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1. Introduction

Truncated singular value decompositions (tSVDs) are used for a variety of tasks
in domains ranging from dimension reduction using principal component analysis
(PCA),1 to eigenfaces2 in machine learning, to latent semantic indexing (LSI)3 in in-
formation retrieval, matrix regularization,4,5 and sundry methods in signal process-
ing.6,7 It is the core operation of data analysis techniques that use diagonal matrix
factorizations, such as PCA1,8 and proper orthogonal decomposition.9 In all cases,
one is presented with M points a1, a2, . . . , am embedded in RN . These are assembled
into a matrix A ∈ RN×M; the goal is to find a reduced-dimension approximation Â
of A, where Â ∈ Rn×M, with n � N. With the tSVD, the data are projected into
the space spanned by a small subset of singular vectors; these are the n singular
vectors that have the n largest singular values. In particular, the tSVD provides 2
key advantages for dimension reduction applications:

• it approximates the data in a lower dimension; thereby reducing storage and
processing costs while maintaining important features of the data, and

• it exhibits data cleaning properties by projecting into a space orthogonal to
dimensions along which variance is relatively small.

The latter of the above properties—data cleaning—is an important feature of tSVD
methods for dimension reduction and data approximation. Partitioning RN with the
tSVD of A has been shown to separate global structure of columns of A from lo-
cal deviations and noise.8,10 Global structure is represented by left singular vectors
of A with large singular values, while noise is represented by left singular vectors
of A with small singular values. Important dimension reduction methods that use
the tSVD exhibit better performance with reduced dimension data than with the
original, high-dimension data; for example, LSI produces reduced dimension ap-
proximations that have better precision and recall than is witnessed with the same
queries on the original data.3,11

A chief drawback of tSVD methods is that they are computationally expensive. This
drawback has led several authors to develop approximations to the tSVD that are
computationally cheaper. Several methods that substitute a Krylov subspace for a
truncated singular vector space have been proposed,11–15 and they have shown great
promise for reducing computational costs while only yielding small differences in
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the sum-of-squared dimension reduction error of the tSVD. However, analyses of
these Krylov subspace methods only have considered the sum-of-squares approx-
imation error difference between the tSVD and a Krylov subspace approximation.
The data cleaning properties are not considered.

It is somewhat well known that one cannot generate a sequence of Krylov subspaces
that are all orthogonal to the smallest extremal eigenvectors—ones with the smallest
eigenvalues, no matter what one does to the start vector. Bounds in Golub et al.16

show this quantitatively; in fact, if one has a random start vector, then a Krylov
subspace used as a tSVD approximation may have a significant overlap with the
noise space (we quantitatively define the noise space in Section 1.3 and subspace
overlap in Section 2.1) after a small number of iterations. Without filtering the start
vector, the data cleaning properties of the Krylov subspace approximation methods
are poor. The presence of noise destroys the important data cleaning advantages of
low-rank data approximation.

1.1 Summary of Contents

Krylov subspace tSVD approximations11–15 will almost certainly not remove noise
as well as the tSVD when the start vector of the Krylov subspace is random. Even
when the start vector is not random, if the start vector is not orthogonal to all noise
content, then noise will eventually be present in the Krylov subspace.

It is well known that the principal angles between a Krylov subspace and the noise-
space vectors will shrink as one grows a Krylov subspace, no matter how close
to orthogonal the start vector is to the noise space. However, this relationship has
not been well studied; there is no theory to predict how “noisy” a Krylov subspace
approximation of the tSVD will be. Our main result bounds the noise content of
Krylov subspaces as dimension reduction projections. We present sufficient con-
ditions that guarantee noise filtering of the Krylov subspace based on the noise
content of the initial vector.

