
HIGH-ASSURANCE SPIRAL

CARNEGIE MELLON UNIVERSITY

NOVEMBER 2017

FINAL TECHNICAL REPORT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

STINFO COPY

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

AFRL-RI-RS-TR-2017-214

 UNITED STATES AIR FORCE ROME, NY 13441 AIR FORCE MATERIEL COMMAND

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for any purpose
other than Government procurement does not in any way obligate the U.S. Government. The fact that
the Government formulated or supplied the drawings, specifications, or other data does not license the
holder or any other person or corporation; or convey any rights or permission to manufacture, use, or
sell any patented invention that may relate to them.

This report was cleared for public release by the 88th ABW, Wright-Patterson AFB Public Affairs Office and is
available to the general public, including foreign nationals. Copies may be obtained from the Defense Technical
Information Center (DTIC) (http://www.dtic.mil).

AFRL-RI-RS-TR-2017-214 HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION IN
ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

FOR THE CHIEF ENGINEER:

/ S / / S /
STEVEN DRAGER JOSEPH CAROLI
Work Unit Manager Acting Technical Advisor, Computing

 & Communications Division
 Information Directorate

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of
information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

NOVEMBER 2017
2. REPORT TYPE

FINAL TECHNICAL REPORT
3. DATES COVERED (From - To)

AUG 2012 – MAY 2017
4. TITLE AND SUBTITLE

HIGH-ASSURANCE SPIRAL

5a. CONTRACT NUMBER
FA8750-12-2-0291

5b. GRANT NUMBER
N/A

5c. PROGRAM ELEMENT NUMBER
62303E

6. AUTHOR(S)

Franz Franchetti,Tze Meng Low

5d. PROJECT NUMBER
HACM

5e. TASK NUMBER
3C

5f. WORK UNIT NUMBER
MU

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Carnegie Mellon University
5000 Forbes Ave
Pittsburgh, PA 15217

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Air Force Research Laboratory/RITA
525 Brooks Road
Rome NY 13441-4505

10. SPONSOR/MONITOR'S ACRONYM(S)

AFRL/RI
11. SPONSOR/MONITOR’S REPORT NUMBER

AFRL-RI-RS-TR-2017-214
12. DISTRIBUTION AVAILABILITY STATEMENT

Approved for Public Release; Distribution Unlimited. PA# 88ABW-2017-5388
Date Cleared: 30 OCT 2017
13. SUPPLEMENTARY NOTES

14. ABSTRACT

Cyber-physical systems (CPS) ranging from critical infrastructures such as power plants, to modern (semi) autonomous
vehicles are systems that use software to control physical processes that interact in intricate manners. This makes
verification of the software complex and unwieldy. In this report, an approach towards taming part of the complexity is
described. The approach utilizes intrinsic multi-modal redundancies to detect brewing problems, provides formal
guarantees for control algorithms, and automates the software production to implement these algorithmic ideas with
guarantees about the correctness of the resulting implementations.

15. SUBJECT TERMS

Cyber-physical systems, Formal guarantees, Code generation

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

19a. NAME OF RESPONSIBLE PERSON
STEVEN DRAGER

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

19b. TELEPHONE NUMBER (Include area code)
N/A

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

45

i

Table of Contents
1 Summary .. 1

1.1 Major Achievements ... 2

2 Introduction ... 3

3 Methods and Procedures ... 4

4 Results and Discussion ... 6

4.1 Proving Controllers Correct – And Catching Them If Not ... 6

4.2 Collision Avoidance Model .. 9

4.3 Synthesized Monitor Conditions ... 10

4.4 Generating Code from a Mathematical Specification ... 11

4.5 Compiling to Binary ... 20

4.6 Anomaly Detection as Statistical Deviation from Nominal Behavior ... 21

4.7 Nominal Models from Redundancy .. 21

4.8 Detecting Sensor Inconsistencies and Secure State Estimation ... 24

4.9 Multi‐Modal Consistency .. 29

4.10 Tool Chain and Live Demos ... 29

5 Conclusion .. 31

References .. 34

List of Symbols, Abbreviations and Acronyms .. 40

ii

Table of Figures
Figure 1: Overview of the High Assurance SPIRAL system for generating provably correct

implementations of control algorithms or statistical tests for cyber‐physical systems. 4

Figure 2: Code/proof co‐synthesis as a multi‐stage rewriting process within the SPIRAL system. Each

rewriting stage applies a set of provable rewrite rules that preserve mathematical equivalency, thus

ensuring that the output expression is mathematical equivalent to the input specification. 11

Figure 3: Library of mathematical objects expressed as Hybrid Control Operator Language operators.

Each rewrite rule in the library decomposes a mathematical object into basic HCOL operators. 12

Figure 4: Basic Hybrid Control Operator Language operators that have mathematical semantics but also

can be seen as functional language constructs. All input HCOL expressions are rewritten through the

application of the library of rewrite rules into these basic HCOL operators. ... 13

Figure 5: Breakdown rules that express HCOL mathematical objects as basic HCOL objects. 14

Figure 6: The final Hybrid Control Operator Language expression derived from the monitoring expression

(13) which guarantees that the distance between the vehicle and the nearest obstacle is further than

the maximum stopping distance. ... 14

Figure 7: Spiral's internal icode representation for the (top) Hadamard product, (middle) Reduction, and

(bottom) Scalar Product (after optimization). The icode is then pretty‐printed in the desired

programming language such as C. X is the input vector and Y is the output vector. 15

Figure 8: The implementation of the dynamic window monitor in SPIRAL's internal code representation

(icode) using real arithmetic. This internal code representation is then printed in the desired

programming language (e.g. C) so that it can be compiled using a traditional compiler. 17

Figure 9: Displacement data gathered from the CoBot robots [54]. Each plot represents different

execution runs with varying levels of malfunction as indicated by the wheel encoder data. 22

Figure 10: Time to fault detection as a function of the chosen fractional error ϵ. In (a), we show all the

experimental results obtained, while a more detailed visualization of the remaining data is shown in (b)

where the data for ϵ = ‐0.05 is left out. Error bars in both plots show one standard deviation. 25

Figure 11: The demonstration vehicle, Landshark, with four rotation degrees of freedom. The camera

rotates on the vertical and horizontal axes. The turret rotates around the vertical axis, and the paintball

gun rotates around the horizontal axis. .. 29

Figure 12: Two pairs of examples. Real image (12a) and cartoon image (12b) are consistent, showing that

the sensors return the correct rotation parameters. Real image (12c) and cartoon image (12d) are

inconsistent, showing that there is an attack. .. 30

Figure 13: Scene from the live demonstration of actual code generated by the integrated approach.

Using a SPIRAL generated implementations of a KeYmaera X proven monitor, and sensor fusion to guard

against GPS spoofing, the Landshark robot stopped safely in front of an obstacle. 31

Figure 14: The cloud computing interface to the integrated KeYmaera X and SPIRAL tool chain. The

model and code generation of the dynamic window monitor is shown. ... 32

1 Summary

This is the final report for the DARPA High Assurane Cyber Military Systems (HACMS)
project High-Assurance SPIRAL. It summarizes the findings of tasks 1–5 across phases 1-3
of the project.:

Task 1: Management (Franchetti/CMU, university campus) The management
task managed the overall effort and was responsible for the integration of the results from
other tasks into one coherent deliverable. It followed the management and risk mitigation
strategies outlined throughout the project and is combining all sub-reports into this joint
final report.

Task 2: Interface, Experimentation, Deployment (Veloso/CMU, university
campus and company) This task performed experimentation and deployment on the var-
ious hardware platforms and interaction with teams in technical areas 1 and 4. It deployed
synthesized code in the target platforms, built plug-ins for the TA4 HACMS workbench,
and worked with TA1 challenge problems. The task was supported by Subtasks 2.1–2.3:
Subtask 2.1: Experiments and deployment on test hardware (Veloso/CMU, university cam-
pus). This subtask was responsible for all hardware-related work. Subtask 2.2: Interaction
with technical area 1 (Johnson/Drexel, university campus). This subtask was responsible for
TA1 challenge problem analysis and implementation. Task 2.3: Interaction with technical
area 4 (Spiralgen). This subtask was responsible for integrating the High Assurance Spiral
packages and the core engine with the TA4 HACMS workbench.

Task 3: High assurance sensor and controller library (Moura/CMU, univer-
sity campus) This task developed a library of control algorithms, sensor fusion methods,
and provided them as tool box blocks for virtual high assurance sensors and high assurance
controllers. The task was supported by Subtasks 3.1–3.3: Subtask 3.1: Virtual high assur-
ance sensors (Moura/CMU, university campus). Responsible for the definition of virtual
high assurance sensors (dynamic equations, sensor fusion and formal specification). Sub-
task 3.2: High assurance controllers (Kar/CMU, university campus). Responsible for the
definition of high assurance controllers (dynamic equations, fail-safe modes, and formal spec-
ification). Subtask 3.3: Sensor and controller library (Johnson/Drexel, university campus).
Responsible for the implementation of virtual high assurance sensor toolboxes.

Task 4: Synthesis system (Franchetti/CMU, university campus and company)
This task developed the High Assurance Spiral system and the Hybrid Control Operator Lan-
guage, as well as the supporting technologies and proof generation. The task was supported
by Subtasks 4.1–4.4: Subtask 4.1: DSL and symbolic execution (Padua/UIUC, university
campus). Responsible for the definition of Hybrid Control Operator Language (HCOL) and a
symbolic execution library. Subtask 4.2: Synthesis technology (Franchetti/CMU, university
campus). Responsible for technology translating HCOL specifications into code, capable of co-
synthesizing a proof. Subtask 4.3: Proof generation technology (Platzer/CMU, university
campus). Responsible for verification of rules and co-synthesis of proofs. Subtask 4.4: High
Assurance Spiral core engine develop-ment (Spiralgen). Supports tasks subtasks 4.1–4.3 by
updating and adapting the commercial Spiral core engine to the needs of the High Assurance
Spiral tool boxes.

1
Approved for Public Release; Distribution Unlimited.

1.1 Major Achievements

Demonstration of Technology. Over the three phases of HACMS the CMU team demon-
strated the proposed approach successfully and deployed the developed technology on a
number of HACMS platforms:

• Landshark Unmanned Ground Vehicle (UGV)

• American-built car

• Unmanned Little Bird

• Quadcopter

• Autonomous Mobility Applique System (AMAS) self driving truck

The successful integration of the CMU approach with other members of both the ground
and air teams demonstrated that the proposed approach is a viable one that integrates well
with the methods proposed by other HACMS teams.
Transition Successes. In the final phase of the project, the integrated KeYmaera and SPI-
RAL tool chain was used by other HACMS performers (HRL and Boeing) to prove algorithms
and synthesize code. The successful generation of implementation with the associated proofs
artifacts by parties outside of the CMU team demonstrates the ease of use and feasibility of
transition beyond the HACMS project.

The integrated tool chain was made available as installable software tool box and as cloud
based system. Subcontractor SpiralGen, Inc. was the lead for deliverables and transition.
Overall, we achieved what we set out to develop and demonstrate. The remainder of the
report provides an overview of the CMU HACMS effort.

2
Approved for Public Release; Distribution Unlimited.

2 Introduction

Cyber-physical systems (CPS) ranging from critical infrastructures such as power plants,
to modern (semi) autonomous vehicles are systems that use software to control physical
processes. CPS are made up of many different computational components. Each component
runs its own piece of software that implements its control algorithms, based on its model
of the environment. Every component then interacts with other components through the
signals and values it sends out. Collectively, these components, and the code they run,
drives the complex behaviors modern society have come to expect and rely on. Due to these
intricate interactions between components, managing the hundreds to millions of lines of
software to ensure that the system, as a whole, performs as desired can often be unwieldy.

In this report, an approach towards taming part of the complexity is described. The
approach utilizes intrinsic multi-modal redundancies to detect brewing problems, provides
formal guarantees for control algorithms, and automates the software production to imple-
ment these algorithmic ideas with guarantees about the correctness of the resulting imple-
mentations (i.e. faithful implementations of the input specifications).

Specifically, the approach addresses the problem from four directions: 1) The behavior of
the system and its environment is described and, using differential dynamic logic, the desired
correctness properties are proven to hold in all executions of the model 2) Monitor conditions
that check compliance with the assumptions of the model are synthesized automatically using
differential dynamic logic along with a proof of correctness of those monitor conditions 3)
High performance monitor software is generated automatically to reduce or even eliminate
human coding error and 4) Side channel information such as statistical noises are fused with
traditional sensor inputs such as Global Positioning System (GPS), based on fundamental
analytical redundancy, so as to establish that the inputs to the system, such as sensor
readings, do not contradict the known physics of the system. An integrated end-to-end
approach is presented that combines the four components under the umbrella of one tool
chain that produces deployable software.

