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Introduction 

In combat situations, traumatic eye injuries are frequent, leading to irreversible damage to the visual 
axis (retina, optic nerve, and visual centers in the brain). Although many of these injuries are treated 
surgically, there is a definite need for new therapeutic agents that protect and restore normal 
functions to ocular and brain neural tissues following traumatic injury to the eye. In addition, our 
models of ocular trauma mimic some features of common degenerative ocular diseases, so our 
discovery of pathogenic pathways and new therapeutic agents may also identify new therapeutic 
interventions for these diseases, which are prevalent in our veterans.  

The overall goal of the VISION project was to discover neuroprotective strategies in three separate 
rodent models of injury to the visual axis, in order to identify potential candidates for the treatment of 
combat eye injuries and preserve vision in our injured warfighters. We established and used three 
different in vivo rodent models of ocular injury with different injury-initiating mechanisms (i.e. optic 
nerve crush, retinal ischemia/reperfusion, and chronic ocular hypertension). We developed 
techniques to quantify damage to the retina, optic nerve, and visual axis in the brain (i.e. superior 
colliculus) damaged in these three models.  

Identification of pathogenic pathways that are involved in traumatic injury to the retina, optic nerve, 
and visual centers in the brain will lead to the discovery and development of new neuroprotective and 
regenerative strategies for treating combat related ocular injuries and degenerative ocular diseases. 
This initiative focused on addressing “Inadequate mitigation and treatment of traumatic injuries, war-
related injuries, and diseases to ocular structures and the visual system”.  We proposed two aims that 
use rodent models of ocular injury (optic nerve crush and ischemia reperfusion) to: (1) test 6 
neuroprotective strategies that will either delay or prevent further damage to the retina, optic nerve 
and visual centers of the brain, and  (2) use genomic (transcriptomic) techniques to identify and 
characterize early and late pathogenic pathways involved in damage to the retina, optic nerve and 
visual centers of the brain. We used AAV2 delivery of agents that led to neuroprotection and 
neuroregeneration and also validated new therapeutic targets by genetic depletion of candidate 
pathogenic genes.  Looking at initial and progressive damage to all these tissues helped us better 
understand the pathophysiology of neuronal damage and led to the design and testing of novel 
neuroprotective strategies.  

We initially evaluated six specific neuroprotective strategies (neuroprotective estrogens, inhibitors of 
Jun N-terminal kinase (JNK), the sigma-1 receptor, Brn3b, C1q, and methylene blue) to determine 
their efficacy in protecting the retina, optic nerve and superior colliculus from neurodegenerative 
damage induced our 3 models. In addition, we evaluated time dependent, injury-induced changes in 
gene expression in the effected tissues and identified major pathogenic pathways involved in 
neurodegeneration in order to develop new therapeutic approaches for neuroprotection and 
neuroregeneration. This approach has allowed us to identify four new molecular pathogenic 
pathways, including neuritin-1, CHOP, caspase 7, and BiP. Overall, we evaluated ten different 
neuroprotective/neuroregenerative strategies, all of which provided some degree of neuroprotection 
and several of these strategies provided profound neuroprotection to the visual axis. We readily 
shared our discoveries through presentations at scientific meetings, published meeting abstracts, and 
peer-reviewed scientific publications. 

This is the final report for the VISION (Vision Integrating Strategies in Ophthalmology and 
Neurochemistry) project at UNTHSC. Although our original proposal was based on 5 years of funding, 
we only received funding for the first two years, and we have received no cost extensions for years 3-
5. We made a number of important discoveries despite the reduced funding for this overall project.
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Overall Project Summary 

We feel that overall this project was very successful for the following reasons: (1) Ten different 
neuroprotective agents were tested in different models of injury to visual axis neurons (retina, optic 
nerve, and neurons in the visual centers of the brain). Several of these treatments provided profound 
neuroprotection from severe neuronal insults. (2) We have shared our discoveries with the scientific 
community via 39 presentations and abstracts at national/international scientific meetings as well as 
23 peer-reviewed scientific publications. We sincerely hope that one or more of these discoveries will 
be tested and developed clinically for treating individuals, including warfighters, with traumatic 
neuronal injury. The following is a brief synopsis of our discoveries based on our 23 peer-
reviewed publications. Please note that the cited figures (in bold) refer to the figure numbers 
in the referenced publications. 

