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1. Introduction 

Swarms of cooperating agents exhibit advantages over a comparable group of 
solitary individuals. One advantage is the ability for swarm agents to localize 
relative to the group, using spatial relationships among many agents to achieve 
accurate relative position information.1 This is particularly important in global 
positioning system (GPS)-denied environments where there are limited options for 
positioning.2 Swarm relative localization has many applications, such as location-
aware networking protocols,3 collision avoidance,4 formation flying,5 and patterned 
weapon delivery.6 

One method to achieve swarm localization is through estimating agent positions 
from noisy range measurements between agents. A key design parameter in such a 
localization scheme is the agents’ estimated position accuracy. This accuracy is not 
solely based on the quality of the range measurements. Swarm geometry plays an 
important role in localization error.7 The relationship between the agent’s geometry 
and localization error is called dilution of precision (DOP) and is commonly used 
in GPS error characterization. The GPS satellite constellations were carefully 
constructed to limit the amount of DOP experienced by GPS receivers. A similar 
DOP metric to relate swarm geometry to localization error is needed for swarm 
system design and error prediction. 

Although the GPS DOP metric is a good starting point when considering a swarm 
DOP metric, GPS DOP cannot be directly applied to swarm localization for 3 
reasons. First, GPS uses time-of-flight (TOF) ranging, which requires the receiver’s 
clock bias to be factored into the DOP measurements. Typical swarm range 
measurements use two-way ranging (TWR), which is independent of clock bias.8 
Second, GPS satellites have known absolute positions that are used to determine 
the receiver’s location. Thus, a single DOP value characterizes the quality of 
satellites’ geometry with respect to the receiver. In swarm relative localization, all 
of the agents’ positions are unknown, and their locations must be solved 
collectively, forcing us to consider the geometry of the swarm with respect to each 
agent. Third, since the absolute positions of the satellites are known, the absolute 
position of the receiver can also be found. This makes measuring the receiver’s 
position error straightforward. In contrast, localization of a swarm is relative, with 
no absolute position with which to measure precision. As we will see, this can make 
the relationship between DOP and position error problematic. 
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Before developing a DOP for relative swarm localization, the general concept of 
DOP will be presented, followed by an explanation of GPS localization and DOP. 
GPS is an example of localization using TOF ranging with anchors. As the first step 
in developing a DOP metric for swarms, TWR localization and DOP with anchors 
will be derived. This DOP metric will then be applied to swarm relative localization 
without anchors, and its utility will be analyzed through a few example cases. 
Finally, a simple example application of DOP relating to swarm system design will 
be demonstrated. 

2. GPS Localization and DOP 

2.1 GPS Localization 

GPS uses TOF ranging between satellites at known positions and the GPS receiver. 
To generalize, the satellites and receiver will be referred to as the anchors and agent, 
respectively. The GPS range equation is9 

 𝑝𝑝′ = 𝑑𝑑 + 𝑐𝑐(𝑑𝑑𝑡𝑡𝑥𝑥 − 𝑑𝑑𝑡𝑡𝑎𝑎) + 𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 𝑒𝑒′, (1) 

where 𝑑𝑑 is the distance from the agent to the anchor, 𝑑𝑑𝑡𝑡𝑥𝑥 and 𝑑𝑑𝑑𝑑𝑎𝑎 are the clock 
offsets of the agent and anchors, respectively, 𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖 and 𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 are the distance biases 
due to the ionosphere and troposphere, 𝑒𝑒′ is the noise error, and 𝑝𝑝′ is the 
uncorrected pseudorange. The term pseudorange is used because of the additional 
distances included in 𝑝𝑝′ aside from the actual range measurement. Taking into 
account 𝑑𝑑𝑡𝑡𝑎𝑎, 𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖, and 𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 corrections made by the GPS model, the corrected 
pseudorange is 