This approach has been demonstrated on both a remote controlled unmanned research
ground robot, called the Landshark, and on an American-built car. In these demonstrations,
the combination of formal methods for hybrid systems, automatic code generation with
correctness guarantees, and side-channel redundancy has been shown to detect and defend
against GPS spoofing (manipulating the GPS signal to make the victim believe to be at a
different position), while protecting the car and robot from being driven into known obsta-
cles. An end-to-end tool-chain combines the KeYmaera X and SPIRAL tools and produces
software deployable directly on the target platforms. These concepts are applicable in the
CPS arena beyond unmanned ground vehicles or modern cars. Other domains for which the
approach have shown applicability includes system components like pumps in power plants,
and control of unmanned aerial vehicles.

3
Approved for Public Release; Distribution Unlimited.

Carnegie Mellon Carnegie Mellon Carnegie Mellon

HA SPIRAL
Code Synthesis

KeYmaera X
Hybrid Theorem

Prover

performance

QED.

QED.

Coq
Proof Assistant

Statistical algorithm

Figure 1: Overview of the High Assurance SPIRAL system for generating provably correct
implementations of control algorithms or statistical tests for cyber-physical systems.

3 Methods and Procedures

Two systems combine to provide end-to-end correctness guarantees from the control algo-
rithm/physical model level down to the deployed implementation of the control algorithm.
The first system, KeYmaera X, formalizes and proves correctness of control approaches and
synthesizes monitors that guarantee CPS safety. The second system, then, synthesizes the
final deployable software from the proven high level specification, in a provable manner so
that there are guarantees that the synthesized software is correct and efficient. This work
is based on a project called High Assurance SPIRAL, which is part of the DARPA HACMS
program. Fig. 1 shows an overview of the tool chain.

The top level system is KeYmaera X [1], a theorem prover for differential dynamic logic
[2]. KeYmaera X is used to prove that a family of controllers, applied to a cyber-physical
system with a given physical model, behaves in a correct way. An example of a safety
property that KeYmaera X can prove is that a robot with a particular collision avoidance
controller will not run into an obstacle or another robot [3] (which is called passive safety).

After verification, KeYmaera X uses a technique called ModelPlex [4, 5], to synthesize
a provably correct mathematical condition (a monitor). This generated monitor checks, at
runtime, that the controller and its observed environment fits to the verified model. When
the observed behavior fits to the verified model, as validated by the monitor execution at
runtime, then the actual system execution is safe. When the monitor is violated, the system
may have evolved beyond the model assumptions, which means that the system is no longer
known to be safe, and will enter failsafe mode. This has some resemblance with Simplex
monitors [6] detecting when to switch between controllers, but additionally covers the model
part (hence the name ModelPlex), and produces a proof of correctness of the resulting

4
Approved for Public Release; Distribution Unlimited.

monitor.
Having derived a monitor condition that informs when the observed behavior no longer

fits to the assumed model, the remaining problem is to translate this monitoring expression
into an efficient piece of software that performs the check at runtime. The SPIRAL sys-
tem [7–9] is used to synthesize a software implementation from the monitoring expression.
The core of SPIRAL is a rewriting system that manipulates SPIRAL’s HCOL language into
an equivalent expression that can be translated into code. Key requirements are that every
HCOL expression has a mathematical interpretation, and each transformation performed
on the HCOL expression must return a mathematically equivalent HCOL expression. The
requirements, together, guarantee that the final code (when executed over the real numbers)
would be a mathematically equivalent expression to the monitoring expression. Next, SPI-
RAL uses interval arithmetic [10] to implement this final code using floating point numbers
available on current architectures. SPIRAL utilizes performance-enhancing computer archi-
tecture features like SIMD vector instructions as well as aggressive compiler techniques (all
of which are cast as mathematical rewrite rules) to produce highly efficient code.

Monitors and controllers typically assume that the sensor values providing observations
about the environment are untampered with and reliable. We use statistical and analytical
redundancy between multiple sensors that measure different quantities to establish that the
current state of the system as understood by the controllers is self consistent, and there is
no intrinsic inconsistency in the measurements given the accuracy of the sensors. Statistical
tests and analytical redundancy establish that location estimated through GPS and through
a wheel encoder do not disagree more than the intrinsic inaccuracy of the respective sensors.
This makes it possible to detect GPS spoofing. These statistical tests have been expressed
in SPIRAL’s HCOL framework to enable SPIRAL to synthesize correct and efficient code
for them. Other analytical redundancy methods for protecting against compromised sensors
include the estimation of vehicle speed from multiple sound channels obtained with micro-
phones placed strategically on the car [11], estimation of vehicle altitude from correlating
barometric pressure with GPS [12], and determining the posture of a robot using the view
from its camera. These methods protect against compromised sensors since they correlate
measurements that have a complicated analytical relationship that cannot be easily main-
tained by an attacker. HCOL formalization of these methods is still ongoing.

This approach has been demonstrated on manned and unmanned ground and air vehi-
cles. The dynamic window monitor was deployed as an end-to-end example produced by
KeYmaera X and SPIRAL. It was used both on the Landshark and the American-built car
to prevent a malicious operator from crashing the vehicle into an obstacle. In addition, the
resilience to GPS spoofing while the monitor was running was demonstrated, by utilizing
statistical and set based inconsistency detectors. Further the detection of replay attacks was
demonstrated, by using a statistical test. In all these demonstrations the critical code pieces
were synthesized with the SPIRAL system. In addition, accurate speed estimation (with
accuracy over 99%) using vehicle sound was demonstrated. Finally, a quadcopter height
controller with correctness guarantees was synthesized.

5
Approved for Public Release; Distribution Unlimited.

4 Results and Discussion

4.1 Proving Controllers Correct–And Catching Them If Not

Due to their impact on the real world, cyber-physical systems need to be safe. That poses
a nontrivial but important challenge because it is not easy to make the appropriate control
decisions exactly right to maintain safety of the physical system and its response through
actuation, especially in light of the interaction with other agents in the environment. Formal
verification has been identified as a powerful analysis technique to establish correctness
guarantees about the behavior of the design or find issues as early as possible in the design
process [13].

The development begins with a model of the system dynamics as a hybrid system
[2], [14–16], which are mathematical models that feature both discrete and continuous dy-
namics. This flexible combination of dynamics is important for understanding systems with
computerized or embedded controllers for physical systems since the latter are usually mod-
eled continuously while the former are discrete. The development also begins with a precise
formal definition of the safety property to be guaranteed.

Our approach uses differential dynamic logic (dL) [2,17–21] as the language in which both
hybrid systems model and desired correctness properties can be specified unambiguously. In
order to prove properties about complicated continuous dynamics (e.g., non-linear differential
equations), it comes with techniques to find and check differential invariants [22], [23]. Differ-
ential dynamic logic also provides the systematic way of proving that the hybrid system sat-
isfies such correctness properties and is implemented in the theorem prover KeYmaera X [1].
Once the hybrid systems model is proved to satisfy its desired correctness properties in
KeYmaera X, the ModelPlex tactic [4,5], which is implemented in KeYmaera X, synthesizes
provably correct monitor conditions that check compliance of the system with the verified
model so that safety transfers to the real system implementation.

Model. To illustrate the principles in action, consider a ground robot that has to
avoid collision with obstacles [3], e.g., based on the dynamic window collision avoidance
approach [24]. The dynamic window approach is suitable for robots driving a sequence of
circular trajectories. It computes admissible velocities that avoid collisions with obstacles,
and from those it chooses a velocity that can be realized by the robot within a short time
frame (the dynamic window) and brings the robot closer to some goal.

Let us consider a simple setting where the robot drives on a flat, even surface. It is
equipped with a distance measurement sensor, such as radar or Lidar, so that the robot is
able to detect drivable regions. Everything else is considered an obstacle (for example, walls
or other robots), meaning that the robot is able to measure the distance to obstacles. The
robot does so periodically according to its sampling period (for example, every 20 ms) when
it decides on steering, acceleration and braking. The decisions on acceleration and steering
are input into actuators, which turn these into physical motions that are followed until the
robot controller runs the next time (for example, 20 ms later). During that time, decisions
cannot be changed. That way, the robot can stitch together its trajectory by following
circular arcs of varying radius, as in the dynamic window approach. The robot can avoid
collisions with obstacles by stopping or by choosing appropriate values for steering that let
it drive around obstacles.

6
Approved for Public Release; Distribution Unlimited.

In principle, obstacles could do the same. However, the number of constraints on how
obstacles will move should be kept low, so that the model fits many different kinds of motion.
Hence, our model only assumes a maximum velocity and otherwise allows any kind of motion
(for example, walls stay put, while moving obstacles could even make sudden orientation
changes and jumps in speed).

The Collision Avoidance Model describes the decisions of obstacles obst, the control
choices of the robot robot, and the entailed physical behavior dyn. It models the dynamic
window approach [24] for collision avoidance and is described in detail in [3], together with
model variations taking into account sensor uncertainty and actuator disturbance.

Safety Property. Next, a safety property is needed in order to analyze the model dw
from Collision Avoidance Model formally. Intuitively, if there are only stationary obstacles
around, then the robot only needs to guarantee its position will always be different from the
obstacle positions, as captured in pr 6= po. In the presence of moving obstacles, however, this
condition needs to be modified, since guarantees are only possible about the robot at hand,
not about the behavior of obstacles, as elaborated in [3,25]. Hence, the model will guarantee
passive safety vr 6= 0→ pr 6= po, which means that there will be no collisions while the robot
is driving. So, if a collision occurs at all, it is because a moving obstacle ran into the robot.
Or if all agents are safe, there will be no collisions.

Eq. (1) below defines the requirements on the robot in a dL formula of the form initial→
[model] safety. This means that, when the system starts in any initial state meeting the
conditions initial, then all runs of model end up with the safety condition safety being
satisfied.

vr = 0 ∧ A ≥ 0 ∧ b > 0 ∧ ε > 0 ∧ V ≥ 0 → [dw] (vr 6= 0→ pr 6= po) (1)

The dL formula in (1) defines the starting condition initial as follows: the robot is stopped
initially vr = 0, and not malfunctioning, which includes a proper engine A ≥ 0, functional
brakes b > 0, a maximal sampling period ε > 0, and it assumes that obstacles will not exceed
maximal velocity V ≥ 0. When started under these conditions, all executions of the model
dw (denoted by the box operator [dw] in dL) guarantee passive safety (vr 6= 0 → pr 6= po).
The logical formula (1) can be proved in the hybrid system theorem prover KeYmaera X.

Verification KeYmaera X applies sound axioms and proof rules [2, 21] to decompose the
formula (1) into easier formulas, until only conditions in first-order real arithmetic remain.
Note, that all dynamics, including differential equations, must be turned into real arith-
metic conditions before quantifier elimination. These steps may require loop invariants and
differential invariants (an induction principle for differential equations). For example, the
dynamics in Collision Avoidance Model are executed in a loop and describe a non-linear
differential equation without polynomial solutions, so loop invariants and differential invari-
ants were used during the proof, see [26] for more details. After program statements and
differential equations are handled in the proof, the resulting conditions are finally checked
for validity with a decision procedure for real arithmetic (quantifier elimination, for example,
through cylindrical algebraic decomposition [27,28]), resulting in a proof of the initial logical
formula. While the verification of cyber-physical systems is certainly as challenging as their
design is, KeYmaera X and its predecessor KeYmaera [29] have already been used success-

7
Approved for Public Release; Distribution Unlimited.

fully to verify cars [30, 31], aircraft [32, 33], trains [34], robots [3], and surgical robots [35],
and to verify the usual control schemes such as PID [34,36]. For a tutorial on modeling and
proving safety with dL, see [37].

ModelPlex Formal verification makes strong guarantees about the system behavior if
adequate models of the system can be obtained. In any CPS design process, models are
essential; but any model necessarily deviates from the real world. Faults may cause the sys-
tem to function improperly, sensors may deliver uncertain values, actuators may suffer from
disturbance, or the model may have assumed simpler ideal-world dynamics for tractability
reasons or made unrealistically strong assumptions about the behavior of other agents in
the environment. As a consequence, the verification results obtained about models of a CPS
only apply to the actual CPS at runtime to the extent that the model adequately represents
reality. A high-assurance CPS must be aware of the limitations in its design and equipped
with means to detect deviations between design and reality.

The proofs so far formally show that a model of the robot is safe. In other words, the
modeled family of robot controllers provably guarantees passive safety. The remaining task is
to validate whether the model is adequate, so that the safety proof of the model transfers to
the actual system implementation [38,39]. ModelPlex [4,5] is a method to synthesize correct-
by-construction monitors for CPS by theorem proving automatically : ModelPlex is based on
the sound axioms and proof rules of dL [20,21] to synthesize provably correct monitors that
validate compliance of system executions with a model. The difficult question answered by
ModelPlex is what exact conditions need to be monitored at runtime to guarantee compliance
with the models and thus safety. ModelPlex enables tradeoffs between analytic power and
accuracy of models while retaining strong safety guarantees.

At runtime, the ModelPlex monitors check the system behavior for model compliance. If
the observed system execution fits to the verified model, then this execution is safe according
to the offline verification result about the model. If it does not fit, then the system is poten-
tially unsafe because it evolves outside the verified model and no longer has an applicable
safety proof, so that a verified fail-safe action from the model is initiated to avoid safety
risks (cf. Simplex [6] or unfalsified control [40]).

