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INTRODUCTION: 
Due to the heightened concern about bioterrorism and emerging/reemerging infectious diseases, 
there are growing interests and pressing needs in speeding up the basic research as well as data 
mining of pathogenesis-related proteins in pathogens of military relevance, which may lead to 
better targets for disease diagnosis, prevention and therapy. This project specifically focuses on 
pathogenesis-related protein data mining from scientific literature by developing an automated 
text mining system to facilitate literature-based curation of such proteins (1st year), and from 
proteomics and functional genomics data through an integrated protein bioinformatics analysis 
system (2nd year, revised). We refer to the project as Pathogen Mining System 
(https://pir5.georgetown.edu/wiki/TATRC). The text mining system development primarily 
concerns the pathogen-host protein-protein interaction (PH-PPI) information from MEDLINE 
abstracts, and the proteomics and genomics data mining concerns the analysis of proteomics data 
from Burkholderia under simulated growth condition, and of transcriptional regulatory pathway 
data from Ebola virus-infected macrophage.   
 

BODY:   
The primary objective of the first year of the project is to develop a text-mining system to 
identify pathogenesis-related papers and extract information on pathogenicity and host-pathogen 
interactions. There are three tasks: 
 

• Task1 (M01-03): Compilation of training and benchmarking literature corpus. Manual 
compilation of literature corpus as a positive training set of 300 pathogenesis-related 
papers with pathogen-host protein-protein interaction information. 

• Task2 (M04-09): Development and evaluation of text-mining algorithms. Development 
of a text-mining system for document retrieval, entity recognition, and document 
categorization. Named-entity tagging tools as well as algorithms for document 
classification and information extraction, including machine learning and rule-based 
methods will be evaluated. 

• Task3 (M10-12): Development of web interface for automated literature mining. 
Development of web-based graphical user interface for query submission and for 
literature mining result display with automatically tagged abstracts. 

 
I. Literature data sets for machine learning algorithm training 
 
Literature data sets (literature corpus) consisting of positive and negative data are necessary for 
training machine learning algorithms, such as Supporter Vector Machine (SVM), for text mining 
of pathogenesis-related pathogen and host proteins from literature. We focused on specific 
pathogen and host protein-protein interactions (PH-PPI). Unlike those for protein-protein 
interactions of the same species taking place within an organism, curated positive training data 
sets are rare for PH-PPI, especially for bacterial PH-PPI, and most such data are buried in the 
literature. Also because the bacterial PH-PPI information is much more difficult to distinguish 
from the same-species PPI than viral PH-PPI information would, we decided to separate training 
set for the bacterial PH-PPI from that of viral PH-PPI, and to concentrate on the former. Thus, 
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we generated the literature training sets through manual curation of a set of ~2000 abstracts 
retrieved from PubMed based on query terms “bacterial pathogen and protein interaction”.     
 
1. Positive literature set of PH-PPIs. We compiled 300 abstracts (PMIDs) that are reviewed to 
contain PH-PPI, and the sentences providing the evidence for such interactions are also tagged 
(highlighted). The sources for deriving the set of literature also include protein databases 
(UniProtKB and IntAct) where literature with protein interactions is cited for protein entries. Of 
the 300 abstracts, ~54% are for viral-host PPI, which are all derived from literature cited in 
databases; while ~46% are for bacterial-host PPI, most of which are from PubMed search. 
Because the primary interests of pathogens for the USAMRIID are on CDC category A/B viral 
and bacterial pathogens, the abstracts for training have a balanced coverage of the bacterial and 
viral groups of organisms. In the training set, viral pathogens include Ebola, Lassa, HIV, HBV, 
and bacterial pathogens include Yersinia pestis, Bacillus anthracis, Salmonella, and Shigella. In 
most cases the host is human, but may also include other mammal species.  
 
2. Negative literature set of PH-PPIs. Of the ~2000 abstracts retrieved from PubMed based on 
general keyword search “bacterial host protein interaction”, ~1225 abstracts were manually 
selected as negative ones, which may describe pathogen gene- or protein-related information but 
clearly lack of specific PH-PPI information. 
 
The data sets for bacterial PH-PPI are available at http://pir.georgetown.edu/staff/huz/tatrc/ 
(tatrc_dataset_positive.html and tatrc_dataset_negative.html), including 135 positive and 1225 
negative abstracts. Evidence sentences in the positive abstracts were also annotated. The data set 
is currently for internal use and will eventually be made public for use in developing text mining 
algorithms by the text mining community. 
 
II. Machine learning algorithm development for text mining of pathogenesis proteins 
 
We developed and evaluated machine learning-based text-mining methods for retrieving 
MEDLINE abstracts containing pathogen and host protein-protein interaction information based 
on the literature training set. We used a publicly available Support Vector Machine (SVM) 
package, SVMlight (see http://svmlight.joachims.org/), to train the classifier, and tested and 
evaluated both abstract- and sentence-based classifiers to recognize PH-PPI-containing abstracts.  
Detailed methodology and results are described in a research paper (Xu et al., 2008) to be 
presented at the 2008 IEEE conference on Bioinformatics and Biomedicine (BIBM 2008) 
(http://www.ischool.drexel.edu/ieeebibm/bibm08/). 
 
1. Abstract-based algorithm. The training task can be at abstract level (ALT) to build a system 
to rank a set of abstracts. The abstracts in the dataset were preprocessed first by normalizing the 
nouns, verbs, and adjectives, followed by extracting the unigrams and bigrams in both title and 
abstract to construct the sample features. The SVM was trained to classify these 1360 abstracts 
(both positive and negative) by 10-fold cross-validation. Given a threshold value, abstracts with 
scores higher than the threshold from the classifier were assigned positive, while those with 
lower scores labeled negative. The classification was based on the total feature of the abstract. 
We tried different kernel functions in SVM including linear function, polynomial, and RBF and 
found linear function was the best. 



W81XWH-07-2-0112            Page 
Annual Report, Year 1 

6

 
2. Sentence-based algorithm. The training task can also be at sentence level (SLT) to build a 
system to rank the abstracts. Individual sentences from abstracts were first extracted and labeled 
with corresponding PubMed ID (PMID) appended with a sequential number of the sentence in 
the given abstract. The sentences were then preprocessed similarly as above in the abstract-based 
algorithm. Untagged sentences from positive abstracts were not used for training but included in 
the test dataset only. The SVM was trained with linear function at the sentence-based, and 10-
fold cross-validation was used to construct training and test dataset. Each sentence received a 
score from the classifier, and the highest sentence score would be assigned to the abstract as the 
final discriminating value. Similar to ALT method, a threshold value was set to assign positive or 
negative abstracts from the classifier, but the classification in SLT method was based on the 
feature of sentences. 
 