These sufficient conditions allow one to design a filtering procedure to produce
start vectors that generate Krylov subspaces with bounded noise content. One may
use Krylov subspace tSVD approximation methods, and enjoy the noise cleaning
properties of the tSVD while preserving the significant computational cost savings
of the Krylov subspace matrix approximation methods.11–15

2
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1.2 Dimension Reduction and the tSVD

The exact nature of the data approximation and analysis problem assumes that we
have data embedded in an N-dimensional space; that is, our data are in the form
of vectors ai ∈ R

N for i = 1, 2, . . . ,M. We further assume that all the data ai are
assembled into a matrix A = [a1 a2 · · · aM]. Then, all the methods mentioned in the
previous section obtain dimension reduction and data cleaning via the tSVD of A
or some matrix directly derived from A. The chief differences between PCA, LSI,
eigenfaces, proper orthogonal decomposition,9 and the like, lie in the derivation
steps applied to A before the tSVD.

We now proceed to formally explain the SVD and define the tSVD. We assume
without any loss of generality that N ≥ M—otherwise simply replace A with AT.
Then, any N × M matrix A can be factorized as

A = UΣVT (1)

with U ∈ RN×M and V ∈ RM×M with orthonormal columns, Σ diagonal and having
shape M × M. All diagonal elements of Σ are real and nonnegative. Columns of U
and V are called left and right singular vectors of A, and diagonal elements of Σ are
called singular values of A. We write σi(A) to denote a diagonal element of Σ, and
order them such that σ1(A) ≥ σ2(A) ≥ · · · ≥ σM(A). The tuples (ui, vi, σi(A)) are
singular triplets of A. We call a singular vector, value, or triplet leading if i close to
1, and trailing if i is close to M.

Definition 1: tSVD

Let A = UΣVT be the SVD of A. Then the tSVD of A is given by

Â
(n)
tSVD = UnΣn,nVT

n (2)

where Un = [u1 u2 · · · un], Vn = [v1 v2 · · · vn], and Σn,n = diag(σ1(A), σ2(A), . . . ,
σn(A)). That is, Un and Vn are composed of the leading n left and right singular
vectors, respectively, and Σn,n is composed of the leading n singular values.

It is clear from the definition of the tSVD that it is a projection of A through the
n-dimensional space colspan {Un} formed by the span of the leading left singular
vectors.

3
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Also, the n-dimensional tSVD is optimal with respect to the Frobenius norm, so
Â

(n)
tSVD = arg minrank(Â)=n ‖Â − A‖F . The tSVD produces the reduction of A to n-

dimensions that is optimal in the least-squares sense aggregated over all ai.

1.3 Signal and Noise Spaces

We have noted that truncating the SVD also can de-noise the data. We define signal
and noise spaces in terms of the SVD.

Definition 2: Signal and Noise Space

Suppose A is an arbitrary real matrix with SVD A = UΣVT. Let 0 < τ < 1 be a
nonnegative real number. Then the noise spaceUnoise of A is defined as

Unoise = span
{
up,up+1, . . . ,uM

}
(3)

where p is the smallest natural number that satisfies√∑p
i=1 σi(A)2∑M
i=1 σi(A)2

> τ. (4)

The signal spaceUsignal of A is then defined as the complement ofUnoise:

Usignal = U⊥noise. (5)

Remark 1. When the mean of the columns ai of A are zero centered and therefore∑M
i=1 ai = 0, the Gram matrix AAT satisfies AAT = sC, where s is some scalar and

C is the covariance matrix of the sample ai. In this case, a tSVD of A is equivalent
to projecting out the N −n orthogonal dimensions along which variance is smallest.

Thus, the noise space of A is defined as the space in which less than τ of the Frobe-
nius norm of A lies. It is clear that as τ→ 1, p approaches that index of the smallest
nonzero singular value. This illustrates that the “noisiest” singular vectors are those
with the smallest singular values.

When building a Krylov subspace for low-rank approximation, we want to guaran-
tee that it is (nearly) orthogonal to these noisiest singular vectors for some τ that is
close to 1.