Since failures may occur and software attacks may happen, actual evolution must be
monitored: the acceleration chosen by the controller must fit to the current situation (for
example, accelerate only when safe), the chosen curve must fit to the current orientation, and
no unintended change to the robot’s speed, position, orientation, or knowledge about the
obstacles occurred. This means, any variable that is allowed to change in the model must be
monitored. In the example in Collision Avoidance Model, these variables include the robot’s
position pr, longitudinal speed vr, rotational speed ωr, acceleration ar, orientation dr, curve
rc, and obstacle position po.

ModelPlex uses that the system is sampled periodically: for each variable there will be
two observed values, one from the previous sample time (for example, positions pr) and one
from the current sample time (for example, p+

r). It is not important for ModelPlex that the
values are apart by exactly the sampling period, but merely that there is an upper bound
(ε). A ModelPlex monitor checks in a provably correct way whether the evolution observed
in the difference of the sampled values can be explained by the model. The verified hybrid

8
Approved for Public Release; Distribution Unlimited.

system models themselves are not helpful as fast executable models, because they involve
nondeterminism and differential equations. Hence, provably correct monitor expressions in
real arithmetic are synthesized from a hybrid system model using an offline proof in KeY-
maera X. These expressions exhaustively capture the behavior of the hybrid system models,
projected onto the pairwise comparisons of sampled values that are needed at runtime. The
full process is described in detail in [4, 5].

ModelPlex monitor. Here, let us focus on a controller monitor expression synthesized
from the model in Collision Avoidance Model, which captures all possible decisions of the
robot that are considered safe. A controller monitor [4, 5] checks the decisions of an (un-
verified) controller implementation for being consistent with the discrete model. ModelPlex
automatically obtains the discrete model from model (2)–(5) with the ordinary differential
equation (ODE) being safely over-approximated by its evolution domain. The resulting con-
dition monitor, see Synthesized Monitor Conditions, which is synthesized by a proof, follows
the structure of the model: it captures the assumptions on the obstacle mono, the evolution
domain from dynamics mondyn, as well as the specification for each of the three controller
branches (braking monb, staying stopped mons, or accelerating mona). The formula monitor
from Synthesized Monitor Conditions derived with this correct-by-construction proof ap-
proach is the basis for code synthesis, as elaborated next.

4.2 Collision Avoidance Model

Hybrid systems are used to model the joint discrete and continuous behavior of cyber-physical
systems. Here, hybrid programs, a program notation for hybrid systems, model an example
of a collision avoidance controller in a robot and the behavior of an obstacle, together with
their physical motion. Control decisions are modeled in obst and robot, the physical motion
is captured using differential equations in dyn.

dw ≡ (obst; robot; t := 0; {dyn, t′ = 1 & t ≤ ε})∗ (2)

obst ≡ vo := ∗; ?vo ≤ V (3)

robot ≡

ar := ∗; ωr := ∗; cr := ∗; ? (−b ≤ ar ≤ A ∧ cr 6= 0 ∧ ωrcr = vr) if safe

ar := 0; ωr := 0 if vr = 0

ar := −b unconditionally

(4)

dyn ≡ p′r = vrdr, v
′
r = ar, ω

′
r =

ar
cr
, d′r = −ωd⊥r , p′o = vo & vr ≥ 0 (5)

safe ≡ ‖pr − po‖∞ >
v2
r

2b
+ V

vr
b

+

(
A

b
+ 1

)(
A

2
ε+ ε(vr + V)

)
(6)

The modeling idiom t := 0; dyn, t′ = 1 & t ≤ ε used in (2) describes the sampling period
of the controller: the clock t with constant slope t′ = 1, together with the condition t ≤ ε,
ensures that at most time ε passes between controller runs.

The obstacle model obst is very liberal. It only guarantees that obstacles will not exceed
a maximum speed V , using a test condition vo ≤ V (3). Otherwise, any behavior is allowed

9
Approved for Public Release; Distribution Unlimited.

by choosing velocity vo := ∗ non-deterministically, which even includes sudden orientation
changes and jumps in speed.

The robot has three control choices. First, if the condition safe is satisfied it can choose
its acceleration ar and a new curve described by the rotational velocity ωr and the curve
radius cr. Of course, not all choices are admissible, so the control branch ends in a test that
allows only accelerations in the physical acceleration limits −b ≤ ar ≤ A between maximum
braking −b and maximum acceleration A. The condition further ensures that the robot
is not spinning cr > 0 and that the curve preserves planar rigid body motion: the curve
preserves the robot’s longitudinal speed ωrcr = vr. Second, the robot can stay stopped
ar := 0 without spinning wr := 0, if it is stopped already. Finally, the robot can choose to
just hit the emergency brakes ar := −b on its current curve unconditionally at any time.

These control choices entail physical behavior as described in dyn: the robot’s position
changes according to its speed and orientation (p′r = vrdr), with speed in turn determined
by acceleration (vr = ar), while orientation follows along the chosen curve (ω′r = ar

cr
and

d′r = −ωrd
⊥
r). The obstacle’s position is modeled in a similar fashion. Note that v′r = ar

may result in negative speeds vr < 0 upon braking ar < 0, so the condition vr ≥ 0 ensures
that hitting the brakes does not make the robot drive backwards.

4.3 Synthesized Monitor Conditions

The generated monitor captures conditions on obstacles mono, on dynamics mondyn, and on
the robot controller’s decisions on braking monb, staying stopped mons, and accelerating
mona. The monitor distinguishes two observed values per variable, separated by a controller
run (for example, pr denotes the position before running the controller, whereas p+

r denotes
the position after running the controller).

monitor ≡ mono ∧mondyn ∧ (monb ∨mons ∨mona) (7)

mono ≡ ‖d+
r ‖ ≤ V (8)

mondyn ≡ 0 ≤ ε ∧ vr ≥ 0 ∧ t+ = 0 (9)

monb ≡ p+
o = po ∧ p+

r = pr ∧ d+
r = dr ∧ v+

r = vr ∧ ω+
r = ωr ∧ a+

r = −b ∧ c+
r = cr (10)

mons ≡ vr = 0 ∧ p+
o = po ∧ p+

r = pr ∧ d+
r = dr ∧ v+

r = vr ∧ ω+
r = 0 ∧ a+

r = 0 ∧ c+
r = cr

(11)

mona ≡ −b ≤ a+
r ≤ A ∧ c+

r 6= 0 ∧ ω+
r c

+
r = vr ∧ p+

r = pr ∧ d+
r = dr ∧ v+

r = vr (12)

∧ ‖pr − p+
o ‖∞ >

v2
r

2b
+ V

vr
b

+

(
A

b
+ 1

)(
A

2
ε2 + ε(vr + V)

)
(13)

The obstacle monitor part mono, see (8), says that the measured obstacle velocity d+
r must

not exceed the assumptions made in the model about the maximum velocity of obstacles.
The dynamics monitor part mondyn, see (9), checks the evolution domain of the ODE and
that the controller did reset its clock (t+ = 0). The braking monitor monb, see (10) defines
that in emergency braking the controller must only hit the brakes and not change anything
else (acceleration a+

r = −b, while everything else is of the form x+ = x meaning that no
change is expected). Note that unchanged obstacle position p+

r = pr means that the robot

10
Approved for Public Release; Distribution Unlimited.

Expansion + backtracking

Recursive descent

Confluent term rewriting

Recursive descent

Recursive descent

Abstract code

HCOL specification

HCOL (dataflow)
expression

Optimized Ʃ-HCOL
expression

Ʃ-HCOL (loop) expression

Optimized abstract code

C code

Confluent term rewriting

Figure 2: Code/proof co-synthesis as a multi-stage rewriting process within the SPIRAL
system. Each rewriting stage applies a set of provable rewrite rules that preserve mathemat-
ical equivalency, thus ensuring that the output expression is mathematical equivalent to the
input specification.

should not waste time measuring the obstacle’s position, since braking is safe in any case.
When staying stopped mons, see (11), the current robot speed must be zero (vr = 0), and the
controller must choose no acceleration and no rotation (ar = 0 and ωr = 0), while everything
else is unchanged. Finally, the acceleration monitor mona, see (12)–(13), when the distance
is safe the robot can choose any acceleration in the physical limits −b ≤ a+

r ≤ A, a new
non-spinning steering c+

r 6= 0 that fits to the current speed ω+
r c

+
r = vr; position, orientation,

and speed must not be set by the controller (those follow from the acceleration and steering
choice).

4.4 Generating Code From a Mathematical Specification

Given a provably correct monitor specification that guarantees the desired behavioral prop-
erties, it is important that the instantiation of the specification as code is faithfully imple-
mented. This ensures that all proven behavioral properties are preserved during the imple-
mentation process. In addition the implementation must be conservative in the presence
of floating point rounding errors. As many proofs provided by formal methods reason over
real numbers—as opposed to floating point numbers found in controllers—this difference in
number representations, if not handled appropriately, may cause undesirable deviations from
the specified model.

The SPIRAL system [7–9] synthesizes a conservative and faithful implementation from
the mathematical specification through the successive application of identity rewriting. Each
rewriting step replaces the input expression with a mathematically equivalent but more de-

11
Approved for Public Release; Distribution Unlimited.

‖.‖n∞ : Rn → R; (xi) 7→ maxi=0,...,n−1 |xi|
dn∞(., .) : Rn × Rn → R; (x, y) 7→ ‖x− y‖n∞

< ., . >n: Rn × Rn → R;
(
(xi), (yi)

)
7→

n−1∑
i=0

xiyi

(xi)n : R→ Rn+1; x 7→
(
x0, x1, . . . , xn

)
P [a0, . . . , an] : R→ R; x 7→

n∑
i=0

aix
i

Figure 3: Library of mathematical objects expressed as Hybrid Control Operator Language
operators. Each rewrite rule in the library decomposes a mathematical object into basic
HCOL operators.

tailed expression that is more aligned to code. By ensuring that mathematical equivalence
is preserved after each rewriting step, the correctness of the final implementation is guaran-
teed. Fig. 2 shows the overall flow. A multi-stage rewriting system [41, 42] consisting of a
backtracking and expansion stage and multiple recursive descent and confluent term rewrit-
ing stages transforms an initial specification into a final piece of code, as explained in the
remainder of this section.

Problem specification. Mathematical specifications are specified using SPIRAL’s hy-
brid control operator language. In HCOL, an operator is a mathematical function that maps
one or more real vectors to a real vector. Real scalars are treated as vectors of dimension one,
and higher dimensional objects such as matrices are linearized into vec-tors. The following
discussion focuses on Eq. (13), which is part of the full safety condition summarized in
Synthesized Monitor Conditions. Eq. (13) is written as HCOL operator as

SafeDistV,A,b,ε : R× R2 × R2 → Z2; (vr, pr, po) 7→
(
p(vr) < d∞(pr, po)

)
(14)

with d∞(~x, ~y) = ‖~x − ~y‖∞, p(x) = a2x
2 + a1x + a0, a2 = 1

2b
, a1 = V

b
+ ε

(
A
b

+ 1
)
, and

a0 =
(
A
b

+ 1
) (

A
2
ε2 + εV

)
. This is essentially the same expression as (13) but makes explicit

all data types and free parameters and expresses the computation explicitly in terms of
higher-level mathematical objects such as polynomials and norms.

Breakdown rules and basic operators. The first step for translating (14) into an
equivalent high performance implementation is to derive a top level breakdown rule that
explains (14) in terms of SPIRAL’s library of known mathematical objects expressed in the
HCOL language, summarized in Fig. 3. The rule expressing this transformation for (14) is
SafeDistV,A,b,ε(., ., .)→

(
P [a0, a1, a2](.) < d2

∞(., .)
)
(., ., .). It closely mirrors the mathematical

expression of the specification (14) and thus the original monitoring equation (13). As
required, it expresses the semantics of the safety distance in terms of the HCOL library
shown in Fig. 3. This leverages the HCOL formalization of well known mathematical objects
such as infinity norm, Chebyshev distance, scalar product, or evaluation of a polynomial that
are part of SPIRAL’s library of mathematical objects and identities.

12
Approved for Public Release; Distribution Unlimited.

Pointwisen,fi : Rn → Rn; (xi) 7→
(
f0(x0), . . . , fn−1(xn−1)

)
Pointwisen×n,fi : Rn × Rn → Rn;

(
(xi), (yi)

)
7→
(
f0(x0, y0), . . . , fn−1(xn−1, yn−1)

)
Reductionn,fi : Rn → R; (xi)i 7→ fn−1(xn−1, fn−2(xn−2, fn−3(. . . f0(x0, id()) . . .)

Inductionn,fi : R→ Rn+1; x 7→ (fn(x, fn−1(. . .) . . .), . . . , f2(x, f1(x, id)), f1(x, id), id())

Figure 4: Basic Hybrid Control Operator Language operators that have mathematical se-
mantics but also can be seen as functional language constructs. All input HCOL expressions
are rewritten through the application of the library of rewrite rules into these basic HCOL
operators.

