indicates Raman scattering. 

3. Results and Discussion 

IR absorption spectra are frequently used for forensic examination of car paint and 
identification of vehicles involved in criminal activities.64–65 The spectra of the Ford 
standard panels are shown in Figs. 5 and 6. Figure 5 shows the entire spectra 
collected using Fourier-transform IR spectroscopy (FTIR)-ATR absorption, and  
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Fig. 6 shows more focused spectra on the nitrile and C-H and O-H stretching 
regions. Clearly visible differences are evident among the panels based on 
differences in the pigments used and potentially on the Clearcoat used as well. The 
literature in this area is focused on the use of the spectra rather than their 
interpretation, so further investigation is necessary to discuss them more 
completely. It is clear from visual examination of the spectra that they all contain 
nitrile bands in the 2,300–2,400 cm‒1 region. This is perhaps indicative of an 
acrylonitrile polymer as part of the Clearcoat. The fingerprint region indicates a 
mixture of polymer and pigment bands. This region will be further investigated. 

 

Fig. 5 FTIR-ATR absorption spectra for Ford standard panels. Each spectrum is offset 
0.05 absorbance units from the one below it. 

 

Fig. 6 FTIR-ATR absorption spectra of Ford standard panels highlighting the nitrile and 
C-H and O-H stretching regions that were obscured in Fig. 5 
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Collecting spectra using visible wavelength excitation poses significant challenges 
with the various colored panels. Both a strong luminescence and highly variable 
response were observed as shown in Figs. 7 and 8. When operating with visible 
wavelength excitation (488 nm), each panel had significantly different background 
spectra. More specifically, there was a trend toward lighter color panels exhibiting 
stronger luminescence backgrounds. The cause of the differing background spectra 
is most likely due to varying levels of fluorescent components in the pigments and 
Clearcoat. Consequently, because of the higher background activity in the visible 
spectra, any hopes of being able to distinguish any sort of Raman peaks are lost. 

 

Fig. 7 Visible Raman spectra of Ford standard panels. Excitation was at 488 nm (90 mW 
at the laser) with a 100-ms integration time and 100 accumulations. The samples were excited 
and the Raman scattering collected with a 488-nm InPhotonics Raman probe fiber-optic 
assembly.
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Fig. 8 Visible Raman spectra of Ford standard panels. Rescaling of Fig. 7 to highlight the 
weaker luminescence observed with some of the panels. Excitation was at 488 nm (90 mW at 
the laser) with a 100-ms integration time and 100 accumulations. The samples were excited 
and the Raman scattering collected with a 488-nm InPhotonics Raman Probe fiber-optic 
assembly. 

UV excitation provides much more useful background spectra that should be useful 
in the future detection of explosives. Figure 9 shows the background spectra of 
every color standard tested using the 150° backscattering geometry (Fig. 3), each 
one being offset slightly to show comparison rather than overlap of the spectra. 
With UV excitation, the background spectra did not differ significantly between 
different colored panels. Furthermore, there were no noticeable differences in 
background spectra when using different UV wavelengths or laser powers. 
Figure 10 compares the spectra from one panel being tested using the 3 UV 
wavelengths with one using a visible wavelength. One of the limitations observed 
with this geometry is that the polarization of the collected Raman scattering only 
partially matches the preferred polarization of the monochromator gratings. 
Therefore, it is unclear whether the low background signal is due to the small 
amount of light reaching the detector or a low background signal. We were unable 
to collect Raman spectra of solid samples in this geometry and only saw weak 
spectra from liquid samples. For these reasons, we switched to the 180° 
backscattering geometry (Fig. 4). 
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Fig. 9 UV Raman scattering collected at the 150° backscattering geometry (Fig. 3) for Ford 
standard panels. Spectra were collected with 257.23-nm excitation (25 mW at the laser) using 
2.5-s integration time and 100 accumulations. Each spectrum is offset by 400 counts from the 
one below it. 