 𝑝𝑝 = 𝑑𝑑 + 𝑐𝑐(𝑑𝑑𝑡𝑡𝑥𝑥) + 𝑒𝑒, (2) 

leaving only agent’s clock offset 𝑐𝑐(𝑑𝑑𝑡𝑡𝑥𝑥) as an additional distance to the geometric 
range. The error for the corrected pseudorange, 𝑒𝑒, now also includes the modeling 
errors of the corrected terms. Given 𝑛𝑛 anchors with positions 𝒂𝒂𝑖𝑖 ∈ ℝ3 for 1 ≤ 𝑖𝑖 ≤
𝑛𝑛, one agent at estimated position 𝒙𝒙 ∈ ℝ4, where 𝑥𝑥𝑖𝑖 for 1 ≤ 𝑖𝑖 ≤ 3 is the agent 
position and 𝑥𝑥4 is a measurement offset due to clock bias, the 𝑛𝑛 pseudoranges 
between the anchors and agent are 

 𝑝𝑝𝑖𝑖 = ‖𝒙𝒙′−𝒂𝒂𝑖𝑖‖ + 𝑥𝑥4 + 𝑒𝑒𝑖𝑖, (3) 

where ‖ . ‖ represents the Euclidean norm and 𝒙𝒙′ = {𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3}. Using Eq. 3, the 
agent’s position can be found from pseudorange measurements through a least-
squares iterative method such as the Gauss–Newton algorithm.10 The algorithm 
begins by defining 𝑛𝑛 residuals as 
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 𝑟𝑟𝑖𝑖 = ‖𝒙𝒙′ − 𝒂𝒂𝑖𝑖‖ + 𝑥𝑥4 − 𝑝𝑝𝑖𝑖, (4) 

where 𝑝𝑝𝑖𝑖 now represents the measured pseudorange from the anchor to the agent, 
and 𝒙𝒙 contains the unknown agent position and offset. Thus, the residuals are 
simply the differences between the estimated pseudoranges and measured 
pseudoranges. 𝒙𝒙 is found by minimizing the sum of squares of the residuals: 

 
𝑆𝑆(𝒙𝒙) = �𝑟𝑟𝑖𝑖2(𝒙𝒙)

𝑛𝑛

𝑖𝑖=1

. (5) 

The algorithm progresses in iterations of 

 𝒙𝒙(𝑘𝑘+1) = 𝒙𝒙(𝑘𝑘) − (𝑱𝑱𝑇𝑇𝑱𝑱)−1𝑱𝑱𝑇𝑇𝒓𝒓(𝒙𝒙(𝑘𝑘)) (6) 

using 𝒙𝒙(0) as an initial guess of the agent’s position and offset, and Jacobian matrix 
𝑱𝑱 ∈ ℝ𝑛𝑛×4 with entries 

 𝐽𝐽𝑖𝑖𝑖𝑖 =
𝜕𝜕𝑟𝑟𝑖𝑖(𝒙𝒙)
𝜕𝜕𝑥𝑥𝑗𝑗

.  (7) 

Expanding 𝑟𝑟𝑖𝑖 gives 

 𝐽𝐽𝑖𝑖𝑖𝑖 =
𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

�((𝑥𝑥1 − 𝑎𝑎𝑖𝑖1)2 + (𝑥𝑥2 − 𝑎𝑎𝑖𝑖2)2 + (𝑥𝑥3 − 𝑎𝑎𝑖𝑖3)2)
1
2 + 𝑥𝑥4 − 𝑝𝑝𝑖𝑖�. (8) 

For 1 ≤ 𝑗𝑗 ≤ 3, 𝜕𝜕𝑝𝑝𝑖𝑖
𝜕𝜕𝑥𝑥𝑗𝑗

= 𝜕𝜕𝑥𝑥4
𝜕𝜕𝑥𝑥𝑗𝑗

= 0, so that we have  

 𝐽𝐽𝑖𝑖𝑖𝑖 = �
1
2
� ((𝑥𝑥1 − 𝑎𝑎𝑖𝑖1)2 + (𝑥𝑥2 − 𝑎𝑎𝑖𝑖2)2 + (𝑥𝑥3 − 𝑎𝑎𝑖𝑖3)2)−

1
2(2𝑥𝑥𝑗𝑗). (9) 

