
Advancements in Automated Circuit Grouping for Intellectual Property
Trust Analysis

James Inge, Matthew Kwiec, Stephen Baka, John Hallman

Secure Computing & Communications Division
MacAulay-Brown, Inc.

Roanoke, VA 24014 USA
fpga@macb.com

Abstract: Analysis of intellectual property for malicious
functionality often requires understanding of a localized
portion in an implemented design to uncover vulnerabilities
and hidden functions capable of causing catastrophic
effects. Here, we present an approach that has evolved
from a manual processes into automation. Automated
circuit grouping assembles related circuitry into
hierarchical blocks of functions that can be independently
analyzed.

Keywords: Trust; analysis; intellectual property;
automation; functional discovery

Introduction

In today’s global supply chain, trusting intellectual property
that makes up our most critical systems has become an
increasing concern. Analysis of this intellectual property
for malicious functionality often requires the understanding
of a localized portion in an implemented design.
Traditionally, this task is difficult and laborious, but
sometimes necessary in order to uncover vulnerabilities and
hidden functions capable of causing catastrophic effects.
Here, we present an approach that has evolved from
manual processes into automation. Automated circuit
grouping quickly aids an evaluator by assembling related
circuitry into hierarchical blocks of functions. They can
then analyze the block functions and determine if there is
malicious operation present. This allows the evaluator to
focus on the real problem at hand, keeping our systems safe
and effective for our warfighter.

The unified grouping methodology (UGM) defines how an
evaluator should place elements in various hierarchical
blocks. It provides a systematic way to handle elements that
are on the boundary of a hierarchy and provides for
consistent grouping across multiple evaluators. Also for
common circuit building blocks, a consistent definition is
created. For example, if the block diagram illustrates a
block as a “shift register”, then the UGM provides a guide
for the evaluator to use in determining which logic to
include in the “shift register” block. Use of a consistent
logic grouping methodology in a reverse engineering flow
will result in improved clarity of the final results. This
consistency also allows for comparison of two reverse
engineering results for the same design, thus enabling
grading of a test result against a known good answer. The

UGM is easily adaptable to meet the specific needs of the
end customer.

The UGM consists of a set of general grouping rules and a
set of rules for certain specific circuit building blocks. The
general rules cover how to place logic into a hierarchy and
how to handle logic that is between hierarchies. There are
specific rules for the following building blocks: finite-state-
machines (FSM), register banks, RAM/ROMs, FIFOs, shift
registers, counters, clock-manipulation logic, clock-
domain-crossing (CDC) logic, accumulators, multiplexors,
decoders and oscillators.

Methodology

The set of general grouping rules is as follows. In these
rules, the term element refers to a design primitive, and
grouping is realized by the act of placing elements into
netlist hierarchies.

Rule 1. General rules can be overruled by the rules for
specific circuit building blocks.

Rule 2. An element can only be a member of a single leaf
hierarchy, where a leaf hierarchy is one that contains no
sub-hierarchies.

Rule 3. Flops and major macros, such as DSP48 blocks, are
assigned to a hierarchy first. Then any combinatorial logic
that is uniquely contained between the flops and the major
macros is added to that hierarchy

Rule 4. Next any flops between hierarchies, or boundary
flops, are assigned to a hierarchy using the following sub-
rules:

4a. Boundary flops are preferentially placed on
hierarchy outputs. Therefore, if there is a single
boundary flop on a signal, then that flop is assigned to
the hierarchy where it would be considered an output.

4b. If there are two boundary flops on a signal, then
the two flops are split between hierarchies.

Rule 5. Next any combinatorial logic between hierarchies,
or boundary logic, is assigned to a hierarchy using the rule:
If-and-only-if an element drives a single hierarchy, then
that element is included in that hierarchy.

Rule 6. Any element that is left unassigned is assigned to
the top-level hierarchy. For example, common “glue” logic

Distribution A: Approved for public release; distribution unlimited.

70

that drives several modules would be assigned to the top-
level hierarchy.

As an example of this approach, consider the grouping of
stateful logic blocks. In this case, all of the elements inside
the circuit are initially classified as either sequential or
combinational and the following steps illustrate the process
of iteratively creating hierarchical blocks that combine
related state and state control logic.

1. Assign all sequential elements in the circuit into their
own hierarchical block.

Block 1

Block 2

COMB.
LOGIC

COMB.
LOGIC

COMB.
LOGIC

COMB.
LOGIC

FF

DSP

2. Trace back each sequential hierarchical block’s inputs
and combine all combinational logic that uniquely
feeds that hierarchy into the hierarchical block.

Block 1

Block 2

COMB.
LOGIC

COMB.
LOGIC

Block 1

Block 2
COMB.
LOGIC

3. Trace back each hierarchical block’s inputs and
combine all hierarchies that only feed another
hierarchical block into the tracing block.

Block 1

Block 2
COMB.
LOGIC

Block 1

COMB.
LOGIC

4. Next assign any combinatorial logic between
hierarchical blocks, or boundary logic, to a hierarchy
using the rule: If-and-only-if an element drives a single
block, then that element is included in that hierarchy.

Block 1

COMB.
LOGIC

Block 1

5. Steps 3 and 4 are repeated until there is no more logic
to combine.

6. Any created hierarchies that only contain the original
sequential element are disbanded and placed back into
their original hierarchy.