The goal of the rewriting process is to break HCOL operator specifications like (14) into
expressions of basic HCOL operators through repeated applications of rules. The list of
basic HCOL operators that are admissible in a fully expanded expression is shown in Fig. 4.
Further, operations like ◦ and × (operator composition and Cartesian product) are also
allowed.

Consider the example of vector addition, expressed through the basic operator
Pointwisen×n,(a,b)7→a+b . The Pointwise operator takes two parameters (shown as subscripts),
where n × n are the dimensions of the two input vectors, and (a, b) 7→ a + b is the math-
ematical operation that is performed on each pair of scalar elements from the two input
vectors. Similarly, the Hadamard product (or element-wise multiplication) can be defined as
Pointwisen×n,(a,b)7→ab . More complicated operators can be defined through the composition
of simpler operators through HCOL operator expressions. For example, the scalar (or dot)
product can be described as

< ., . >n→ Reductionn,(a,b)7→a+b ◦Pointwisen×n,(a,b)7→ab . (15)

The recursive decomposition of higher level HCOL operators into basic operators is captured
within the SPIRAL system as a library of breakdown rules. Fig. 5 collects all breakdown
rules needed to fully expand the safety distance monitor (14). By performing all necessary
substitutions as prescribed by the breakdown rules, the initial HCOL operator specification
(14) is eventually translated into the finally expanded HCOL expression, shown in Fig. 6,
consisting only of basic HCOL operators. This is the final result of the first stage in SPIRAL’s
rewriting system (backtracking and expansion, Fig. 2).

Code generation. The second stage in the code generation process is the translation
of an HCOL expression into highly efficient C code. This is performed by a sequence of
rewriting stages performing either a recursive descend or a confluent term rewriting phase.
Logically, these steps are grouped into two stages using two separate sets of substitution
rules.

In the first step, HCOL is translated into a lower level mathematical representation called
Σ-OL, where loops are made explicit. For instance, Pointwise is translated into the following

13
Approved for Public Release; Distribution Unlimited.

dn∞(., .)→ ‖.‖n∞ ◦ Pointwisen×n,(a,b)7→a−b

‖.‖n∞ → Reductionn,(a,b)7→max(|a|,|b|)

< ., . >n→ Reductionn,(a,b)7→a+b

◦ Pointwisen×n,(a,b)7→ab

P [a0, . . . , an]→< (a0, . . . , an), . > ◦(xi)n(xi)n → Inductionn,(a,b)7→ab,1

Figure 5: Breakdown rules that express HCOL mathematical objects as basic HCOL objects.

SafeDistV,A,b,ε = Pointwise(x,y)7→x<y

◦
((

Reduction3,(x,y)7→x+y ◦Pointwise3,x7→aix ◦ Induction3,(a,b)7→ab,1

)
×
(

Reduction2,(x,y)7→max(|x|,|y|) ◦Pointwise2×2,(x,y)7→x−y
))

Figure 6: The final Hybrid Control Operator Language expression derived from the monitor-
ing expression (13) which guarantees that the distance between the vehicle and the nearest
obstacle is further than the maximum stopping distance.

expression,

Pointwisen×n,fi →
n−1∑
i=0

eni ◦Pointwise1×1,fi ◦
(
(eni)> × (eni)>

)
, (16)

where eni is a unit n-dimensional basis vector with the 1 at the ith position and × is the
cross product. (eni)> represents a gather operation and eni represents a scatter operation.
Similarly, the reduction operation is translated into Σ-OL by the rule

Reductionn,(a,b)7→a+b →
n−1∑
i=0

(eni)>.

At the Σ-OL level, optimizations performed by a traditional optimizing compilers are
performed through substitution rules such as

Pointwisen,fi ◦ ejn → ejn ◦Pointwise1,fj . (17)

The above rule turns a program fragment that copies n pieces of data into contiguous memory
addresses before applying the function fi on each elements, into a program fragment that
applies the same function on the appropriate piece of data, copies it into contiguous storage,
and repeats for the remaining n − 1 pieces of data. While functionally equivalent, the
optimized program is more efficient since it parses through the data once.

Notice that the final Σ-OL expression is still a mathematical expression, but can be
seen as highly optimized loop-based program that implements a mathematical function. In

14
Approved for Public Release; Distribution Unlimited.

Hadamard Product

decl([i7], loopn(i7, n1,

assign(nth(Y, i7),

mul(nth(X, i7), nth(y1, i7)))))

Reduction

decl([i4], chain(

assign(nth(Y, V(0)), V(0)),

loopn(i4, n1, decl([s1], chain(

assign(s1, nth(X, i4)),

assign(nth(Y, V(0)), add(nth(Y, V(0)), s1))

)))))

Scalar Product (optimized)

decl([i8], chain(

assign(nth(Y, V(0)), V(0)),

loopn(i8, n1, decl([s2, s3], chain(

assign(s3, nth(X, i8)),

assign(s2, mul(s3, nth(y1, i8))),

assign(nth(Y, V(0)), add(nth(Y, V(0)), s2))

)))))

Figure 7: Spiral’s internal icode representation for the (top) Hadamard product, (middle)
Reduction, and (bottom) Scalar Product (after optimization). The icode is then pretty-
printed in the desired programming language such as C. X is the input vector and Y is the
output vector.

addition, because traditional compiler optimizations are implemented within SPIRAL as
substitution rules, the correctness of the optimizations is ensured.

The second translation step translates a Σ-OL expression into an actual loop-based pro-
gram, by means of a small set of compilation rules like

Code
(
y = (A ◦B)(x)

)
→
{
decl(t),Code

(
t = B(x)

)
,Code

(
y = A(t)

)}
. (18)

Strong guarantees about loops, conditionals, and array accesses are inherited and deduced
from the original expression. All this together guarantees that the program over the real
numbers is a pure function that is mathematically equivalent to the original specification.
Fig. 7 shows the final generated code for the Hadamard Product, Reduction operator, and
scalar product over real arithmetic represented in SPIRAL’s internal code representation,
called icode. Rewriting Σ-HCOL to this internal code representation requires five translation
rules. By repeated application of these five rules, the icode representation for (13) is shown
in Fig. 8.

Code optimization. SPIRAL generates verified code through a sequence of rewrite
rules. The trace of the rewrite rules that were applied provides a certificate that a given
program is correct. However, the generated code must be compiled. This last step must also
be verified, and can be done through the use of a certified compiler such as CompCert [43].
As the goal is correct and efficient code, it is necessary to ensure the compiled code is
optimized. While the performance of CompCert has improved, it usually does not yield code

15
Approved for Public Release; Distribution Unlimited.

with performance that are comparable with those using state-of-the-art optimizing compilers
such as Intel’s C compiler. Nonetheless, it can be used since many of the optimizations a
good compiler performs are accomplished through the transformations carried out during
the rewrite process, such as the loop merging performed by (21).

Additional optimizations such as tiling, loop unrolling, and vectorization can be per-
formed by source to source transformations and verified at the code level, and in many cases
can be done at a higher mathematical level like the loop merging example. Even when the
optimizations cannot be done at the mathematical level, the fact that the code is being
generated allows various assumptions, like dependence, to be guaranteed which simplifies
proofs of their correctness. This is illustrated by further optimizations applied to the scalar
product example. After loop merging the generated code looks like

for (s=0, j = 0; j < 2*N; ++j) {

s += x[j] * y[j];

}

This can be optimized by loop unrolling and vectorized code can be obtained by combining
the operations in the unrolled loop.

s0 = 0; s1 = 0; s = 0;

for (i = 0; i < M; ++i)

for (j = 0; j < 2*N; j+=2) {

s0 += x[j] * y[j];

s1 += x[j+1] * y[j+1];

}

s = s0 + s1;

The equivalence of the unrolled code and the initial code can be easily verified by induction.
Alternatively, the vectorization can be derived and verified through higher level transforma-
tions; namely the rule

〈., .〉2n → 〈., .〉2 ◦ 〈., .〉n ⊗ I2 (19)

which uses the tensor product [44, 45] to obtain vectorized code.
These simple transformations can lead to a significant performance gain. Timings on

an Intel Core i7-3770 processor running Ubuntu 14.04 with CompCert 2.5 show a speedup
of 3.5 from just the unrolling. In order to benefit from vectorization it is necessary that
CompCert be able to generate code with vector instructions; however, it is not required that
CompCert perform vectorization as this can be done as shown. This shows that a certified
compiler can be used, without sacrificing performance, when combined with source to source
optimizations provided there is good support for basic compiler functionality such as register
allocation and instruction scheduling.

Floating-point arithmetic. Finally, the difference between real and floating point
number representation has to be tackled. A conservative approximation is attained through
the use of interval arithmetic [10]. Each real number a is represented by an interval [ainf, asup]
where the boundaries ainf and asup are the floating point numbers closest to a, such that
ainf ≤ a ≤ asup. This ensures that the actual (true) value is always bounded by ainf and asup.

16
Approved for Public Release; Distribution Unlimited.

// icode implementation of Eq. (13) over the reals

func(TInt, "dwmonitor", [X, D],

decl([i3, i5, q3, q4, s1, s4,

s5, s6, s7, s8, w1, w2],

chain(

assign(s5, V(0.0)),

assign(s8, nth(X, V(0))),

assign(s7, V(1.0)),

loop(i5, [0..2], chain(

assign(s4, mul(s7, nth(D, i5))),

assign(s5, add(s5, s4)),

assign(s7, mul(s7, s8))

)),

assign(s1, V(0.0)),

loop(i3, [0..1], chain(

assign(q3, nth(X, add(i3, V(1)))),

assign(q4, nth(X, add(V(3), i3))),

assign(w1, sub(q3, q4)),

assign(s6, cond(geq(w1, V(0)),

w1, neg(w1))),

assign(s1, cond(geq(s1, s6),

s1, s6))

)),

assign(w2, geq(s1, s5)),

creturn(w2)

)))

Figure 8: The implementation of the dynamic window monitor in SPIRAL’s internal code
representation (icode) using real arithmetic. This internal code representation is then printed
in the desired programming language (e.g. C) so that it can be compiled using a traditional
compiler.

Interval arithmetic then computes using the boundary values as opposed to the true value.
For instance,

[ainf, asup] + [binf, bsup] = [rounddown(ainf + binf), roundup(asup + bsup)]

Similarly, the multiplication of two intervals is given by

[ainf, asup]× [binf, bsup] =[
min

(
rounddown(−ainf × binf), rounddown(ainf × bsup),

rounddown(binf × asup), rounddown(−asup × bsup)
)
,

max
(

roundup(ainf × binf), roundup(−ainf × bsup),

roundup(−binf × asup), roundup(asup × bsup)
)]
. (20)

17
Approved for Public Release; Distribution Unlimited.

By using proper floating point rounding modes, operations on the intervals guarantee that
the result interval over floating point numbers includes the result that is over the real num-
bers. Implementing interval arithmetic efficiently on modern processors can be challenging.
However, the implementation of interval arithmetics within SPIRAL leverages modern ar-
chitecture features such as the single instruction multiple data (SIMD) vector instruction set
to reduce the number of actual instructions executed by the processor.

Final monitor code. Introducing SPIRAL’s interval arithmetics implementation to the
icode representation in Fig. 8 yields the C implementation in Listing 1. It is implemented
using the Intel C++ compiler’s intrinsic functions to explicitly use the special vector in-
structions provided by the Intel SSE4 instruction set extension, and runs in approximately
100 processor cycles on an 3.6 GHz Intel Core i7 processor. Notice the complexity of the
code. If manually implemented, the probability of an error being introduced would increase.
However, this complexity is hidden from the programmer through the use of rewrite rules
that are faithfully applied by SPIRAL. The faithful application of the rewrite rules ensure
that the introduction of interval arithmetics preserve the input specifications (if computed
with real numbers). In addition, it is also guaranteed that the real values are always bounded
by the floating-point interval bounds, which ensures that the implementation is conservative.

Correctness proofs and guarantees. The idea behind a correctness argument for the
code synthesis is the following. Since all transformations from specification to final code are
rewrite rules that replace a mathematical object (expression) with another equivalent expres-
sion, the sequence of rule applications establishes mathematical equivalence of specification
and final code. Over the real numbers the computation would then be mathematically identi-
cal to the original specification. Over floating point numbers, the use of interval arithmetic in
the resulting code ensures that the code is a conservative approximation. Numerical results
are sound as the true answer is guaranteed to be in the resulting interval. Logical answers
are sound as the answer is conservative: true/false/unknown. However, these guarantees are
only true if the rules themselves have been implemented correctly.