For 𝑗𝑗 = 4, 𝐽𝐽𝑖𝑖𝑖𝑖 = 1. After simplifying, matrix 𝑱𝑱 has elements 

 
𝐽𝐽𝑖𝑖𝑖𝑖 = �

𝑥𝑥𝑗𝑗 − 𝑎𝑎𝑖𝑖𝑖𝑖
‖𝒙𝒙−𝒂𝒂𝑖𝑖‖

, 0 ≤ 𝑗𝑗 ≤ 3

            1,                  𝑗𝑗 = 4  
 (10) 

Figure 1 shows a simulation of GPS localization with anchors positioned on the 
vertices of a unit cube and the agent in the center, with distances left unitless in this 
report. Ten sets of range measurements were simulated with Gaussian noise with 
standard deviation 𝜎𝜎 = 0.25 and offset 𝑐𝑐(𝑑𝑑𝑡𝑡𝑥𝑥) = 0.5, resulting in 10 estimated 
agent positions marked by blue “X’s”. The cube anchor geometry offers a 
convenient symmetric geometry, even though the occlusion of the satellites by the 
earth would make this configuration impossible in reality. 
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Fig. 1 Agent location estimation from noisy TOF range measurements using  
Gauss–Newton algorithm 

2.2 Intuitive DOP Illustration 

Before proceeding with a quantitative definition of DOP, an intuitive example will 
be given to illustrate the basic concept. Figure 2 shows 2 example localization 
geometries. The anchors are shown as red circles, and the agent is shown as a small 
black circle. A range measurement from an anchor to the agent, denoted as 𝑑𝑑, limits 
the possible positions of the agent in 2 dimensions to a circle around the anchor 
with radius 𝑑𝑑. With the addition of measurement noise, this circle transforms into 
a region where the red circles designate an upper bound on the true range and the 
green circles designate a lower bound. The area where these regions overlap is 
colored blue and bounds the possible location of the agent. In the example on the 
left, the 3 anchors are spread out, creating a small region of uncertainty for the 
agent, indicating a small DOP. On the right, the anchors are close together, resulting 
in a larger region of uncertainty, indicating a large DOP. Additionally, DOP values 
can be calculated for separate position components. The example on the right has a 
large uncertainty in the 𝑦𝑦 direction but is relatively narrow in the 𝑥𝑥 direction. This 
can be characterized by using different DOP values for 𝑥𝑥 and 𝑦𝑦. This example did 
not take into account any time dilution as exists in GPS applications, but the general 
idea remains the same. The hard boundaries of the regions of uncertainty are a 
simplification, whereas in reality these regions are continuous probability 
distributions. 
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Fig. 2 Example of geometry with low DOP (left) and high DOP (right) 

2.2 GPS DOP 

More formally, DOP measures the degree to which range measurement errors affect 
the accuracy of the agent’s position. Using the Jacobian matrix 𝑱𝑱 from Eq. 10, the 
𝑸𝑸 ∈ ℝ4×4 matrix is formulated as 

 𝑸𝑸 = (𝑱𝑱𝑇𝑇𝑱𝑱)−1. (11) 

The diagonal elements of 𝑸𝑸 are the variances of 𝑥𝑥𝑖𝑖 

 𝑄𝑄𝑖𝑖𝑖𝑖 = 𝜎𝜎𝑥𝑥𝑖𝑖
2 . (12) 

For GPS, DOP values are expressed as7 

• Horizontal DOP (HDOP) 

• Vertical DOP (VDOP) 

• Position DOP (PDOP) 

• Time DOP (TDOP) 

• Geometric DOP (GDOP) 

Using 𝑥𝑥, 𝑦𝑦, 𝑧𝑧, and 𝑡𝑡 for the elements of 𝒙𝒙, these DOP values are 

 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 = �𝜎𝜎𝑥𝑥2 + 𝜎𝜎𝑦𝑦2, (13) 

 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 = �𝜎𝜎𝑧𝑧2, (14) 
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 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = �𝜎𝜎𝑥𝑥2 + 𝜎𝜎𝑦𝑦2 + 𝜎𝜎𝑧𝑧2, (15) 

 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = �𝜎𝜎𝑡𝑡2, (16) 

and 

 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 = �𝜎𝜎𝑥𝑥2 + 𝜎𝜎𝑦𝑦2 + 𝜎𝜎𝑧𝑧2 + 𝜎𝜎𝑡𝑡2. (17) 

For completeness, 2 more DOP values are defined here as 

 𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋 = �𝜎𝜎𝑥𝑥2, (18) 
and 

 𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌 = �𝜎𝜎𝑦𝑦2. (19) 

For consistency, VDOP will also be referred to here as ZDOP. 