Establishment and characterization of rodent models of neuronal injury to the visual axis: We 
established and characterized three mouse models of damage to visual axis (retina, optic nerve and 
visual centers in the brain). Optic nerve crush (ONC) is an acute model of axonal injury leading to 
subsequent degeneration of retinal ganglion cell (RGC) somas (Figures 1 & 3), loss of RGC function 
(Figures 5-6), as well as target neurons in the superior colliculus of the brain (Figure 2)(Liu et al. 
IOVS 2014). Retinal ischemia/reperfusion (I/R) injury is an acute model of ischemic damage to the 
inner retina, followed by loss of inner retinal function (Figures 6-7) and degeneration of inner retinal 
neurons (Figures 2-5) (Kim et al. Mol Neurodegen 2013). I/R injury also damages contralateral 
superior colliculus neurons (Figure 10) (Kim et al. 2016). We also developed quantitative methods to 
access neuronal damage to the visual axis in all three models, including non-invasive techniques to 
measure neuronal morphological changes in retinal layer thickness using spectral domain-optical 
coherence tomography (Figure 3 in Kim et al. Mol Neurodegen 2013) (Figure 3 in Liu et al IOVS 
2014) and functional changes to the retina  by electroretinography (ERG)) (Figures 6-7 in Kim et al. 
Mol Neurodegen 2013) (Figures 5-6 in Liu et al. IOVS 2014). 

Neuroprotection by JNK inhibition: The cJun N-terminal kinase (JNK) is a major signaling hub that 
can regulate cell proliferation, differentiation, or apoptosis, depending on the circumstances and 
environment. We have shown early activation (phosphorylation) of JNK and its downstream substrate 
JUN in retinas within 1 hour of retinal I/R injury (Figures 2-5 in Kim et al Mol Neurodegen 2016). 
This activation is most prominent in retinal ganglion cells (RGCs) and precedes the progressive loss 
of RGCs (Figure 8), thinning of inner retinal layers (Figures 6-7), decreased retinal function (ERG b-
waves) (Figure 9), and neuronal loss in the superior colliculus (vision center in the brain innervated 
by RGC axons) (Figures 10-11). Daily systemic administration of the JNK inhibitor SP600125 totally 
protected the retina and RGCs from I/R induced retinal injury (Figures 6-11 in Kim et al. Mol 
Neurodegen 2016). It truly is remarkable that this therapy provided complete structural and functional 
protection of retinal and brain neurons from this severe insult. 

Neuroprotection and neuroregeneration by gene therapy with retinal transcription factor Brn3b: Brn3b 
is a transcription factor responsible for the development of the majority of RGCs. This transcription 
factor protects and enhances neurite outgrowth in cultured neurons (Figures 1-2, 4 & 6) and neurons 
exposed to hypoxia (Figures 4-7 in Phatak et al. Cell Mol Neurobiology 2015). A viral Brn3b 
expression vector (AAV2.Brn3b) was constructed to transduce RGCs in vivo (Figure 1 in 
Stankowska et al. IOVS 2015). Over-expression of Brn3b in the retina protected RGCs from 
chronically elevated IOP in a rat model of glaucoma (Figures 7-8). Brn3b also appeared to enhance 
RGC axonal regeneration through the optic nerve head (Figures 3 & 6 in Stankowska et al. IOVS 
2015), which is the initial site of glaucomatous damage. Bcl-2, Bcl-xL, and p-AKT appear to be 
involved in the neuroprotective effects of Brn3b in this glaucoma models (Figures 2-3 & 5-6 in 
Phatak et al. Mol Vis 2016). 
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Neuroprotection by activation of the sigma-1 receptor: The sigma-1 receptor is an endoplasmic 
reticulum chaperone protein that modulates intracellular calcium signaling and inhibits voltage gated 
K+ channels. This receptor is linked to a number of additional signaling transduction pathways. The 
sigma-1 receptor is expressed on RGCs and attenuates the calcium response in cultured RGCs via 
interaction with voltage gated calcium channels and attenuates the NMDA induced calcium influx in 
RGCs (Figures 2-7 in Mueller et al. Exp Eye Res. 2013). Sigma- receptor stimulation protects 
RGCs via activation of the Erk1/2 signaling pathway. Sigma-1 receptors also enhance RGC synapse 
formation by mediating mitochondrial fusion (Yorio et al. ARVO 2011; Mueller et al, ARVO 2012). 
Stimulation of the sigma-1 receptor protects cultured RGCs from ischemic damage by activating 
ERK1/2 (Figures 2-8 in Mueller et al Exp Eye Res 2014). Sigma-1 activation protects cultured 
RGCs from oxygen glucose deprivation by stabilizing the mitochondrial membrane potential (Figures 
3-6 & 8 in Ellis et al. IOVS 2017). Additional in vivo studies are being conducted in the ONC and 
retinal I/R models using a sigma-1 receptor agonist (pentazocine) as well as in Sigma-1 receptor 
deficient mice. 
 
