
The ATPG Attack for Reverse Engineering of
Combinational Hybrid Custom-Programmable Circuits

Raza Shafiq Hamid Mahmoodi Houman Homayoun Hassan Salmani

Howard University
San Francisco State

University
George Mason

University
Howard University

raza.shafiq@bison.howard.edu mahmoodi@sfsu.edu hhomayou@gmu.edu hassan.salmani@howard.edu

Abstract: This paper presents the implementation and
evaluation of ATPG attack on hybrid custom-
programmable circuits. While functionality of
programmable cells are only known to trusted parties,
effective techniques for activation and propagation of the
cells are introduced. The ATPG attack carefully studies
dependency of programmable cells to develop their
(partial) truth tables. Results demonstrate the capabilities
of the ATPG attack.

Keywords: Reverse-engineering; ATPG attack;
hybrid custom-programmable circuits.

Introduction
The widely practiced horizontal integrated circuit supply
chain exposes a design to various types of attacks including
the reverse engineering attack. The reverse engineering
(RE) attack aims to obtain the detailed design
implementation, and it may take different forms [1]. To
protect a circuit against the RE attack, new design
techniques such as split manufacturing [2], camouflaging
[3], and hybrid STT-CMOS circuits [4] have been
proposed. Hybrid STT-CMOS circuits combine custom and
programmable cells to hide the functionality of certain
number of gates.

To reverse engineer circuits that integrate unknown
gates such as camouflaged circuits, the RE attack based on
satisfiability (SAT) has been also investigated [5]. While
the effectiveness of SAT-based attacks becomes limited
when the size of circuit and the number of possible
identities increase [5], this paper investigates the capability
of the automatic test pattern generation (ATPG) attack on
circuits that are composed of known and unknown logic
gates such as camouflaged circuits and hybrid STT-CMOS
circuits.

To determine the functionality of an unknown logic
gate (m), the ATPG attack is to develop m’s (partial) truth
table. This requires test pattern application to set inputs of
m to different input combinations (the rows of truth table)
and to propagate the output of m to some primary outputs.
This work introduces a platform for an automated ATPG
attack that can be executed by any ATPG tool without need
for a high-level of IC testing knowledge. To evaluate the
effectiveness of the ATPG attack in practice, it is being
applied to hybrid combinational STT-CMOS circuits [4].
The contributions of this work are: (1) introducing the

ATPG attack model, (2) studying activation mechanisms
for unknown gates based on the stuck-at fault model, (3)
analyzing challenges for propagating the output of
unknown gates to some observation points, and (4)
proposing a platform to evaluate the resiliency of a circuit
against the ATPG attack.

The ATPG Attack Model
The attacker applies a set of test vectors to the circuit and
observes its output(s). The attacker hopes to resolve the
hybrid circuit by analyzing input and output pairs. The
ATPG attack model assumes: (1) an attacker has the netlist
of unresolved hybrid custom-programmable circuit, (2) the
attacker obtains a configured hybrid custom-programmable
circuit (the blackbox circuit), and (3) the attacker generates
a set of patterns and applies it to the blackbox circuit.

It is not difficult for an attacker to obtain the netlist of
unresolved hybrid custom-programmable circuit. For
example, an untrusted manufacturer directly obtains the
circuit from the design house. When the circuit is
manufactured and released to the market, the attacker can
directly order one that is configured by the design house or
a trusted vendor, as well. This circuit serves as a blackbox
circuit. Having the unresolved netlist and its blackbox
counterpart, the attacker generates a set of test patterns by
analyzing the unresolved netlist and applies it to the
blackbox circuit. Then the attacker processes input-output
vectors to resolve the unresolved netlist.

In the ATPG attack, the attacker is to obtain the
(partial) truth table of each unknown logic gate. If all rows
of truth table are obtained, the programmable logic gate
becomes resolved and known. Otherwise, a pool of possible
logic gates (candidates) that match the partial truth table is
obtained. In such a case, the attacker may select one of
candidates and then target the remainder of unknown logic
gates.

To develop the truth table of a programmable gate (or
called a missing gate), the ATPG attack needs to set the
gate’s inputs to different combinations and to propagate its
output to an observation point. A missing gate can be
highly correctly determined if it is independent from any
other missing gates. On the contrast, it may not be possible
to obtain the complete truth table of a dependent missing
gate, and even the obtained partial truth table may not be
necessarily correct as it is based on the assumption that
some other dependent missing gates are resolved correctly.

Distribution A: Approved for public release; distribution unlimited.

1

Resolving an unknown logic gate consists of two main
steps, namely activation and propagation, and Figure 1
presents the overall ATPG attack flow.