Figure 3 shows 2 examples of swarm geometries. Each anchor is a red circle 
positioned at the vertex of a cube. On the left, the agent is positioned in the center 
of the cube surrounded by the anchors, creating a symmetric geometry with the low 
DOP values listed in Table 1. On the right, the agent is moved away from the 
anchors, creating a condensed grouping of anchors from the perspective of the 
agent, resulting in the higher DOP values in Table 1. 

. 

 

Fig. 3 An example geometry with a low PDOP (left) and a high PDOP (right) 
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Table 1 GPS DOP values for Fig. 3 

DOP type Low PDOP example High PDOP example 

XDOP 0.8 4.2 
YDOP 0.8 1.3 
ZDOP 0.8 1.3 
TDOP 0.4 3.2 
PDOP 1.4 4.6 
GDOP 1.4 5.7 

2.3 Comparison of GPS DOP to Root-Mean-Square Error 

The simulation in Fig. 1 was repeated with 𝜎𝜎 = 0.01, this time using 100 sets of 
measurements (with each set containing all agent-to-anchor ranges) for 31 different 
agent positions. The agent was moved along the 𝑥𝑥 axis from 𝑥𝑥 = 0 to 𝑥𝑥 = 3, as 
illustrated in the geometries in Fig. 3. Plots for 6 of these agent positions are shown 
in Fig. 4. These results are as expected when compared to typical GPS scenarios. 
The earth blocks satellites below the horizon, resulting in geometries where all of 
the anchors are on one side the agent. For GPS, this is in the vertical direction and 
causes VDOP to be larger than HDOP. This is the reason why GPS DOP values are 
divided into vertical and horizontal components. In this example all of the anchors 
are offset in the 𝑥𝑥 direction, resulting in increasing XDOP as the agent moves 
farther away from the anchors. Figure 5 plots the GDOP, XDOP, YDOP, ZDOP, 
and TDOP values scaled by 𝜎𝜎 and compares them to their respective root-mean-
square error (RMSE) values. The DOP values appear to track the RMSE well. 

 

Fig. 4 Agent location estimation from noisy TOF range measurements for 6 different agent 
locations 
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 Fig. 5 Comparison of DOP and RMSE values for the simulation in Fig. 4 

3. TWR Localization and DOP with Anchors 

3.1 TWR Localization and DOP Derivation 

GPS uses TOF ranging, which requires expensive infrastructure to synchronize the 
clocks on the GPS satellites. This one-way TOF ranging is necessary for GPS 
because of the large distances between the agent and the satellites. In the case of 
smaller geometries, like those typically used for swarm localization, TWR can be 
used to range between anchors and agents. This method is independent of time 
synchronization, which reduces system requirements. Excluding a clock-based 
offset from the equations, the pseudorange for agent 𝑖𝑖 becomes distance 𝑑𝑑𝑖𝑖. The 
Gauss–Newton residuals are now 

 𝑟𝑟𝑖𝑖 = ‖𝒂𝒂𝑖𝑖 − 𝒙𝒙‖ − 𝑑𝑑𝑖𝑖 , (20) 

where 𝒙𝒙 ∈ ℝ3 is the estimated position of the agent. The residuals are the 
differences between the estimated distances to the agent and measured distances. 
As before, the position 𝒙𝒙 is found by minimizing the sum of squares of the residuals 
using the Jacobian matrix, which is now 𝑱𝑱 ∈ ℝ𝑛𝑛×3, to iteratively solve for 𝒙𝒙. The 
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derivation of 𝑱𝑱 proceeds as before without the elements representing the clock 
offset. 
 𝐽𝐽𝑖𝑖𝑖𝑖 =