4
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1.4 Minimal Krylov Subspaces for Approximation of the tSVD

Though the tSVD has these advantageous properties, it can be expensive to com-
pute, especially if n is on the order of tens or more. A number of authors have
proposed Krylov subspaces as a surrogate for the leading singular vector space for
dimension reduction tasks.11–15 Krylov subspaces are defined in terms of square
matrices. When A is not square, Krylov subspaces are typically defined in terms of
the Gram matrices G = AAT or GT = ATA. These 2 Gram matrices transform the
singular value problem into an equivalent eigenvalue problem on G or GT; given
the SVD A = UΣVT,

G = AAT = UΣ2UT (6)

and
GT = ATA = VΣ2VT. (7)

Hereafter, when we write λi, it is implied that λi = λi(G) = λi(GT) = σi(A)2

Definition 3: Krylov Subspace

Suppose G = AAT with shape N × N and z(0) ∈ RN . Then the nth Krylov subspace
is given by

Kn

(
G, z(0)

)
= span

{
z(0),Gz(0),G2z(0), . . . ,Gn−1z(0)

}
. (8)

We call z(0) the start vector of the Krylov subspace. Approximation error of a sin-
gular vector ui of A depends on the angle ϑ(z(0),ui) = cos−1

〈
z(0),ui

〉
/‖z(0)‖‖ui‖,

where 〈·, ·〉 is the inner product, and on the distribution of singular values of A. The
closer z(0) is to ui—the larger cosϑ

(
z(0),ui

)
—the better the approximation of ui in

Kn

(
G, z(0)

)
. When no beforehand information is available, z(0) is typically chosen

to be random.

Krylov subspace methods have been well proven as iterative SVD solvers.16,17 One
projects A into the intersection ofKn

(
G, z(0)

)
andKn

(
GT,Gz(0)

)
, and each iteration

reduces approximation errors of extremal singular values. In fact, the tSVD is often
computed with a Krylov subspace solver. The difference is that to compute an n-
dimensional tSVD, one will likely need to generate a Krylov subspace Kk

(
G, z(0)

)
with k � n, and/or repeatedly select a better start vector and generate a new Krylov
subspace. The tSVD approximation methods11–15 instead use k = n: a minimal
Krylov subspace.

5
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Definition 4: Minimal Krylov Subspace

The kth Krylov subspace Kk

(
G, z(0)

)
is said to be minimal for a reduction to n

dimensions if k = n.

Remark 2. In typical use of Krylov subspaces, one generates a subspace much
larger than the solution space that is needed. The wanted solutions are then extracted
from the Krylov subspace. For example, if one wants to compute n eigenvalues, one
will generate Kk

(
G, z(0)

)
with k > n, and often k � n. When all n eigenvectors are

invariant to tolerance, they are extracted from the Krylov subspace, and the problem
is projected into the space spanned by those n computed eigenvectors.

1.5 Approximate Eigenvectors and Eigenvalues from Krylov Subspaces

An orthonormal basis z1, z2, . . . , zn of approximate eigenvectors of G may be ex-
tracted from a Krylov subspace Kn

(
G, z(0)

)
; alternately, these are approximate left

singular vectors of A. These vectors are also orthonormal and G-conjugate. We call
an approximate eigenvector zi from a Krylov subspace a Ritz vector and the value
θi = zT

i Gzi a Ritz value. Any Ritz vector may be expressed as a linear combination
of eigenvectors of G.

A Ritz vector zi is not necessarily equal to the projection of an eigenvector QnQT
n ûiui

(where Qn is an orthonormal basis for Kn

(
G, z(0)

)
) through the Krylov subspace.

That is, we may—and very likely will—have zi , QnQT
nui for all i. This is because

zi is defined as

zi = min
dim(C)=i−1

arg max
x⊥C

xTGx
‖x‖2

, (9)

while QnQT
nui is given by

QnQT
nui = arg min

x∈Kn(G,z(0))
‖ui − x‖. (10)

In a minimal Krylov subspace, it is almost certain that there are many Ritz vectors
that are not G-invariant; that is, the residual ‖Gvi − θivi‖ is greater than machine
epsilon. Ritz vectors from Krylov subspaces are defined in terms of a polynomial
q(x) whose roots are the Ritz values.18 Thus q(θi) = 0. Noise content of the Ritz
vector depends on the ratio

∑N
j=p q(λ j)2

〈
z(0),u j

〉2
/
∑N

j=1 q(λ j)2
〈
z(0),u j

〉2
, where p

is from Definition 2. Whenever q(λ j)2
〈
z(0)u j

〉2
is not tiny for j ≥ p, then the Ritz

vector may not be orthogonal to the noise space.