Activation for the ATPG Attack
Controllability of inputs of a missing gate through primary
inputs for activation is determined by its dependency to
other missing gates and can be categorized into: Full
Controllability, Partial Controllability, and No
Controllability. Full controllability for a missing gate is
defined as the existence of no missing gate in the fan-in
cone of the missing gate (referred as FullCtrlCSE in Figure
1). For a full-controllability missing gate with |I| number of
inputs and |O| number of outputs, there are at most 2|I|+|O|
combinations that need to be examined to correctly
determine its functionality. For example, Figure 2 verifies
whether the output of a 2-input missing gate mi is 0 by
replacing it by an AND gate whose inputs are inverted and
considering the stuck-at 0 (sa0) at the output of AND gate
(the AND00 case). Dependency between missing gates
limits their controllability. In the partial controllability for a
missing gate, some input signals of a missing gate are
driven by some other missing gates while its other inputs
are yet accessible through primary inputs (referred as
PrtCtrlCSE/PtrSwCtrlCSE in Figure 1). For example,
Figure 3 presents a case with two missing gate mi and mj
where one input of mi is driven by mj. To determine the row
“1X” for mi’s truth table (X represents don’t care), the
missing gate mi is replaced by an OR gate whose
controllable input is inverted with a stuck-at 1 (sa1) at that
input (the OR1X case). If all inputs of a missing gate are
driven by some other missing gate, the missing gate holds
no controllability, it cannot be resolved.
 In general, if any inputs of a missing is controllable,
the ATPG attack replaces the missing gate with a specific
case to apply a specific input combination to the inputs of
missing gate.

Propagation for the ATPG Attack
The main challenge in propagation of the output of a
missing gate to a primary output is the existence of some
other missing gates in its fan-out cone. To address the
challenge, the attacker needs to find a clean path defined as
a path that is not passing through any other missing gate nor
reachable by any other missing gate. In large circuits with
gates with multiple fan-out branches, the number of paths
exponentially increases. This would require considerable

storage and processing time to determine clean paths. To
address these challenges, obtaining clean paths can be
broken in two steps: (1) clean primary outputs, and (2) path
direction. A clean primary output is defined as a primary
output that contains no missing gates but a target missing
gate (mi) in its fan-in cone. Path direction is to determine if
a clean path inverts the output of the target missing gate or
not.

Figure 2. Full controllability (The AND00 case).

Figure 3. Partial controllability (The OR1X case).

 After defining a stuck-at fault at the output of a
missing gate (being done at the activation phase), an
attacker can check the clean primary outputs. If any of these
primary outputs reflect the fault, it means the output of
missing gate reaches to this primary output. If the fault at
the output of missing gate is stuck-at-0(1) and the primary
output also reports stuck-at-0(1), the clean path from the
missing gate to this primary output is not inverting;
otherwise, the clean path is inverting.
For example, if m1 is the target missing gate in a circuit
shown in Figure 4, the following propagation paths for the
m1 missing gate exist: P1 = {g3, g5, g11}, P2 = {g3, g5, m2,
g12}, P3 = {g3, g5, m2, g13}, and P4 = {g3; g14}. The P2 and
P3 paths are not clean as both contain the m2 missing gate.
On the other hand the P1 and P4 paths are clean paths.

Figure 4. Clean paths for propagation in the ATPG attack.

Figure 1. The ATPG Attack Flow.

2

Results
The selection algorithms [4] are applied on the ISCA’S 85
combinational circuits [6]. The HOPE fault simulation tool
[7] is used to launch the ATPG attack. While HOPE is
originally to generate patterns randomly for fault detection,
proposed activation and propagation techniques forces
HOPE to apply a specific combination of values on the
inputs of missing gates and propagate the output of missing
gate to some primary outputs. The limit of number of try for
HOPE to detect a fault is set to 5000.

Table 1. The ATPG attack on the Independent Selection.
Circuit
Name

Missing
Gate

Average No
Patterns

Average Time
(min:sec)

C880 9 786.60 00:20.71
C1908 4 169.10 00:12.44
C2670 4 550.90 00.36.75
C3540 5 491.50 00:29.94
C5315 3 439.20 00:41.87

 Table 1 presents results for the ATPG attack on
missing gates selected by the Independent Selection where
gates are not reachable from each other directly or
indirectly. The results indicate there are few circuits with
independent gates, and there are small number of
independent missing gates in such circuits (# Missing
Gates). Table 1 reports Average No Pattern and Average
Time after 10 rounds of HOPE simulation. There exists a
roughly high correlation (≈ 0.74) between # Missing Gates
and Average No Pattern. Table 1 shows that, Average Time
is dependent on the Circuit Size (number of gate in the
circuit) and Average Pattern, and there is a high correlation
(≈ 0.93) between Average Time and (Circuit Size ×
Average Pattern).

Table 2. The ATPG attack on the Dependent Selection.