3. Results and comparison between ALT and SLT methods. The testing results of the trained 
SVM were evaluated using the ROC curve depicting the relationship between the true positive 
(TP) and false positive (FP) rates (Figure 1). In the high specificity area (specificity=1-FP, 
towards the left of the ROC curve), given the same sensitivity (TP), the sentence-based method 
gave higher specificity (red-line) than the 
abstract-based (blue-line); while in the high 
sensitivity area (sensitivity=TP, towards the 
top of the ROC curve), the two methods 
seemed to have little difference. For 
example, the top 200-scored abstracts from 
the classifier using sentence-based method 
contained 61% true positive abstracts, 
compared to 53% with abstract-based 
method. The results suggest that the 
sentence-based training method tends to 
have better performance than the abstract-
based method for retrieving pathogen host 
PPI abstracts. We also extended the SVM 
training to feature selection to enhance its 
performance. 
 
4. Feature selection method and information gain. We investigated the inclusion of a feature 
selection method (i.e., information gain) into the machine leaning system. We compared no 
feature selection method with Information Gain feature selection on both abstract and sentence 
levels. We found that Information Gain reduced the dimension of Vector Space and could 
improve the performance of the SVM than no feature selection. Moreover, the results showed 
that the sentence-level SVM (training based on highlighted sentences) had better performance 
and greater prospect than the abstract-based method.  
 
III. Evaluation of existing text mining tools on the PH-PPI data sets   
 
While developing and evaluating the SVM-based text mining system for PH-PPI during the first 
year of the project, we are also exploring the existing text mining tools that can be useful for text 

Figure 1. Receiver operating characteristics 
curve (ROC) analysis of ALT (blue) and SLT 
(red).
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mining of PH-PPI information. These public text mining tools include PIE (Kim et al., 2008), 
iHOP (Fernández et al., 2007), and others as included in MetaServer (Leitner et al., 2008), which 
is a central sever integrating text mining tools participating in the BioCreative Challenge 
Evaluation for molecular (gene and protein) data from literature (Hirschman et al., 2005). 
Protein-protein interaction text mining has been a major task in the 2nd BioCreative Challenge 
Evaluation (Wilbur et al., 2007).  
 
We evaluated the PPI text mining tool PIE (Protein Interaction information Extraction, 
http://pie.snu.ac.kr/index.php) using the curated positive data set for bacterial as well as the viral 
PH-PPI. PIE highlights sentences in abstracts that contain protein interaction information, in 
which the detected words/phrases for the interacting proteins and the interaction relations are 
also distinguished. Table 1 (bacterial set) and 2 (viral set) summarize the comparison of the PIE 
PPI extraction with the manual annotated abstracts and sentences.  
 

Table 1. Comparison of PIE text mining of PPI to the manual bacterial data set 
 # Abstracts % Data set 

Manually-tagged bacteria data set 135 100% 

Positive abstracts tagged by PIE 110 81.5% 
Positive abstracts not tagged by PIE 25 18.5% 
Abstracts with >=1 manually-identified sentence tagged by PIE 70 51.9% 

Abstract 
level 

Abstracts with no manually-identified sentence tagged by PIE  65 48.1% 
Manually-tagged (positive) sentences in data set  247 100% 
Positive sentences tagged by PIE 98 39.7% 
Positive sentences missed by PIE 149 60.3% 
Sentences tagged by PIE in data set 298 100% 
Positive sentences tagged by PIE 98 32.9% 

Sentence 
level 

Negative sentences tagged by PIE 200 67.1% 
 

Table 2. Comparison of PIE text mining of PPI to the manual viral data set 
 # Abstracts % Data set 
Manually-tagged virus data set 170 100% 
Positive abstracts tagged by PIE 163 95.9% 
Positive abstracts not tagged by PIE 7 4.1% 
Abstracts with >=1 manually-identified sentence tagged by PIE 145 85.3% 

Abstract 
level 

Abstracts with no manually-identified sentence tagged by PIE  25 14.7% 
Manually-tagged sentences (positive) in the data set  279 100% 
Positive sentences tagged by PIE 205 73.5% 

Sentence 
level 

Positive sentences missed by PIE 74 26.5% 
 

The results show that PIE recognizes ~82% of the manually tagged abstracts and ~40% manually 
tagged sentences for the bacterial data set, and recognizes ~96% manually tagged abstracts and 
74% manually tagged sentences for the viral data set. While we need to compare the PIE’s 
performance with other similar tools on the same data set, the relatively high recognition of 
positive abstracts by PIE is a desired feature for retrieving the PH-PPI containing abstracts to 
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facilitate the manual curation efforts. Therefore the PIE tool can augment the pathogen mining 
system for this project. The detailed evaluation results of the PIE tool are available at: 
http://pir.georgetown.edu/staff/huz/tatrc/dataset/ with the bacterial set 
(PIE_evaluation_bacterial_positive.mht) and the viral set (PIE_evaluation_viral_positive.mht). 
 
IV. iProLINK framework to link text mining to ontology and systems biology 
 
Another ongoing effort relevant to the project on the PH-PPI text mining is the iProLINK 
framework development, an effort in bringing together text mining, biological ontology and 
systems biology communities to develop text mining tools that can be broadly utilized by the 
biology communities for real-world applications.  
 
The ever-increasing scientific literature and the exponential growth of large-scale molecular data 
have prompted active research in biological text mining to facilitate literature-based curation of 
molecular databases. Meanwhile, systems biology and bio-ontologies are emerging as critical 
tools in biological research where complex data in disparate resources are generated, integrated 
and analyzed. Both rely on literature for data annotation and analysis. The challenges facing us 
are to develop broadly utilized text mining tools and systems that need to involve both 
developers and users for system development and evaluation. iProLINK, extending from a 
previously developed text mining resource (Hu et al., 2004), is designed as a framework for 
linking text mining tools with ontology and systems biology. The framework focuses on text 
mining of protein-protein interaction, including the protein posttranslational modification such as 
phosphorylation, which can be applied to curation of molecular and ontological data and analysis 
of systems biology data.  
 
The framework consists of two major components: a user interface for text mining of PPI from 
an integrated tool server and software modules to allow text mining outputs to be created, 
ranked, and used by the community. Use cases are presented for assessing the gaps and making 
recommendations for future development. The detailed components and case studies are 
described in a research paper (Hu et al., 2008) to be presented at the 2008 IEEE conference on 
Bioinformatics and Biomedicine (http://www.ischool.drexel.edu/ieeebibm/bibm08/). 
 
The iProLINK framework will benefit the current Pathogen Mining project by not only 
maximally utilizing the different tools developed by the text mining community and providing an 
interface for community access, but also encouraging the use and application of these tools in the 
real-world applications such as assisting genomic and proteomic data analysis and pathogen data 
mining. As will be mentioned below (section V), the second year of the Pathogen Mining project 
has been revised to focus on the collaborative work with the USAMRIID on bacterial pathogen 
proteomics data analysis using the iProXpress system developed at PIR (Huang et al, 2007).  
 

V. Collaboration with USAMRIID research groups 
 
In the beginning of the project, we met with the USAMRIID research groups and discussed the 
research activities in their labs complimentary to the current project. We identified areas that 
were of great importance and high priority for the USAMRIID. One of the projects was the 
legacy proteomics data for Burkholderia from Dr. Brad Powell’s lab that need to be re-annotated 
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and reanalyzed using the iProXpress system. It has been approved that the second year for the 
project will focus on the bacterial pathogen proteomics data analysis. The CRADA has been 
approved by both Georgetown University and USAMRIID for Dr. Powell’s data. 