6



Approved for public release; distribution is unlimited.

1.6 A Motivating Example

Constructing a linear classifier is a task that can motivate our discussion. A sim-
ple way to construct a linear classifier is to solve Gx = µ1 − µ2, where G is the
covariance matrix and µ1 and µ2 are the means of the 2 classes. This problem is
ill-posed when G has small singular values (a nontrivial noise space), and we want
a classifier that is orthogonal to those dimensions along which variance is small.

The example is a matrix regularization problem. In matrix regularization prob-
lems,19 one has a matrix G that has small singular values and one seeks a solu-
tion that minimizes ‖Gx − b‖ but is also orthogonal to the singular vector space
corresponding to the small singular vectors of G. The small singular values of G
make minimization of ‖Gx − b‖ ill-posed, as small perturbations to b may result
in a large perturbation of x. One instead minimizes a regularized problem such as
‖Gx − b‖ + η‖x‖, where η is a user-chosen regularization parameter picked to avoid
small singular vectors of G. Using a tSVD can be as effective as directly minimizing
‖Gx − b‖ + η‖x‖ for optimal η.4,5,20

If one substitutes a minimal Krylov subspace Kn

(
G, z(0)

)
with a random z(0) for

the truncated singular vector space, then the influence of small singular values is
difficult to control either directly, as with the tSVD, or indirectly, as in explicit
minimization of ‖Gx − b‖ + η‖x‖. An x computed with an Â

(n)
from a minimal

Krylov subspace may have a large ‖x‖, which would have been avoided with even
a small η.

Example 1. Let G be a 2, 000 × 2, 000 diagonal matrix defined as

G = diag(1, 1/2, 1/3, 1/4, . . . , 1/1999, 10−17). (11)

Since G is diagonal, its diagonal entries are its eigenvalues. Moreover, since all
its eigenvalues are nonnegative, its spectral decomposition and SVD coincide. The
spectrum of G is shown in Fig. 1.

Set z(0) = 1/
√

2000
∑2000

i=1 ui. We have cosϑ
(
z(0),ui

)
= 1/

√
2000 for all eigenvec-

tors ui. We compute an orthonormal basis Qn for Kn

(
G, z(0)

)
and the Ĝ = QT

nGQ
for 1 ≤ n ≤ 20. We generate a random b and solve the least squares problem
x = arg miny ‖Tn,ny − b‖.

7
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Fig. 1 Spectrum of G as defined in Eq. 11

We compute the Frobenius norm of Ĝ
−1

where Ĝ = QT
nGQ for the Krylov subspace

solution or Ĝ = UnΣn,nUT
n for the tSVD solution; the values are shown in Fig. 2.

Values of ‖x‖ are also shown for both the tSVD and minimal Krylov subspace x.
Figures 1 and 2 show that substituting a minimal Krylov subspace for a truncated
singular vector space for matrix regularization produces poorer regularization re-
sults. The Frobenius norms of the Ĝ

−1
from the minimal Krylov subspace are at

least 10 times larger than the tSVD Ĝ
−1

, and the ‖x‖ are at least 100 times larger for
the minimal Krylov subspace.
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Fig. 2 Frobenius norms of Ĝ
−1

, where Ĝ is G restricted to Kn

(
G, z(0)

)
or restricted to the

truncated singular vector space span {u1, . . . ,un} (left). Norms ‖x‖ where x is a solution to the
least squares problem ‖Ĝx − b‖ and where Ĝ = QT

n GQn where Qn is an orthonormal basis for
Kn

(
G, z(0)

)
or Ĝ = UnΣ

T
n,nUT

n (right). Large values indicate greater influence of small singular
vectors in x and more sensitivity to small perturbations in b.
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2. Corruption of Subspaces with Noise

When the basis vectors of the Krylov subspace are not orthogonal to the noise space,
then the Krylov subspace has been “corrupted” by noise. The proceeding analysis
requires a measurement of how much a subspace is corrupted with noise. It is ev-
ident that measurement of the corruption of a space S by noise is equivalent to
measuring the norms of images of noise space basis vectors u j projected into S . We
use the principal angles between spaces to formalize this concept.