Each rule that can be applied needs to be formally verified so that the transformed
expressions are guaranteed to be equivalent to the original expression. For example, the
rewrite rule (15) is a special case of the more general rule

Reductionn,f ◦Pointwisen×n,g → Reductionn×n,f◦g, (21)

which can be proven by induction on n. Alternatively, the validity of the special case in (15)
can be verified, using the property that the scalar product is bilinear, and checking that the
two sides agree on a basis. Note that reduction with plus is the linear transformation given
by the 1 × n vector of ones, (1n)>, and the following computation shows that the left and
right hand sides of (15), applied to an arbitrary pair of standard basis elements, are both
equal to δi,j, the Kronecker delta.

(1n)>(eni · enj) = (1n)>δi,je
n
i

= δi,j(1
n)>eni

= δi,j = 〈eni , enj 〉

18
Approved for Public Release; Distribution Unlimited.

Listing 1: The implementation of the dynamic window monitor using interval arithmetic in
Intel’s SSE 4.1 instruction set. The shown monitor code runs in about 100 processor cycles
on an 3.6 GHz Intel Core i7 processor.
// Fina l C/SSE 4 .1 Implementation o f Equation (13) f o r I n t e l Core i 7 Proce s so r s
// This i s a c on s e rv a t i v e high performance implementation us ing i n t e r v a l a r i thmet i c
i n t dwmonitor (f l o a t ∗X, double ∗D) {

m128d u1 , u2 , u3 , u4 , u5 , u6 , u7 , u8 , x1 , x10 , x13 ,
x14 , x17 , x18 , x19 , x2 , x3 , x4 , x6 , x7 , x8 , x9 ;

i n t w1 ;
unsigned xm = mm getcsr () ;
mm setcsr (xm & 0 x f f f f 0 0 0 0 | 0 x0000dfc0) ;

u5 = mm set1 pd (0 . 0) ;
u2 = mm cvtps pd (mm addsub ps (mm set1 ps (FLT MIN) , mm set1 ps (X [0]))) ;
u1 = mm set pd (1 . 0 , (−1 .0)) ;
f o r (i n t i 5 = 0 ; i 5 <= 2 ; i 5++) {

x6 = mm addsub pd (mm set1 pd ((DBL MIN + DBL MIN)) , mm loaddup pd(&(D[i 5]))) ;
x1 = mm addsub pd (mm set1 pd (0 . 0) , u1) ;
x2 = mm mul pd (x1 , x6) ;
x3 = mm mul pd (mm shuf f le pd (x1 , x1 , MM SHUFFLE2(0 , 1)) , x6) ;
x4 = mm sub pd (mm set1 pd (0 . 0) , mm min pd (x3 , x2)) ;
u3 = mm add pd (mm max pd(mm shuf f le pd (x4 , x4 , MM SHUFFLE2(0 , 1)) ,

mm max pd(x3 , x2)) , mm set1 pd (DBL MIN)) ;
u5 = mm add pd (u5 , u3) ;
x7 = mm addsub pd (mm set1 pd (0 . 0) , u1) ;
x8 = mm mul pd (x7 , u2) ;
x9 = mm mul pd (mm shuf f le pd (x7 , x7 , MM SHUFFLE2(0 , 1)) , u2) ;
x10 = mm sub pd (mm set1 pd (0 . 0) , mm min pd (x9 , x8)) ;
u1 = mm add pd (mm max pd(mm shuf f le pd (x10 , x10 , MM SHUFFLE2(0 , 1)) ,

mm max pd(x9 , x8)) , mm set1 pd (DBL MIN)) ;
}
u6 = mm set1 pd (0 . 0) ;
f o r (i n t i 3 = 0 ; i 3 <= 1 ; i 3++) {

u8 = mm cvtps pd (mm addsub ps (mm set1 ps (FLT MIN) , mm set1 ps (X[(i 3 + 1)]))) ;
u7 = mm cvtps pd (mm addsub ps (mm set1 ps (FLT MIN) , mm set1 ps (X[(3 + i 3)]))) ;
x14 = mm add pd (u8 , mm shuf f le pd (u7 , u7 , MM SHUFFLE2(0 , 1))) ;
x13 = mm shuf f le pd (x14 , x14 , MM SHUFFLE2(0 , 1)) ;
u4 = mm shuf f le pd (mm min pd (x14 , x13) , mm max pd(x14 , x13) , MM SHUFFLE2(1 , 0)) ;
u6 = mm shuf f le pd (mm min pd (u6 , u4) , mm max pd(u6 , u4) , MM SHUFFLE2(1 , 0)) ;

}
x17 = mm addsub pd (mm set1 pd (0 . 0) , u6) ;
x18 = mm addsub pd (mm set1 pd (0 . 0) , u5) ;
x19 = mm cmpge pd (x17 , mm shuf f le pd (x18 , x18 , MM SHUFFLE2(0 , 1))) ;
w1 = (mm tes tc s i128 (mm castpd si128 (x19) , mm set epi32 (0 x f f f f f f f f , 0 x f f f f f f f f ,

0 x f f f f f f f f , 0 x f f f f f f f f)) −
(mm testnzc s i128 (mm castpd si128 (x19) , mm set epi32 (0 x f f f f f f f f , 0 x f f f f f f f f ,

0 x f f f f f f f f , 0 x f f f f f f f f)))) ;
asm nop ;

i f (mm getcsr () & 0x0d) {
mm setcsr (xm) ;

re turn −1;
}
mm setcsr (xm) ;

re turn w1 ;
}

19
Approved for Public Release; Distribution Unlimited.

Similarly Rule 16 can be verified by applying the left and right hand sides to an arbitrary
pair of vectors (x, y) and checking that the j-th element of the results are the same.

(enj)> ◦
∑n−1

i=0

(
eni ◦ Pointwise1×1,fi ◦

(
(eni)> × (eni)>)

)
(x, y)

=
∑n−1

i=0

(
(enj)> ◦ eni ◦ Pointwise1×1,fi ◦((eni)> × (eni)>)

)
(x, y)

=
∑n−1

i=0

(
δi,j ◦ Pointwise1,fi ◦((eni)> × (eni)>)

)
(x, y)

= (enj)> ◦ Pointwisen×n,fi(x, y)

These rules are implemented and checked in the computer algebra system, GAP [46]. Further,
the calculations can be formalized and checked with a proof assistant such as Isabelle [47]
or Coq [48]. Similar calculations allow us to verify the rule that merges the reduction and
pointwise operators which optimizes the scalar product computation to use one instead of
two loops.

When converting Σ-OL expressions to code we must verify that the resulting code cor-
rectly preserves the mathematical semantics of the expression. Once correctness is proven
for the basic expressions such as reduction and pointwise, then an inductive proof can be
obtained to prove that the code generated for arbitrary expressions built up form higher level
operators such as composition and Cartesian product are correct. Similarly, optimizations
that are traditionally performed by optimizing compilers are formally written as rewrite
rules in SPIRAL, thus proving that the optimizations applied by SPIRAL for performance
reasons retain the correctness guarantees of the input specifications. A complete Coq-based
formalization, following this approach, is underway. Significant progress has been made at
the HCOL and Σ-OL level.

4.5 Compiling to Binary

Two lines of research were pursued. First, we studied issues related to formal verification
of the correctness of automatically generated code with application to the Spiral system.
Second, we studied array notation and other high-level notations to represent computations
as well as compiler optimizations that apply to these notations.

Formal verification We worked on two formal verification problems. The first problem
had to do with the use of a formally verified compiler as the last step in the process of
automatic code generation. The hypothesis was that existing formally verified compilers
apply a limited collection of optimizations and, as a result, the target code is not as fast as
that produced by a good commercial compiler. To overcome this problem, a new pass in the
chain of code generation was introduced just before the compiler was invoked. This new pass
applied formally verified source-to-source code optimizations before the verified compiler was
invoked. The new optimization pass was implemented using the K semantic framework [49].
For the formally verified compiler, we used CompCert. As part of this aspect of the overall
CMU effort, the development of formal verification techniques for the early stages of the
code generation chain was performed using Isabelle.

High-Level notation and their compilers The second line of research was the study of
high-level notations to represent parallel computations and the development of optimization
techniques for these notations. A part of this work was a comparative study of the Galois

20
Approved for Public Release; Distribution Unlimited.

notation [50] and OpenMP [51]. Based in part on this work, an array notation and associated
compilation techniques were developed. This work continues to be developed in order to
automatically generate provably correct high performance parallel implementations from a
high level specification. A study on the implementation of an array notation on top of the
Open Community Runtime (OCR) system [52] was also performed [53] and the results will
be reported in a forthcoming paper.

4.6 Anomaly Detection as Statistical Deviation from Nominal Be-
havior

This section presents a set of statistical methods for anomaly detection based on two ob-
servations: (a) Robot sensors usually produce data that is redundant but noisy, and (b) It
is often feasible to specify a priori a model of nominal behavior for these redundancies, but
not to fully specify all the anomalies that may occur. Thus, the resulting algorithms first
build statistical models of nominal behavior, and then detect anomalies during execution by
finding sequences of observations that do not fit the model of nominal behavior. Ultimately,
these methods are formalized using SPIRAL’s HCOL framework and efficient and correct
code implementing them is synthesized and deployed on the test platforms.

4.7 Nominal models from redundancy

Robots often produce redundant information about the world from various sources. This
redundancy can occur at various levels, such as world state estimation, task completion
time, or motion properties. This section explores the example of monitoring the robot’s
motion properties, since it is applicable to many mobile robots. Information about the
robot’s motion can be obtained from its wheel encoders, GPS sensors, inertial measurement
units (IMU), cameras, and the robot’s input command, and localization algorithms that
integrate these sensors, among others. Generally, given two simultaneous observations x̂1

t

and x̂2
t obtained from different sources at time t, the algorithms assume that it is possible to

map them to two comparable observations x1
t = f 1(x̂1), and x2

t = f 2(x̂2) that are expected
to have similar values during nominal execution. For example, the robot’s displacement
between timesteps can be computed both from the robot’s wheel encoder values, and from
consecutive outputs of a sensor-fusing localization algorithm. Fig. 9a shows graphs of these
two sources of information in the CoBot mobile robots [54] during nominal execution. The
properties of the difference ∆xt = x1

t −x2
t can be extracted from data of nominal execution.

In particular, since many sensors have distributions that are approximately normal, the
following examples will adhere to that distribution. Thus, the algorithm first creates a
model θ0 of nominal execution:

P (∆xt|θ0) = N (µ, σ2) where µ ∈ [µ−, µ+] (22)

That is, the difference between the two sources is normally-distributed, with variance σ2

extracted from nominal execution, and mean µ allowed to be within a small interval [µ−, µ+]
around 0. Other sensors and sources of information may have different distributions, but
this section focuses on normal distributions as a useful example in robotics.

21
Approved for Public Release; Distribution Unlimited.

0 5 10 15
−0.02

0

0.02

0.04

0.06

0.08

0.1

Time (s)

D
is

p
la

c
e

m
e

n
t

(m
)

Source: localization

Source: encoders

(a) Nominal Execution

0 5 10 15
−0.02

0

0.02

0.04

0.06

0.08

0.1

Time (s)

D
is

p
la

c
e

m
e

n
t

(m
)

Source: localization

Source: encoders

(b) Subtle Anomaly

0 5 10 15
−0.02

0

0.02

0.04

0.06

0.08

0.1

Time (s)

D
is

p
la

c
e

m
e

n
t

(m
)

Source: localization

Source: encoders

(c) Clear Anomaly

Figure 9: Displacement data gathered from the CoBot robots [54]. Each plot represents
different execution runs with varying levels of malfunction as indicated by the wheel encoder
data.

22
Approved for Public Release; Distribution Unlimited.

Statistical testing for anomalies Given that the model θ0 is given by a normal dis-
tribution, the detection algorithms use a Z-test to determine the probability of observing
a set of observations at least as unlikely as X given nominal execution; this section de-
scribes the Z-test for one-dimensional observations, although extension to higher dimensions
is straightforward.

Given the set of observations X = {∆x1,∆x2, . . . ,∆xn}, the algorithm estimates the
probability that the true mean µ of the underlying distribution lies within [µ−, µ+]. That is,
it calculates the probability P (µ− ≤ µ ≤ µ+). First, define the standardized sample mean
Z:

Z(X) =
X̄(X)− µ√
σ2/|X|

where X̄(X) =
1

n

n∑
i=1

∆xi. (23)

The standardized problem then becomes that of calculating P (Z− ≤ Z ≤ Z+), where Z−
and Z+ are calculated analogously to Z, replacing µ by µ+ and µ− respectively. Since
these variables are in standard form, the desired probability is obtained using the standard
cumulative normal distribution Φ(Z):

P (µ− ≤ µ ≤ µ+) = P (Z− ≤ Z ≤ Z+) (24)

= P (Z ≤ Z+)− P (Z ≤ Z−)

= Φ(Z+)− Φ(Z−)

This probability is then compared to a threshold Pmin to determine if the set X is too
unlikely to come from θ0.

A Multi-Scale window approach to anomaly detection Depending on the type
of anomaly to be detected, different sets of observations may be analyzed for anomalies.
This section focuses on analyzing sequences of observations to detect anomalies that start
occurring at some time t0, and affect the robot at any time t ≥ t0, such as those illus-
trated in Fig. 9; other work has analyzed sets of non-sequential but otherwise correlated
observations [55].