The prior bacterial proteomics data for Burkholderia (>5 years old) needs to be reanalyzed due to 
the continuous updates to the relevant bacterial protein databases and/or annotations, as well as 
accumulation of literature information regarding prior unknown genes. The objective of this 
collaboration is to use the integrated proteomics analysis system, iProXpress, coupled with the 
current TATRC-funded project, Pathogen Mining System, to facilitate the re-evaluation and 
functional interpretation and hypothesis formulation from the legacy data.  
 

KEY RESEARCH ACCOMPLISHMENTS:  

• We manually curated pathogen-host PPI literature data sets that are necessary for the 
machine learning method as well as beneficial to the text mining community when 
becoming publicly available. 

• We developed and evaluated the SVM methods for classifying the abstracts with PH-PPI 
information, whose overall performance is best when using sentence level training and 
feature selection.  

• We identified and evaluated existing public text mining tools such as PIE that can be 
augmenting the Pathogen Mining System.  

• We initiated a community collaborative effort under the iProLINK framework, which 
will be of great benefit to the Pathogen Mining System.  

• We established close collaborations with USAMRIID research groups to analyze 
pathogen genomic and proteomic data that will take advantage of the PH-PPI text mining.  

 

REPORTABLE OUTCOMES: 
1. Cooperative Research And Development Agreement between Georgetown University 

and USAMRIID 

2. Two research papers were generated from the project, one reporting the SVM-based PH-
PPI text mining system (Xu et al., 2008), the other reporting an integrated text mining 
framework for text mining and biology communities (Hu et al., 2008).  

3. A workshop presentation for the 2009 PAG XVI (Plant and Animal Genome Conference) 
on the iProLINK framework (Hu and Hirschman, 2009). 

 

CONCLUSIONS:   

Biomedical literature represents the primary source of experimental data, and developing text 
mining systems for mining such data for pathogens of biodefense relevance is the main objective 
for the first year of the project. We focus on text mining of the host-pathogen protein-protein 
interactions. We developed an SVM-based automated system to identify MEDLINE abstracts 
containing HP-PPI information. We observed that feature selection was effective not only in 
reducing the dimensionality of features to build a compact system, but also in improving 
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document classification performance. We also observed abstract-level systems and sentence-
level systems yielded different classification of MEDLINE abstracts, and the combination of 
these systems could improve the overall document classification.  

To augment the SVM-based PH-PPI mining methods, we also explored the public text mining 
tools for the PH-PPI mining. We performed preliminary evaluation on the PPI extraction tool 
PIE, and the results showed encouraging performance at least at the abstract level, suggesting 
that PIE can be potentially integrated into the Pathogen Mining System for improving the overall 
text mining capabilities of the system. Exploring public text mining tools is also part of the 
initiative by PIR in order to develop a basic framework to bring together the text mining and 
biological communities to better develop text mining tools for real-world applications.  

Our second year tasks have been revised to focus on the integrated analysis of the pathogen 
proteomics data, which will be done in a coordinated fashion to the development of iProLINK 
framework, which will facilitate the use of text mining results to the annotation and analysis of 
systems biology data, including genomic and proteomic data for pathogens of biodefense and 
military relevance.   
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APPENDICES:  

• Cooperative Research And Development Agreement 

o Title :Reanalysis and Functional Interpretation of Proteomics Data from Bacterial 
Cells under Simulated Growth Condition 

o Between Georgetown University and USAMRIID (US Army Medical Research 
Institute of Infectious Disease) 

o USAMRMC Control No: W81XWH-09-0003 

• The PH-PPI text mining paper (BIBM2008) (Xu et al., 2008) (in press) 

o Title: Document Classification for Mining Host Pathogen Protein-Protein 
Interactions 

• The iProLINK text mining framework paper (BIBM2008) (Hu et al., 2008) (in press) 

o Title: A Framework for Linking Text Mining with Ontology and Systems Biology 

• The PAG workshop abstract (Hu and Hirschman, 2009) 

o Title: Linking Text Mining with Ontology and Systems Biology for Database 
Curation 
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1. Introduction Abstract 
 
    Due to the heightened concern about 
bioterrorism and emerging/reemerging infectious 
diseases, there have been major initiatives for 
large-scale genomic and proteomic projects to study 
the basic biology and disease-causing mechanisms of 
human pathogens [1, 2]. As a result, a flood of 
molecular data is being generated, but important 
scientific discoveries regarding these pathogens and 
their host responses are often buried under the 
increasing volume of biomedical literature.  

    Due to the heightened concern about 
bioterrorism and emerging/reemerging infectious 
diseases, a flood of molecular data about human 
pathogens has been generated and maintained in 
disparate databases. However, scientific findings 
regarding these pathogens and their host responses 
are buried in the growing volume of biomedical 
literature and there is an urgent need to mine 
information pertaining to pathogenesis-related 
proteins especially host-pathogen protein-protein 
interactions from literature. In this paper, we report 
our exploration of developing an automated system to 
identify MEDLINE abstracts referring to 
host-pathogen protein-protein interactions. An 
annotated corpus consisting of 1,360 MEDLINE 
abstracts was generated. With this corpus, we 
developed and evaluated document classification 
systems using support vector machines (SVMs). We 
also investigated the effects of feature selection using 
the information gain (IG) measure. Document 
classification systems were designed at two levels, 
abstract-level and sentence-level. We observed that 
feature selection was effective not only in reducing the 
dimensionality of features to build a compact system, 
but also in improving document classification 
performance. We also observed abstract-level systems 
and sentence-level systems yielded different 
classification of MEDLINE abstracts, and the 
combination of these systems could improve the 
overall document classification. 

    Over the years, biomedical literature mining 
advanced greatly. In this paper, our investigation 
focused on the development of an automated system 
to identify research articles describing pathogenicity 
and host-pathogen protein-protein interactions. Our 
goal is to facilitate literature-based curation of 
pathogenesis-related proteins in UniProt 
Knowledgebase (UniProtKB) [3] by incorporating 
pathogenesis information extracted from literature 
and promoting basic understanding of virulence and 
pathogenicity factors as well as host-interacting 
proteins of human pathogens. Such knowledge will 
facilitate the development of preventative and 
therapeutic strategies against human pathogens.   
    In the following, we first describe the research 
background and related work. The experimental 
method is introduced next. We then present the results 
and discussion, and conclude our work. 
 
2. Background and related work 

  
The task considered in this study is a special 

* Equal contribution to the work. 
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case of identifying papers that describe 
protein-protein interactions (PPIs). There are several 
components in developing an automated literature 
mining system, including the construction of an 
annotated corpus, the selection of features and their 
representations, and the choice of machine learning 
algorithms. In the following, we present the research 
background and related work of each component. 
  