2.1 Principal Angles for Quantifying Subspace Overlap

Much of the proceeding analysis considers the principal angles between spaces (see
Zhu and Knyazev21[Definition 2.1 and Theorem 2.1]). We use these to quantify the
overlap between 2 subspaces ofRN . In the context of our analysis of minimal Krylov
subspaces for approximating the tSVD, we would like to have the overlap between
Kn

(
G, z(0)

)
andUnoise as small as possible.

Definition 5: Principal Angles

Let X and Y be matrices in RN with orthonormal columns. Then the principal angles
between colspan {X} and colspan {Y} are defined as

ϑ(X,Y) = [cos−1(σ1(XTY)) cos−1(σ2(XTY)) · · · ] = cos−1(σ(XTY)). (12)

When either X or Y has only one column, then there is only one principal angle.
There is also a close relationship among the principal angles ϑ(X,Y), the Frobe-
nius norm ‖XTY‖F , and the spectral norm ‖XTY‖2. The spectral norm is ‖XTY‖2 =√

cosϑ1 (X,Y)2 = σ1(XTY) and the Frobenius norm is ‖XTY‖F =

√∑k
i=1 cosϑi (X,Y)2 =√∑k

i=1 σi(XTY)2 where XTY has k nonzero singular values.

Clearly, when colspan {X} ⊥ colspan {Y}, then ϑi(X,Y) = π/2 for all valid i, and
‖XTY‖F = ‖XTY‖2 = 0. The closer all principal angles are to π/2, the smaller the
overlap between colspan {X} and colspan {Y}.

9
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2.2 A Measure of Corruption: ρ-Free of Noise

Principal angles and the closely related matrix norms ‖ · ‖F and ‖ · ‖2 lead naturally
to a measure of the overlap between the noise space Unoise and some subspace S

with orthonormal basis W: ρ-free of noise.

Definition 6: ρ-Free of Noise

Let S ⊂ RN be some subspace, let W be an orthonormal basis for S, letUnoise ⊂ R
N

be the noise space of G, and Unoise be an orthonormal basis for Unoise. Pick some
nonnegative real ρ. Then S is ρ-free of noise if

cosϑ1 (Unoise,W) ≤ ρ. (13)

An equivalent condition to Eq. 13 is that ‖UT
noiseW‖2 ≤ ρ. Since ‖UT

noiseW‖2 ≤
‖UT

noiseW‖F , ‖UT
noiseW‖F ≤ ρ also implies that S is ρ-free of noise.

3. Two Sufficient Conditions on z(0) for Kn

(
G, z(0)

)
to Be ρ-Free of Noise

We are now ready to present our main result. We develop 2 criteria that guarantee
that the nth Krylov subspace is ρ-free of noise.

3.1 A Basic Sufficient Condition on z(0) for an Uncorrupted Subspace

Our basic sufficient condition comes from Corollary 1, which depends on Lemma 1
and Theorem 1. First, we use the Lanczos recurrence (see Saad,22 Section 3.2) to
bound the cosine cosϑ

(
qn+1,ui

)
in Lemma 1, where qn+1 is a basis vector gener-

ated by the Lanczos algorithm.22 This result then leads to a recurrence relation that
bounds the image û(n)

i of the eigenvector ui projected intoKn

(
G, z(0)

)
in Theorem 1;

the sufficient condition in Corollary 1 on z(0) follows from that.

We begin with bounding the cosine cosϑ
(
qn+1,ui

)
.

