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Abstract: This paper presents the implementation and 
evaluation of ATPG attack on hybrid custom-
programmable circuits. While functionality of 
programmable cells are only known to trusted parties, 
effective techniques for activation and propagation of the 
cells are introduced. The ATPG attack carefully studies 
dependency of programmable cells to develop their 
(partial) truth tables.  Results demonstrate the capabilities 
of the ATPG attack.  
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Introduction 
The widely practiced horizontal integrated circuit supply 
chain exposes a design to various types of attacks including 
the reverse engineering attack. The reverse engineering 
(RE) attack aims to obtain the detailed design 
implementation, and it may take different forms [1]. To 
protect a circuit against the RE attack, new design 
techniques such as split manufacturing [2], camouflaging 
[3], and hybrid STT-CMOS circuits [4] have been 
proposed. Hybrid STT-CMOS circuits combine custom and 
programmable cells to hide the functionality of certain 
number of gates.  

To reverse engineer circuits that integrate unknown 
gates such as camouflaged circuits, the RE attack based on 
satisfiability (SAT) has been also investigated [5]. While 
the effectiveness of SAT-based attacks becomes limited 
when the size of circuit and the number of possible 
identities increase [5], this paper investigates the capability 
of the automatic test pattern generation (ATPG) attack on 
circuits that are composed of known and unknown logic 
gates such as camouflaged circuits and hybrid STT-CMOS 
circuits.  

To determine the functionality of an unknown logic 
gate (m), the ATPG attack is to develop m’s (partial) truth 
table. This requires test pattern application to set inputs of 
m to different input combinations (the rows of truth table) 
and to propagate the output of m to some primary outputs. 
This work introduces a platform for an automated ATPG 
attack that can be executed by any ATPG tool without need 
for a high-level of IC testing knowledge. To evaluate the 
effectiveness of the ATPG attack in practice, it is being 
applied to hybrid combinational STT-CMOS circuits [4]. 
The contributions of this work are: (1) introducing the 

ATPG attack model, (2) studying activation mechanisms 
for unknown gates based on the stuck-at fault model, (3) 
analyzing challenges for propagating the output of 
unknown gates to some observation points, and (4) 
proposing a platform to evaluate the resiliency of a circuit 
against the ATPG attack.  

 

The ATPG Attack Model 
The attacker applies a set of test vectors to the circuit and 
observes its output(s). The attacker hopes to resolve the 
hybrid circuit by analyzing input and output pairs. The 
ATPG attack model assumes: (1) an attacker has the netlist 
of unresolved hybrid custom-programmable circuit, (2) the 
attacker obtains a configured hybrid custom-programmable 
circuit (the blackbox circuit), and (3) the attacker generates 
a set of patterns and applies it to the blackbox circuit. 

It is not difficult for an attacker to obtain the netlist of 
unresolved hybrid custom-programmable circuit. For 
example, an untrusted manufacturer directly obtains the 
circuit from the design house. When the circuit is 
manufactured and released to the market, the attacker can 
directly order one that is configured by the design house or 
a trusted vendor, as well. This circuit serves as a blackbox 
circuit. Having the unresolved netlist and its blackbox 
counterpart, the attacker generates a set of test patterns by 
analyzing the unresolved netlist and applies it to the 
blackbox circuit. Then the attacker processes input-output 
vectors to resolve the unresolved netlist.  

In the ATPG attack, the attacker is to obtain the 
(partial) truth table of each unknown logic gate. If all rows 
of truth table are obtained, the programmable logic gate 
becomes resolved and known. Otherwise, a pool of possible 
logic gates (candidates) that match the partial truth table is 
obtained. In such a case, the attacker may select one of 
candidates and then target the remainder of unknown logic 
gates. 

To develop the truth table of a programmable gate (or 
called a missing gate), the ATPG attack needs to set the 
gate’s inputs to different combinations and to propagate its 
output to an observation point. A missing gate can be 
highly correctly determined if it is independent from any 
other missing gates. On the contrast, it may not be possible 
to obtain the complete truth table of a dependent missing 
gate, and even the obtained partial truth table may not be 
necessarily correct as it is based on the assumption that 
some other dependent missing gates are resolved correctly. 
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Resolving an unknown logic gate consists of two main 
steps, namely activation and propagation, and Figure 1 
presents the overall ATPG attack flow.  