During each time step tk of execution, then, the algorithm searches for a time t0 such that
P (∆xt0 ,∆xt0+1, . . . ,∆xtk |θ0) is too low to be considered nominal. One approach used in
related work is to test every possible t0 ∈ [0, tk] for anomalies. However, this approach grows
linearly with the number of observations, which may be restrictive for online monitoring
of long-deployment robots. Instead, the algorithm presented here uses an approach that
tests windows of time of various scales to find anomalies. Thus, the detector creates N sets
X0, X1, . . . , XN of most recent observations on which to conduct a Z-test, where

X i = {∆xk,∆xk−1, . . . ,∆xk−2i}. (25)

Then, the Z-test, previously discussed, is conducted on each of these windows of time.
Algorithm 1 summarizes the process of online statistical anomaly detection. The algo-

rithm conducts the statistical Z-test on data coming from windows of N different sizes to
find anomalies.

The time required to detect anomalies highly depends on the nature of the subtlety of
the anomaly. Fig. 10 illustrates this: anomalies of different magnitudes were injected into

23
Approved for Public Release; Distribution Unlimited.

Algorithm 1 Multi-window approach to statistical anomaly detection.
Input: Sequence X of observations; Number of windows N ; Nominal model θ0

Output: true if an anomaly is detected, false otherwise.

function DetectAnom(X = [∆x0,∆x1, . . . ,∆xk], N , θ0 = {σ, µ−, µ+})
for i ∈ {0, 1, . . . , N,∞} do

Xi ← {∆xk,∆xk−1, . . . ,∆xk−2i} . Extract data from window i

Z+(X) = X̄(Xi)−µ−√
σ2/|Xi|

. Standardized deviations

Z−(X) = X̄(Xi)−µ+√
σ2/|Xi|

P ← Φ(Z+)− Φ(Z−) . Probability that µ ∈ [µ−, µ+]
if P < Pmin then

return true . Probability too low, return failure
end if

end for
return false . No probability found at any time scale

end function

one of the CoBot robot’s wheel encoders: three of the wheel encoders work normally, but
the fourth reports (1− ε)d, where d is the displacement it would report if working normally.
Thus, by varying ε from −0.5 to −0.1, the encoder reported half of its displacement, to 90%
of its displacement. As ε approaches 0 (representing the state of no anomaly), the detection
time asymptotically approaches infinity. Fig. 9 shows two anomalies: one with ε = 0.1 and
one with ε = 0.4.

4.8 Detecting Sensor Inconsistencies and Secure State Estimation

This section focuses on malicious false-data-injection (FDI) attacks [56–59] on the physical
sensing resources in which an adversary potentially tampers (either remotely by hacking
into the sensor software interfaces or by physically altering the sensing devices) the sensor
data. Such attacks, if not detected promptly, might lead to inaccurate estimation of the
vehicle state (such as its location and velocity) and trigger incorrect control actions with
potentially devastating consequences. This section reviews a class of model-based approaches
suited to the current application that use sensor data in conjunction with physics-based
information (knowledge of vehicle kinematics models and nominal models of the sensors)
to perform attack detection and secure state estimation. Model-based approaches, based
on tight integration of system physics and sensor (data) characteristics, can be effective
in terms of performance and implementability when sensor measurements can be linked to
and represented in terms of physical state variables such as vehicle position and velocity.
However, there might be other sensing modalities that may not be readily linked to the
physical characteristics: information from these sensors might still contribute to the primary
task of inconsistency detection, however, through purely sensor data driven processing. The
interested reader may wish to refer to the side bar “Multi Modal Consistency” for additional
details.

Overview. Model-based approaches are characterized by three crucial elements: dy-
namical systems (state-space) based representations of the vehicle kinematics, sensor models
(both before and after potential FDI attacks), and the inconsistency detection and secure

24
Approved for Public Release; Distribution Unlimited.

−0.5 −0.4 −0.3 −0.2 −0.1 0
0

50

100

150

200

250

300

350

400

450

 2.8 5.5 7.2 15.2

 49.7

396.2

Encoder output error

T
im

e
 t

o
 f

a
u

lt
 d

e
te

c
ti
o

n
 (

s
)

−0.5 −0.4 −0.3 −0.2 −0.1 0
0

10

20

30

40

50

60

 2.8
 5.5

 7.2

15.2

49.7

Encoder output error

T
im

e
 t

o
 f

a
u

lt
 d

e
te

c
ti
o

n
 (

s
)

Figure 10: Time to fault detection as a function of the chosen fractional error ε. In (a),
we show all the experimental results obtained, while a more detailed visualization of the
remaining data is shown in (b) where the data for ε = −0.05 is left out. Error bars in both
plots show one standard deviation.

25
Approved for Public Release; Distribution Unlimited.

state estimation module. The remainder of this section discusses these three components in
more detail and gives a theorem on detectable and undetectable attacks. The approach is
based on linear models and provides an inconsistency detection procedure.

State-space models. A very simplistic abstraction of the vehicle kinematics may be
obtained as

p(t) = p(0) + tv(0) +

∫ t

0

∫ s

0

a(u)duds, (26)

where p(t) and v(t) denote the position and velocity vectors respectively at time t (collec-
tively the state x(t)), and t = 0 corresponds to the origin of motion with p(0) and v(0)
denoting the initial position and velocity respectively. The vector a(·) corresponds to the
instantaneous acceleration and, in control terminology, may be viewed as the input to the
system. The acceleration may be assumed to be known up to a unknown but bounded (pos-
sibly disturbance) factor: in general, in this formulation it is assumed that at all times t, the
deviation between the actual a(t) and its known (predictable) part aknown(t) is norm-bounded
by a known constant ā. (In the worst case with no knowledge about the instantaneous ac-
celeration, this constant corresponds to the vehicle’s maximum possible acceleration in the
given scenario.)

The important thing to note in the above is that, assuming the initial state x(0) at time
t = 0 is known, the state uncertainty at any future time instant t may be captured by the
relation

x(t) ∈ Ctp(ā,x(0)), (27)

where Ctp(·) is a compact convex set depending on x(0) and ā only. In other words, the
vehicle kinematics provides (predictive) information about the system’s state in terms of a
bounded set of feasible states around the initial state; the associated prediction uncertainty
is quantified by the size of Ctp(ā,x(0)) which grows with t and ā.

Sensor models. In the nominal no-attack scenario, the n-th sensor, n = 1, . . . , N , is
assumed to measure a noisy linear function of the state at each sampling instant k∆. Here
k, k = 1, 2, . . . , denotes the discrete sampling index and ∆ the sampling period. Formally,
the observation yn(k∆) at the n-th sensor at k∆ is modeled as

yn(k∆) = Hnx(k∆) + wn(∆), (28)

where the matrix Hn specifies the sensing modality (such as GPS, wheel encoder, or IMU)
and wn(∆) the unknown sensing noise. The noise wn(·) is assumed to be norm-bounded
but possibly state-dependent. It is assumed that there exists a continuous function w̄n(·)
of the state such that ‖wn(k∆)‖ ≤ w̄n(x(k∆)) for all k. Commonly used vehicle sensing
resources which depend linearly on the instantaneous position and velocity may be cast in
terms of (28), whereas, the bounded sensing noise is quite realistic for vehicular applications.

In the presence of FDI attacks, the sensor model (28) assumes the following form:

yn(k∆) = Hnx(k∆) + wn(k∆) + bn(k∆), (29)

where bn(k∆) denotes the additional carefully crafted false data injected by the attacker
into the nominal sensor measurements which is unknown to the system operator. Thus,
from the system operator’s viewpoint, both the sensor noise and the FDI attack contribute

26
Approved for Public Release; Distribution Unlimited.

to the uncertainty of the measurement. The goal of the operator at any instant K∆ is to
use the sensor data collected over all sensors at all times k∆, k = 1, . . . , K in conjunction
with the knowledge of the vehicle kinematics to detect whether there has been an attack,
i.e., bn(k∆) 6= 0 for some n and k, or not, and simultaneously obtain a feasible estimation
of the vehicle state. This leads to inconsistency (attack) detector design discussed next.

Inconsistency detection and secure state estimation. In the following an optimal
(to be discussed later) online recursive inconsistency detection and state estimation algorithm
is presented. To this end, define for each n and k the set of feasible vehicle states Xn(yn(k∆))
conforming to the measurement yn(k∆), i.e.,

Xn(yn(k∆)) = {x : ‖yn(k∆)−Hnx(k∆)‖ ≤ kn(x(k∆))} . (30)

Now, consider the following recursive set membership filtering (RSMF) procedure, which
generates recursively at each time instant k∆ a set-valued estimate T (k) of the vehicle’s
state x(k∆):

• Initialization: Set T (0) = {x(0)}.

• Update: At each k ≥ 0, define the set

Tp(k + 1) =
⋃

x̂∈T (k)

C1
p(ā, x̂), (31)

where the set C1
p(·) corresponds to the set-valued one-step state prediction as a function

of the acceleration-related norm-bound ā and past state information T (k) as introduced
in (27). Now, update T (k) as

T (k + 1) = Tp(k + 1)︸ ︷︷ ︸
one-step

prediction

N⋂
n=1

Xn(yn((k + 1)∆))︸ ︷︷ ︸
innovation

. (32)

• Detection, estimation and termination criteria: If T (k + 1) = ∅ declare an attack and
terminate; otherwise, declare T (k + 1) to be the set of feasible vehicle states at time
k+ 1 (in particular, any x̂ ∈ T (k+ 1) may be taken to be an estimate of x((k+ 1)∆))
and continue the update step.

Note that, if in a given time horizon [0, K∆], T (k) 6= ∅ for all k = 1, . . . , K, the test is
inconclusive as to whether or not there has been no attack, i.e., bn(k∆) = 0 for all n, k: it
might be possible that the attacker launched an undetectable attack trajectory {bn(k∆)}. In
fact, undetectable attacks constitute non-zero attack trajectories {bn(k∆)} that are carefully
crafted such that they induce sensor observations that are feasible with respect to nominal
or no-attack scenarios. The discussion on undetectable attacks will be revisited, but note,
depending on the sensing model (the Hn matrices) and the noise characteristics, such attacks
may exist. These undetectable attacks, when they exist, correspond to manipulating the
sensor observations carefully (by the attacker) as a function of the geometry of the sensing
models and the noise properties so as to induce tampered observations which nonetheless
conform to all physical and sensing constraints. The following result presents important
properties and optimality of the proposed RSMF algorithm (30)–(32).

27
Approved for Public Release; Distribution Unlimited.

Proposition 1 The RSMF procedure outlined above satisfies the following properties:

• The procedure is consistent, i.e., if, in a given time horizon [0, K∆], there is no FDI
attack, then T (k) 6= ∅ for all k = 1, . . . , K. Further, in this case, the set T (k)
exactly corresponds to the set of all feasible system states x̂(k∆) (including the true
but unknown state x(k∆)) that conform to the vehicle kinematics and (non-attacked)
measurements in [0, K∆].

• The procedure is optimal in the class of consistent attack detectors under similar knowl-
edge constraints, i.e., in a given time horizon [0, K∆], any non-zero attack sequence
{bn(k∆)}n,k that is non-detectable by the RSMF procedure is also non-detectable by
any other consistent attack detector under similar knowledge constraints.

• If the noise norm-bound functions kn(·), see (28), are concave, the sets T (k) are convex
for all k.

• If the collective observation matrix H = [H>1 H>2 · · · H>N]>, with > denoting matrix
transpose, has full (row)-rank, the diameter of the set-valued estimation sets T (k) stay
bounded, i.e., there exists a constant c > 0 such that

sup
k

sup
x̂,´̂x∈T (k)

∥∥∥x̂− ´̂x
∥∥∥ ≤ c. (33)

Discussion. Implications of Proposition 1 are briefly described as follows. The consis-
tency shows, in particular, the proposed detector has zero false alarm rate. The optimality
in the class of all consistent detectors is clearly desirable. The convexity of the T (k) for all
k (together with the fact that the sets stay bounded, see the final assertion of Proposition 1)
implies that the detection-estimation step at each k (see (32)) reduces to a convex feasibility
problem [60] and hence, may admit efficient numerical implementations such as by using the
method of alternate projections. Finally, the (uniform) boundedness assertion implies that
as long as the collective sensing model is sufficiently informative (essentially, an observability
condition), the state estimation error (obtained by selecting an arbitrary member of T (k)
as the estimate of x(k∆) at each instant k∆) under no-attack scenarios (respectively in sce-
narios involving detectable attacks) stays bounded at all times (respectively at all times till
attack detection).