Lemma 1

Let qn+1 be the n + 1th basis vector generated by the Lanczos algorithm acting
on a Gram matrix G and z(0). Let Qn be an orthonormal basis for Kn

(
G, z(0)

)
. Let

Tn,n = QT
nGQn be the restriction of G to Kn

(
G, z(0)

)
, and û(n)

i = QT
nui. Note that

Tn,n is a tridiagonal matrix.22 Let βn+1 be the norm of the residual of the Lanczos
algorithm after the nth step. Order the singular values of a matrix A as σ1(A) ≥
σ2(A) ≥ · · · ≥ σn(A), and the eigenvalues of G as λ1 ≥ λ2 ≥ · · · ≥ λN . Then

10
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cosϑ
(
ui,qn+1

)
obeys

cosϑ
(
ui,qn+1

)
≤
‖û(n)

i ‖σ1(Tn,n − Iλi)
βn+1

.

Proof. Let Qn be the orthonormal basis generated for Kn

(
G, z(0)

)
by the Lanczos

algorithm after n steps. Then we have

GQn = QnTn,n + rneT
n .

Write the inner product on RN as 〈·, ·〉. Left-multiplying both sides by uT
i gives

uT
i GQn = uT

i QnTn,n + uT
i rneT

n

uT
i GQn − uT

i QnTn,n = uT
i rneT

n

and
βn+1〈ui,qn+1〉e

T
n = uT

i GQn − uT
i QnTn,n

as both qn+1βn+1 = rn. Then

βn+1|〈ui,qn+1〉| = βn+1‖〈ui,qn+1〉e
T
n‖ = ‖uT

i GQn − uT
i QnTn,n‖

and

|〈ui,qn+1〉| =
‖uT

i GQn − uT
i QnTn,n‖

βn+1
=
‖λiû(n)T

i − û(n)T
i Tn,n‖

βn+1

as βn+1 ≥ 0. Noting that cosϑ
(
ui,qn+1

)
= |〈ui,qn+1〉| when both vectors are unit-

length and
‖û(n)T

i (Iλi − Tn,n)‖ ≤ ‖û(n)
i ‖σ1(Tn,n − Iλi) (14)

completes the proof. �

Remark 3. Eq. 14 may also be bounded from below as

‖û(n)T
i (Iλi − Tn,n)‖ ≥ ‖û(n)

i ‖σn(Tn,n − Iλi).

One could use this result to obtain a different necessary condition for a noise-free
Krylov subspace.

11
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We now use the result of Lemma 1 to bound ‖û(n)
i ‖. This will result in a basic suffi-

cient condition.

Theorem 1

Let G, z(0), the λi, and Tn,n be defined as in Lemma 1. Let βk be any of the sub-
and super-diagonal values of Tn,n, and let β ≤ βk for k = 1, 2, . . . , n. Let û(n)

i be the
projection of eigenvector ui into Kn

(
G, z(0)

)
. Suppose that ‖û(0)

i ‖ ≤ ε and λi ≤ θ1,
where θ1 is the principal eigenvalue of Tn,n. Then the norm of û(n)

i is bounded as

‖û(n)
i ‖

2 ≤ ε2
(
(λ1 − λi)2

β2 + 1
)n−1

.

Proof. Let θ1 be the principal eigenvalue of Tn,n. We have 0 ≤ θ1 ≤ λ1—G is a
Gram matrix and 0 ≤ λN ≤ θ1—and it is assumed that λi ≤ θ1. Then we get

σ1(Tk,k − Iλi) ≤ λ1 − λi.

Applying Lemma 1 gives

cosϑ
(
ui,qn+1

)
≤
‖û(n)

i ‖(λ1 − λi)
βn+1

≤
‖û(n)

i ‖(λ1 − λi)
β

.

Then we can express ‖û(n)
i ‖ recursively, as

‖û(n)
i ‖

2 = cosϑ
(
ui,qn

)2
+ ‖û(n−1)

i ‖2.

So

‖û(n)
i ‖

2 ≤
‖û(n−1)

i ‖2(λ1 − λi)2

β2 + ‖û(n−1)
i ‖2

≤ ‖û(n−1)
i ‖2

(
(λ1 − λi)2

β2 + 1
)
.

