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1. Introduction 

Neurons in the brain enable us to understand scenes by assessing the spatial, 
temporal, and feature relations of objects in the scene to the environment and 
ourselves. Clarifying how humans gain scene understanding is an active area of 
theoretical and experimental research (Biederman 1987; Bar 2004; Battaglia et al. 
2013; Sofer et al. 2015; Malcolm et al. 2016) that even extends to experiments to 
relate magnetic resonance imaging and other sensor measurements of brain neural 
activity to images of scenes viewed by subjects (Aminoff and Tarr 2015; Aminoff 
et al. 2015; Suave et al. 2017). Despite the complexity of mimicking human neural 
activity and because of the potential for enormous gains, there has been intense 
effort to use computer neural networks to augment human neural intelligence to 
improve our scene understanding (Krizhevsky et al. 2012; Zhou et al. 2014; 
Karpathy and Fei-Fei 2015; Lim et al. 2017; Qiao et al. 2017). In the age of robots 
and drones, achieving rapid and robust understanding of scenes has become a 
critical goal for autonomous robotic systems performing tasks to support realistic 
outdoor missions in complex and changing environments (ARL 2014; Judson 2016; 
Sustersic et al. 2016). Exemplars of complex outdoor missions are military 
operations, in particular, those where there is a need to reduce the analytical burden 
to process time-sensitive information on an information-saturated and rapidly 
changing battlefield (Howard and Cambria 2013). Clearly, the development of an 
approach for automated scene understanding that can handle complex outdoor 
missions is needed. Here we present and analyze a deep learning neural network 
model software implementation for improving scene understanding of realistic 
autonomous outdoor missions in complex and changing environments. 

Scene understanding for realistic outdoor missions is a difficult challenge and 
remains an unsolved problem (RCTA 2012; Piekniewski et al. 2016; Tai and Liu 
2017) due to the uncertainty of inferring the mutual context of detected objects and 
the changing weather, terrain, and environmental surroundings. While gaining 
scene understanding is challenging even in static surroundings, dynamic 
applications such as terrain and obstacle traversal in changing environments greatly 
complicates the missions. By developing a prototype scene understanding software 
tool, we report proof-of-principle progress in autonomously searching for and 
recognizing key activities or scenarios by identifying both salient objects and 
relevant environmental settings depicted in outdoor scenes. Importantly, we 
demonstrate the autonomous detection of targeted scenarios using neural network 
models separately trained on both objects and places image databases. Analysis 
using this scene understanding tool can be helpful to autonomously sift through 
large image data sets for such applications as intelligence, surveillance, and 
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reconnaissance to identify potential threats to personnel or equipment. Previously, 
Xiang et al. (2002) and Gori et al. (2016) reported on experiments conducted using 
indoor video images to autonomously search for and identify human activities that 
happen in sequence or concurrently. However, their methods did not address neural 
network models or outdoor environments as ours do.  

Neural networks have been applied mainly to static problems. However, their 
application to realistic scenarios requires attention to changing weather and terrain 
features encountered along paths that introduce uncertainty in neural predictions. 
As an example, an automated vision system may readily detect changes in the 
ground surface along its path as a new or different object in the field of view. 
Understandably, it would be a challenge for neural networks alone to be able to 
differentiate such features as shallow or deep water; thick, thin, or melting ice; 
freezing rain; blowing dust and sand; or snow, mud, or quicksand if they had not 
been encountered in the training data sets. By using an instructive analysis of 5 
representative real-world mission scenarios, we investigate adding physics-based 
modeling and dynamic environmental data, such as terrain, morphology, weather, 
visibility, and illumination, to neural network training to minimize unpredictability 
by constraining neural predictions to physically realizable solutions (Battaglia et al. 
2013; Ullman et al. 2014; Fragkiadaki et al. 2015; Wu et al. 2015; Lake et al. 2016; 
Zhang et al. 2016). Indeed, the integration of neural network software, multiple 
training data sets, environmental data, and physical modeling would provide a 
much more comprehensive approach to improve scene understanding software for 
robotic systems operating in realistic outdoor environments.  

In this report, we present our software implementation of a deep learning 
convolutional neural network (CNN) model that was based on the earlier works of 
Krizhevsky et al. (2012) and Ding et al. (2015). In Section 2, key concepts related 
to neural network models and training are discussed. The training, validation, 
testing, and analysis of our object-trained CNN software implementation are 
discussed in Section 3. For comparison, test image analyses using a places-trained 
CNN model (Zhou et al. 2014), which is similarly based on the work of Krizhevsky 
et al. (2012), but is trained instead on a places/locations image database, are 
presented in Section 4. In Section 5, we use our object-trained CNN model software 
implementation together with the places-trained CNN model to demonstrate the 
autonomous detection of specific scenarios by jointly identifying salient objects and 
the environmental settings depicted in the outdoor scenes. In Section 6, we outline 
a more comprehensive approach to improve the next generation of scene 
understanding software and we summarize our overall conclusions in Section 7.
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2. Neural Network Models, Training, and Concepts 

In this section, neural network models, training, and concepts are reviewed. Much 
research has focused on the concept of saliency as if the importance of an object to 
us or our missions depends solely on how much it visually stands out in a scene. 
However, as we shall see, to be useful for outdoor missions, this is not sufficient 
since the environment and mission objectives must be considered. The concept of 
saliency estimation has been helpful to computationally identify elements in a scene 
that immediately capture the visual attention of an observer (Itti et al. 1998; Xu et 
al. 2010; Perazzi et al. 2012). Several recent papers have discussed concepts 
associated with visual saliency to enhance automated navigation and scene 
exploration (Roberts et al. 2012; Yeomans et al. 2015; Warnell et al. 2016). 
However, the most active or salient object(s) in a scene, by this definition, may not 
represent the most important or meaningful feature(s) of the scene. Also, 
environmental factors such as changing illumination, precipitation, and vegetation 
can modify saliency and context of an outdoor scene, obscure features, and 
significantly degrade object recognition (Wohler and Anlauf 2001; Narasimhan and 
Nayar 2002; Pepperell et al. 2014; Sunderhauf et al. 2015; Neubert and Protzel 
2016; Valada et al. 2016).  

When applied to neural network object or place recognition, an autonomous robotic 
system may predict the correct class label for the principal object shown in a test 
image (Krizhevsky et al. 2012; Zhou et al. 2014; Karpathy and Fei-Fei 2015), yet 
overlook key environmental features that can provide important information related 
to the outdoor mission. In Section 3, we show that an object-trained neural network 
model correctly classifies an image of a tank (in the near-field view) with high 
confidence. Nevertheless, in the far field of the image, a tan background is 
indicative of a sand storm. While the neural network training produced a single 
label for object recognition, it was not sufficient to identify a potentially vital piece 
of information that otherwise may have been recognized by a human observer.  

Information related to changing environmental dynamics can enhance the scene 
understanding analysis and can be essential to support the goals and intent of the 
outdoor mission (Howard and Cambria 2013). For example, the consequence of 
low visibility can impede many types of navigation, reconnaissance, and target 
acquisition, and blowing dust or sand can decrease the effectiveness of embedded 
equipment and personnel. Alternately, the incomplete results of the neural network 
image classifier in the previous example may be related to the problem of domain 
transfer (You et al. 2015; Zhang et al. 2016), where knowledge learned by neural 
networks trained on a data set containing images of a particular domain cannot be 
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transferred easily to produce an outcome that is outside the training data set. Next, 
we show how neural network models trained on multiple and diverse data sets can 
improve scene understanding software for applications in dynamic environments. 

There are several alternate neural network models that incorporate scene parsing, 
(identification of multiple objects in natural scenes [Socher et al. 2011; Karpathy 
and Fei-Fei 2015; Wigness 2015, 2016; Zhou et al. 2016]). Primarily, these model 
codes generate automated semantic labeling for image classification of the scene, 
to include identification of the sky, roads, grass, trees, and buildings, as an example. 
However, for realistic mission scenarios, salient and meaningful details about these 
environmental features are not yet provided (e.g., storm cloud covered skies, muddy 
or icy roads, or thick or impenetrable grass field). Similarly, there are neural 
network models that have been trained on pictures of indoor and outdoor places and 
natural environments (Zhou et al. 2014), as opposed to images of objects. In Zhou 
et al. (2014), image classification predictions for outdoor places have even been 
augmented with a list of scene understanding attributes (Xiao et al. 2010; Patterson 
and Hays 2012) that have included several environmental descriptors, such as trees, 
foliage, dirt soil, cold, snow, ice, sunny, smoke, and clouds, to name a few. Zhou 
et al. (2014) also reported on a hybrid CNN model that was trained on both scene 
categories and object categories. However, their hybrid model and training has not 
been used to jointly identify both salient objects and relevant environmental settings 
to detect targeted scenarios, as we do in this report. 