 

 

Fig. 10 Comparison of Raman scattering from 3 UV wavelengths (229, 244, and 257.23 nm) 
with 488 nm for one of the Ford standard panels (M7296 Green Gem). The UV Raman spectra 
were offset by 200 counts from the one below them. The 488-nm Raman spectrum was divided 
by 40 and then offset by 56,000 to be on-scale with the UV Raman spectra. All UV Raman 
spectra were collected with the 150° backscattering geometry with 2.5-s integration times and 
100 accumulations. 

In the 180° backscattering geometry (Fig. 4), signals were observed from both 
liquid and solid samples. Figure 11 depicts the background Raman scattering and 
luminescence onset from excitation at 257.23 nm. In addition to the change in 
excitation and collection geometry, a new set of gratings was obtained for the 
system that is better optimized for the UV. These grating have twice the groove 
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density, so one-half of the spectral range collected previously can be observed 
without moving the gratings in this case. As can be seen in these spectra, several 
colors exhibited a luminescence background beginning as a Raman shift between 
1,400 and 1,500 cm‒1. As with the visible Raman results (Fig. 7), the luminescence 
tends to be stronger for lighter and brighter panel colors. These results suggest that 
excitation at 257.23 nm may not be suitable for detection of trace explosives on all 
possible colors of vehicles. We will continue to investigate the use of 257.23 nm, 
but will also shift to 244 and 229 nm to determine whether the background at those 
wavelengths is more suitable for surface contamination determinations. The colors 
with the strongest luminescence background are the White Titanium Tricoat, 
Sterling Gray Metallic, Ingot Silver Metallic, Green Gem, and Deep Impact Blue 
panels. The School Bus Yellow, Oxford White, Dark Pearl Blue, and Kodiak 
Brown panels showed lower but clearly observable luminescence backgrounds. The 
similarity may lie more in the Clearcoat composition rather than the pigments. 
Further investigation will be required to determine the best excitation wavelength 
for the detection of surface explosive traces. 

 

Fig. 11 UV Raman scattering collected at the 180° backscattering geometry (Fig. 4) for Ford 
standard panels. Spectra were collected with 257.23-nm excitation (10 mW at the laser) using 
1.0-s integration time and 100 accumulations. Each spectrum is offset by 1,000 counts from 
the one below it. 
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4. Future Work 

Several aspects of the project remain to be investigated during the remainder of the 
academic year 2016. First, efforts will be made to interpret the fingerprint region 
of the IR spectra of the blank panels to better understand the chemical nature of 
pigments and Clearcoat. We will also investigate the background of the blank 
panels in the other 2 UV excitation wavelengths (244 and 229 nm) we have 
available. Finally, we will continue to pursue determinations of the limits of 
detection of explosives in the Ford standard panels. This will entail both 
evaporative deposition from tetrahydrofuran solutions and more control depositions 
provided by US Army Research Laboratory scientists using their inkjet printing 
method.66 

5. Conclusions 

After determining that the visible spectrum does not effectively permit elucidation 
of the DNT peaks, the UV spectrum was found to be a better approach to the 
solution because it results in minimal background scattering. The color of the panel, 
wavelength of the UV laser, and the power of the laser do not significantly affect 
the background spectra while in the UV spectrum in 150° backscattering. 
Therefore, UV wavelengths should be used in explosive detection because of the 
minimal and consistent background scattering across all panels of different colors. 
However, in 180° backscattering, where the monochromator grating polarizations 
are better matched, some luminescence was observed under UV excitation. Future 
experiments will be conducted to determine the optimum excitation wavelength and 
the limits of detection of surface explosive traces for our system. Consequently, 
explosive detection using UV wavelengths should provide for a consistent 
measurement without the complications found when using visible excitation. 
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List of Symbols, Abbreviations, and Acronyms 

2,4-DNT 2,4-dinitrotoluene 

2,6-DNT 2,6-dinitrotoluene 

Ar argon 

ATR attenuated total reflection 

CCD charge-coupled device 

FTIR Fourier-transform infrared spectroscopy 

IR infrared 

LIBS laser-induced breakdown spectroscopy 

LIDAR light detection and ranging 

UV ultraviolet 
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