𝜕𝜕𝑟𝑟𝑖𝑖(𝒙𝒙)
𝜕𝜕𝑥𝑥𝑗𝑗

=
𝒙𝒙𝑗𝑗 − 𝒂𝒂𝑖𝑖𝑖𝑖
‖𝒂𝒂𝑖𝑖 − 𝒙𝒙‖

. (21) 

Once again, the 𝑸𝑸 ∈ ℝ3×3 matrix is formulated as 

 𝑸𝑸 = (𝑱𝑱𝑇𝑇𝑱𝑱)−1 (22) 

and used to calculate the DOP values. Since there is no time dilution, TDOP and 
GDOP values are no longer defined. Using the example geometries in Fig. 3, Table 
2 shows the new DOP values for the case of TWR. Removing the clock offset has 
greatly decreased the DOP and has also changed the relative magnitudes of the 
DOP components. In the GPS example, the XDOP value was the largest and 
resulted in the most RMSE. Here, the XDOP actually decreases and the YDOP and 
ZDOP increase. These results are understandable when we consider that the TWR 
DOP is comparable to the intuitive example in Fig. 2, where the YDOP increased 
when the agent was placed far away from the anchors along the 𝑥𝑥 axis. In the case 
of GPS, the increase in XDOP can now be seen to have been a result of the time 
dilution. 

Table 2 TWR DOP values for Fig. 3 

DOP type Low PDOP example High PDOP example 

XDOP 0.6 0.4 
YDOP 0.6 1.1 
ZDOP 0.6 1.1 
PDOP 1.1 1.6 

3.2 Comparison of TWR DOP and RMSE Using Anchors 

Figure 6 shows the geometry used previously with anchors positioned on the 
vertices of a unit cube and the agent at the center. Ten sets of range measurements 
were simulated using the modified Gauss–Newton algorithm for TWR with 
unbiased Gaussian noise and standard deviation 𝜎𝜎 = 0.25, resulting in 10 estimated 
agent positions marked by blue “X’s”. 
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Fig. 6 Agent location estimation from noisy TWR measurements using Gauss–Newton 
algorithm 

The simulation in Fig. 6 was repeated with 𝜎𝜎 = 0.01, using 100 sets of 
measurements (with each set containing all agent-to-anchor ranges) for 31 different 
agent positions. The agent was moved along the 𝑥𝑥 axis from 𝑥𝑥 = 0 to 𝑥𝑥 = 4, similar 
to the geometries in Fig. 3. The results are shown in Fig. 7 with the greater YDOP 
and ZDOP values evident from the spreading of the estimated locations in the 𝑦𝑦𝑦𝑦-
plane. Figure 8 shows a comparison between the DOP values scaled by 𝜎𝜎 and the 
RMSE. The top plot compares the scaled PDOP to the total RMSE, denoted P 
RMSE. The other plots compare the separate 𝑥𝑥, 𝑦𝑦, and 𝑧𝑧 RMSE to their respective 
scale DOP values. Once again, the DOP values appear to track the RMSE well. 

1

0.5

Y

0

-0.5

-11

0.5

X

0

-0.5

-1

-1

-0.5

0.5

0

1

Z

Anchors

Agent

Estimated Agent



 

Approved for public release; distribution is unlimited.  
11 

 

Fig. 7 Agent location estimation from noisy TWR measurements for 6 agent locations 

 

Fig. 8 Comparison of DOP and RMSE values for the simulation in Fig. 7 
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4. Swarm Relative Localization and DOP 

4.1 Swarm Relative Localization 

In the case of a swarm of agents, none of the agent positions are known, requiring 
a different algorithm to solve for the relative localization of the agents. One such 
algorithm is classical multidimensional scaling (MDS)11, which proceeds as 
follows. Let 𝑫𝑫⊙2 ∈ ℝ𝑛𝑛×𝑛𝑛 be the squared Euclidean distance matrix composed of 
elements 𝑑𝑑𝑖𝑖𝑖𝑖2  representing the squared distance from agent 𝑖𝑖 to agent 𝑗𝑗. � . �

⊙2
 

denotes the Hadamard (element-wise) exponentiation. 𝑫𝑫⊙2 is double-centered by 

 
𝑩𝑩 = −

1
2
𝑪𝑪𝑫𝑫 ⊙2𝑪𝑪, (23) 

where 𝑪𝑪 is the centering matrix 

 
𝑪𝑪 = 𝑰𝑰 −

1
𝑛𝑛
𝕆𝕆. (24) 

𝑰𝑰 ∈ ℝ𝑛𝑛×𝑛𝑛 is the identity matrix, and 𝕆𝕆 ∈ ℝ𝑛𝑛×𝑛𝑛 is a matrix of all 1’s. The agent 
location matrix 𝑿𝑿 ∈ ℝ𝑛𝑛×3 is then the first 3 columns of 𝑿𝑿′ given by 

 𝑿𝑿′ = 𝑬𝑬𝚲𝚲⊙1/2, (25) 

where 𝑬𝑬 is a matrix of the 𝑛𝑛 eigenvectors of 𝑩𝑩, and 𝚲𝚲 is a diagonal matrix of the 
corresponding 𝑛𝑛 eigenvalues of 𝑩𝑩 in descending order. 

Since only the relative localization is determined, localization calculations may 
differ in rotation, translational, and reflection. This makes it difficult to calculate 
RMSE in Monte Carlo simulations. To align swarm positions, they can be rotated, 
translated, and reflected to minimize the RMSE to a given reference using the 
Kabsch algorithm.12 For swarm localization simulations, the true agent positions 
𝑿𝑿1 are used as reference for the estimated location matrix 𝑿𝑿2. The Kabsch 
algorithm starts by calculating and subtracting the centroids of 𝑿𝑿1 and 𝑿𝑿2 giving 

 
𝑷𝑷1 = 𝑿𝑿1 −

1
𝑛𝑛
𝕆𝕆𝑿𝑿1 (26) 

and 

 
𝑷𝑷2 = 𝑿𝑿2 −

1
𝑛𝑛
𝕆𝕆𝑿𝑿2. (27) 

Next, the cross covariance matrix is calculated as  



 

Approved for public release; distribution is unlimited.  
13 

 
𝑨𝑨 =

1
𝑛𝑛
𝑷𝑷1𝑇𝑇𝑷𝑷2. (28) 

Using singular value decomposition, 𝑨𝑨 is represented as 

 𝑨𝑨 = 𝑼𝑼𝑼𝑼𝑽𝑽𝑇𝑇 . (29) 

The rotation matrix is then 

 𝑹𝑹 = 𝑼𝑼𝑽𝑽𝑇𝑇 (30) 

and the translation is 

 
𝒕𝒕 =

1
𝑛𝑛
𝑿𝑿1𝑇𝑇𝟏𝟏 −

1
𝑛𝑛
𝑿𝑿2𝑇𝑇𝟏𝟏𝟏𝟏, (31) 

where 𝟏𝟏 ∈ ℝ𝑛𝑛×1 is a vector of all 1’s. Typical applications of the Kabsch algorithm 
ensure |𝑹𝑹| ≥ 0 to prevent reflection. Here reflection is allowed to correct for any 
reflection caused by the classical MDS algorithm. 

4.2 Comparison of Average TWR DOP to RMSE 

4.2.1 Increasing DOP Example 

Using classical MDS and the Kabsch algorithms, a simulation was constructed to 
test the DOP with respect to swarm relative localization. Figure 9 shows the initial 
true locations of 8 agents. Thirty-one different swarm configurations were 
generated from the initial locations by scaling all of the agents’ 𝑥𝑥 coordinates and 
some of the agents’ 𝑧𝑧 coordinates as shown in Fig. 10. The resulting swarm 
geometries progressively become wider in the 𝑥𝑥 and 𝑧𝑧 directions but remain narrow 
along the 𝑦𝑦 axis. (For visualization purposes, the 𝑦𝑦 axis of the plot is scaled 
differently than the 𝑥𝑥 and 𝑧𝑧 axes.) 