3. Neural Network Model Software Implementation: Training, 
Validation, and Analysis  

In this section, we present our installation, training, and analysis of the Theano-
AlexNet CNN model (Krizhevsky et al. 2012; Ding et al. 2015) implemented on a 
Windows 10 notebook computer using a single graphics processing unit (GPU). To 
the best of our knowledge, an implementation of the open-source Python-based 
AlexNet CNN on a Windows notebook computer has not been previously reported. 
A description of the installed software and dependencies is given in Appendix A 
and also can be found in Tunick (2016a). A list of representative CNN deep learning 
libraries and open-source CNN model codes are provided in Appendix B.  

The training and validation of our neural network model software is presented as 
follows. The CNN was trained to detect 1,000 different object categories (i.e., 
object classes) using the ImageNet Large Scale Visual Recognition Challenge 2012 
(ILSVRC2012) data set (Russakovsky et al. 2014). All of the 1.2 million training 
images (i.e., 5004 mini-batches of 256 images) were processed during each of 65 
computer cycles. On average, training on 20 mini-batches (or iterations) took 
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approximately 172 s. As a result, the full 65 cycles took approximately 32 days to 
complete. For comparison, Ding et al. (2015) reported training times of about  
40–49 s per 20 iterations for 1 GPU (e.g., approximately 9 days to complete 65 
cycles, and 24–29 s per 20 iterations for 2 GPUs). Our proof-of-concept 
implementation of this CNN software  achieved 56.6% validation accuracy for the 
top-1 class labels (Fig. 1) and 79.7% accuracy for the top-5 class labels (calculated 
but not shown), even though the training time was long (Bahrampour et al. 2016). 
These results are in close agreement with those reported by Krizhevsky et al. (2012) 
and Ding et al. (2015) (i.e., a top-5 accuracy of 81.8% and 80.1%, respectively). 
For the evaluation of neural network models, the top-5 accuracy rate is defined as 
the fraction of test images for which the correct class label is among the 5 most 
likely class labels determined by the model (Krizhevsky et al. 2012).  

 
Fig. 1 Neural network model training and validation results: top-1 training accuracy (red 
line) and top-1 validation accuracy (blue diamonds) 

Our CNN software implementation results and analysis using test images that 
depict representative dynamic environmental features are presented later on. We 
see that addressing dynamic environments in scene understanding software can be 
useful for robotic systems operating in realistic outdoor environments. As an 
example, adverse weather may darken images making it difficult for conventional 
neural networks to interpret the outdoor scene. However, proper characterization of 
weather and environmental features can enhance outdoor missions.  

For the initial example shown in Fig. 2, we had the model output the top-5 most 
likely class labels and corresponding confidence levels (i.e., top-5 probabilities) for 
4 test images taken from the ILSVRC2012 data set. To do this, we modified the 
model code and incorporated an inference calculation (Ma 2016; Tunick 2016b) to 
extract the desired results (i.e., the p_y_given_x output from the CNN softmax layer 
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[see Appendix A, Section A-3.10]). We found that the neural network model 
predicted the correct class labels for the principal object(s) shown in the test images, 
generally with high confidence.  

 
Fig. 2 Neural network model initial results showing the top-5 most likely class labels and 
corresponding top-5 confidence levels 

However, a person viewing these images would likely see several additional 
features, such as clouds, haze, smoke plumes/exhaust, sandy soil, rocky terrain, 
mountains, river water, trees, and forests. Identifying these key environmental 
features is essential to the scene understanding result, especially when the images 
are viewed in the context of mission impact. Obscured visibility due to smoke 
plumes, low illumination due to cloud cover, or difficult navigation due to rocky or 
forested terrain are all vital pieces of information that can provide enhanced 
operational awareness (Howard and Cambria 2013). As an example, the tank 
exhaust and trailing smoke cloud in Fig. 2a are indicative of objects moving in an 
active scene. Similarly, Figs. 2c and 2d depict an Army tank on a roadway and a 
locomotive on tracks, respectively, each with a trailing smoke plume. However, the 
Army tank in Fig. 2c was identified with a much lower probability (i.e., 9.4%) than 
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the locomotive in Fig. 2d (i.e., 92.4%), even though both objects appear set back 
from the near-field view. Low illumination of the scene and low visibility of the 
object in Fig. 2c likely affected the CNN model result. Many similar effects were 
found after testing the CNN model with additional sets of images depicting 
dynamic environment features (Figs. 3 and 4). 

 
Fig. 3 Neural network model results for images of a lighthouse in clear sky and unfavorable 
environmental conditions: a) clear sky–daytime, b) clear sky–snow covered field,  
c) daytime–fog and haze, d) lightning, e) storm clouds, f) daytime–foggy, g) clear sky–sunset, 
h) clear sky–twilight, and i) nighttime–silhouette
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Fig. 4 Neural network model results showing images of Army tanks in clear sky and 
unfavorable environmental conditions: a) clear sky–sandy soil, b) clear sky–dirt field, c) 
cloudy sky–daytime, d) sand/dust storm, e) tall/dense vegetation, f) rain/muddy soil,  
g) rain/city street, h) snow–mountains, and i) snow–forest 

Figures 3 and 4 show our CNN model results for several images of a lighthouse and 
an Army tank, respectively. Again, the top-5 most likely class labels and 
corresponding top-5 confidence levels are annotated below each figure. In Figs. 3 
and 4, it is shown that the CNN model often identified the lighthouse and Army 
tank correctly and with fairly high confidence.  

When the images also depict dynamic weather or terrain features, such as dark 
storm clouds, fog, lightning, rain, mud, and snow, this led to partially or completely 
unusable model results (i.e., either the lighthouse or Army tank were completely 
misidentified or they were identified with much lower probabilities). For instance, 
the lighthouse with a lightning strike (Fig. 3d) and the lighthouse under dark storm 
clouds (Fig. 3e) were identified by the model, but with very low probabilities (e.g., 
8.9% and 2.3%, respectively). In Fig. 3f, none of the top-5 class labels correctly 
identified the lighthouse shown in dense fog, albeit a few alternate structures were 
predicted. 
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In Fig. 4c, the model predicted the class label for the Army tank under dark cloudy 
skies with only 1.2% confidence. In contrast, the model identified a visually 
obscured tank in a forest with tall and dense vegetation (Fig. 4e) with about 40% 
confidence. In Figs. 4f, 4h, and 4i, the Army tank in rainy weather and muddy 
terrain was completely misidentified, and the tanks in snow were predicted with 
very low confidences (i.e., 2.4% and 4.9%, respectively).  

Interestingly, the test image in Fig 4d shows an Army tank (in the near-field) with 
a tan background indicative of a sand storm. In this case, the object trained CNN 
predicted the correct class label for the principal object, yet overlooked a relevant 
environmental setting. Certainly, the indication of a sand storm event is an essential 
feature that can directly impact navigation, visual tracking, or a related outdoor 
task. Similarly, the rain, mud, and snow shown in Figs. 4f and 4h are indicative of 
difficult and challenging terrain, which can impact autonomous navigation. 

In summary, these results show that dynamic weather and terrain features can 
impact how a neural network model, such as our object-trained CNN software 
implementation, interprets outdoor scenes. In the following sections, we show that 
identifying both salient objects, in addition to relevant environmental settings, can 
be combined to autonomously search for and recognize targeted scenarios depicted 
in outdoor scenes.  