Neuroprotection by targeting complement factor C1q: The complement cascade plays a major role in 
both innate and acquired immune responses. Relatively recently, complement components C1q and 
C3 have been shown to play a role in developmental dendritic pruning of RGCs and their target 
neurons in the brain. We have shown increased expression of C1q in the retinal and superior 
colliculus neurons after retinal I/R injury (Figures 1-2) that correspond to glial activation in the retina 
and superior colliculus (Figures 3-4). I/R retinal injury is significantly reduced morphologically 
(protection of retinal thickness and RGCs) (Figures 5-6) and functionally (ERG) (Figure 7) in mice 
deficient in C1q (C1q+/- and C1q-/- mice) (Silverman et al., Mol Neurodegen 2016). C1q deficiency 
also suppressed microglial activation due to I/R injury (Figure 8). This strongly suggests that C1q 
plays an important pathogenic role in neurodegeneration of the visual axis induced by ischemia. 
 
Neuroprotection with non-feminizing estrogens: Estrogens are well known as female sex hormones, 
but recent evidence also supports their neuroprotective activities, which often can be separated from 
their feminizing activities. Non-feminizing estrogens can protect cultured retinal neurons from 
excitotoxic injury (Figures 4-7 in Nixon & Simpkins IOVS 2012). However, a single systemic dose of 
estradiol prior to ONC injury failed to protect RGCs from progressive degeneration. Therefore, no 
further in vivo studies were conducted. 
 
Neuroprotection with methylene blue: Methylene blue has been reported to protect a variety of cells 
from ischemic damage, including brain neurons, via targeting mitochondrial respiration.  Treatment of 
primary rat RGC cultures with methylene blue protects these cells from rotenone, staurosporine and 
hypoxia cytotoxicity (Figures 3-8 in Daudt et al. IOVS 2012). Methylene blue also delayed 
senescence of neural progenitor cells (Figures 1-6 in Xie et al. Frontiers in Cell Neurosci 2014). 
Further evaluation of this compound for activity in our in vivo models was not possible given the 
decreased funding support for the VISION project.  
 
Approach to discover new therapeutic targets: In addition to testing the 6 neurprotective therapeutic 
targets listed above, we also used a variety of methods to discover new potential therapeutic targets 
in our models of neurodegeneration of the visual axis. We used transcriptomics to identify temporal 
changes in gene expression in the retina, optic nerve, and superior colliculus in our two acute models 
of injury to the visual axis (i.e. ONC and retinal I/R induced injury). We reported temporal changes in 
retinal gene expression after ONC (Figures 1-6 and Tables 1-4 Sharma et al. Mol Neurodegen 
2014) that led to the discovery of neuritin-1 as a new therapeutic target (Sharma et al. Cell Death 
Disease 2015) (see below). We also used transcriptomics to discover changes in retinal gene 
expression after retinal I/R injury (Figures 8-10 and Tables 1-2 Kim et al. Mol Neurodegen 2013). 
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In addition, we found that the unfolded protein response (UPR) and endoplasmic reticulum associated 
degradation (ERAD) pathways were activated after acute retinal damage induced by I/R or ONC. This 
discovery led us to evaluate key targets associated with these pathways (i.e. CHOP, Caspase 7, and 
BiP) for potential neuroprotective activities (see below). 