 

 

Activation for the ATPG Attack 
Controllability of inputs of a missing gate through primary 
inputs for activation is determined by its dependency to 
other missing gates and can be categorized into: Full 
Controllability, Partial Controllability, and No 
Controllability. Full controllability for a missing gate is 
defined as the existence of no missing gate in the fan-in 
cone of the missing gate (referred as FullCtrlCSE in Figure 
1). For a full-controllability missing gate with |I| number of 
inputs and |O| number of outputs, there are at most 2|I|+|O| 
combinations that need to be examined to correctly 
determine its functionality. For example, Figure 2 verifies 
whether the output of a 2-input missing gate mi is 0 by 
replacing it by an AND gate whose inputs are inverted and 
considering the stuck-at 0 (sa0) at the output of AND gate 
(the AND00 case). Dependency between missing gates 
limits their controllability. In the partial controllability for a 
missing gate, some input signals of a missing gate are 
driven by some other missing gates while its other inputs 
are yet accessible through primary inputs (referred as 
PrtCtrlCSE/PtrSwCtrlCSE in Figure 1). For example, 
Figure 3 presents a case with two missing gate mi and mj 
where one input of mi is driven by mj. To determine the row 
“1X” for mi’s truth table (X represents don’t care), the 
missing gate mi is replaced by an OR gate whose 
controllable input is inverted with a stuck-at 1 (sa1) at that 
input (the OR1X case). If all inputs of a missing gate are 
driven by some other missing gate, the missing gate holds 
no controllability, it cannot be resolved.  
 In general, if any inputs of a missing is controllable, 
the ATPG attack replaces the missing gate with a specific 
case to apply a specific input combination to the inputs of 
missing gate.  

Propagation for the ATPG Attack 
The main challenge in propagation of the output of a 
missing gate to a primary output is the existence of some 
other missing gates in its fan-out cone. To address the 
challenge, the attacker needs to find a clean path defined as 
a path that is not passing through any other missing gate nor 
reachable by any other missing gate. In large circuits with 
gates with multiple fan-out branches, the number of paths 
exponentially increases. This would require considerable 

storage and processing time to determine clean paths. To 
address these challenges, obtaining clean paths can be 
broken in two steps: (1) clean primary outputs, and (2) path 
direction. A clean primary output is defined as a primary 
output that contains no missing gates but a target missing 
gate (mi) in its fan-in cone. Path direction is to determine if 
a clean path inverts the output of the target missing gate or 
not.  
 

 
Figure 2. Full controllability (The AND00 case). 

 

 
Figure 3. Partial controllability (The OR1X case). 

 After defining a stuck-at fault at the output of a 
missing gate (being done at the activation phase), an 
attacker can check the clean primary outputs. If any of these 
primary outputs reflect the fault, it means the output of 
missing gate reaches to this primary output. If the fault at 
the output of missing gate is stuck-at-0(1) and the primary 
output also reports stuck-at-0(1), the clean path from the 
missing gate to this primary output is not inverting; 
otherwise, the clean path is inverting.  
For example, if m1 is the target missing gate in a circuit 
shown in Figure 4, the following propagation paths for the 
m1 missing gate exist: P1 = {g3, g5, g11}, P2 = {g3, g5, m2, 
g12}, P3 = {g3, g5, m2, g13}, and P4 = {g3; g14}. The P2 and 
P3 paths are not clean as both contain the m2 missing gate. 
On the other hand the P1 and P4 paths are clean paths. 
 

 
Figure 4. Clean paths for propagation in the ATPG attack. 

Figure 1. The ATPG Attack Flow. 
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Results 
The selection algorithms [4] are applied on the ISCA’S 85 
combinational circuits [6]. The HOPE fault simulation tool 
[7] is used to launch the ATPG attack. While HOPE is 
originally to generate patterns randomly for fault detection, 
proposed activation and propagation techniques forces 
HOPE to apply a specific combination of values on the 
inputs of missing gates and propagate the output of missing 
gate to some primary outputs. The limit of number of try for 
HOPE to detect a fault is set to 5000.  
 

Table 1. The ATPG attack on the Independent Selection. 
Circuit 
Name 

# Missing 
Gate 

Average No 
Patterns 

Average Time 
(min:sec) 

C880 9 786.60 00:20.71 
C1908 4 169.10 00:12.44 
C2670 4 550.90 00.36.75 
C3540 5 491.50 00:29.94 
C5315 3 439.20 00:41.87 

 
 Table 1 presents results for the ATPG attack on 
missing gates selected by the Independent Selection where 
gates are not reachable from each other directly or 
indirectly. The results indicate there are few circuits with 
independent gates, and there are small number of 
independent missing gates in such circuits (# Missing 
Gates). Table 1 reports Average No Pattern and Average 
Time after 10 rounds of HOPE simulation. There exists a 
roughly high correlation (≈ 0.74) between # Missing Gates 
and Average No Pattern. Table 1 shows that, Average Time 
is dependent on the Circuit Size (number of gate in the 
circuit) and Average Pattern, and there is a high correlation 
(≈ 0.93) between Average Time and (Circuit Size × 
Average Pattern).  
 

Table 2. The ATPG attack on the Dependent Selection. 