4. Places-Centric Neural Network Model 

In this section, comparative test image analyses are presented using a places trained 
CNN model (Zhou et al., 2014), which is similarly based on Krizhevsky et al. 
(2012), but is trained instead on a places/locations image database. In this study, 
we used the Places-CNN online scene recognition demo (i.e., http://places.csail. 
mit.edu/demo.html) to predict the most likely semantic categories and scene 
understanding attributes for several test images taken from Figs. 2–4. The semantic 
categories were based on a 2.5 million image subset of the Places data set 
(http://places.csail.mit.edu/) and the list of scene understanding attributes were 
based on the data set discussed by Xiao et al. (2010) and Patterson and Hays (2012). 
Figure 5 presents the places-trained CNN model results, where in many cases, the 
semantic categories (i.e., classification labels) and augmented scene attributes 
provided several cues related to environmental settings and features that were not 
available previously with the object trained CNN model predictions shown in 
Section 3 (e.g., “snowy mountain”, “direct-sun-sunny”, “clouds”, “foliage”, trees”, 
“dirt-soil”, “cold”, “snow”, and “ice”). Interestingly, the places-trained CNN model 
predictions for the images of a lighthouse shown in Figs. 5d through 5f had much 
higher top-5 probabilities than the earlier object trained CNN results shown in  
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Fig. 3d through 3f. In contrast, the places-trained CNN model predictions for the 
“railway train” shown in Fig. 5c had a much lower probability than the earlier object 
trained CNN model results shown in Fig. 2d. Table 1 provides a summary of 
selected CNN results from the object-centric versus place-centric image training. 
Although, variations can arise due to different training data set domains (You et al. 
2015; Zhang et al. 2016), the results in Table 1 demonstrate that scene 
understanding model software can be improved by neural network training on 
multiple image databases. 

 

Fig. 5 Places-CNN scene recognition demo results for selected test images from Figs. 2, 3 
and 4: a) Fig. 2a, b) Fig, 2c, c) Fig. 2d, d) Fig. 3d, e) Fig. 3e, f) Fig. 3f, g) Fig. 4f, h) Fig. 4h, 
i) Fig. 4d 
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Table 1 Comparison of neural network model results 

Analyzed image Classification label Top-5 probability 
Object Place Object Place Object Place 
Fig. 2d Fig. 5c Steam 

locomotive 
Railway 
train 

0.92 0.34 

Fig. 3d Fig. 5d Lighthouse Lighthouse 0.09 0.98 

Fig. 3e Fig. 5e Lighthouse Lighthouse 0.23 0.54 

Fig. 4f Fig. 5g Valley Valley 0.13 0.09 

 

5. Autonomous Detection of Key Scenarios 

Proof-of-principle experiments were conducted to demonstrate the recognition of 
key scenarios by identifying both salient objects and relevant environmental 
settings characteristic of the targeted scenario. In this study, we use our object-
trained neural network model software implementation together with the places-
trained CNN (Zhou et al. 2014) to autonomously detect specific scenarios. Here, a 
“scenario” is signified by salient objects and environments providing mutual 
context (i.e., a primary or key object in an outdoor scene embedded in a realistic 
environmental setting or place). A scenario is “detected” when the primary object 
is correctly labeled as the most likely top-1 semantic category by the object-trained 
CNN and the environmental setting is correctly labeled as most likely top-1 
semantic category by the places-trained CNN. Table 2 presents a summary of the 
combined neural network model results. A total of 114 images were analyzed, to 
include 6 additional images for each environmental setting where the Army tank 
was not embedded in the scene. As a result, 15 scenarios of interest were detected 
with no false positives. This result shows that the use of neural network models 
trained on multiple data sets has applicability for reliable detection of scenarios for 
a wide class of problems. Representative examples of the test images and the CNN 
model results that contributed to the data presented in Table 2 are presented in  
Fig. 6. In our analyzed data set, only instances where both the object of interest and 
place of interest are predicted as the top-1 semantic category are counted in the 
“scenarios detected” column shown in Table 2.  
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Table 2 Neural network model results for the autonomous detection of scenarios 

Scenario 
No. of 
images 

analyzed 

No. of 
tanks 

recognized 

No. of 
places 

recognized 

No. of 
scenarios 
detected 

No. of 
false 

positives 
1. tanks in the desert 30 16 19 8 0 

2. tanks on the beach 16 6 7 1 0 

3. tanks in the snow 16 2 3 0 0 

4. tanks in the forest 18 2 7 0 0 

5. tanks in a grass field 18 11 8 4 0 

6. tanks in the city 16 6 7 2 0 

TOTAL 114 43 51 15 0 

 

 

Fig. 6 Representative neural network model results for the autonomous detection of 
targeted scenarios. Top-5 image classification labels and top-5 probabilities are annotated for 
the object-centric trained CNN (above) and location/places-centric trained CNN (below). A 
scenario is “detected” when the top-1 classification correctly identifies both the object and 
place of interest. 

Ostensibly, the image and CNN model data for “tanks in the forest” shown in  
Fig. 6 were also presented in Fig. 4e; however, the classification labels appeared in 
a different order with different probabilities. It was later found that 2 separate 
copies of the original image were used in our analysis, wherein each copy was 
resized and/or cropped independently of the other. Although there are only slight 
differences between the 2 images (Fig. 7), the demonstrated differences in the 
neural network model results highlight an important issue; even small changes in 
the input data such as brightness, blurring, and cropping can affect the performance 
of a machine learning classifier (Kurakin et al. 2016). Clearly, this issue will need 
to be addressed in future developments and implementations of enhanced scene 
understanding software.  
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Fig. 7 Visual demonstration that slight differences in the image input due to brightness, 
blurring, and/or cropping can result in differences in the top-5 image classification: a) image 
shown in Fig. 4 and b) image shown in Fig. 6 

A further demonstration of the autonomous detection of scenarios using neural 
network models separately trained on images of places and objects is provided as 
follows. The object of interest is a “baseball player” and the place/location of 
interest is a “baseball field”. Table 3 summarizes the combined CNN model results. 
A total of 18 images were analyzed and 5 scenarios of interest were detected  
(Fig. 8). Significantly, the analysis of image data that included photographs of 
persons playing sports other than baseball on grass fields (Fig. 9) presented no false 
positives. 

Table 3 Neural network model results for the autonomous detection of the “baseball game” 
scenario 

Scenario 
No. of 
images 

analyzed 

No. of 
objects 

recognized 

No. of 
places 

recognized 

No. of 
scenarios 
detected 

No. of false 
positives 

1. baseball game 18 6 7 5 0 
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Fig. 8 Neural network model results for the autonomous detection of the “baseball game” 
scenario. Top-5 image classification labels and top-5 probabilities are annotated for the object-
centric trained CNN (above) and location/places-centric trained CNN (below). A scenario is 
“detected” when the top-1 classification correctly identifies both the object and place of 
interest. 

 

Fig. 9 Neural network model results for images of persons playing sports other than 
baseball on a grass field. Top-5 image classification labels and top-5 probabilities are 
annotated for the object-centric trained CNN (above) and location/places-centric trained CNN 
(below). In these examples, there were no neural detections of the “baseball game” scenario. 
Significantly, this sports image series presented no false positives. 

In summary, proof-of-principle experiments demonstrated the recognition of key 
scenarios by identifying both salient objects and the environmental settings 
characteristic of the outdoor scene. The autonomous detections of 20 scenarios of 
interest were demonstrated with no false positives using neural network models 
separately trained on images of objects and places. 
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5.1 Computer Processing and Timing 

Fast computing speeds are important for realistic autonomous outdoor missions. 
For the object-centric trained CNN described previously, it took approximately  
19 s for the code to initialize and then 5.4 s per test image to produce the top-5 
image classification labels and top-5 probabilities. For real-time future 
implementations of scene understanding software tools, increased computing 
speeds can be gained by exploiting more efficient algorithms and faster computer 
processors as they become available. Super computers and parallel processing will 
enable faster training and validation of neural network codes. In a compact form 
factor, such capabilities will allow for real-time implementation of neural network 
scene understanding software tools in such autonomous assets as robots, drones, 
and self-driving vehicles. 

6. Comprehensive Approach: Adding Dynamic Environmental 
Data and Physics Based Modeling  

In the previous sections, we presented the implementation of neural network 
models separately trained on 2 different image data sets, which resulted in the 
development of a prototype scene understanding software tool to autonomously 
detect specific scenarios in diverse outdoor scenes. We found that changing weather 
and terrain features along the path in realistic scenarios can introduce a variability 
in the neural predictions not addressed by the neural network training sets. In this 
section, we show that adding dynamic environmental data and physics-based 
modeling can minimize such unpredictably by constraining neural predictions to 
physically realizable solutions, which could augment neural network training and 
enhance autonomous decision making. 