2.1. Constructing annotated corpora from 
MEDLINE 
 

One step towards constructing annotated corpora 
from MEDLINE is to select a subset of MEDLINE 
abstracts. There are different ways to obtain such 
subset. One approach is to use keyword search. For 
example, abstracts selected for the GENIA corpus 
were retrieved from MEDLINE using three MeSH 
terms, “human”, “blood cell” and “transcription 
factor” [4]. An alternative way to obtain a subset is to 
exploit the use of existing biomedical databases. For 
example, in order to construct an annotated corpus for 
the Interaction Article Subtask at the second 
BioCreative workshop, contents of two existing 
interaction databases, namely IntAct and MINT, have 
been exploited [5]. After deriving such subset, domain 
experts can manually annotate them. 
 
2.2. Feature representation/selection 
 
    In order to use machine learning methods, each 
document needs to be transformed into a feature 
representation, which is usually a feature vector. 
Commonly, features are based on words appearing in 
the document. Various feature selection techniques 
have been explored to overcome the 
high-dimensionality of word-based features [6, 7], 
e.g., Term Frequency (TF), TF * Inverse Document 
Frequency (IDF), Information Gain (IG), Mutual 
Information (MI), or chi-square statistics. In this 
paper, we explored IG for feature selection. IG 
represents the quantity of information in a feature 
with regard to class prediction on the base of 
presence/absence of the feature in a document. Let 

 be a set of categories to be predicted. Then 
IG of feature w in a document collection is defined as 
follows: 
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=  are occurrence conditional 

probability of the category c on occurrence and 
absence of term w, where  and wcN wcN are the file 
numbers of including and not including term w in 
class c[8]. It is assumed that the larger the IG value of 
a term is, the more important the term is in classifying 
documents.  
 
2.3. Machine learning algorithms 
 
    A growing number of statistical and probabilistic 
machine learning algorithms have been applied to 
document classification, including K nearest neighbor, 
Bayesian approaches, decision trees, symbolic rule 
learning, and neural networks [9-12]. Here, we chose 
Support Vector Machines (SVMs), a supervised 
learning algorithm proposed by Vladimir Vapnik and 
his co-workers [13, 14]. It has been widely used for 
text mining and achieved promising results. Given a 
training set with n class-labeled instances, (x1, y1), (x2, 
y2), ..., (xi, yi), …, (xn, yn), where xi is a feature vector 
for the i-th instance and yi ∈{+1, –1} indicates the 
class, an SVM classifier learns a hyper-plane as a 
decision boundary in the feature space. The class of 
an unlabelled instance x is determined by on which 
side of the hyperplane x lies. The purpose of training 
SVM classifiers is to find a hyperplane that has the 
maximum margin to separate the two classes [16-18]. 
 
3. Method 
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Figure 1. Overall architecture of the study. 

Figure 1 illustrates the overall data flow of the 
classification system. It consists of several steps 
including i) generating annotated MEDLINE abstracts, 
where each abstract was annotated either positive or 
negative (e.g., +1 or -1) based on its relevance to 
host-pathogen protein-protein interactions (PH-PPI), 
ii) conducting machine learning experiments to 
evaluate different kinds of feature representations and 
feature selection methods, and iii) implementing a 
system that assigns confidence scores to abstracts 
based on their PH-PPI relevance. 

 
3.1. Generation of an annotated corpus 
      

The annotated corpus was generated from two 
different sources. One was from UniProtKB database 
where the PH-PPI information is annotated for the 
protein entries and the relevant MEDLINE abstracts 
are cited. If a cited abstract contains an interaction 
pair consisting of one host protein and one pathogen 
protein, it is considered as positive. The other source 
was from PubMed, from which a set of MEDLINE 
abstracts was retrieved using keyword searches. Two 
domain experts reviewed and manually annotated this 
set, and categorized the abstracts as positive or 
negative. Additionally, for positive abstracts sentences 
describing the interactions were highlighted.  
 
3.2. Machine learning  
 
 Instead of classifying a document as PH-PPI 
relevant or not, the machine learning task considered 
here is to rank a set of documents according to their 
PH-PPI relevance. We defined two machine learning 
tasks. One task is at abstract level (ALT), which uses 
the abstracts to build a system to rank a set of 
abstracts according to their PH-PPI relevance. The 
other is on sentence level (SLT) which ranks all 
sentences in abstracts by considering titles and 
highlighted sentences in positive abstracts as positive 
and all sentences in negative abstracts as negative. 
The ranking of a set of abstracts can then be obtained 
according to the rank of the most relevant sentence in 
an abstract.  
 
3.2.1. Feature representation/selection 
 

We normalized the text by changing nouns in 
plural forms into singular forms, verbs in past tense 
into present tense, and replacing nouns and adjectives 
by their corresponding verbs based on the 
SPECIALIST lexicon, a component in the Unified 
Medical Language System (UMLS). We also replaced 
punctuation marks with spaces and changed 

uppercase letters to lowercase letters.  
After normalization, we used unigrams and 

bigrams as features, and the frequencies of unigrams 
and bigrams as their corresponding feature values. To 
reduce the dimensionality of the feature space, we 
used information gain to select features with high IG 
values. Note that we did not remove features that are 
stop or rare words in this work.  
 
3.2.2. Machine learning algorithms 
 

We used the SVM light package and chose a 
linear function as the kernel [13]. We also 
experimented with other types of kernels such as 
polynomial or radial basis function (RBF), but 
observed no performance improvement.  
 
3.2.3. Experiments 
  

The experiments were designed to i) compare IG 
feature selection (IG-FS) with no feature selection 
(NO-FS), and ii) compare ALT and SLT. We used 
100 runs of 10-fold cross validation.  For each run, 
the same 10 fold partitions were used for the 
following four settings: (IG-FS, ALT), (IG-FS, SLT), 
(NO-FS, ALT), and (NO-FS, SLT).  For each setting, 
we obtained a ranked list consisting of abstracts in the 
annotated corpus ranked according to the results of 
the 10-fold cross validation experiment. The 
performance was then measured using true positive 
rate (TPR): given rank threshold P and ranked list L, 
TPR(P, L) is defined as the ratio of the number of true 
positives ranked as top P in L to P. We selected 18 
different rank thresholds: from 10 to 90 (incremented 
by 10) and from 100 to 500 (incremented by 50). In 
case of IG-FS, we set 20 IG thresholds: 0 to 0.0009 
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(incremented by 0.0001) and from 0.001 to 0.01 
(incremented by 0.001). For each IG threshold, we 
ignored all features with IG values less than the 
threshold when constructing the systems. The average 
TPR of 100 runs for each setting was computed to 
compare the performance. Confidence intervals at 
95% Confidence Level were also computed [15].  

Figure 2. The relationship between IG threshold and 
TPR averaged over 100 runs in (IG-TF, ALT) and (IG-FS, 
SLT).