Experimental Setup and Results

To test the UGM we used a small System-on-
Programmable Chip (SoPC) design. The design is a
Wishbone rev B.4 compatible IP core designed to be
inserted in a Xilinx Virtex-5 FPGA computing
environment. The SoPC IP core encompasses several other
home-grown and 3rd party IP modules hanging off a
common 32-bit Wishbone slave interface. These cores
include an OpenCores I2C Master module, a custom on-
chip memory module, a custom arithmetic logic unit
module, and a custom Ethernet frame check sequence
generator module. Though not incredibly large, the design
is sufficient to demonstrate the improvements in the
hierarchy reconstruction of the flattened design.

The UGM algorithm was run with its combine-unique-
node-limit set to 5, which limits any generated hierarchies
to a minimum of five components (i.e., gates, flops, LUTs,
etc.). The tool was run on two variants of the SOPC design.
The first was a raw netlist generated directly from the
FPGA bitstream and contained roughly 7.4K components.
We then processed this netlist via some in-house-developed
circuit normalization functions to produce a second design
containing a minimal amount of synthesis artifacts (~5.1K
components) to better evaluate the impact of circuit chaff
produced by the forward-flow FPGA implementation tools.
The normalize functions both optimize and simplify the
design, but do not change the function of the original
design. Both the raw and the normalized netlists were
completely flat (i.e., contained no hierarchy) prior to
applying our UGM.

The results in both variants of the SOPC design showed
promise, as shown in Table 1. In both cases the UGM
algorithm encapsulated over 40% of the design into new
hierarchies with modules ranging in size from a handful to
hundreds of components. Thus, even without netlist
normalization, the UGM process significantly reduced the
final circuit complexity. With the netlist normalization pre-
processing step, however, over half the circuit components
were encapsulated into some hierarchy and they were much
more uniform in size.

Table 1: Components in Hierarchies

Netlist Total
Comp.

Hierarchies
Created

Encap.
Comp.

Remaining
Comp.
(top)

Largest
Hierarchy

Raw 7407
(100%)

101 4365
(41%)

3042
(59%)

1709
(23%)

Normal‐
ized

5094
(100%)

109 2650
(52%)

2,444
(48%)

370
(7%)

71

In another perspective, we examined the size of the
hierarchies created as shown in the table and distribution
figures below. The normalized case shows that a
significantly higher number of hierarchies were created
with the medium range number of components. These
larger blocks, though still relatively small, provide
confidence that these blocks can be combined further and
remain at a size understood by design and verification
engineers. This brings us closer yet to automatically
recreating hierarchies similar to the original design.

Table 2: Number of Hierarchies with N Components

Netlist < 10 10‐100 100‐1000 1000+

Raw 40 49 1 1

Normalized 31 73 5 0

Figure 1: Module Size Distributions: Raw Netlist

Figure 1: Module Size Distributions: Raw Netlist

Since the SOPC was a custom design, we had access to the
clear-text version of both netlists and were able to perform
a qualitative evaluation of the results. In general, the
algorithm was particularly good at identifying flag/status
indicators (e.g., full, empty, result_is_zero), interrupt
generators, serial data paths (e.g., I2C), complex state bits
in FSMs, and especially areas where the data path
contracted in width (e.g., read-back data from addressable
registers or memory). In fact the largest hierarchy created
in both netlists was the Wishbone read-back logic shared
by all IP in the SOPC; which consists of multiple layers of

multiplexing and registering. Regions of the design that
remained largely untouched by the algorithm included any
counters, such as FIFO pointers and the hardware-enforced
IP licensing mechanism inserted for previous test purposes.
Also not encapsulated was much of wishbone fabric itself –
particularly the control logic and less complex FSM state
bits.

Future Work and Conclusions

With the unified grouping methodology, we have defined a
common set of guidelines that provides the framework for
an iterative and repeatable combining process. We have
now automated the process and the result produces a design
grouped into hierarchical blocks. When applied to
intellectual property, this automation provides an efficient
starting point for an evaluator to begin a trust assessment.
While these experimental results and early use in practice
have shown noticeable improvements, we have already
identified some potential future enhancements and some
operational procedures to yield optimal results. In future
work, we plan to explore enhancements that provide
usability and flexibility as well as improve quality of
results. Some of these possible options include:

 Execution on the entire design (including existing
hierarchies) or only a specified hierarchy

 Execution on a specified list of elements

 Perform multi-pass (iterative) operation

What had often taken weeks of manual effort has now been
reduced to an overnight process or just a matter of hours.
This new starting point enables the evaluator to direct focus
on the real problem at hand, keeping our critical systems
free from malicious operation.

References

1. T. Sobh, M.K. Elleithy, S. Patel, “Reverse Engineering
of VLSI Chips: A Roadmap,” Journal of Engineering
and Applied Sciences 2, pp 290-298, 2007

2. DARPA Integrity and Reliability of Integrated Circuits
(IRIS) program, 2011 – 2013,
http://www.darpa.mil/program/integrity-and-
reliability-of-integrated-circuits

3. DARPA Trust in Integrated Circuits (TRUST)
program, 2008 – 2011,
http://www.darpa.mil/program/trusted-integrated-
circuits

4. J. Graf, S. Harper, L. Lerner, “Ensuring Design
Integrity through Analysis of FPGA Bitstreams and IP
Cores,” The 2012 International Conference on
Engineering of Reconfigurable systems and
Algorithms (ERSA’12), Las Vegas, NV, July 2012.

72