6.1 Dynamic Environmental Data Retrieval 

Tunick (2016c) importantly proposed incorporation of space and time varying (i.e., 
dynamic) environmental data from the very beginning of the autonomous data 
collection process so that the recorded images can be more effectively indexed and 
retrieved for operational use and analysis. A systematic characterization of the 
collected images could be useful for improving scene descriptions and could help 
end users (e.g., Soldiers for military applications) develop improved course of 
action strategies for their autonomous robotic assets. As mentioned previously, the 
retrieval of current terrain and weather data in combat can significantly optimize 
mission success. 
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There are many key pieces of information that can be identified as new image data 
are being recorded that are important and accessible, but are usually overlooked or 
left undocumented. For example, images can have a timestamp relative to the sun’s 
angle or relative to a world clock. Recorded images can also be characterized by 
the GPS position, the prevailing environmental and weather conditions, and the 
field of view, depth of view, and image resolution (Table 4). The first group, shown 
in Table 4, focuses on dynamic environmental data, such as the GPS position and 
altitude above ground level (AGL), prevailing weather, cloud cover, ground and 
road conditions, and visibility (e.g., fog, smoke, haze, obscurants, or optical 
turbulence). 

Table 4 Time- and space-varying elements of scene understanding 

Dynamic environmental data 
GPS position and altitude AGL 
Location: geographical context 
Timestamp 
Weather conditions, sky, and cloud cover 
Sun/moon angle 
Ground/road conditions 
Visibility 
Vegetation 
Buildings, parking lots, people, or crowds 

Image/camera information 
Image resolution 
Pixel size and pixel separation 
Scene color or shading variations 
Field of view and depth of view 
Shutter exposure time 
Time interval between image frames 
Time over which images are captured in a sequence 

 

Identifying the key environmental and terrain conditions can provide location and 
geographical context information to help categorize image scenes recorded in 
diverse regions (e.g., coastal, mountain-valley, desert, forest, urban, rural, ocean, 
and arctic). Detailed terrain characteristics, such as muddy, sandy, gravelly, wet, 
dry, or icy, and reports of the most current weather conditions available, such as 
rain, snow, fog, or haze, can be retrieved and annotated to help describe images 
used to support the planning or execution of outdoor tasks. Changing weather 
conditions, cloud cover, and visibility bring about changes in the illumination of a 
scene, which can affect image contrast and resolution (Narasimhan and Nayar 2002; 
Lalonde et al. 2012). Retrieval of time of day and sun angle information is useful 
to indicate when glare, shadows, or silhouettes may cause difficulties for automated 
computer vision processes (Shafer 1985; Reddy and Veeraraghavan 2014). Taking 
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note of optical turbulence conditions is important because these effects can 
significantly degrade and blur image quality due to spatial smearing (Roggemann 
et al. 1996). 

The second group in Table 4 lists elements related to the camera specifications and 
the image data measurements themselves (e.g., the spatial and temporal image 
resolutions, field of view, depth of view, and scene color or shading variations). 
Together with the environmental information, these camera/image elements can 
provide further details for scene description and image indexing. Note that, in most 
cases, the image/camera information can be annotated based on the camera type, 
lensing, pixel array, and timing specifications. Also, for example, co-located range 
finder instrumentation could provide effective depth and field of view 
measurements for this purpose.  

Next, when communications are available, the most current environmental 
information available can be extracted from several accessible resources, such as 
those shown in Table 5. Obtaining the most current data available is advantageous 
since environmental conditions (e.g., weather and terrain) can change over very 
short temporal and spatial intervals. For example, access to data from Department 
of Defense (DOD) GPS (http://www.gps.gov/governance/agencies/defense/) can 
provide latitude and longitude or Universal Transverse Mercator (UTM) location 
and timestamp information, commonly reported as Greenwich Mean Time (GMT) 
or Coordinated Universal Time (UTC). Data from the US Naval Observatory 
(USNO) (http://www.usno.navy.mil/USNO) can provide precise timing 
information as well as solar and lunar elevation/azimuth angles. Similarly, terrain 
and geographical location and context information are provided by satellite and 
aerial imagery for military operations from the US Army Corps of Engineers, Army 
Geospatial Center (USACE AGC) (http://www.agc.army.mil/) or from public 
Internet resources such as Google (https://www.google.com/maps/), MapQuest 
(http://www.mapquest.com/), Bing (https://www.bing.com/maps/), and Yahoo 
Maps (https://maps.yahoo.com/b/). 

Table 5 Available and accessible dynamic environmental data 

1 DOD GPS: Lat/long or UTM, altitude (AGL), GMT, or UTC 
2 USNO: Precise time, sun/moon elevation/azimuth angle 
3 Terrain and location: USACE AGC — Satellite/aerial imagery and terrain analysis 
4 Terrain and location: Google, MapQuest, Bing, Yahoo Maps 
5 Weather: US Air Force (USAF) 557th Weather Wing 
6 Weather: National Weather Service (NWS) and National Centers for Environmental 

Information (NCEI) 
7 Weather: Intellicast, AccuWeather, Weather Underground 
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Weather conditions and related oceanic, atmospheric, and geophysical data are 
available for the military through the USAF 557th Weather Wing 
(http://www.557weatherwing.af.mil/) (i.e., formerly the USAF Weather Agency) 
and for the civilian community through the NWS (http://www.weather.gov/) and 
the NCEI (https://www.ncei.noaa.gov/). Daily NWS weather reports that are found 
online contain hourly records citing the date, time, wind speed (miles per hour), 
visibility (miles), weather (i.e., rain, snow, fog, haze, etc.), sky/cloud condition 
(reported as overcast [OVC], broken [BRK], scattered [SCT] or clear [CLR] along 
with the cloud ceiling height in hundreds of feet AGL), air temperature, dew point 
temperature, relative humidity (%), pressure, and precipitation (in inches). 
Naturally, current weather and weather forecast information are readily found on 
Internet websites, such as Intellicast (http://www.intellicast.com/), AccuWeather 
(http://www.accuweather.com/) and Weather Underground (http://www. 
wunderground.com/). Note, however, that in areas where communications are 
either restricted or unavailable, the information needed to describe the scene (i.e., 
as outlined in Table 4) should instead be retrieved from co-located sensors on the 
robots themselves or gleaned from the recorded images using neural network 
models trained on dynamic environment features. In summary, we have shown that 
much dynamic environmental data can be retrieved to augment image data as they 
are being recorded for a better-organized, top-down approach to scene 
understanding. 

6.2 Physics-Based Modeling 

People are innately capable of making rapid physical inferences about objects or 
perceived activities in a scene and to answer the question “what happens next?” 
(Battaglia et al. 2013; Ullman et al. 2014; Wu et al. 2015; Lake et al. 2016). For 
computational scene understanding, such inferences can be achieved by combining 
neural network training with physics-based predictive modeling to help predict how 
objects in a scene interact with their surroundings. For instance, physics-based 
modeling can predict how the physical properties of the terrain (as affected by the 
weather) will impact the navigation of a robotic system. Zhang et al. (2016) 
discussed 2 types of physical scene understanding models. They conducted a study 
to compare “intuitive physics engines” with “memory-based models”. In this case, 
physics simulation engines approximate how objects in complex scenes interact 
under the laws of physics over short time periods (e.g., stability analysis for stacks 
of blocks). In contrast, memory-based neural networks make predictions of 
outcomes in a new scene based on “stored experiences” of encountered scenes and 
physical outcomes. Wu et al. (2015) also presented a model for detecting physical 
properties of objects by integrating a physics engine with deep learning neural 
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network predictions. Similarly, Fragkiadaki et al. (2016) reported on how an 
autonomous agent could be equipped with an internal predictive physics model of 
the surrounding environment, and how one could use the physics-based model in 
combination with neural network training to predict actions that previously have 
not been encountered by the agent. The combined approach of Fragkiadaki et al. 
(2016) was demonstrated by accurately predicting the required actions for an 
autonomous agent to play a simulated billiards game. 

These physics-based models may seem complicated and difficult to implement. 
However, there are alternate types of physics-based models for terrain and weather 
forecasting already available (Chenery 1997; HQDA 1989, 2015; McDonald et al. 
2016) that can be implemented directly on a robotic system or accessed via reach 
back network communications. One can also envision using weather forecast 
models together with terrain and morphology data to set up physics-based mission 
rehearsals and training. Furthermore, where terrain and weather data are available, 
they can be incorporated using nowcast techniques to interpolate and reconstruct 
local information needed to support the autonomous outdoor mission.   

6.3 A Comprehensive Approach to Improve Scene 
Understanding Software  

We have demonstrated that neural network model software trained on multiple 
domain image data sets can detect targeted scenarios; however, we understand that 
dynamic environmental conditions raise uncertainty in neural predictions. A more 
comprehensive approach to improve scene understanding software for robotic 
systems operating in realistic outdoor environments would be to add environmental 
data retrieval and physical modeling to neural network applications. To illustrate 
the advantages of an integrated scene understanding software approach, we present 
the following representative target scenario cases for real-world outdoor missions. 