 
3.3. System implementation 
 
    As we have discussed, the machine learning task 
considered here is to rank a set of documents 
according to their PH-PPI relevance. In order to judge 
the PH-PPI relevance for any given abstract, we used 
the following method:  

i) obtain N score lists by executing N runs of 
10-fold cross validation using the corpus as 
described in Section 3.2.3 where scores were 
ones assigned by SVM classifiers,  

ii) build a SVM classifier C with all instances in 
the corpus,  

iii) for a new abstract, use classifier C to obtain 
score S,  

iv) for each score list that was obtained in i) 
compute the percentage of instances that are 
positive among the instances with scores larger 
than S, and  

Figure 3. Combination result of (IG-FS, ALT)-0.001 and 
(IG-FS, SLT)-0.001. 

v) average the above percentage over N score lists 
and display the percentage as the relevance 
score. The higher the score, the more relevant 
the abstract.  

To test the effectiveness of the proposed method, 
we used one run of 10-fold cross validation and 
measured TPRs for a given relevance score threshold.  
 
4. Result and discussion 
 

Most pathogen protein-protein interaction (PPI) 
information annotated in knowledgebases is for viral 
proteins or PPI within bacteria. We obtained less than 
50 positive abstracts on specific bacterial 
pathogen-human host PPI from knowledge bases such 
as UniProtKB/Swiss-Prot and, IntAct, Brucella 
Bioinformatics Portal (BBP). Using key words 
“bacterial”, “host”, “pathogen”, and “interaction”, we 
retrieved around 214,000 abstracts, and we obtained 
1,225 negative abstracts and 99 positive abstracts 
after manual annotation. Merging the two sets, the 
annotated corpus consists of 1,225 negative abstracts 
and 135 positive ones. 

Figure 2 shows the relationship between IG 
threshold and TPR averaged over 100 runs. The IG 
threshold of 0 corresponds to no feature selection 
(NO-FS). From Figure 2, we can see that for IG 

thresholds between 0.001 and 0.005, the TPRs are 
comparable to the one without feature selection (i.e. 
NO-FS). However, the number of features used for 
classifiers with feature selection decreases 
dramatically. For example, in (IG-FS, ALT) with 
threshold 0.002 and (IG-FS, SLT) with threshold 
0.001, the number of features after feature selection is 
reduced to only 10% (around 10,000) of the original 
(over 100,000). 
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NO-FS IG-FS RT 
ALT SLT ALT(0.002) SLT (0.001) 

10 0.81 
(0.794, 0.827) 

0.905 
(0.899, 0.911) 

0.926 
(0.915,0.937) 

0.941 
(0.930,0.952) 

20 0.857 
(0.852, 0.862) 

0.883 
(0.875, 0.891) 

0.898 
(0.890,0.906) 

0.844 
(0.834,0.854) 

30 0.867 
(0.862, 0.873) 

0.832 
(0.825, 0.839) 

0.852 
(0.845,0.859) 

0.79 
(0.782, 0.798) 

40 0.819 
(0.812, 0.826) 

0.786 
(0.779, 0.793) 

0.83 
(0.823,0.837) 

0.764 
(0.757, 0.771) 

50 0.768 
(0.762, 0.774) 

0.737 
(0.731, 0.744) 

0.807 
(0.801,0.813) 

0.745 
(0.739, 0.751) 

60 0.74 
(0.735, 0.745) 

0.697 
(0.692, 0.702) 

0.775 
(0.770, 0.780) 

0.706 
(0.700, 0.712) 

70 0.715 
(0.710, 0.720) 

0.67 
(0.665, 0.675) 

0.738 
(0.733, 0.743) 

0.67 
(0.665, 0.675) 

80 0.69 
(0.686, 0.694) 

0.65 
(0.646, 0.654) 

0.71 
(0.705, 0.715) 

0.637 
(0.633, 0.642) 

90 0.666 
(0.662, 0.67) 

0.629 
(0.625, 0.633) 

0.679 
(0.674, 0.684) 

0.604 
(0.600, 0.608) 

100 0.639 
(0.635, 0.643) 

0.611 
(0.6068,0.6152) 

0.649 
(0.645, 0.653) 

0.577 
(0.574, 0.581) 

150 0.515 
(0.513, 0.517) 

0.514 
(0.511, 0.517) 

0.522 
(0.519, 0.525) 

0.491 
(0.488,0.494) 

200 0.431 
(0.429, 0.433) 

0.431 
(0.429, 0.433) 

0.438 
(0.436, 0.440) 

0.429 
(0.427, 0.431) 

250 0.377 
(0.376, 0.379) 

0.371 
(0.369, 0.373) 

0.378 
(0.376, 0.380) 

0.379 
(0.377, 0.381) 

300 0.336 
(0.335, 0.337) 

0.33 
(0.329, 0.331) 

0.334 
(0.332, 0.336) 

0.336 
(0.334, 0.338) 

350 0.303 
(0.302, 0.304) 

0.301 
(0.300, 0.302) 

0.3 
(0.299, 0.301) 

0.301 
(0.300, 0.302) 

400 0.278 
(0.277, 0.279) 

0.276 
(0.275, 0.277) 

0.273 
(0.272, 0.274) 

0.272 
(0.271, 0.273) 

450 0.257 
(0.256, 0.258) 

0.255 
(0.254, 0.256) 

0.251 
(0.250, 0.252) 

0.249 
(0.248, 0.250) 

500 0.238 
(0.237, 0.239) 

0.236 
(0.235, 0.237) 

0.232 
(0.231, 0.233) 

0.229 
(0.228, 0.230) 

 

Table 1. The detailed TPRs with the corresponding 95% confidence intervals computed from 100 runs for (IG-FS, 
ALT), (IG-FS, SLT), (NO-FS, ALT) with IG threshold 0.002, and (NO-FS, SLT) with IG threshold 0.001. RT 
stands for rank threshold. 

 
Table 2. The performance of the implementation. Table 1 shows the detailed results of four 

settings: (NO-FS, ALT), (NO-FS, SLT), (IG-FS, ALT) 
with IG threshold 0.002, and (IG-FS, SLT) with IG 
threshold 0.001. For example, among top 50 abstracts, 
there are 76.8%, 73.7%, 80.7%, and 74.5% of the 
abstracts are positive for (NO-FS, ALT), (NO-FS, 
SLT), (IG-FS, ALT), and (IG-FS, LT), respectively. 
The average TPRs usually decrease when the rank 
thresholds increase. The performance of 
sentence-level systems is comparable to that of 
abstract-level systems when the rank threshold is 
small (e.g., 10 or 20). When the rank threshold (e.g., 
> 20) is large, abstract-level systems tend to perform 
better. 

