

ARL-TR-8199 • Nov 2017

US Army Research Laboratory and University of Notre Dame Distributed Sensing: Hardware Overview

by Roger P Cutitta, Charles R Dietlein, Arthur Harrison, and Russell Harris

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

Citation of manufacturer's or trade names does not constitute an official endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

ARL-TR-8199 • Nov 2017

US Army Research Laboratory and University of Notre Dame Distributed Sensing: Hardware Overview

by Roger P Cutitta, Charles R Dietlein, and Arthur Harrison Sensor and Electron Devices Directorate, ARL

Russell Harris General Technical Services LLC, Adelphi, MD

					Form Approved
	REPORT D	OCUMENTATIO	IN PAGE		OMB No. 0704-0188
Public reporting burden data needed, and comple burden, to Department o Respondents should be a valid OMB control num PLEASE DO NOT	for this collection of informat ting and reviewing the collect f Defense, Washington Headq ware that notwithstanding any per. RETURN YOUR FORM	ion is estimated to average 1 ho ion information. Send commen quarters Services, Directorate fo y other provision of law, no per A TO THE ABOVE ADD	ur per response, including th ts regarding this burden estir r Information Operations and son shall be subject to any pe RESS.	e time for reviewing in nate or any other aspe 1 Reports (0704-0188) malty for failing to co	nstructions, searching existing data sources, gathering and maintaining the ct of this collection of information, including suggestions for reducing the 1, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, mply with a collection of information if it does not display a currently
1. REPORT DATE (DD-MM-YYYY)	2. REPORT TYPE			3. DATES COVERED (From - To)
October 2017		Technical Report			November 2016–June 2017
4. TITLE AND SUB	TITLE				5a. CONTRACT NUMBER
US Army Rese Sensing: Hardy	earch Laboratory a ware Overview	and University of N	lotre Dame Distri	buted	5b. GRANT NUMBER
					5c. PROGRAM ELEMENT NUMBER
6. AUTHOR(S) Roger P Cutitta	a, Charles R Dieth	ein, Arthur Harriso	n, and Russell Ha	arris	5d. PROJECT NUMBER
					5e. TASK NUMBER
					5f. WORK UNIT NUMBER
7. PERFORMING C	ORGANIZATION NAME	(S) AND ADDRESS(ES)			8. PERFORMING ORGANIZATION REPORT NUMBER
US Army Research Laboratory Sensors and Electron Devices Directorate (ATTN: 1 2800 Powder Mill Road Adelphi MD 20783-1138			RDRL-SER-W)		ARL-TR-8199
9. SPONSORING/N	MONITORING AGENCY	(NAME(S) AND ADDRE	SS(ES)		10. SPONSOR/MONITOR'S ACRONYM(S)
					11. SPONSOR/MONITOR'S REPORT NUMBER(S)
12. DISTRIBUTION	I/AVAILABILITY STATE	MENT			
Approved for p	oublic release; dist	tribution is unlimite	ed.		
13. SUPPLEMENT	ARY NOTES				
14. ABSTRACT					
A distributed c agreement betw developed in su defined sensors the same funda and ground-tru sensors, emitte	ollaborative sense ween the US Army upport of this rese s to perform detec umental hardware th location to the rs, and the MANE	or and transmitter a y Research Laborat arch effort was des tion and geolocatic as the sensor modu distributed collabo ET architecture to b	rchitecture was d cory (ARL) and th igned to provide on of a signal sound les. The transmit rative network of be used in conjunc	eveloped in s a University a mobile ad h rce of interest ter modules v sensor modu ction with UN	upport of an ongoing collaborative of Notre Dame (UND). The hardware toc network (MANET) of diverse software- toc. A transmitter module was designed using would provide a software-defined waveform les. ARL has designed and fabricated the ID's custom software-defined sensors.
15. SUBJECT TERM	ıs				
collaborative, o	distributed, sensin	g, software-defined	l radio, geolocatio	on	
16. SECURITY CLA	SSIFICATION OF:		17. LIMITATION OF	18. NUMBER OF	19a. NAME OF RESPONSIBLE PERSON Roger P Cutitta
a. REPORT b. ABSTRACT c. THIS PAGE			ABSTRACT	PAGES	19b. TELEPHONE NUMBER (Include area code)
Unclassified	Unclassified	Unclassified	UU	20	(301) 394-0931

Standard Form 298 (Rev. 8/98) Prescribed by ANSI Std. Z39.18

Contents

List	of Fi	gures	iv
List	of Ta	bles	iv
1.	Sun	nmary	1
2.	Intr	oduction	1
3.	Syst	em Descriptions	1
	3.1	MANET Back-end	2
	3.2	Source Hardware	4
	3.3	ARL Sensor Hardware Configuration	8
4.	Con	clusion	9
Арр	oendi Sup	x. US Army Research Laboratory Custom Step-down Power ply Schematic	11
List	of S	ymbols, Abbreviations, and Acronyms	13
Dist	ribut	ion List	14