6.3.1 Case 1: Ground Search and Rescue 

Ground search and rescue is an autonomous outdoor scene exploration mission 
(Table 6) that involves terrain and obstacle traversal, acoustic detection of 
endangered personnel, as well as robotic lifting of heavy objects (e.g., people and/or 
debris and rubble from fallen buildings) (Levinger et al. 2008). Neural network 
training that specifically addresses changing environmental dynamics can provide 
useful cues related to ground conditions, visibility, and illumination to benefit 
navigation and robotic search algorithms. Adding environmental data retrieval and 
physics-based weather forecasting can provide analyses of current and changing 
conditions (e.g., those that may affect traversability for robot route planning in 
uneven terrain). Also, with regard to robots operating over extended periods of 
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time, it would be important to consider changes in scene illumination from day to 
night and changes in the visual appearance of a scene due to changes in weather 
and the seasons (Pepperell et al. 2014; Sunderhauf et al. 2015; Neubert and Protzel 
2016). 

Table 6 Scene understanding for realistic autonomous outdoor missions (case 1) 
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• Terrain and obstacle 

traversal 
• Autonomous scene 

exploration via 
visible and IR 
imaging 

• Acoustic detection 
• Lifting heavy 

objects, e.g., people, 
rubble, and debris 

                    
 x x       x    x x x     
x x x x   x x x     x x x     

    x         x x x     
x  x        x   x       

 

6.3.2 Case 2: Aerial Reconnaissance 

The aerial reconnaissance autonomous outdoor scene exploration mission  
(Table 7) involves the take off, landing, and in-flight control of aerial autonomous 
assets as well as obstacle avoidance (HQDA 2009; Korpela 2016). Real-time 
dynamic environmental data retrieval combined with physics-based weather 
forecast modeling can augment neural network training by providing critical 
updates on atmospheric stability conditions essential for aerial missions. Terrain 
and morphology data retrieval can be used to augment both navigation and areal 
search models. Environmental data such as temperature, air density, cloud cover, 
wind speed, wind direction, visibility, and precipitation can also be used to augment 
physics-based optical turbulence modeling to assess refractive index effects on 
aerial image quality (Roggemann et al. 1996). 

Table 7 Scene understanding for realistic autonomous outdoor missions (case 2) 
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6.3.3 Case 3: Nuclear, Biological, and Chemical (NBC) Hazard Detection 

The NBC hazard detection autonomous outdoor scene exploration mission  
(Table 8) strives to identify and quantify NBC hazards. It involves robotic NBC 
sensors, real-time air quality data retrieval, and NBC hazard analysis (HQDA 1986; 
Scott 2003). Clearly, real-time turbulence and atmospheric stability data are vital 
for downwind NBC hazard prediction, to include identifying toxicity levels and 
assessing the pervasiveness and persistence of the threat. Integrating current and 
forecasted weather elements is equally important because in combat, for example, 
the weather can alter terrain features and traversability; low visibility can impede 
reconnaissance or alternately conceal friendly forces maneuvers and activities; and 
wind speed and direction can favor upwind personnel in the event of an NBC attack 
or decrease the effectiveness of downwind personnel and equipment due blowing 
dust, smoke, sand, rain, or snow. Alternately, NBC hazard detection missions can 
be those associated with chemical spills from overturned trucks or trains, or from 
accidents at industrial plants. In this situation, neural network training on objects, 
places, and changing environmental features can provide many critical components 
for the scene understanding image analysis. 

Table 8 Scene understanding for realistic autonomous outdoor missions (case 3) 
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• NBC hazard analysis  
• Autonomous scene 

exploration via visible 
and IR imaging 

                    
        x x        x x x 
        x    x x x x  x x x 
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6.3.4 Case 4: Cave and Tunnel Reconnaissance 

The cave and tunnel reconnaissance autonomous scene exploration mission  
(Table 9) supports the exploration of underground spaces and facilities. It involves 
underground mapping, terrain and obstacle traversal, laser illumination, and visible 
and IR imaging (Magnuson 2013; Eshel 2014). Neural network training can provide 
image classification of salient and meaningful features related to open or concealed 
objects as well as recognizing subterranean morphology and ground cover 
conditions. Physics-based models can help predict the outcome and mission impact 
of relevant robot, terrain, and morphology interactions (e.g., those associated with 
traversability). Also, in a potentially communications limited region, retrieval of 
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co-located temperature, pressure, and humidity sensor data can supplement 
physics-based models, for instance, to assess microclimate effects, such as  
condensation or frost on robotic vision systems.  

Table 9 Scene understanding for realistic autonomous outdoor missions (case 4) 
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• Laser illumination  
• Autonomous scene exploration 

via visible and IR imaging 
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6.3.5 Case 5: Sniper Detection 

The sniper detection autonomous outdoor scene exploration mission (Table 10) 
searches for difficult to find weaponized threats. It involves acoustic detection of 
gunfire, laser illumination of identified signal/source locations, and visible and IR 
imaging to identify potential threats from a distance (Crane 2006). In this situation, 
neural network training can provide person, object, building, and place recognition 
capabilities as well as identifying vital weather and terrain features, such as ground 
conditions for navigation and visibility for reconnaissance. Physics-based acoustic 
and optical models can provide analysis of propagation conditions for optimal 
sensor and equipment performance. Physics-based weather forecast modeling and 
terrain assessment can predict whether ground or visibility conditions will change 
if the weather worsens during operations. Concurrently, environmental data 
retrieval, physics-based modeling, and neural network training can provide 
enhanced situational awareness to support the mission. 

Table 10 Scene understanding for realistic autonomous outdoor missions (case 5) 
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• Laser illumination  
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IR imaging 
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In summary, 5 representative outdoor mission scenarios were investigated to 
explore the types of components needed to bring about rapid and robust 
autonomous scene exploration. Our analysis indicates that adding environmental 
data and physics-based modeling to neural network training will improve the next 
generation of scene understanding software. The integrated scene understanding 
approach is summarized in Appendix C and its table.  

7. Conclusions 

A neural network model software implementation has been designed for improving 
scene understanding of realistic autonomous missions in dynamic outdoor 
environments. Proof-of-principle experiments demonstrate the recognition of key 
scenarios by identifying both salient objects in addition to environmental settings 
characteristic of the targeted scenario. Neural network models separately trained on 
images of objects and places demonstrated the autonomous detections of 20 
scenarios of interest with no false positives. This result shows that the use of neural 
network models trained on multiple data sets has applicability for reliable detection 
of scenarios or activities for a wide class of problems. Furthermore, our analysis of 
5 representative real-world scenarios illustrated the advantages of incorporating 
environmental data and physical modeling to improve the next generation of scene 
understanding software. Addressing changing environmental dynamics in this 
manner can augment neural network model predictions and lead to the progressive 
development and implementation of a comprehensive scene understanding 
approach for autonomous robotic systems supporting realistic outdoor missions.
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In this appendix, we present a description of the installed software and 
dependencies for our implementation of the convolutional neural network (CNN) 
Theano-AlexNet1,2 on a Windows notebook computer. 

A-1 Prerequisite Software Installations to Implement Theano 

To start, we outline the prerequisite software installations to implement the Theano 
program code3 on a Windows 10 notebook computer. Theano is a Python library 
that facilitates the efficient evaluation of mathematical expressions involving 
multidimensional arrays. Alternately, an online overview for installing Theano on 
Windows can be found at http://deeplearning.net/software/theano/install_ 
windows.html#install-windows. 

A-1.1 GIT for Windows 

To access the GitHub software repository, download the 64-bit version of GIT from 
https://github.com/git-for-windows/git/releases/tag/v2.7.1.windows.2 and extract 
the files into the folder C:\SciSoft\Git. 

A-1.2 Visual Studio Community 2013 

To access a C++ integrated development environment with 64-bit compilers, 
download Visual Studio Community 2013 from https://www.visualstudio.com/en-
us/news/vs2013-community-vs.aspx. Installation and setup for this software is self-
explanatory, although one does need to add the following 3 folders to the path: 

1. C:\Program Files (x86)\Microsoft Visual Studio 12.0\VC\bin\amd64 

2. C:\Program Files (x86)\Microsoft Visual Studio 12.0\VC\lib\amd64 

3. C:\Program Files (x86)\Microsoft Visual Studio 12.0\VC\include 

A-1.3 Windows Software Development Kit for Windows 10 

In addition to Visual Studio 12.0, download the Windows software development 
kit for Windows 10 from https://dev.windows.com/en-us/downloads/windows-10-
sdk and extract the files into the folder C:\Program Files (x86)\Microsoft Visual 
Studio 12.0\VSSDK. The VSSDK folder should also be added to the path. 