Table 2 shows the performance of the true 
positive rate when implementing the system using 
(IG-FS, ALT) with IG threshold 0.002 and the number 
of runs as 5. Given a relevance score threshold 0.5, 
the true positive rate is 50.7% which indicates that if 
an abstract receives a relevance score of larger than 

0.5, the chance of the abstract to be positive is 50.7%. 
 Even sentence-level systems perform inferior to 
abstract-level systems, but one advantage of them is 
that sentences describing protein interactions are 
automatically highlighted. We can highlight sentences 
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(and titles) yielding the highest ranks among 
sentences within the abstract when presenting the 
results to end-users. For example, for (IG-FS, SLT) 
with IG threshold 0.001, the average number of 
positive abstracts is 17 (or 37) among the top 20 (or 
50) abstracts. Among those positive abstracts, an 
average of 13 (or 26) abstracts have the highlighted 
sentences ranked as the highest among all sentences 
in the corresponding abstract by the sentence-level 
systems, and an average of 16 (or 33) abstracts have 
the highlighted sentences ranked as the highest or the 
second highest. 
 We also noticed that sentence-level systems and 
abstract-level systems behave differently. The finding 
is consistent with the work of Ding et al where 
different text units (e.g., abstracts, sentences, or 
phrases) were investigated for information retrieval 
[16]. Given rank threshold 10, and IG threshold 0.001, 
the average number of overlapped true positives 
between sentence-level and abstract-level systems is 
around 4. We checked the combination of 
sentence-level and abstract-level systems by 
averaging the ranks of sentence-level and 
abstract-level. Figure 3 shows the result. There is 
some improvement of the performance after 
combination.  
 
5. Conclusion 
 
    We have reported a study of constructing an 
automated system that can detect the host pathogen 
protein-protein interaction relevance of MEDLINE 
abstracts. The results indicated that feature selection 
can reduce the number of features at least 10 folds 
with no or little sacrifice of performance. 
Additionally, the majority of the highlighted 
sentences are ranked as the first or second among all 
sentences in the corresponding abstracts. We 
conclude that automated systems can be built for 
retrieving abstracts and highlighting sentences based 
on their relevance to host pathogen protein-protein 
interaction.  
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Abstract 

 
 The ever-increasing scientific literature and the 
exponential growth of large-scale molecular data have 
prompted active research in biological text mining to 
facilitate literature-based curation of molecular 
databases. Meanwhile, systems biology and bio-
ontologies are emerging as critical tools in biological 
research where complex data in disparate resources are 
generated, integrated and analyzed. Both rely on 
literature for data annotation and analysis. The 
challenges facing us are to develop broadly utilized text 
mining tools and systems, and to bring together 
developer and user communities for system development 
and evaluation. We describe a framework for linking text 
mining tools with ontology and systems biology, 
extending from a previously developed text mining 
resource, iProLINK. We focus on molecular and 
ontological resources, including genes/proteins, protein-
protein interaction (PPI), and Protein Ontology. The 
framework consists of two major components: a user 
interface for text mining of PPI from an integrated tool 
server and software modules to allow text mining outputs 
to be created, ranked, and used by the community. Use 
cases are presented for assessing the gaps and making 
recommendations for future development. 
 
1. Introduction: current status of text mining 
as an enabling tool for biology 
 
 The biological literature represents the repository of 
biological knowledge. As biology becomes more 
dependent on information technology, there has been an 
explosion of computable resources and databases [1], 
e.g. GenBank, UniProt, model organism databases, and 
systems biology databases, e.g.,  Reactome,  KEGG, that 
 
* Corresponding author. 

capture much of the structured information on sequence 
and functional data. It becomes critical to link these data 
sources to their associated context, e.g., experimental 
methods and evidence. Such information is largely 
buried in the literature and it has become prohibitively 
expensive for curators to keep up with its growth. 
  
1.1. Text mining resource development 
 Most of the work in biomedical text mining over the 
past decade has focused on solving specific problems, 
often using task-tailored and private datasets, which were 
rarely reused. As more research groups began to make 
resources publicly available, there have been a number of 
projects, initiatives and organizations dedicated to 
building and providing access to biomedical text mining 
resources, such as those listed at the National Center for 
Text Mining at UK (http://www.nactem.ac.uk) and Text 
Mining Group at the Center for Computational 
Pharmacology (http://compbio.uchsc.edu/ccp/corpora). 
 Researchers at PIR have contributed to this effort by 
developing a literature mining resource, iProLINK, to 
support text mining and NLP research for bibliography 
mapping (references cited in a protein entry), annotation 
extraction, entity recognition and protein ontology 
development [2]. The data sources for bibliography 
mapping and feature evidence attribution include 
mapped citations and annotation-tagged literature 
corpora [3]. The data sources for entity recognition and 
ontology development include protein name dictionaries 
and protein name-tagged literature corpora along with 
tagging guidelines [4]. These curated corpora have been 
used for training and benchmarking text mining tools 
such as RLIMS-P, an information extraction tool for 
protein phosphorylation [5]. iProLINK also provides the 
online BioThesaurus, a large collection of gene/protein 
names with UniProt entry associations [6].  
 
1.2. Text mining critical evaluations 
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 As the BioCreative [7, 8] and TREC Genomics track 
[9] evaluations have shown, common evaluations are 
important to create an active research community and to 
accelerate the research progress. There have been two 
BioCreative workshops to date, with 27 groups 
participating in the first [7], and 44 groups participating 
in the second [8].  These workshops have focused on 
tasks relevant to the biological curation community, 
including identification of gene mention (GM) and gene 
normalization (GN), and on more advanced tasks. For 
BioCreative I, the focus was on functional annotation, 
including linkage of evidence passages to support GO 
annotations for proteins in full text articles. For 
BioCreative II, the advanced task focused on extraction 
of protein-protein interaction (PPI) information, using 
“gold standard” data provided by the MINT and IntAct 
databases. The BioCreative evaluations have driven 
progress in biomedical text mining and have led to 
release of annotated data collections for further 
evaluation (http://BioCreative.sourceforge.net).  
 
1.3. Text mining tool integration 
 It has been observed that “accurate and diverse” 
tools targeting the same application area can make a 
combination system outperform a single constituent tool 
[10, 11]. For example, Si et al. [12] combined systems 
that participated in the JNLPBA shared task (recognition 
of five types of entities in abstracts), and reported 
excellent performance using Conditional Random Fields 
(CRFs). Similarly [13, 14] reported results obtained by 
combining 21 systems from the BioCreative II GM task, 
and reported an F-measure over 90% using CRFs.  
 A major accomplishment of BioCreative II was the 
establishment of BioCreative MetaServer (BCMS, 
http://bcms.bioinfo.cnio.es/) [15], a prototype platform 
that combines text mining services from multiple groups, 
currently covers some major tasks from BioCreative II, 
including GM/GN, taxon classification and PPI 
identification, and provides annotations from 13 servers 
for the BioCreative corpus of MEDLINE abstracts. 
 
1.4. Text mining standards development 
 Common standards for data exchange and tool 
integration are critical for text mining. Currently there is 
a lack of formal standards and candidates for de facto 
standards are not widely accepted at this time. The first 
concrete proposal for a data exchange standard for 
biomedical text processing was GPML, the GENIA 
Project Mark-up Language [16]. A corpus annotated in 
this format has been released in multiple revisions and 
has experienced significant acceptance in the text mining 
community [17], but tool producers have not embraced it 
as an output format. For the tool integration, there has 
been considerable amount of interest in the Unstructured 
Information Management Architecture (UIMA) [18-21], 

but it is not considered the de facto standard for tool 
integration yet. A meeting held in conjunction with the 
recent BioNLP 2008 workshop concluded that there was 
little hope for convergence on a common format in the 
near future, and that the best that could be hoped for at 
this time with respect to corpora and data exchange is 
that corpus builders produce formats that can be 
interconverted—no small feat in itself [22]. 
  