List of Figures

Fig. 1	Sensor and signal source experimental geolocation concept-of- operation example
Fig. 2	Common ARL SDSS module antenna, power, and communication port locations
Fig. 3	Node exterior depicting the SDSS assembly including the GPS puck antenna, 2.4-GHz MANET antenna, and 5.8-GHz SDR antenna
Fig. 4	Node exterior depicting the 2-pin power connector and auxiliary Ethernet port
Fig. 5	Functional MANET back-end block diagram
Fig. 6	Custom ARL node power supply implementation (see the Appendix for the schematic)
Fig. 7	Functional target node block diagram 4
Fig. 8	MANET radio installed in the top half with the ARL buck switching power supply
Fig. 9	SBC, SDR, and power amplifier installed in the bottom half
Fig. 10	Output amplifier simulated schematic
Fig. 11	Simulated S-parameters of the 1-W power amplifier used in the target node hardware assembly
Fig. 12	Amplifier simulated schematic with 3-dB broadband pi attenuator at the input of the 1-W power amplifier
Fig. 13	Simulated S-parameters of the 1-W power amplifier with 3-dB pi attenuator at the input. The attenuator was added to increase the possible impedance mismatch between the output of the SDR and the input of the power amplifier
Fig. 14	Functional sensor module block diagram

List of Tables

Table 1	Source module generic bill of materials	7
Table 2	Sensor module generic bill of materials	8

1. Summary

A research collaboration between the University of Notre Dame (UND) and the US Army Research Laboratory (ARL) has established a need for a testbed of multiple software-defined sensors and sources (SDSSs). ARL has developed a common back-end architecture to give researchers the ability to experiment and demonstrate different commercially available SDSS platforms, within a single network, to geolocate emitters. The ARL SDSS modules were successfully used at a field test by UND and ARL. The first field test using the ARL-designed back-end sensor and signal source hardware was successfully conducted at the UND's White Field test site 26–28 June 2017. This report outlines the ARL sensor and signal source node hardware design that was implemented.

2. Introduction

Two SDSS hardware personalities were implemented utilizing a common hardware architecture. The SDSS hardware was configured based on the personality it was to inherit for the experiments, either a sensor or a source. Commercial off-the-shelf (COTS) modules were integrated into the SDSS architecture. This enables rapid implementation and reconfiguration based on the desired SDSS module functionality. Minimization of size, weight, and power was a major goal during the design and implementation phases.

3. System Descriptions

The SDSS module hardware was implemented to enable rapid experimentation in spectrum sensing and geolocation research. A common network back-end, to connect and administrate each of the nodes in the network, was considered the first priority for the testbed development. The network enables the nodes to communicate with one another during experimentation.

A COTS mobile ad hoc network (MANET) system was chosen to allow flexibility of adding or subtracting SDSS nodes from the network and experiment. The MANET automatically optimizes routing among participating network nodes.

Figure 1 depicts a simple high-level example of the networked distributed sensor, target, and the data processing and network control (DPNC) module experiment that could detect and geolocate the emitting target module. Each of the sensor modules report back a received signal strength indicator (RSSI), which is representative of the detection range of the module or module cluster, to the DPNC.

The DPNC then processes each reported RSSI and the reporting module's location to determine the targets geolocation.

Fig. 1 Sensor and signal source experimental geolocation concept-of-operation example

3.1 MANET Back-end

ARL provided UND with 15 nodes with the integrated MANET back-end and internal power conditioning only. This allowed UND researchers to integrate their own software-defined radio (SDR) of choice while leveraging the ARL SDSS architecture and MANET. Figures. 2–4 show the outline of the enclosure and location of external interfaces. The block diagram, shown in Fig. 5, shows the MANET hardware and power conditioning. Figure 6 shows the custom ARL node power supply implementation.

Fig. 2 Common ARL SDSS module antenna, power, and communication port locations

Fig. 3 Node exterior depicting the SDSS assembly including the GPS puck antenna, 2.4-GHz MANET antenna, and 5.8-GHz SDR antenna

Fig. 4 Node exterior depicting the 2-pin power connector and auxiliary Ethernet port

Fig. 5 Functional MANET back-end block diagram

Fig. 6 Custom ARL node power supply implementation (see the Appendix for the schematic)

3.2 Source Hardware

The SDSS configured as a source (Fig. 7) was used to emit several test signals for the sensors detect and geolocate. The transmitted test waveform was controlled via the MANET, allowing the test coordinator the ability to quickly execute their test plan without leaving the command and control stations.

Fig. 7 Functional target node block diagram

The hardware consists of the MANET radio (Fig. 8) for communication between the test site controller located at the base node as well as to provide geolocation ground truth for the transmitter's location. A single board computer (SBC) serves as the interface between the test coordinator and the SDR (Fig. 9).