                                                 
1 Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural 
networks. Proc Advances in Neural Information Processing Systems. 2012;25. 
2 Ding W, Wang R, Mao F, Taylor G. Theano-based large-scale visual recognition with multiple 
GPUs; arXiv:1412.2302v4; 2015. 
3 Al-Rfou R et al. Theano: a Python framework for fast computation of mathematical expressions; 
arXiv:1605.02688v1; 2016. 

http://www.visualstudio.com/en-us/news/vs2013-community-vs.aspx
http://www.visualstudio.com/en-us/news/vs2013-community-vs.aspx
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A-1.4 CUDA v7.5 

To provide a development environment for C++ programs implementing graphics 
processing unit (GPU)-accelerated applications, download CUDA v7.5 from 
https://developer.nvidia.com/cuda-toolkit. This software installation will require 
that a supported version Microsoft Visual Studio be found on the computer. If not 
completed automatically, the path can be updated to include the following 2 folders: 

1. C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v7.5\ libnvvp 

2. C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v7.5\bin 

A-1.5 TDM-GCC 

The Theano code compiler requires TDM-GCC installation for either 32- or 64-bit 
platforms. Therefore, one needs to download the 64-bit version TDM-GCC 
software from http://tdm-gcc.tdragon.net/ and extract the files into the folder 
C:\SciSoft\TDM-GCC-64. 

A-1.6 Scientific Python v2.7.9.4 

To provide the necessary Python components for both Theano and the CNN 
AlexNet and for all of their programs’ software dependencies, such as numpy, 
hickle, pycuda, pylearn2, and zeromq, download and install the 64-bit version 
Python v2.7.9.4 from https://sourceforge.net/projects/winpython/files/ 
WinPython_2.7/2.7.9.4/ and extract the files into the folder C:\SciSoft\WinPython-
64bit-2.7.9.4. 

A-2 Installing Theano v0.8.0 

To provide the mathematical framework within which the CNN AlexNet compiles, 
download the most current 64-bit version of Theano (v0.8.0) from 
https://github.com/Theano/Theano and extract the files into the folder 
C:\SciSoft\Git\theano. Alternately, one can download and install the Theano files 
from a command window by typing the following at the prompt: 

• C:\SciSoft\git> git clone https://github.com/Theano/Theano.git 
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A-2.1 Configuration of Paths 

To configure the system path for Python and Visual Studio, save following shell 
script as C:\SciSoft\env.bat: 

REM configuration of paths 
set VSFORPYTHON="C:\Program Files (x86)\Microsoft Visual Studio 
12.0"  
set SCISOFT=%~dp0 
REM add tdm gcc stuff 
set PATH=%SCISOFT%TDM-GCC-64\bin;%SCISOFT%TDM-GCC-64\x86_64-w64-
mingw32\bin;%PATH% 
REM add winpython stuff 
CALL %SCISOFT%WinPython-64bit-2.7.9.4\scripts\env.bat  
REM configure path for msvc compilers 
CALL %VSFORPYTHON%\vcvarsall.bat amd64  
REM return a shell 
cmd.exe /k 
 

Note that the file vcvarsall.bat, which is called within the env.bat shell script, should 
contain the following path information: 
:amd64 
echo Setting environment for using Microsoft Visual Studio 2013 
x64 tools. 
set VCINSTALLDIR=%~dp0VC\ 
REM set WindowsSdkDir=%~dp0WinSDK\  
set WindowsSdkDir=%~dp0VSSDK\ 
if not exist "%VCINSTALLDIR%bin\amd64\cl.exe" goto missing 
set PATH=%VCINSTALLDIR%Bin\amd64;%WindowsSdkDir%VisualStudioInteg 
ration\Tools\Bin;%PATH% 
set INCLUDE=%VCINSTALLDIR%Include;%WindowsSdkDir%VisualStudioInte 
gration\Common\Inc;%INCLUDE%  
set LIB=%VCINSTALLDIR%Lib\amd64;%WindowsSdkDir%VisualStudioIntegr 
ation\Common\Lib\x64;%LIB% 
set LIBPATH=%VCINSTALLDIR%Lib\amd64;%WindowsSdkDir%VisualStudio 
Integration\Common\Lib\x64;%LIBPATH%  
goto :eof 

A-2.2 Test the Configuration of Paths 

To test the path configuration, open the Python shell in a command window by 
typing C:\SciSoft\env.bat and then verify that the following programs are found by 
typing these lines at the prompt: 

• C:\SciSoft> where gcc 

• C:\SciSoft> where gendef 

• C:\SciSoft> where cl 

• C:\SciSoft> where nvcc
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A-2.3 Link Library for GCC 

To create a link library for GCC, open the Python shell in a command window by 
typing C:\SciSoft\env.bat and then type the following at the command window 
prompt: 

• C:\SciSoft> gendef WinPython-64bit-2.7.9.4\python-2.7.9.amd64\ 
python27.dll 

• C:\SciSoft> dlltool -dllname python27.dll -def python27.def -output-lib 
WinPython-64bit-2.7.9.4\python- 2.7.9.amd64\libs\libpython27.a 

A-2.4 Setup/Install Theano 

Finally, to set up and install Theano, open the Python shell in a command window 
by typing C:\SciSoft\env.bat and then type the following at the prompt: 

• C:\SciSoft\Git\Theano> python setup.py develop 

A-2.5 Test Theano: CPU 

To test whether Theano works and is able to compile code for central processing 
unit (CPU) execution, create the following test file (e.g., filename = test.py):  
import numpy as np 
import time  
import theano 
A = np.random.rand(1000,10000).astype(theano.config.floatX)  
B = np.random.rand(10000,1000).astype(theano.config.floatX) 
np_start = time.time() 
AB = A.dot(B) 
np_end = time.time() 
X,Y = theano.tensor.matrices(’XY’)  
mf = theano.function([X,Y],X.dot(Y))  
t_start = time.time() 
tAB = mf(A,B) 
t_end = time.time() 
print("NP time: %f[s], theano time: %f[s] %(np_end-np_start, 
t_end-t_start))  

 
Then open the Python shell in a command window and type the following at the 
prompt: 

• C:\SciSoft\Git\Theano> python test.py 

The following is the example result: 
NP time: 1.480863[s], theano time: 1.475381[s]  
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A-2.6 Test Theano: GPU 

To test whether Theano works and is able to compile code for GPU execution, 
create the file .theanorc.txt in C:\SciSoft\WinPython-64bit-2.7.9.4\settings as 
follows:  
[global]  
device = gpu 
REM device = cpu  
floatX = float32  
[nvcc] 
flags=-LC:\SciSoft\WinPython-64bit-2.7.9.4\python\2.7.9.amd64\ 
libs  
compiler_bindir=C:\Program Files (x86)\Microsoft Visual Studio 
12.0\VC\bin 

Then, rerun the test.py file shown in Section A-2.5. 

A-2.7 Additional Theano Test 

As an additional test of the Theano code, open the Python shell in a command 
window and type the following at the prompt: 

• C:\SciSoft\Git\Theano> python C:\SciSoft\Git\Theano\bin\theano-nose -
batch=3000 

The following is the example result: 
#################### 
# COLLECTING TESTS # 
################################### 
# RUNNING TESTS IN BATCHES OF 3000 # 
################################### 
100% done in 604.919s (failed: 0) 
#################### 
# ALL TESTS PASSED # 
#################### 

A-3 AlexNet CNN Implementation with Theano 

In this section, we outline all of the prerequisite software installations to implement 
the AlexNet CNN

 
program codeError! Bookmark not defined. within Theano on a Windows 

10 notebook computer. Alternately, an online overview of configuring the paths for 
the AlexNet CNN,

 
preprocessing image data, and running the Python code can be 

found at https://github.com/uoguelph-mlrg/theano_alexnet. 