Undetectable attacks. Returning to the issue of attack undetectability, as noted ear-
lier, the existence of undetectable attacks (and the set of all undetectable attacks) is, in
general, jointly determined by the sensing models (the Hn matrices) and the noise charac-
teristics. There is an important(sub)class of fundamental undetectable attacks are unde-
tectable even in the limit of zero noise. These attacks are solely determined by the geometry
of the sensing models. There is a rich literature on the characterization of such fundamental
undetectable conditions for general linear time-invariant cyber-physical systems of the form
studied in this article [59], [61–65]. More recently, geometric control techniques have been
employed to characterize FDI attack detection in cyber-physical systems in the presence of
side information and more refined classification of attacks, for instance, characterizing at-
tacks that can be sustained indefinitely without being detected and other related topics such
as quickest detection of attacks (see [66]).

28
Approved for Public Release; Distribution Unlimited.

Figure 11: The demonstration vehicle, Landshark, with four rotation degrees of freedom.
The camera rotates on the vertical and horizontal axes. The turret rotates around the
vertical axis, and the paintball gun rotates around the horizontal axis.

4.9 Multi-Modal Consistency

A data-centric sensor fusion can be adopted to detect multi-modal sensor inconsistency, like
inconsistency between a camera view and the orientation and posture of a robot. Based on
the data received from the sensors, a model of the world is built and compared to the inputs
from a different set of sensors. The model of the world and the inputs from the second of
sensors must be consistent or an alarm would be triggered.

An example of this approach is demonstrated on the Landshark ground vehicle. Specif-
ically, the Landshark is equipped with an auxiliary camera system that is used to detect
inconsistencies in the values returned by the rotational sensors on the Landshark. It is im-
portant to note that, while the images captured by the camera (see details below) may not
be readily linked to the vehicle physical kinematics as in the model-based approach discussed
above, the image data can be compared with other invariants to detect inconsistencies.

The LandShark has four rotation degrees of freedom (shown in Fig. 11): 1) camera
rotations around the horizontal and the vertical rotation axes; 2) turret rotations around the
vertical axis; and 3) paintball gun rotations around the horizontal rotation. The LandShark
has sensors to detect these rotation parameters. The key idea is to check the consistency
between the data provided by the sensors and the images captured by the camera. At each
time step, the rotation parameters returned by the sensors are used to generate cartoon
images of what the camera should capture. The real images are captured by the camera
in the same time step, and used as reference images. The cartoon images are subsequently
compared with these real images to check for consistency. If they are consistent (as in
Fig. 12a and 12b), the sensors are assumed to be reliable. If they are inconsistent, the attack
is flagged (Fig. 12c and 12d).

4.10 Tool Chain and Live Demos

The applicability of the approach discussed in this article was demonstrated on both the
Landshark robot (shown in Fig. 13), a small scale commodity military robot, and an
American-built car. In a series of demonstrations at the end of Phases I and II of the
DARPA HACMS program, the three thrusts of the approach and their inter-dependence

29
Approved for Public Release; Distribution Unlimited.

(a) (b) (c) (d)

Figure 12: Two pairs of examples. Real image (12a) and cartoon image (12b) are consistent,
showing that the sensors return the correct rotation parameters. Real image (12c) and
cartoon image (12d) are inconsistent, showing that there is an attack.

were displayed.
Emergency brake monitor. Starting from a system model, KeYmaera X was used

to generate a monitor that ensures that the car/robot will not hit an obstacle between
the current and subsequent execution of the monitor. In addition, if the assumed model of
the environment no longer fits the observed environment, the monitor initiates an emergency
stop. SPIRAL takes the monitoring expression synthesized and proved correct by KeYmaera
X as input and synthesizes a software implementation that ensures whenever the software
says the monitoring expression evaluates to false the true monitoring expression over the
real numbers would have evaluated to false. Thus, the software implementation is shown to
be conservative. This code is then deployed on the Landshark robot and the American-built
car. Fig. 13 shows the moment when the KeYmarea-derived/SPIRAL-synthesized emergency
monitor initiates an emergency stop of the Landshark robot to avoid hitting the obstacle.

This demonstration showed that a formal proof system, coupled with a method of generat-
ing conservative and efficient software implementation, can be used to generate high-quality
software that can be deployed on an actual production system. However, without ensuring
that the inputs into the system are “reasonable” given the known operating environment, an
adversary can still fool the monitor into performing outside of its operating assumptions by
providing false/spoofed input signals. In the demonstration, the adversary was able to fool
the monitor with false input signals (spoofed GPS that “teleported” the robot to a incorrect
location), resulting in the Landshark running over the cone.

Defense against sensor spoofing. To address this issue, side channel redundancy was
implemented to detect sensor spoofing. Specifically, inputs from the GPS and wheel encoders
on the vehicle were fused statistically to detected when the mean of the difference between
the two input signals deviated beyond a set threshold. These side channel redundancy al-
gorithms were similarly generated by SPIRAL from their mathematical specifications. With
the addition of side channel redundancy to the emergency brake monitor, changes of GPS
values that were inconsistent with the inputs from the wheel encoders were detected. The
presence of unreliable, possibly spoofed, GPS inputs then triggered the emergency brakes,
which stop the Landshark before the problem escalates to the point of causing the vehicle
to crash into an obstacle.

Tool chain. A cloud-hosted commercial grade tool chain with KeYmaera X and SPIRAL
is accessible through a browser-based IDE (shown in Fig. 14). This makes the utilization of

30
Approved for Public Release; Distribution Unlimited.

Figure 13: Scene from the live demonstration of actual code generated by the integrated
approach. Using a SPIRAL generated implementations of a KeYmaera X proven monitor,
and sensor fusion to guard against GPS spoofing, the Landshark robot stopped safely in
front of an obstacle.

side channel redundancy, formal verification, and provably correct code generation accessible
to a broader user base. Using the interface a user can perform a variety of tasks, such as
studying and running examples, modifying existing projects, and building new projects, while
the IDE provides levels of interaction ranging from click-and-run scripts to a command line
window for expert users. Multiple users can log into the same instance for collaborative
sessions, and users and projects are supported by standard scheduling and versioning tools
in the cloud environment. Along with exposing some of the functionality of the core tools,
the interface has many of the general features typical of an IDE, such as context-sensitive
menus, multiple tabs, online help, a text editor with language-specific syntax highlighting,
and file downloads.

In addition to a stand-alone tool chain, current efforts are underway to incorporate the
tool chain with the widely-used production tool Eclipse [67]. Libraries of high assurance
building blocks proven and generated with the tool chain are also being built for widely-used
commercial tools such as Simulink [68]. These efforts allow control engineers to reap the
high assurance benefits provided by the tool chain, and preserve the productivity of the
engineering team.

5 Conclusion

This final technical report provides an overview of the High Assurance SPIRAL project,
which is part of the DARPA HACMS program. The project brings together formal verifi-
cation, code synthesis, and compilation aspects to provide end-to-end guarantees for con-

31
Approved for Public Release; Distribution Unlimited.

Figure 14: The cloud computing interface to the integrated KeYmaera X and SPIRAL tool
chain. The model and code generation of the dynamic window monitor is shown.

trol algorithms and safety monitors deployed on cyber-physical systems such as unmanned
ground and air vehicles and state-of-the-art cars. In addition, the project leverages robotics
and signal processing algorithms to detect attacks and establish trust in the available sen-
sor readings. Together, the combined approach provides systematic and provable methods
for designing controllers for specified desirable behaviors, generating implementations of the
controllers with guarantees of correctness in the presence of floating point errors, and tech-
niques and algorithms for detecting inconsistencies that may indicate the presence of an
attacker.

This approach is orthogonal to, and builds upon traditional IT security defenses such as
communication encryption and access controls. Most traditional security-in-depth techniques
focuses on securing only the infrastructure and applications to ensure confidentiality, integrity
and availability of the system. The presented approach provides added assurance in the form
of guaranteed and provable behaviors, the absence of unintended errors in programming, and
higher trust-worthiness of the sensor inputs.

This project also demonstrates that formal method techniques can be used to generate
production-quality code of significant complexity that can be deployed on, and used to op-
erate actual cyber-physical systems. The feasibility and power of the presented approach
was demonstrated at the final Phase I and Phase II demonstrations of the DARPA HACMS
programs, where the team hardened the Landshark robot and an American built car to
demonstrate the detection of GPS spoofing attacks and guaranteed passive safety. All im-
plementations of algorithms discussed in this article were generated using a cloud-based tool
front-end that integrates the KeYmaera X theorem prover and the SPIRAL code generator.
The resulting packaging of formal methods and side channel redundancy methods in a user
friendly format shows a way forward to deploy these techniques on a larger scale for critical

32
Approved for Public Release; Distribution Unlimited.

cyber-physical systems that require an extra high level of assurance and safety guarantees.

33
Approved for Public Release; Distribution Unlimited.

References

[1] N. Fulton, S. Mitsch, J. Quesel, M. Völp, and A. Platzer, “Keymaera X: an axiomatic
tactical theorem prover for hybrid systems,” in Automated Deduction - CADE-25 -
25th International Conference on Automated Deduction, Berlin, Germany, August 1-7,
2015, Proceedings (A. P. Felty and A. Middeldorp, eds.), vol. 9195 of LNCS, pp. 527–538,
Springer, 2015.

[2] A. Platzer, “Logics of dynamical systems,” in LICS, pp. 13–24, IEEE, 2012.

[3] S. Mitsch, K. Ghorbal, and A. Platzer, “On provably safe obstacle avoidance for au-
tonomous robotic ground vehicles,” in Robotics: Science and Systems (P. Newman,
D. Fox, and D. Hsu, eds.), 2013.

[4] S. Mitsch and A. Platzer, “ModelPlex: Verified runtime validation of verified cyber-
physical system models,” in Runtime Verification - 5th International Conference, RV
2014, Toronto, ON, Canada, September 22-25, 2014. Proceedings (B. Bonakdarpour
and S. A. Smolka, eds.), vol. 8734 of LNCS, pp. 199–214, Springer, 2014.

[5] S. Mitsch and A. Platzer, “ModelPlex: Verified runtime validation of verified cyber-
physical system models,” Form. Methods Syst. Des., 2016. Special issue of selected
papers from RV’14.

[6] D. Seto, B. Krogh, L. Sha, and A. Chutinan, “The Simplex architecture for safe online
control system upgrades,” in American Control Conference, pp. 3504–3508, 1998.

[7] M. Püschel, J. M. F. Moura, J. Johnson, D. Padua, M. Veloso, B. Singer, J. Xiong,
F. Franchetti, A. Gacic, Y. Voronenko, K. Chen, R. W. Johnson, and N. Rizzolo,
“SPIRAL: Code generation for DSP transforms,” Proceedings of the IEEE, special issue
on “Program Generation, Optimization, and Adaptation”, vol. 93, no. 2, pp. 232– 275,
2005.

[8] F. Franchetti, M. Püschel, Y. Voronenko, S. Chellappa, and J. M. F. Moura, “Discrete
Fourier transform on multicore,” IEEE Signal Processing Magazine, special issue on
“Signal Processing on Platforms with Multiple Cores”, vol. 26, no. 6, pp. 90–102, 2009.

[9] M. Püschel, F. Franchetti, and Y. Voronenko, Encyclopedia of Parallel Computing,
ch. Spiral. Springer, 2011.

[10] R. E. Moore, R. B. Kearfott, and M. J. Cloud, Introduction to Interval Analysis.
Philadelphia, PA, USA: Society for Industrial and Applied Mathematics, 2009.

[11] H. V. Koops and F. Franchetti, “An ensemble technique for estimating vehicle speed
and geer position from acoustic data,” in International Conference on Digital Signal
Processing (DSP), 2015.

[12] V. Zaliva and F. Franchetti, “Barometric and GPS altitude sensor fusion,” in IEEE
International Conference on Acoustics, Speech and Signal Processing, ICASSP 2014,
Florence, Italy, May 4-9, 2014, pp. 7525–7529, 2014.

34
Approved for Public Release; Distribution Unlimited.

[13] R. Alur, “Formal verification of hybrid systems,” in EMSOFT (S. Chakraborty, A. Jer-
raya, S. K. Baruah, and S. Fischmeister, eds.), pp. 273–278, ACM, 2011.

[14] T. A. Henzinger, “The theory of hybrid automata,” in LICS, pp. 278–292, IEEE Com-
puter Society, 1996.

[15] J. M. Davoren and A. Nerode, “Logics for hybrid systems,” IEEE, vol. 88, no. 7, pp. 985–
1010, 2000.

[16] R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P.-H. Ho, X. Nicollin, A. Oliv-
ero, J. Sifakis, and S. Yovine, “The algorithmic analysis of hybrid systems,” Theor.
Comput. Sci., vol. 138, no. 1, pp. 3–34, 1995.

[17] A. Platzer, “Differential dynamic logic for verifying parametric hybrid systems.,” in
TABLEAUX (N. Olivetti, ed.), vol. 4548 of LNCS, pp. 216–232, Springer, 2007.

[18] A. Platzer, “Differential dynamic logic for hybrid systems.,” J. Autom. Reas., vol. 41,
no. 2, pp. 143–189, 2008.

[19] A. Platzer, Logical Analysis of Hybrid Systems: Proving Theorems for Complex Dynam-
ics. Heidelberg: Springer, 2010.