Fig. 8 MANET radio installed in the top half with the ARL buck switching power supply

Fig. 9 SBC, SDR, and power amplifier installed in the bottom half

A medium-power (1-W) amplifier (Fig. 10) was used to provide adequate signal strength at the experiment test site. The amplifier used was chosen to operate at the 5.8-GHz ISM (industrial, scientific, and medical) radio band. As Fig. 11 shows, the simulated amplifier gain extends past our desired frequency of interest. Fig. 10 shows the simulated schematic that was used to generate the Fig. 11 data. An SMA (subminiature version A) connectorized 3-dB attenuator was placed at the input of the power amplifier to improve the match between the power amplifier and SDR (Fig 12). Figure 13 shows improvement to the power amplifier's S₁₁ with the addition of the attenuator. The loss in input power to the power amplifier was compensated in the SDR without introducing any impedance degradation between the devices. Table 1 lists the source module generic bill of materials.

Fig. 10 Output amplifier simulated schematic

Fig. 11 Simulated S-parameters of the 1-W power amplifier used in the target node hardware assembly

Fig. 12 Amplifier simulated schematic with 3-dB broadband pi attenuator at the input of the 1-W power amplifier

Fig. 13 Simulated S-parameters of the 1-W power amplifier with 3-dB pi attenuator at the input. The attenuator was added to increase the possible impedance mismatch between the output of the SDR and the input of the power amplifier.

Line item	Quantity	Description
1	1	MANET radio
2	1	MANET radio Ethernet adapter
3	1	SBC
4	1	SDR
5	1	1-W RF amplifier
6	1	5.8-GHz dipole transmit antenna
7	1	GPS cable
8	1	2.4-GHz dipole MANET communications antenna
9	1	MANET GPS antenna
10	1	Ethernet bulkhead
11	1	Power adapter
12	1	Power wall adapter
13	1	Power 12-V cable
14	1	Portable battery
15	1	N bulkhead to MCX (micro coax) pigtail
16	1	ARL switching buck power supply
17	1	ARL MANET power supply cable assembly
18	1	11- \times 6- \times 3-inch (length \times width \times height) enclosure

 Table 1
 Source module generic bill of materials

3.3 ARL Sensor Hardware Configuration

The SDSS module configured as a sensor (Fig. 14) consists of the same functional hardware components but without the power amplifier. The MANET, power supply, and SBC hardware were installed identically to the emitter modules, allowing easier fabrication of the SDSS nodes. These modules were used to detect and geolocate the emitters during the experiment. Table 2 lists the sensor module generic bill of materials.

Fig. 14 Functional sensor module block diagram

Table 2	Sensor module generic bill of materials	

Line item	Quantity	Description
1	1	MANET radio
2	1	MANET radio Ethernet adapter
3	1	SBC
4	1	SDR
5	1	1-W RF amplifier
6	1	5.8-GHz dipole transmit antenna
7	1	GPS cable
8	1	2.4-GHz dipole MANET communications antenna
9	1	MANET GPS antenna
10	1	Ethernet bulkhead
11	1	Power adapter
12	1	Power wall adapter
13	1	Power 12-V cable

Line item	Quantity	Description
14	1	Portable battery
15	1	N bulkhead to MCX pigtail
16	1	ARL switching buck power supply
17	1	ARL MANET power supply cable assembly
18	1	11- \times 6- \times 3-inch (length \times width \times height) enclosure

Table 2 Sensor module generic bill of materials (continued)

4. Conclusion

The SDSS module hardware and testbed has been successfully fabricated and used. These modules provided the required testbed to support the collaborative research effort between ARL and UND. This effort resulted in 2 ARL emitter modules, 4 ARL sensor nodes, and 15 UND sensor modules being fabricated and integrated in a field experiment at UND's White Field test site. The common hardware architecture described provides a unique dynamic testbed for further distributed collaborative research efforts using a variety of different sensors and sources. INTENTIONALLY LEFT BLANK.

Appendix. US Army Research Laboratory Custom Step-down Power Supply Schematic

List of Symbols, Abbreviations, and Acronyms

ARL	US Army Research Laboratory
COTS	commercial off the shelf
DPNC	data processing and network control
GPS	Global Positioning System
ISM	industrial, scientific, and medical
MANET	mesh ad hoc network
MCX	micro coax
RF	radio frequency
RSSI	received signal strength indicator
SBC	single board computer
SDR	software-defined radio
SDSS	software-defined sensors and sources
SMA	subminiature version A
UND	University of Notre Dame

1	DEFENSE TECHNICAL
(PDF)	INFORMATION CTR
	DTIC OCA

2 DIR ARL

- (PDF) IMAL HRA RECORDS MGMT RDRL DCL TECH LIB
- 1 GOVT PRINTG OFC (PDF) A MALHOTRA

2 DIR ARL

(PDF) RDRL SER W R CUTITTA C DIETLEIN