  



 

Approved for public release; distribution is unlimited. 
37 

A-3.1 PIP 

An alternate way to install the Python site packages (e.g., pycuda) is to download 
get-pip.py from https://pip.pypa.io/en/stable/installing/, which can be extracted into 
the folder C:\SciSoft\WinPython-64bit-2.7.9.4\python-2.7.9.amd64\Scripts. Then 
to install PIP, open the Python shell C:\SciSoft\env.bat in a command window and 
type the following: 

• C:\SciSoft\WinPython-64bit-2.7.9.4\python-2.7.9.amd64\ Scripts> python 
get-pip.py 

A-3.2 Pycuda 

To install this dependent Python site package, download the file “pycuda-
2015.1.3+cuda7518-cp27-none-win_amd64.whl” from http://www.lfd.uci.edu/ 
~gohlke/pythonlibs/#pycuda and copy it to the folder C:\SciSoft\WinPython-64bit-
2.7.9.4\settings\pipwin\. Then to install pycuda, open the Python shell in 
C:\SciSoft\env.bat and then at the command prompt type the following: 

• C:\SciSoft> pip install C:\SciSoft\WinPython-64bit-2.7.9.4\settings\ 
pipwin\pycuda-2015.1.3+cuda7518-cp27- none-win_amd64.whl 

A-3.3 Boost v1.59.0 

It is necessary to install several required C++ libraries prior to completing the steps 
for installing pycuda, as outlined previously. In this case, one must download 
boost_1_59_0-msvc-12.0-64.exe from https://sourceforge.net/projects/boost/files/ 
boost-binaries/ and then double click on the file to install boost in the folder 
C:\local\boost_1_59_0. 

A-3.4 Hickle 

To install this dependent Python site package, download hickle from 
https://github.com/telegraphic/hickle and then open the Python shell in 
C:\SciSoft\env.bat and then type the following at the command window prompt: 

• C:\SciSoft> cd C:\SciSoft\WinPython-64bit-2.7.9.4\python-
2.7.9.amd64\Lib\site-packages\hickle 

• C:\SciSoft\WinPython-64bit-2.7.9.4\python-2.7.9.amd64\Lib\site-
packages\hickle>  

python setup.py install 
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A-3.5 Pylearn2 

To install this dependent Python site package, download pylearn2 from 
https://github.com/lisa-lab/pylearn2, open the Python shell in C:\SciSoft\env.bat, 
and type the following at the command window prompt: 

• C:\SciSoft> cd C:\SciSoft\WinPython-64bit-2.7.9.4\python-
2.7.9.amd64\Lib\site-packages\pylearn2 

• C:\SciSoft\WinPython-64bit-2.7.9.4\python-2.7.9.amd64\Lib\site-
packages\pylearn2>  

python setup.py install 

A-3.6 Theano-Alexnet 

Download Theano-Alexnet from https://github.com/uoguelph-mlrg/theano_ 
alexnet and extract files into the folder: C:\SciSoft\Git\theano_alexnet\. 

A-3.7 Prepare and Preprocess ImageNet Data 

To prepare and preprocess ImageNet data, register and download the ImageNet 
Large Scale Visual Recognition Challenge 2012 (ILSVRC2012) image data .tar 
files and the 2014 development kit from http://www.image-net.org into the 
following 3 folders: 

• C:\SciSoft\Git\theano_alexnet\mnt\data\data 
sets\ilsvrc_2014\ILSVRC2012_DET_train 

• C:\SciSoft\Git\theano_alexnet\mnt\data\data 
sets\ilsvrc_2014\ILSVRC2012_DET_val 

• C:\SciSoft\Git\theano_alexnet\mnt\data\data 
sets\ilsvrc_2014\ILSVRC2014_devkit 

After downloading the image data, open the Python shell C:\SciSoft\env.bat and in 
the command window run the script C:\SciSoft\Git\theano_alexnet\preprocessing\ 
generate_data.sh, which will call 3 Python scripts. This program runs for about  
1–2 days. Alternately, for a short trial of the AlexNet code, run the script 
C:\SciSoft\Git\theano_alexnet\preprocessing\generate_toy_data.sh, which takes 
about 10 min.

http://www.image-net.org/
http://www.image-net.org/
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A-3.8 Set Configurations Paths for AlexNet 

Prior to preprocessing the image data, modify the path information in the file 
C:\SciSoft\Git\theano_alexnet\preprocessing\path.yaml as follows and be sure to 
make similar path annotations in the file C:\SciSoft\Git\theano_alexnet\ 
spec_1gpu.yaml: 
# dir that contains folders like n01440764, n01443537, ... 
train_img_dir:’C:\SciSoft\Git\theano_alexnet\mnt\data\data sets\ 
ilsvrc_2014\ILSVRC2012_DET_train\’ 
# dir that contains ILSVRC2012_val_00000001~50000.JPEG 
val_img_dir:’C:\SciSoft\Git\theano_alexnet\mnt\data\data sets\ 
ilsvrc_2014\ILSVRC2012_DET_val\’ 
# dir to store all the preprocessed files  
tar_root_dir:’C:\SciSoft\Git\theano_alexnet\scratch\ilsvrc12’  
# dir to store training batches  
tar_train_dir:’C:\SciSoft\Git\theano_alexnet\scratch\ilsvrc12\ 
train_hkl’  
# dir to store validation batches  
tar_val_dir:’C:\SciSoft\Git\\theano_alexnet\scratch\ilsvrc12\ 
val_hkl’  
# dir to store img_mean.npy, shuffled_train_filenames.npy, 
train.txt, val.txt 
misc_dir:’C:\SciSoft\Git\theano_alexnet\scratch\ilsvrc12\misc’ 
meta_clsloc_mat:’C:\SciSoft\Git\theano_alexnet\mnt\data\data 
sets\ 
ilsvrc_2014\ ILSVRC2014_devkit\data\meta_clsloc.mat’ 
val_label_file:’C:\SciSoft\Git\theano_alexnet\mnt\data\data sets\ 
ilsvrc_2014\ILSVRC2014_devkit\data\ILSVRC2014_clsloc_validation_ 
ground_truth.txt’ 
# training labels 
valtxt_filename:’C:\SciSoft\Git\theano_alexnet\scratch\ilsvrc12\ 
misc\val.txt’  
# validation labels 
traintxt_filename:’C:\SciSoft\Git\theano_alexnet\scratch\ilsvrc12\
misc\train.txt’ 
 

In addition, in the file C:\SciSoft\Git\theano_alexnet\make_labels.py, add “import 
os.path” at the top of the file and replaced the line containing “filename = 
filename.split(’/’)[1]” with “filename = os.path.basename(filename)”. Also replace 
the line containing “key = train_filename.split(’/’)[-1]” with “key = 
os.path.basename(train_filename)”. These corrections are necessary because the 
python .split delimiter “/” is not compatible with MS Windows path notations. 
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A-3.9 Training Theano-AlexNet 

Theano-AlexNet was trained using the file C:\SciSoft\Git\theano_alexnet\train.py 
as follows: 

C:\SciSoft\Git\theano_alexnet> 

python train.py THEANO_FLAGS=mode=FAST_RUN, floatX=float32. 

A-3.10  Testing Theano-AlexNet 

Theano-AlexNet was tested using a modified version of the file 
C:\SciSoft\Git\theano_alexnet\alex_net.py to include the inference model 
recommended by Ma,4 wherein one can extract the desired top-5 label and top-5 
probability results (i.e., the p_y_given_x output from the CNN softmax layer). For 
additional details see https://github.com/uoguelph-mlrg/Theano-MPI/blob/master/ 
lib/base/models/alex_net.py. 

 

                                                 
4 Ma H. University of Guelph, Ontario, Canada. Personal communication, 2016. 
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Convolutional neural network (CNN) deep learning methods have influenced and 
advanced many applications in computer vision, especially those related to image 
classification1,2. A recent paper by Bahrampour et al.3 presented a comparative 
study of 5 current deep learning software frameworks with regard to their capability 
to incorporate different types of CNN architectures, their hardware usage (central 
processing unit [CPU] and graphics processing unit [GPU]), and an evaluation of 
their training/testing speed. In this Appendix, we present a summary of these open-
source libraries, as well as 3 additional frameworks, in Table B-1, to include a 
listing of the principal software developers, the primary programming language 
used, and key reference citations. Similarly, Table B-2 presents a summary of 
representative CNN open-source codes to include the CNN program4 and the 
Places-CNN5 that we used in our study. Note that the top-5 performance for the 
Places-CNN was evaluated with 2 data sets (i.e., Places 205 and SUN 2055). 