Neuroprotection and neuroregeneration by Neuritin-1 (NRN1) gene therapy: Examination of changes 
in retinal gene expression after ONC lead to the discovery that Nrn1 expression was significantly 
down-regulated shortly after ONC (Figures 1 & 3-6 Sharma et al. Mol Neurodegen 2014). Neuritin-
1 promotes neuritogenesis of neurons during development, appears to play a role in neuronal 
plasticity in adults, and is expressed in RGCs. Given the functions of neuritin-1, we hypothesized that 
increasing NRN1 expression in RGCs would protect these neurons from axonopathy induced 
neurodegeneration. We constructed a viral vector (AAV2.NRN1) to transduce mouse eyes and over-
express NRN1 in RGCs (Figures 3-4 in Sharma et al. Cell Death Disease 2015). NRN1 partially 
protected RGCs from ONC-induced neurodegeneration (Figures 1 & 5), induced RGC axonal 
regeneration (Figures 2 & 6-7) and more importantly functionally protected the RGC from ERG b-
wave deficits (Figure 8) (Sharma et al. Cell Death Dis. 2015).  

Neuroprotection by targeting CHOP: Endoplasmic reticulum (ER) stress occurs during a wide variety 
of neuronal insults. One downstream effector of ER stress is CHOP (DDIT3), which is a C/EBP 
transcription factor that can activate neuronal death via apoptosis. The expression of retinal CHOP is 
significantly increased within 3 days of retinal I/R injury, with expression mostly localized to RGCs 
(Figures 1 & 3). Deletion of CHOP expression in Chop-/- mice partially protected RGCs 
morphologically (Figure 4) and functionally (Figure 5) from I/R induced damage (Nashine et al. 
IOVS 2014). This clearly demonstrates that ER stress plays a major role in retinal I/R induced 
neurodegeneration and suggests other potential ER stress associated therapeutic targets. 

Neuroprotection by targeting Caspase 7: Caspase 7 is an effector caspase induced by ER stress that 
is involved in apoptotic cell death. Little was known about its potential involvement in neuronal cell 
death, especially in the retina. ONC injury in mice increases expression and activation of caspase 7 in 
retinal ganglion cells (Figures 1-2) as well as increased caspase 7 substrate cleavage (Figure 4). In 
addition, deletion of caspase 7 expression in Casp7-/- mice partially protected the retina from ONC 
induced retinal thinning (Figure 6), loss of RGCs (Figure 5) and functional deficits (ERG pSTR) 
(Figure 7) (Choudhury et al. Mol Neurodegen 2015). This demonstrates that RGCs can be 
protected by targeting ER stress induced apoptosis. 

Neuroprotection by BiP (GRP78) gene therapy: BiP is an ER molecular chaperone that plays a 
protective role during ER stress by translocating misfolded proteins out of the ER for proteolytic 
degradation. Expression of BiP in RGCs is increased shortly after ONC injury in an attempt to provide 
endogenous protection. We generated a viral vector to transduce and over-express BiP in RGCs 
(AAV2.BiP). Over-expression of BiP significantly reduced RGC loss post-ONC and partially protected 
ERG pSTR amplitudes, providing both morphological and functional protection (Liu et al. ARVO 
2014). This demonstrates that ONC associated ER stress causes pathogenic neurodegeneration, 
which can be prevented by gene therapy with the molecular chaperone BiP. We did not further 
pursue this neuroprotective target due to the funding cut for this project. 
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Key Research Accomplishments 