The closed form for this series is

‖û(n)
‖2 ≤ ‖û(0)

i ‖
2
(
(λ1 − λi)2

β2 + 1
)n−1

.

12
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Since all noise eigenvectors have cosϑ
(
ui, z(0)

)
≤ ε,

‖û(n)
i ‖

2 ≤ ε2
(
(λ1 − λi)2

β2 + 1
)n−1

for any noise eigenvector ui. �

This result immediately leads to a sufficient condition on z(0) for Kn

(
G, z(0)

)
to be

ρ-free of noise.

Corollary 1

Let G and z(0) be given where eigenvalues of G are λ1 ≥ λ2 ≥ · · · ≥ λN , and let
N − p be the dimension of the noise space Unoise. Suppose that ‖û(n)

i ‖ ≤ ε for any
noise eigenvector ui. Then Kn

(
G, z(0)

)
is ρ-free of noise if

ε2(N − p)
(
(λ1 − λN)2

β2 + 1
)n−1

≤ ρ2. (15)

This is due to an application of Theorem 1 to bound the quantity ‖û(n)
N ‖, and noting

that ‖uT
MQn‖ ≤ ‖UT

noiseQ‖2. This application of Theorem 1 is always possible, since
λN is always less than or equal to any eigenvalue of Tn,n—the assumption that λN ≤

θ1 is always valid.

Remark 4. Corollary 1 uses a lower bound β on the Lanczos residuals β j. This value
is not known a priori, but it was conjectured g23 that no β j becomes negligible. The
cases for which β j does attain a small value is when the Krylov subspace is invariant
or nearly so. We have observed that the median eigenvalue is often a reasonable
lower bound on the β j from the Lanczos algorithm.

We now proceed with an example in which the median eigenvalue is a reasonable
lower bound for β.

Example 2. We continue with the matrix G defined in Example 1. Set ρ = 0.001.
SinceUnoise is defined by the trailing 100 eigenvectors, N − p = 100. We transform
Eq. 15 to a condition on ε:

ε ≤

√√√
ρ2

(N − p)
(

(λ1−λN )2

β2 + 1
)n−1 . (16)

13
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We supposed that β is greater than the median eigenvalue λ1000. We then compute
the maximum εmax that will satisfy Eq. 16 for 1 ≤ n ≤ 10.

To show the pessimism of these εmax, we also used line search on a posteriori
measured values of cos(Unoise,Qn), where Qn is a basis for Kn

(
G, z(0)

)
, to find a

value εcomputed: a maximum observed value where cosϑ
(
u j, z(0)

)
≤ εcomputed implies

Kn

(
G, z(0)

)
is ρ-free of noise and where u j is a noise eigenvector. We computed

εcomputed to 15 significant digits. The values for εmax and εcomputed are shown in the
left-hand plot of Fig. 3.

The purpose of this example is to verify the values of εmax and εcomputed. We com-
puted bases Qn for Kn

(
G, z(0)

)
for 1 ≤ n ≤ 10, and used the computation to verify

that β ≥ λ1000. We set

z(0) =

√
1 − (100ε2)

1900

1900∑
i=1

ui + ε

2000∑
i=1901

ui, (17)

where ε is either εmax—defined by equality in Eq. 16, or ε is εcomputed. We then com-
puted an orthonormal basis forKn

(
G, z(0)

)
and measured ‖UT

noiseQn‖. The cosϑ
(
z(0),ui

)
=

ε for any noise eigenvector ui. The values of ‖UT
noiseQn‖2 for both εmax and εcomputed

are shown in the right plot of Fig. 3.
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Fig. 3 Values of εmax and εcomputed (left). Values of ‖UT
noiseQn‖2 where Qn is a basis forKn

(
G, z(0)

)
and z(0) is defined as in Eq. 17 for either εmax or εcomputed (right). The small values of ‖UT

noiseQn‖2
for εmax indicate that Corollary 1 is pessimistic for this example.