  

                                                 
1 Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural 
networks. Proc Advances in Neural Information Processing Systems; 2012;25. 
2 Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, Huang Z, Karpathy A, Khosla A, 
Bernstein M, Berg AC, Fei-Fei L. ImageNet large scale visual recognition challenge; 
arXiv:1409.0575; 2014. 
3 Bahrampour S, Ramakrishnan N, Schott L, Shah M. Comparative study of deep learning software 
frameworks; arXiv:1511.06435v3; 2016. 
4 Ding W, Wang R, Mao F, Taylor G. Theano-based large-scale visual recognition with multiple 
GPUs;arXiv:1412.2302v4; 2015. 
5 Zhou B, Lapedriza A, Xiao J, Torralba A, Oliva A. Learning deep features for scene recognition 
using Places database. Advances in Neural Information Processing Systems 27 (NIPS); 2014 Dec 
8–13; Montreal, Canada. 
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Table B-1 Convolutional neural network deep learning libraries: open source frameworks 

Name Developer Language Computation Key 
reference 

Caffe Berkeley Vision and 
Learning Center 

C++, 
Python/Matlab 

CPU, GPU a 

Torch Collobert, Farabet 
Kavukcuoglu, 
Chintala 
 

Lua CPU, GPU b 

Theano The Theano 
Development Team 

Python CPU, GPU c 

TensorFlow Google C++, Python CPU, GPU d 

CNTK Microsoft   
(Computational Network 
Toolkit) 

C++ CPU, GPU e,f 

Neon Nervana Systems Python 
 

CPU, GPU g 

Deeplearning4j Skymind Java, Scala CPU, GPU h 

VLFeat Vedaldi, Fulkerson C, Matlab CPU, GPU i 
a Jia Y, Shelhamer E, Donahue J, Karayev S, Long J, Girshick R, Guadarrama S, Darrell T. Caffe: 
Convolutional architecture for fast feature embedding; arXiv:1408.5093v1; 2014. 
b Collobert R, Kavukcuoglu K, Farabet C. Torch7: A MATLAB-like environment for machine learning. Proc 
Advances in Neural Information Processing Systems; EPFL-CONF-192376; 2011. 
c Al-Rfou R et al. Theano: A Python framework for fast computation of mathematical expressions; 
arXiv:1605.02688v1; 2016. 
d Abadi M et al. TensorFlow: Large-scale machine learning on heterogeneous distributed systems; 
arXiv:1603.04467v2; 2016. 
e Yu D et al. An introduction to computational networks and the computational network toolkit. Redmond 
(WA): Microsoft; Report No.: MSR-TR-2014–112; 2014. 
f Yu D, Yao K, Zhang Y. The computational network toolkit. IEEE Signal Processing Magazine. 2015;23–
126. 
g Neon deep learning library (DLL). San Diego (CA): Nervana Systems Inc.; [accessed 2017 June]. 
http://neon.nervanasys.com/docs/latest/index.html. 
h Deeplearning4j. Open-source distributed deep learning for the JVM. San Francisco (CA): Skymind; 
[accessed 2017 June]. http://deeplearning4j.org. 
i Vedaldi A, Fulkerson B. VLFeat: An open and portable library of computer vision algorithms. Proc ACM 
Int Conf on Multimedia. 2010.
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Table B-2 Convolutional neural network open source codes 

Name Developer Language Top-5 accuracy Reference 
Cuda-Convnet 
(in Caffe) 

Krizhevsky, 
Sutskever, Hinton 

Python 81.8 % (2 GPUs) a 

AlexNet 
(in Theano) 

Ding, Wang, Mao, 
Taylor 

Python 80.1% (2 GPUs) b 

Places – CNN 
(in Caffe) 

MIT C++, 
Python/Matlab 

81.1% / 91.9%  
(1 GPU) 

c 

GoogLeNet 
(in Caffe) 

Google C++, 
Python/Matlab 

93.3 % (CPU) d 

VGG 
(in Caffe) 

Simonyan, Zisserman C++ 92.5% (4 GPUs) e 

OverFeat 
(in Torch) 

NYU 
 

C++, 
Python/Lua 

86.4% (1 GPU) f 

Matconvent 
(in VLFeat) 

Vedaldi, Lenc Matlab ~80% (1 GPU) g 

a Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. 
Proc Advances in Neural Information Processing Systems. 2012;25. 
b Ding W, Wang R, Mao F, Taylor G.. Theano-based large-scale visual recognition with multiple GPUs; 
arXiv:1412.2302v4; 2015. 
c Zhou B, Lapedriza A, Xiao J, Torralba A, Oliva A. Learning deep features for scene recognition using 
Places database. Advances in Neural Information Processing Systems 27 (NIPS); 2014 Dec 8–13; Montreal, 
Canada. 
d Szegedy C, Liu W, Yangqing J, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A. 
Going deeper with convolutions. In: CVPR 2015. Proc IEEE Conference on Computer Vision and Pattern 
Recognition; 2015; Boston (MA). 
e Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. Ithaca 
(NY); arXiv:1409.1556v6; 2015. 
f Sermanet P, Eigen D, Zhang X, Mathieu M, Fergus R, LeCun T. Overfeat: Integrated recognition, 
localization and detection using convolutional networks; arXiv:1312.6229v4; 2014. 
g Vedaldi A, Karel L. Matconvnet: Convolutional neural networks for MATLAB. Proc 23rd ACM 
International Conference on Multimedia. 2015. 
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In this appendix, we present a single Table C-1 to summarize our integrated scene 
understanding approach for the real-world mission scenarios described in  
Section 6.3 of the main report. 

Table C-1 Scene understanding for realistic autonomous outdoor missions (summary) 

Real-World Mission Scenario 

Neural 
network 
training 

Physics based models Dynamic environmental 
data retrieval 

a b c d e f g h i j k l m n o p q r s t 
1. Ground search and rescue 
• Terrain and obstacle traversal 
• Autonomous scene exploration via visible and 

IR imaging 
• Acoustic detection 
• Lifting heavy objects, e.g., people, rubble, and 

debris 

                     
 x x       x    x x x     
x x x x   x x x     x x x     

    x         x x x     

x  x        x   x       
2. Aerial reconnaissance  
• Take off, landing, and in-flight control 
• Obstacle avoidance 
• Autonomous scene exploration via visible and 

IR imaging 

                    
  x x     x x  x  x x x     
x x x      x x  x  x  x     

x x x x   x x x     x x x     
3. NBC hazard detection 
• NBC sensors data retrieval 
• NBC hazard analysis  
• Autonomous scene exploration via visible and 

IR imaging 

                    
        x x        x x x 
        x    x x x x  x x x 
x x x x   x x x    x x x      

4. Cave and tunnel reconnaissance 
• Terrain and obstacle traversal 
• Laser illumination  
• Autonomous scene exploration via 

visible and IR imaging 

                     
  x       x    x   x    
     x        x   x    
x  x x    x      x   x x   

5. Sniper detection  
• Acoustic detection 
• Laser illumination 
• Autonomous scene exploration via visible and 

IR imaging 

                    
    x         x x x     
     x x       x x x     
x x x x   x x x     x x x     

 
Key: 
a. Open / concealed object recognition 
b. Building / location identification 
c. Terrain features / ground cover  recognition 
d. Weather feature identification 
e. Acoustic propagation, refraction, and scattering  
f. Optical propagation, refraction, and scattering 
g. Optical turbulence 
h. Image enhancement / turbulence mitigation 
i. Weather / terrain forecasts 
j. Robot / terrain / morphology interaction 
k. Payload stability analysis 

 
l. Aerodynamics 
m. NBC downwind hazard analysis  
n. Local surface and lower atmosphere wind, temperature, 

pressure, air density, and humidity 
o. Regional scale weather trends  
p. GPS / timestamp / sun angle 
q. Robot weather sensors: co-located temperature, 

pressure, and humidity in communications denied 
region 

r. Air quality measurements 
s. NBC sensor measurements 
t. Atmospheric turbulence / stability 
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List of Symbols, Abbreviations, and Acronyms 

AGC  Army Geospatial Center 

AGL  above ground level  

ARL  US Army Research Laboratory 

BRK  broken 

CLR  clear 

CNN  convolutional neural network 

CPU  central processing unit 

DOD  Department of Defense  

GMT  Greenwich Mean Time  

GPS  global positioning system 

GPU  graphical processing unit 

ILSVRC2012 ImageNet Large Scale Visual Recognition Challenge 2012  

NBC  nuclear, biological, and chemical  

NCEI  National Centers for Environmental Information  

NWS  National Weather Service  

OVC  overcast  

SCT  scattered  

USACE US Army Corps of Engineers 

USAF  US Air Force 

USNO  US Naval Observatory  

UTC  Coordinated Universal Time 

UTM  Universal Transverse Mercator 
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