 

Approved for public release; distribution is unlimited.  
14 

 

Fig. 9 Initial agent locations for swarm DOP simulation 

 

Fig. 10 Thirty-one different swarm positions generated from Fig. 9 by scaling all of the 𝒙𝒙 
coordinates of the agents and some of the 𝒛𝒛 coordinates 

For each of these 31 swarms, 100 sets of Euclidean distance matrices were 
generated with additive Gaussian noise with standard deviation 𝜎𝜎 = 1. Classical 
MDS and the Kabsch algorithms were then used to estimate the agent locations. 
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The results for 6 of these 31 swarm configurations are shown in Fig. 11. Unlike 
localization with anchors, the positions of all of the agents in the swarm are 
localized and affected by the swarm geometry. Therefore, to characterize the swarm 
DOP, the TWR DOP for each agent was calculated relative to the other agents and 
averaged. Figure 12 shows a comparison between these average DOP values scaled 
by 𝜎𝜎 and the average RMSE. The top plot compares the scaled PDOP to the total 
RMSE. The other plots compare the separate 𝑥𝑥, 𝑦𝑦, and 𝑧𝑧 RMSE to their respective 
scale DOP values. The scaling of the 𝑥𝑥 and 𝑧𝑧 components of the agent positions 
creates diversity on those planes, which keeps the XDOP and ZDOP low. The 𝑦𝑦 
components remain the same, effectively decreasing the diversity along the 𝑦𝑦 
planes compared to the 𝑥𝑥 and 𝑧𝑧 planes, increasing the YDOP. The RMSE values 
follow the trend of the DOP values, with the XDOP and ZDOP staying flat and the 
YDOP increasing. The 𝑦𝑦 RMSE rises at a slower rate than the YDOP, however. 
The fact that the RMSE values here do not track the DOP values as well as the 
anchor case is not surprising. The relationships here are more complex since we are 
solving for the positions of all of the agents. In addition, we are using average 
YDOP and RMSE values, which further complicates DOP calculations. 

 

Fig. 11 Estimated swarm position from noisy measurements for 6 of the swarms shown in Fig. 10  
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Fig. 12 RMSE error and average DOP results for the simulation in Fig. 11 

4.2.2 Constant DOP Example 

Compare the results of the previous simulation to those shown in Figs. 13 and 14. 
Instead of only scaling the separate 𝑥𝑥 and 𝑧𝑧 components of the agent’s positions, 
all of the components were scaled. This retained the same geometry and hence the 
same DOP values as the scale factor was increased. Whereas Fig. 11 shows the 𝑦𝑦 
RMSE increasing with the scale factor, Fig. 13 shows the RMSE remaining 
constant like the DOP values. Figure 14 confirms the observations from Fig. 13, 
with the DOP and RMSE remaining flat as the scale factor is increased. Thus, we 
see that the average TWR DOP performs as expected, remaining the same across 
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Fig. 13 Estimated swarm position from noisy measurements for 6 swarms with all 
components of the agent’s positions linearly scaled 

 

 

Fig. 14 RMSE error and average DOP results for the simulation in Fig. 13 
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4.2.3 Example of Inconsistent DOP and RMSE Values 

The RMSE does not always track average DOP values as well as demonstrated so 
far. Figures 15 and 16 show a case where only one agent’s position is scaled in the 
𝑥𝑥 direction. We would expect that just as the YDOP and ZDOP should increase, so 
too the 𝑦𝑦 and 𝑧𝑧 RMSE should increase. Instead, the 𝑦𝑦 and 𝑧𝑧 RMSE actually slightly 
decreases. 