[20] A. Platzer, “The complete proof theory of hybrid systems,” in LICS, pp. 541–550, IEEE,
2012.

[21] A. Platzer, “A uniform substitution calculus for differential dynamic logic,” in CADE
(A. P. Felty and A. Middeldorp, eds.), vol. 9195 of LNCS, pp. 467–481, Springer, 2015.

[22] A. Sogokon, K. Ghorbal, P. B. Jackson, and A. Platzer, “A method for invariant gen-
eration for polynomial continuous systems,” in VMCAI (B. Jobstmann and K. R. M.
Leino, eds.), vol. 9583 of LNCS, pp. 268–288, Springer, 2016.

[23] K. Ghorbal, A. Sogokon, and A. Platzer, “A hierarchy of proof rules for checking positive
invariance of algebraic and semi-algebraic sets,” Computer Languages, Systems and
Structures, 2015.

[24] D. Fox, W. Burgard, and S. Thrun, “The dynamic window approach to collision avoid-
ance,” IEEE Robot. Automat. Mag., vol. 4, no. 1, pp. 23–33, 1997.

[25] S. Mitsch, J.-D. Quesel, and A. Platzer, “From safety to guilty and from liveness to
niceness,” in 5th Workshop on Formal Methods for Robotics and Automation, 2014.

[26] S. Mitsch, K. Ghorbal, D. Vogelbacher, and A. Platzer, “Formal verification of obstacle
avoidance and navigation of ground robots,” CoRR, vol. abs/1605.00604, 2016.

[27] G. E. Collins, “Hauptvortrag: Quantifier elimination for real closed fields by cylindrical
algebraic decomposition,” in Automata Theory and Formal Languages, 2nd GI Confer-
ence, Kaiserslautern, May 20-23, 1975 (H. Barkhage, ed.), vol. 33 of Lecture Notes in
Computer Science, pp. 134–183, Springer, 1975.

35
Approved for Public Release; Distribution Unlimited.

[28] G. E. Collins and H. Hong, “Partial cylindrical algebraic decomposition for quantifier
elimination,” J. Symb. Comput., vol. 12, no. 3, pp. 299–328, 1991.

[29] A. Platzer and J.-D. Quesel, “KeYmaera: A hybrid theorem prover for hybrid systems.,”
in IJCAR (A. Armando, P. Baumgartner, and G. Dowek, eds.), vol. 5195 of LNCS,
pp. 171–178, Springer, 2008.

[30] S. M. Loos, A. Platzer, and L. Nistor, “Adaptive cruise control: Hybrid, distributed,
and now formally verified,” in FM (M. Butler and W. Schulte, eds.), vol. 6664 of LNCS,
pp. 42–56, Springer, 2011.

[31] S. Mitsch, S. M. Loos, and A. Platzer, “Towards formal verification of freeway traffic
control,” in ICCPS (C. Lu, ed.), pp. 171–180, IEEE, 2012.

[32] A. Platzer and E. M. Clarke, “Formal verification of curved flight collision avoidance
maneuvers: A case study,” in FM (A. Cavalcanti and D. Dams, eds.), vol. 5850 of LNCS,
pp. 547–562, Springer, 2009.

[33] J.-B. Jeannin, K. Ghorbal, Y. Kouskoulas, R. Gardner, A. Schmidt, and E. Z. A. Platzer,
“A formally verified hybrid system for the next-generation airborne collision avoidance
system,” in TACAS (C. Baier and C. Tinelli, eds.), LNCS, Springer, 2015.

[34] A. Platzer and J.-D. Quesel, “European Train Control System: A case study in formal
verification,” in ICFEM (K. Breitman and A. Cavalcanti, eds.), vol. 5885 of LNCS,
pp. 246–265, Springer, 2009.

[35] Y. Kouskoulas, D. W. Renshaw, A. Platzer, and P. Kazanzides, “Certifying the safe
design of a virtual fixture control algorithm for a surgical robot,” in HSCC (C. Belta
and F. Ivancic, eds.), pp. 263–272, ACM, 2013.

[36] N. Aréchiga, S. M. Loos, A. Platzer, and B. H. Krogh, “Using theorem provers to
guarantee closed-loop system properties,” in ACC (D. Tilbury, ed.), pp. 3573–3580,
2012.

[37] J.-D. Quesel, S. Mitsch, S. Loos, N. Aréchiga, and A. Platzer, “How to model and prove
hybrid systems with KeYmaera: A tutorial on safety,” STTT, 2015.

[38] M. Leucker and C. Schallhart, “A brief account of runtime verification,” J. Log. Algebr.
Program., vol. 78, no. 5, pp. 293–303, 2009.

[39] A. N. Srivastava and J. Schumann, “Software health management: a necessity for safety
critical systems,” ISSE, vol. 9, no. 4, pp. 219–233, 2013.

[40] M. G. Safonov and T.-C. Tsao, “The unfalsified control concept and learning,” IEEE
Transactions on Automatic Control, vol. 42, pp. 843–847, Jun 1997.

[41] N. Dershowitz and D. A. Plaisted, “Rewriting,” in Handbook of Automated Reasoning
(A. Robinson and A. Voronkov, eds.), vol. 1, ch. 9, pp. 535–610, Elsevier, 2001.

36
Approved for Public Release; Distribution Unlimited.

[42] J. W. Klop, “Handbook of logic in computer science (vol. 2),” ch. Term Rewriting
Systems, pp. 1–116, 1992.

[43] X. Leroy, “Formal verification of a realistic compiler,” Communications of the ACM,
vol. 52, no. 7, pp. 107–115, 2009.

[44] J. R. Johnson, R. W. Johnson, D. Rodriguez, and R. Tolimieri, “A methodology for
designing, modifying, and implementing Fourier transform algorithms on various archi-
tectures,” Circuits, Systems, and Signal Processing, vol. 9, no. 4, pp. 449–500, 1990.

[45] F. Franchetti, F. de Mesmay, D. McFarlin, and M. Püschel, “Operator language: A
program generation framework for fast kernels,” in IFIP Working Conference on Do-
main Specific Languages (DSL WC), vol. 5658 of Lecture Notes in Computer Science,
pp. 385–410, Springer, 2009.

[46] M. Schönert et al., GAP – Groups, Algorithms, and Programming – version 3 release
4 patchlevel 4. Lehrstuhl D für Mathematik, Rheinisch Westfälische Technische Hoch-
schule, Aachen, Germany, 1997.

[47] T. Nipkow, M. Wenzel, and L. C. Paulson, Isabelle/HOL: a proof assistant for higher-
order logic. Berlin, Heidelberg: Springer-Verlag, 2002.

[48] “The coq proof assistant reference manual,” 2009.

[49] G. Rosu and T. F. Serbanuta, “An overview of the k semantic framework,” The Journal
of Logic and Algebraic Programming, vol. 79, no. 6, pp. 397 – 434, 2010. Membrane
computing and programming.

[50] D. Nguyen, A. Lenharth, and K. Pingali, “Deterministic galois: On-demand, portable
and parameterless,” ACM SIGPLAN Notices, vol. 49, no. 4, pp. 499–512, 2014.

[51] S. Y. Pothukuchi, “A comparative study of shared memory parallelism on regular and
irregular data structures using OpenMP and Galois. ,” Master’s thesis, University of
Illinois at Urbana-Champaign.

[52] T. G. Mattson, R. Cledat, V. Cavé, V. Sarkar, Z. Budimlić, S. Chatterjee, J. Fryman,
I. Ganev, R. Knauerhase, M. Lee, et al., “The open community runtime: A runtime sys-
tem for extreme scale computing,” in High Performance Extreme Computing Conference
(HPEC), 2016 IEEE, pp. 1–7, IEEE, 2016.

[53] C.-C. Yang, Hierarchically Tiled Arrays as High-Level Programming Abstractions for
Dataflow Runtime Systems. . PhD thesis, University of Illinois at Urbana-Champaign,
2017.

[54] M. Veloso, J. Biswas, B. Coltin, S. Rosenthal, and R. Ventura, “Cobots: Collaborative
robots servicing multi-floor buildings,” in International Conference on Intelligent Robots
and Systems (IROS), October 2012.

37
Approved for Public Release; Distribution Unlimited.

[55] J. P. Mendoza, M. Veloso, and R. Simmons, “Focused optimization for online detection
of anomalous regions,” in Proceedings of the International Conference on Robotics and
Automation (ICRA), (Hong Kong, China), June 2014.

[56] A. A. Cárdenas, S. Amin, and S. Sastry, “Research challenges for the security of control
systems,” in Proceedings of the 3rd Conference on Hot Topics in Security, (San José,
CA), pp. 1–6, July 2008.

[57] A. A. Cárdenas, S. Amin, Z. Lin, Y. H. and. C. Huang, and S. Sastry, “Attacks against
process control systems: Risk assessment, detection, and response,” in Proceedings of
the 6th ACM Symposium on Information, Computer and Communications Security,
(Hong Kong), pp. 355–366, Mar. 2011.

[58] K. Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno, S. Checkoway, D. McCoy,
B. Kantor, D. Anderson, H. Shacham, and S. Savage, “Experimental security analysis
of a modern automobile,” in Proceedings of the 2010 IEEE Symposium on Security and
Privacy, (Oakland, CA), pp. 447–462, May 2010.

[59] A. Teixeira, D. Pérez, H. Sandberg, and K. H. Johansson, “Attack models and scenarios
for networked control systems,” in Proceedings of the 1st ACM International Conference
on High Confidence Networked Systems, (Beijing, China), pp. 55–64, Apr. 2012.

[60] H. H. Bauschke and J. M. Borwein, “On projection algorithms for solving convex feasi-
bility problems,” SIAM review, vol. 38, no. 3, pp. 367–426, 1996.

[61] F. Pasqualetti, F. Dorfler, and F. Bullo, “Attack detection and identification in cyber-
physical systems,” IEEE Transactions on Automatic Control, vol. 58, pp. 2715–2729,
Nov. 2013.

[62] Y. Mo and B. Sinopoli, “Integrity attacks on cyber-physical systems,” in Proceedings of
the 1st ACM International Conference on High Confidence Networked Systems, (Beijing,
China), pp. 47–54, Apr. 2012.

[63] Y. Mo and B. Sinopoli, “False data injection attacks in control systems,” in Proceedings
of the 1st Workshop on Secure Control Systems, (Stockholm, Sweden), pp. 56–62, Apr.
2010.

[64] A. Teixeira, I. Shames, H. Sandberg, and K. H. Johansson, “Revealing stealthy attacks
in control systems,” in Proceedings of the 50th Annual Allerton Conference, (Monticello,
IL), pp. 1806–1813, Oct. 2012.

[65] Y. Chen, S. Kar, and J. M. F. Moura, “Cyber-physical systems: Dynamic sensor at-
tacks and strong observability,” in Proceedings of the 40th International Conference on
Acoustics, Speech and Signal Processing, (Brisbane, Australia), pp. 1752–1756, Apr.
2015.

38
Approved for Public Release; Distribution Unlimited.

[66] Y. Chen, S. Kar, and J. M. F. Moura, “Dynamic attack detection in cyber-physical
systems with side initial state information.” IEEE Transactions on Automatic Con-
trol. Submitted. Initial Submission: Mar. 2015. Revised: Dec. 2015. [Online]: http:

//arxiv.org/pdf/1503.07125v1.pdf, Mar. 2015.

[67] “Eclipse ide for java developer.” http://www.eclipse.org/downloads/packages/eclipse-
ide-java-developers/mars2. Accessed: 2016-06-01.

[68] “Simulink.” http://www.mathworks.com/products/simulink/?
requestedDomain=www.mathworks.com.

Accessed: 2016-06-01.

39
Approved for Public Release; Distribution Unlimited.

http://arxiv.org/pdf/1503.07125v1.pdf
http://arxiv.org/pdf/1503.07125v1.pdf

40

List of Symbols, Abbreviations and Acronyms

AMAS Autonomous Mobility Applique System

CPS Cyber‐physical Systems

dL Differential Dynamic Logic

FDI False Data Injection

GPS Global Positioning System

HACMS High Assurance Cyber Military Systems

HCOL Hybrid Control Operator Language

IMU Inertial Measurement Unit

OCR Open Community Runtime

ODE Ordinary Differential Equation

RSMF Recursive Set Membership Filtering

SIMD Single Instruction Multiple Data

UGV Unmanned Ground Vehicle

Approved for Public Rel
eas

e; Distribution Unlimited.
Approved for Public Release; Distribution Unlimited.

1298219308C
Rectangle

	 Summary
	Major Achievements

	Introduction
	Methods and Procedures
	Results and Discussion
	Proving Controllers Correct–And Catching Them If Not
	Collision Avoidance Model
	Synthesized Monitor Conditions
	Generating Code From a Mathematical Specification
	Compiling to Binary
	Anomaly Detection as Statistical Deviation from Nominal Behavior
	Nominal models from redundancy
	Detecting Sensor Inconsistencies and Secure State Estimation
	Multi-Modal Consistency
	Tool Chain and Live Demos

	Conclusion