Circuit
Name

Missing

Gate

Attackable

Average
No

Patterns

Average
Time

(min:sec)
C499 7 7 439.90 09:51.94
C880 10 2 5516.30 00:32.60

C1355 19 2 33.80 02:29.11
C1908 9 1 73.50 03:20.10
C2670 9 2 38.80 03:40.81
C3540 8 6 764.00 58:54.11
C5315 23 6 10631.90 44:35.47

Table 2 shows the results of ATPG attack on missing gates
selected based on the Dependent Selection (DS) where all
gates on a timing path are replace with missing gates. In
this paper, only one path in benchmark is constantly
targeted. If there exists reconvergence paths between the
missing gates in DS, an attacker cannot apply the ATPG
attack on all missing gates. Only missing gates that have a
clean propagation path with full controllability
(FullCtrlCSE) or partial controllability (PrtCtrlCSE) can be

attacked. In Table 2, # Attackable shows the number
missing gates for which either FullCtrlCSE or PrtCtrlCSE
can be evaluated. Except the benchmarks C499 and C3540,
considerable portion of missing cannot be targeted due to
either lack of controllability or a clean path for propagation.
Average Time indicates that the ATPG attack takes longer
time for larger circuits.
Table 3 shows the results of ATPG attacks on missing gates
selected based on the Parametric-aware Dependent
Selection where some gates on a timing path are replaced
with missing gates and any gate driven by or drive known
gates on the timing path are replaced with missing gates.
The results indicate the existence of large number of
missing gates (# Missing Gate) while small number of them
are really attackable (#Attackable). While Average No
Pattern presents smaller number pattern compared to Table
2 because of smaller attackable missing gates, considerable
increase in Average Time is being observed.

Table 3. The ATPG attack on the Parametric-aware
Dependent Selection.

Circuit
Name

Missing

Gate

Attackable

Average
No

Patterns

Average
Time

(min:sec)
C432 11 2 35.20 06:30.54
C499 13 3 51.30 13:17.52
C880 15 2 586.80 19:13.68

C1355 21 3 89.80 79:06.96
C1908 22 1 1.70 130:45.66
C3540 23 4 95.30 1065:56.94
C5315 20 2 21.70 658:05.88

Discussion
Assuming idealistically any required pattern to apply a
specific values on inputs of a missing and to propagate the
output of the missing gate can be deterministically
obtained, we can estimate how many patterns may take for
the ATPG attack to determine the functionality of missing
gates.
Given |M| the number of independent missing gates in a
combinational circuit, the minimum number of required test
patterns for the ATPG attack to determine all missing gates
(Nindep) is equal to

ܰௗ ൌߙ

|ெ|

ୀଵ

where α is the average number of required patterns to
determine an independent missing gate.

The value of α is determined based on the similarity of the
output of the gates. For example, the similarity of 2-input
AND gate and 2-input NOR gate is 2 since for two input
combinations they produce the same output, and the
similarity of 2-input AND gate and 2-input NAND gate is 0

3

as their output are completely opposite. For 2-input gates,
the average similarity of gates is 1.45, so the average
required patterns to determine a 2-input missing gate (α) is
2.45. For 3-input gates and 4-input gates, α is equal to 4.2
and 7.4, respectively.

Dependency between missing gates considerably increases
the ATPG attack’s effort. Given M the number of missing
gates that one input of any missing gate is driven by the
output of another missing gate, and |Pi| is the size of pool of
candidates for a missing gate mi, the average number of
required test patterns to determine all missing gates in the
dependent selection (Ndep) is equal to

ௗܰ ൌෑߙ ൈ | ܲ|

|ெ|

ୀଵ

Assuming the existence of test patterns to apply different
combinations at the accessible inputs of missing gates and
to propagate the output of missing gates, the size of pool
(|Pi|) is 2.7, 2, and 2 for 2-input, 3-input, and 4-input
missing gates, respectively. The value of |Pi| is obtained
based on the truth table of gates. For example, by ignoring
one input of 2-input gates, the truth table of AND would be
similar to those of OR, NOR, and XNOR gates. In another
case, the truth tables of XOR would be similar to NAND
and NOR gates.

If missing gates are selected such that all of their inputs are
driven with some other missing gates, the ATPG attack’
effort exponentially increases. A more plausible approach
for the attacker is to launch SAT-based attack or a brute
force attack. Given |M| the number of missing gates, |I|
inputs accessible to drive missing gates, and |P| the number
of all available gates in a technology library with the same
number of inputs as a missing gate, the maximum number
of test patterns to determine the missing gates in a brute
force attack (Nbf) is equal to

ܰ ൌ 2|ூ| ൈ |ܲ||ெ|.

Reference
[1] R. Torrance and et. al., The state-of-the-art in
semiconductor reverse engineering, DAC’ 2011.

[2] R. Jarvis and et. al., Split manufacturing method for
advanced semiconductor circuits, May 27 2004. US Patent
App. 10/305,670.

[3] R.P. Cocchi, and et. al., Method and apparatus for
camouflaging a standard cell based integrated circuit with
micro circuits and post processing, June 7 2012. US Patent
App. 13/370,118.

[4] Theodore Winograd and et. al., Hybrid STT_CMOS
designs for reverse-engineering prevention, DAC 2016.

[5] M. E. Massad and et. al. Integrated circuit (IC)
decamouflaging: reverse engineering camouflaged ICs
within minutes, NDSS 2015.

[6] ISCAS benchmarks:

http://pld.ttu.ee/~maksim/benchmarks/

[7] H. K. Lee and et. al. HOPE: an efficient parallel fault
simulator for synchronous sequential circuits, TCAD 1996.

4