 
Fig. 15 Estimated swarm position from noisy measurements for 6 swarms with only one 
agent’s position scaled 

 
Fig. 16 RMSE error and average DOP results for the simulation in Fig. 15 
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A possible explanation for this phenomenon is that the 𝑦𝑦 and 𝑧𝑧 RMSE of the scaled 
agent does actually increase, and the observed decrease is caused by using the 
Kabsch algorithm to align the simulation results. To test this theory, the same 
swarm geometries were used, except noise was added directly to the position of the 
scaled agent. No range measurements were made, and classical MDS was not used. 
Only the Kabsch algorithm was employed to align the simulation sets. Figure 17 
shows the results of a set of 100 simulations for the scaled agent at its original 
position. Figure 18 shows the simulations for a scale factor of 10, and Fig. 19 
compares the RMSE of the scaled agent to the average of the other agents. Once 
again, the RSME decreases as the agent’s position is scaled, even though the same 
amount of noise was directly added to the agent’s position in every simulation. We 
can also see error in the other agents, even though no noise was added to their 
positions. Clearly the culprit of the decreasing error is the Kabsch algorithm. The 
Kabsch algorithm rotates the swarm to decrease the total error, effectively adding 
noise to the other agents. As the scale factor is increased and the scaled agent moves 
farther out from the swarm center, less rotation is necessary to adjust the scaled 
agent’s position, leading to a decrease in error for all of the agents. This does not 
eliminate the error caused by the growing DOP, it only means that in this instance 
the ability of the Kabsch algorithm to correct for relative localization error grows 
faster than the error caused by the DOP. 

 

Fig. 17 Results of Kabsch algorithm after noise was added directly to the position of agent 
8, with the scale factor set to 1 
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Fig. 18 Results of Kabsch algorithm after noise was added directly to the position of agent 
8, with the scale factor set to 10 

 

Fig. 19 A comparison of the RMSE of the scaled agent to the average of the other agents 
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the RMSE decreases with the PDOP. Although many factors may influence swarm 
system design, DOP can be a useful tool in balancing cost versus the benefit of 
lower localization error due to swarm size. 

Table 3 PDOP and RMSE values for different swarm sizes 

Swarm geometry 𝒏𝒏 agents PDOP RMSE 

Octahedron   6 1.53 0.42 
Cube 8 1.26 0.38 

Icosahedron 12 0.98 0.34 
Dodecahedron 20 0.74 0.28 

 

Fig. 20 Four cases of swarm relative localization with different swarm sizes. The upper left 
has 6 agents, the upper right 8, lower left 12, and the lower right 20 agents. 

5. Conclusion 

DOP is an important parameter in localization and must be taken into account 
during system design to predict and limit estimated position errors. Starting with 
GPS as an example of TOF localization with anchors, a DOP metric for TWR 
localization with anchors was derived that showed high correlation to RMSE 
simulations. To apply the TWR DOP to swarm relative localization, average TWR 
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DOP values were used that incorporated the DOP calculations of all of the agents. 
This metric correlated well to RMSE simulations in a general case of increasing 
DOP and in a case where the DOP geometry remained constant but showed 
inconsistencies in a case where only one agent was moved away from the rest of 
the swarm. This inconsistency was shown to be a result of the Kabsch 
transformation, however, and did not invalidate the average TWR DOP metric. 
Finally, a simple application of DOP for swarm design was demonstrated. 

Now that a DOP metric has been proposed for swarm relative localization, it can 
be applied in future research involving swarm design and modeling. Some research 
questions include the following: 

• What applications exist where the swarm geometry should be optimized to 
minimize localization error? 

• Does the cost of optimizing swarm geometry outweigh other geometry 
priorities and other ways to reduce localization error? 

• How accurately can this DOP metric predict localization error in common 
swarming applications? 

• Can the metric be adjusted to include other localization technologies, such 
as systems that use angle-of-arrive technologies? 

In addition, further research to improve this DOP metric should be explored. The 
Cramer–Rao bound has been used to set limits on geometry-related error and 
deserves investigation.13 In addition, a least-squares formulation for relative 
localization may directly lead to an improved DOP model. Further research will 
help to answer these questions and may lead to improvements on this DOP metric 
for swarm relative localization. 
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List of Symbols, Abbreviations, and Acronyms 

DOP dilution of precision 

GDOP geometric DOP 

GPS global positioning system 

HDOP horizontal DOP 

MDS multidimensional scaling 

PDOP position DOP 

RMSE root-mean-square error  

TDOP time DOP 

TOF time of flight 

TWR two-way ranging 

VDOP vertical DOP   
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