1.5. Motivation for a community framework  
 Even with advancements in tool and system 
development and the growing collaborative efforts of the 
text mining community, literature mining tools are still 
not broadly used by biological communities. Such a gap 
is partly due to intrinsic complexity of biological text for 
mining, and partly to the lack of close interactions 
between the text mining and the user communities, 
represented by biology researchers and curators. 
 BioCreative I and II focused on critical assessment 
of text mining tool performance on individual tasks 
involved in the overall molecular data curation process. 
The next step is to link these tools together to provide an 
environment that supports end users. The communities 
represented by biologists/curators and tool developers 
can be brought together by a common interface and 
through community workshops. In this paper, we 
describe an extended iProLINK framework that aims to 
link the three communities, allowing text mining tools to 
be evaluated and adopted by the broad communities. 
This work builds on four threads of research: the 
previous iProLINK text mining resource; BioCreative 
evaluations; tools and data resources developed under 
BioCreative, in particular the vision of a MetaServer to 
provide text mining services to users; and work at PIR 
focused on building a framework for the capture of PPI, 
including post-translational modifications (PTM). We 
present several case studies that illustrate the mutual 
benefit each community can gain from the others. 
 
2. Linking text mining with ontology and 
systems biology: a basic framework 
 
2.1. iProLINK framework 
 An overview of the iProLINK framework is shown 
in Figure 1. It contains two major components: text 
mining tools, and the interface that links the text mining 
to ontology and systems biology communities. Text 
mining tools are integrated into a metaserver that will 
generate text mining results, and the user interface will 
display ranked outputs (circle #1) and the visualized 
protein networks (#2) based on the output. The interface 
also allows users/curators to curate the text mining 
results (#1) and make assertions on the extracted 
knowledge. The curated information is used for or 
captured in ontologies (e.g. Protein Ontology) (#3) and 
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Figure 1. Overview of the iProLINK framework 

Figure 2. PPI text mining results for the construction of protein network 

knowledgebases (#4), and is also saved in a curated 
literature corpus (#6) used for improving the text mining 
output ranking (#7) and for enhancing text mining tool 
development (#8). The systems biology data can also be 
used to help assertion of the text mining results (#5).  

 
2.2. Linking text mining, ontology and systems 
biology for protein-protein interactions  
 PPI generally refers to physical associations of two 
protein objects, stable or transient, such as in protein 
complexes or in signaling cascades. There are many 
types of PPIs; in this context, we define PPI as protein 
pairs with either direct or indirect associations such as 
through intermediate steps.  
 Text mining. The text mining tasks for iProLINK 
include integration of tools, presently covering gene or 
protein mention, gene or protein normalization, and 
information retrieval and extraction of PPI, including 
PTMs such as phosphorylation (an interaction between a 
protein substrate and a protein kinase). There are a 
number of tools for these tasks, including those 

participating in the BioCreative I and II challenge 
evaluations, and others such as RLIMS-P.  
 Ontology. Open Biological Ontologies (OBO) 
Foundry is a collaborative effort for coordinating various 
biological ontology development projects and for 
fostering common standards in OBO development [23]. 
The curation of the content of ontologies, especially 
those related to genes or proteins, e.g. specific splice or 
modified forms of gene products in Protein Ontology 
(PRO) [24], relies heavily on literature information.  In 
particular, protein PTM and PPI text mining will help 
annotate protein nodes (terms) by identifying specific 
phosphorylated forms and adding PPI information as 
attributes to PRO forms.   
 Systems biology. Molecular databases represent 
structured knowledge of genes/proteins, such as UniProt, 
and biological pathway and PPI databases. Annotation of 
those databases and utilization of the annotations for 
large-scale omics data analysis are an integral part of 
systems biology, e.g., iProXpress, an expression analysis 
system for systems biology [25]. Text mining results can 
be used to infer or add more evidence to pathway and 
network analysis results derived from systems biology 
data; conversely, large-scale data can be used to support 
the text mining results of PPI information. 
 
3. iProLINK use case analysis 
 
3.1. PPI text mining for generation of protein 
networks 
 There are several PPI text mining tools, such as PIE 
[26] and iHOP [27], both as part of the BCMS. We use 
these two tools to illustrate PPI text mining results and 
how they can be used for generation of protein networks. 
As shown in Figure 2, the tools typically highlight or 
underline sentences containing the PPI, with protein 
pairs and words for relations highlighted (bold or colors). 
There are 11 pairs of PPI instances in this abstract, 

including the title. Most 
(8/11) are detected by one 
or the other tool, and most 
(9/11) are direct PPIs.  
 The visualized PPI 
network allows users to 
more efficiently mine 
proteins of interest and 
their interacting partners. 
Based on the binary 
relations (edge) between 
interacting partners (node), 
we used Cytoscape [28] to 
display these mined PPIs 
in a single protein network 
(Figure 2, lower right). It 
shows that Galpha(o) is a 
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Figure 4. Text mining summary and network 
generation of PPI, including general “Interaction” (I) 

and protein phosphorlyation (P) 

major hub protein that interacts with six other proteins 
directly or indirectly. Rap1GAP is another important 
protein that interacts with three other proteins. The 
UniProt IDs for the protein nodes are displayed with 
mouse-over, and the text evidence for relations (edges) 
between protein nodes is also visualized by mouse-over 
(PMID in this case). The protein networks can also be 
built from multiple abstracts either through batch 
retrieval (section 3.3) or by gene/protein name searches. 
The latter would be a more useful feature in analyzing 
PPI of particular proteins based on PubMed searches. 
 The essential requirements for the interface in PPI 
text mining and protein network generation are to 1) 
provide ranking of PPI outputs based on scores or 
confidence levels for each protein pairs; 2) support 
user/curator feedback on the output ranking and content, 
and an ability to save the output in standard data formats 
compatible to other software tools such as Cytoscape and 
OBO editor; and 3) display the protein nodes and edges 
with weightings and evidence attributions. 
 
3.2. PTM text mining for Protein Ontology form 
curation  
 The Protein Ontology is designed to describe the 
relationships of proteins and protein evolutionary classes, 
to delineate the multiple protein forms of a gene locus, 
and to interconnect existing ontologies [24]. Multiple 
protein forms include splice isoforms and various PTMs. 
Knowledge of protein splice forms and modifications are 
mostly embedded in the literature, thus text mining of 
such information greatly facilitates the curation of PRO 
nodes (terms) and relations. Protein phosphorylation is a 
common type of PTM, and proteins with distinct 
phosphorylated residue(s) represent unique protein 
forms. RLIMS-P is designed to extract the three protein 
phosphorylation objects: kinase, substrate and the 
phosphorylation sites/residues. The kinase and substrate 
interaction is a special case of PPI that can be mined by 

text mining tools, such as PIE. However, RLIMS-P also 
extracts phosphorylation sites, useful for PRO curation. 
 Figure 3 shows the output of the RLIMS-P extracted 
PPI and phosphorylation sites (PMID: 18003885), which 
can be directly used for curation of the protein node, 
RUNX1, a transcription factor. RLIMS-P outputs contain 
a summary table for the extracted PPI and evidence-
tagged sentences in the abstract. One of the 11 isoforms, 
AML-1G, of human RUNX1 is described in PRO format 
as being phosphorylated at Ser 48, 303, and 424; the 
specific PTM type (phosphorylation at L-serine) is 
annotated using the PSI-MOD ontology (MOD:00046) 
(Figure 3). Experimental PPI information can also be 
used for annotating properties to protein forms in PRO, 
e.g., the associated functions of the phosphorylated form 
of RUNX1 in this paper can be annotated for AML-1G, 
e.g., “increases transactivation potency and stimulates 
cell proliferation”. The RLIMS-P outputs need to be 
saved in standard formats, such as OWL or OBO, for 
protein network display and PRO curation. 
 