Circuit 
Name 

# 
Missing 

Gate 

# 
Attackable 

Average  
No 

Patterns 

Average 
Time 

(min:sec) 
C499 7 7 439.90 09:51.94 
C880 10 2 5516.30 00:32.60 

C1355 19 2 33.80 02:29.11 
C1908 9 1 73.50 03:20.10 
C2670 9 2 38.80 03:40.81 
C3540 8 6 764.00 58:54.11 
C5315 23 6 10631.90 44:35.47 

 
Table 2 shows the results of ATPG attack on missing gates 
selected based on the Dependent Selection (DS) where all 
gates on a timing path are replace with missing gates. In 
this paper, only one path in benchmark is constantly 
targeted. If there exists reconvergence paths between the 
missing gates in DS, an attacker cannot apply the ATPG 
attack on all missing gates. Only missing gates that have a 
clean propagation path with full controllability 
(FullCtrlCSE) or partial controllability (PrtCtrlCSE) can be 

attacked. In Table 2, # Attackable shows the number 
missing gates for which either FullCtrlCSE or PrtCtrlCSE 
can be evaluated. Except the benchmarks C499 and C3540, 
considerable portion of missing cannot be targeted due to 
either lack of controllability or a clean path for propagation. 
Average Time indicates that the ATPG attack takes longer 
time for larger circuits.  
Table 3 shows the results of ATPG attacks on missing gates 
selected based on the Parametric-aware Dependent 
Selection where some gates on a timing path are replaced 
with missing gates and any gate driven by or drive known 
gates on the timing path are replaced with missing gates. 
The results indicate the existence of large number of 
missing gates (# Missing Gate) while small number of them 
are really attackable (#Attackable). While Average No 
Pattern presents smaller number pattern compared to Table 
2 because of smaller attackable missing gates, considerable 
increase in Average Time is being observed. 
 

Table 3. The ATPG attack on the Parametric-aware 
Dependent Selection. 

Circuit 
Name 

# 
Missing 

Gate 

# 
Attackable 

Average 
No 

Patterns 

Average 
Time 

(min:sec) 
C432 11 2 35.20 06:30.54 
C499 13 3 51.30 13:17.52 
C880 15 2 586.80 19:13.68 

C1355 21 3 89.80 79:06.96 
C1908 22 1 1.70 130:45.66 
C3540 23 4 95.30 1065:56.94 
C5315 20 2 21.70 658:05.88 

 
Discussion 
Assuming idealistically any required pattern to apply a 
specific values on inputs of a missing and to propagate the 
output of the missing gate can be deterministically 
obtained, we can estimate how many patterns may take for 
the ATPG attack to determine the functionality of missing 
gates.  
Given |M| the number of independent missing gates in a 
combinational circuit, the minimum number of required test 
patterns for the ATPG attack to determine all missing gates 
(Nindep) is equal to 
 

ܰௗ ൌߙ

|ெ|

ୀଵ

 

 

where α is the average number of required patterns to 
determine an independent missing gate. 

The value of α is determined based on the similarity of the 
output of the gates. For example, the similarity of 2-input 
AND gate and 2-input NOR gate is 2 since for two input 
combinations they produce the same output, and the 
similarity of 2-input AND gate and 2-input NAND gate is 0 
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as their output are completely opposite. For 2-input gates, 
the average similarity of gates is 1.45, so the average 
required patterns to determine a 2-input missing gate (α) is 
2.45. For 3-input gates and 4-input gates, α is equal to 4.2 
and 7.4, respectively.  

Dependency between missing gates considerably increases 
the ATPG attack’s effort. Given M the number of missing 
gates that one input of any missing gate is driven by the 
output of another missing gate, and |Pi| is the size of pool of 
candidates for a missing gate mi, the average number of 
required test patterns to determine all missing gates in the 
dependent selection (Ndep) is equal to  

ௗܰ ൌෑߙ ൈ | ܲ|

|ெ|

ୀଵ

 

 

Assuming the existence of test patterns to apply different 
combinations at the accessible inputs of missing gates and 
to propagate the output of missing gates, the size of pool 
(|Pi|) is 2.7, 2, and 2 for 2-input, 3-input, and 4-input 
missing gates, respectively. The value of |Pi| is obtained 
based on the truth table of gates. For example, by ignoring 
one input of 2-input gates, the truth table of AND would be 
similar to those of OR, NOR, and XNOR gates. In another 
case, the truth tables of XOR would be similar to NAND 
and NOR gates.  

If missing gates are selected such that all of their inputs are 
driven with some other missing gates, the ATPG attack’ 
effort exponentially increases. A more plausible approach 
for the attacker is to launch SAT-based attack or a brute 
force attack. Given |M| the number of missing gates, |I| 
inputs accessible to drive missing gates, and |P| the number 
of all available gates in a technology library with the same 
number of inputs as a missing gate, the maximum number 
of test patterns to determine the missing gates in a brute 
force attack (Nbf) is equal to  

ܰ ൌ 2|ூ| ൈ |ܲ||ெ|. 
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