(1) The VISION research project was a multi-PI effort to discover new neuroprotective strategies 
to protect the visual axis (retina, optic nerve, and visual centers in the brain) from traumatic 
injury. We proposed to evaluate specific neuroprotective strategies using small molecules, 
gene therapy, and genetic deletion of target genes. In addition, we evaluated molecular 
changes in the visual axis over the course of traumatic injury in order to discover and test new 
therapeutic strategies. The VISION project was an ambitious 5-year project initially involving 6 
faculty members, 5 postdoctoral fellows, 7 graduate students, and 4 research associates. 
However, we only receiving funding for the first 2 years of this 5-year project and had to make 
major adjustments to our budget, personnel, and research plan. Over the 5 years of this 
project, we evaluated 10 different therapeutic approaches and made a number of significant 
discoveries, despite this major budget reduction. 

(2) We established and characterized three mouse models of damage to visual axis (retina, optic 
nerve and visual centers in the brain). Optic nerve crush (ONC) is an acute model of axonal 
injury leading to subsequent degeneration of retinal ganglion cell somas as well as target 
neurons in the superior colliculus of the brain. Retinal ischemia/reperfusion (I/R) injury is an 
acute model of ischemic damage to the inner retina, followed by degeneration of retinal and 
superior colliculus neurons. We also developed an inducible model of elevated intraocular 
pressure that causes optic neuropathy and retinopathy that progressively damages retinal 
ganglion cells. In addition, we developed quantitative methods to access structural and 
functional neuronal damage to the visual axis in all three models. 

(3) We initially evaluated six different therapeutic neuroprotective strategies, including JNK 
inhibition, Brn3b, sigma-1 receptor, C1q, neuroprotective estrogens, and methylene blue. All 
six strategies gave varying degrees of neuroprotection. JNK inhibition totally protected the 
visual axis (retina and superior colliculus) structurally and morphologically from retinal 
ischemia/reperfusion injury. Genetic depletion of complement component C1q also protected 
the retina from ischemia/reperfusion injury. Gene therapy with Brn3b significantly protected 
retinal ganglion cells from ocular hypertension induced damage and appeared to stimulate 
axonal regeneration. Sigma-1 receptor agonists and methylene blue are neuroprotective in 
cultured neurons. We plan on testing the potential neuroprotective role of the sigma-1 receptor 
in our in vivo models.  

(4) We used transcriptomics to identify additional neuroprotective targets, including NRN1, CHOP, 
caspase 7, and BiP. Gene therapy with NRN1 or with BiP partially protected the retina from 
ONC-induced retinal ganglion cell loss and partially protected RGC function. NRN1 also 
induced optic nerve axonal regeneration, so this gene is both neuroprotective and 
neuroregenerative. Genetic knockout of CHOP structurally and functionally protected the retina 
from ischemia/reperfusion injury, while genetic depletion of caspase 7 protected the retina from 
ONC injury. 

(5) We have presented our research findings at national and international visual sciences 
meetings (39 presentations and published abstracts). We also have published 18 and 
submitted an additional 2 peer-reviewed scientific manuscripts related to this work. 

(6) Over the course of this 5 year project, we have trained and at least partially supported 5 
postdoctoral fellows and 7 graduate students. 
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Conclusion 

Through the generous support of TATRC and the Department of Defense, the VISION project 
discovered and evaluated 10 different therapeutic neuroprotective approaches to treat traumatic 
injury to neurons in the visual axis (brain, optic nerve, and visual centers in the brain). Two of our 
experimental in vivo models caused acute and severe traumatic damage to the visual axis. We 
showed total structural and functional protection with one therapy (JNK inhibition), and to our 
knowledge no previous therapeutic approach has provided this level of protection. Several of our 
gene therapy approaches not only provided neuroprotection, but also showed neuroregeneration of 
optic nerve axons showing that we can regrow injured nerve axons. Since the retina and optic nerve 
are extensions of central nervous system (CNS) and we also evaluated neurons in the visual centers 
of the brain, our discoveries would likely also apply to other CNS neurons in the brain and spinal cord. 
We have readily shared all our discoveries with the scientific community through 39 presentations 
and published abstracts as well as 20 peer-reviewed publications. 
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