3.3. PPI text mining for systems biology 
 Systems biology data include gene/protein databases 
and large-scale omics data repositories. Annotation and 
analysis of systems biology data can benefit from PPI 
text mining. The protein network in Figure 2 contains the 

Rap1-MAPK pathway, which is 
modulated by Gα(o)-Rap1GAP 
interaction. Other papers describe 
the activation of Rap1GAP through 
phosphorylation by Cdc2 (CDK1), 
which also phosphorylates the BAD 
protein at distinct site (Ser128) 
(Figure 4). Interestingly, distinct 
forms of BAD interact with 
different partners. 
 When combining PPI mining 
results from Figure 2 and 4, a larger 
protein network can be generated, 
showing four highly-connected 
protein nodes—Gα(o), Rap1GAP, 
Cdc2 and BAD (Figure 5A). 
Compared to a pathway diagram Figure 3. RLIMS-P text mining for Protein Ontology curation 
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based on the analysis of a proteomics dataset [29] 
(Figure 5B), this text mining-based PPI network graph 
not only provides literature evidence for the interactions 
shown in the pathway map (e.g., GNAO2-Rap1GAP, 
Rap1GAP-Rap1), but also reveals a missing interacting 
protein pair (Cdc2-Rap1GAP) in the pathway (red 
dashed arrow), as well as missing partners of BAD 
protein (14-3-3 and Bcl-xL). 

 
3.4. PPI text mining supported by systems 
biology data 
 Systems biology data can also strengthen PPI text 
mining results. Figure 6 shows an example where PPI 
proteomic data from large-scale immunoprecipitation are 
linked to text mining results. The Sp1-p38 interaction 
from a proteomics experiment was deposited in IntAct, 
one of the PPI and pathway databases integrated into the 
iProXpress underlying data warehouse. This information 
supports the protein network derived from text mining, 
showing p38-Sp1 interaction and activation of filamin-A.  
 The display of protein networks will allow linkage 
of protein nodes to pathway maps or high-throughput 
PPI data from molecular databases. Alternatively, saved 
text mining outputs can also be integrated into users’ 
pathway and network analysis pipeline. 

 
4. Future work 
 

 From above case studies, we have identified major 
gaps between the text mining and the ontology and 
systems biology communities that need to be addressed:  
 Standards development. Text mining standards 
include those of data exchange and tool integration. Tool 
integration involves issues such as process control and 
preserving state information as well as a mechanism for 
exchanging data. Standards must also support data 
exchange, including both syntactic standards (e.g., XML 
or SGML tags) and semantic standards – perhaps based 
on widely accepted biological resources, such as 
EntrezGene and UniProt. 
 User interface requirements. The web interface is a 
major component of the iProLINK framework for the 
communities. The new interface will allow biologists to 
browse, curate, and save the text mined PPI/PTM 
information. The interface should provide several key 
functionalities: 1) The output from multiple text mining 
tools should be ranked, and the display of protein 
network and associated text evidence should be 
weighted; 2) Users should be able to edit the text mining 
results, and the asserted knowledge should be saved in 
standard or convertible formats for use by different 
communities; 3) The interface should be simple to users 
with customizable options and views.  
 Usability testing. A major activity of iProLINK will 
be to facilitate interactions between text mining and user 
communities through annual workshops including joint 
workshops with existing activities, such as BioCreative 
and International BioCuration Meetings. An annotation 
workshop will allow database curators to experiment 
with integrating multiple text mining tools into their 
workflow. This will provide an opportunity for 
investigation of usability testing, a widely neglected 
topic in literature text mining. Building on the coauthors’ 
extensive experience in evaluation of interactive systems 
[30], we will employ well-understood formal and 
informal techniques for user interface evaluation—those 
specific to search interfaces [31] or in general [32]—to 
address the lack of research into user interface design for 
biomedical text mining tools for curators. 
 
5. Conclusion 
 
      We have presented a basic framework, iProLINK, to 
link the text mining tool developers to the ontology and 
systems biology user/curator communities. We used 
several use cases to illustrate the need and feasibility of 
bridging disparate communities, and analyzed 
requirements of the interface and major gaps in the 
community effort. A well designed interface and 
community workshops for curation and evaluation of 
tools will be the keys for success. 
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Linking Text Mining with Ontology and Systems Biology for Database Curation 

 
Zhang-Zhi Hu and Lynette Hirschman 

 
ABSTRACT  
 
The rapid growth of scientific literature and of large-scale molecular data has prompted 
active research in biological text mining to facilitate literature-based database curation. 
Meanwhile, systems biology knowledgebases and ontologies are emerging as critical 
tools in biological research where complex data in disparate resources need to be 
integrated and annotated. The challenge for text mining is to develop tools that will be 
broadly utilized by biological user communities. 
 
1. Literature mining resource: PIR has developed iProLINK as a resource to support 

text mining and NLP research. It provides literature corpora with annotation-tagged 
abstracts for training and benchmarking text mining tools, as well as tools such as 
RLIMS-P for mining protein phosphorylation information and BioThesaurus for 
resolving synonyms and ambiguous names of genes and proteins.  

2. BioCreative Challenge Evaluations: Bringing together text mining users with tool 
developers, there have been two BioCreative evaluations to date. The first focused on 
functional annotations, including linkage of evidence passages to support Gene 
Ontology annotations for proteins in text, while the second focused on extraction of 
protein-protein interaction (PPI) information, using “gold standard” data provided by 
PPI databases.  

3. Linking text mining with ontology and systems biology: Built on iProLINK, PIR is 
developing a framework to integrate public text mining tools, focusing on interface 
design and biological use cases in the context of ontology and systems biology. The 
framework will allow biologists to mine PPI information from the scientific literature 
and evaluate utility and usability of the tools for database curation and knowledge 
discovery. 

 
 
------------ 
Workshop organization: 
Session 1: 8:00-8:40 am, Zhang-Zhi Hu  
Session 2: 8:40-9:20 am, Lynette Hirschman 
Session 3: 9:20-9:50 am, Zhang-Zhi Hu  
Open Discussion: 9:50-10:10am, Lynette Hirschman and Zhang-Zhi Hu 
 
Note: The workshop will consist of 3 sessions, each including a presentation and 10 min 
discussion, followed by a 20-min open discussion. 
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