We notice that Corollary 1 is pessimistic. Satisfying Eq. 15 may be difficult, since
((λ1 − λN)2/β2)n may grow rapidly. Even for small values of n, producing a suffi-
ciently small cosϑ

(
z(0),u j

)
may be impossible in finite precision. Even when Eq. 15

14
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is not satisfied, it may be the case that the Krylov subspace is ρ-free of noise. There-
fore, we present a tighter a posteriori sufficient condition that uses information from
the Krylov subspace.

3.2 A Sharper Sufficient Condition on z(0)

We notice that the basic sufficient condition is pessimistic, and not practical for
n greater than 10 or so. Our second sufficient condition gives us extra sharpness
to extend a sufficient condition for larger n. Lemma 2, about the polynomial that
defines Ritz vectors, directly gives another sufficient condition, which we illustrate
in Example 3. A nice feature of the condition that comes from Lemma 2 is that the
quantities can be computed from byproducts of the Lanczos algorithm, as is noted
in Remark 5.

Lemma 2

Let the positive semidefinite matrix G and vector z(0) define the Krylov subspace
Kn

(
G, z(0)

)
, and let θ1 ≥ θ2 ≥ · · · ≥ θn be the Ritz values of the restriction of G to

Kn

(
G, z(0)

)
, with unit-length Ritz vectors z1, z2, . . . , zn. Define the polynomial q j(x)

as

q j(x) =

n∏
t = 1
k , j

(x − θk)

and set ci =
〈
z(0),ui

〉
, where 〈·, ·〉 is the inner product on RN . Suppose p ≤ i ≤ N.

Then the magnitude of the cosine cosϑ
(
ui, z j

)
is bounded as

cosϑ
(
ui, z j

)
≤ max

0≤x≤λp

|q j(x)ci|

‖q j(G)z(0)‖
.

Proof. The polynomial

q j(x) =

n∏
t = 1
k , j

(x − θk)

15
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gives the jth Ritz vector of Kn

(
G, z(0)

)
;18

(
z j = q j(G)z(0)/‖q j(G)z(0)‖

)
. Therefore,

cosϑ
(
ui, z j

)
=
|q j(λi)ci|

‖q j(G)z(0)‖
.

Since i ≤ p and G is positive semidefinite, 0 ≤ λi ≤ λp and |q j(λi)| ≤ max0≤x≤λp |q(x)|.
Then

cosϑ
(
ui, z j

)
= max

0≤x≤λp

|q j(x)ci|

‖q j(G)z(0)‖
,

which completes the proof. �

Remark 5. The polynomial q j(x) and the norm ‖q j(G)z(0)‖ can be computed a pos-
teriori inexpensively as a by-product of a standard Krylov subspace algorithm, such
as the Lanczos algorithm. However, ci is typically unknown, but can be bounded
if z(0) has known properties. For example, if z(0) is a random vector, then |ci| may
be probabilistically bounded with enough tightness as to result in tight bounds for
cosϑ (ui, z). For our example case, where eigenvectors are all standard basis vectors
(in Dettman,24 p. 111) and 〈ui, x〉 = xi for xi is the ith entry of x, this is straightfor-
ward.

Example 3. Let G be defined as in Example 1. Set z(0) to be a random vector with
entries drawn from the normal distribution N(0, 1). We compute K6

(
G, z(0)

)
and

compute the Ritz values and q j(x) for 1 ≤ j ≤ 6. Each q j(x) is a quintic polynomial;
their derivatives give their maxima between Ritz values θi, are quartic, and can be
solved analytically. We computed θ6 > λN and max0≤x≤λp |q j(x)| ≤ max0≤x≤θ6 |q j(x)|,
so it is sufficient to consider maxima of |q j(x)| for 0 ≤ x ≤ θ6. For all q j(x), |q j(0)| =
max0≤x≤λp |q j(x)|. We now proceed to bound ci.

Since z(0) is random, zero-centered, and normally distributed, we may place an
upper bound on cosϑ

(
z(0),u j

)
by noticing that the standard basis vectors24 e j =

[0 0 · · · 0 1 0 · · · 0] are eigenvectors of G. Then u j = e j and

c j =

〈
u j, z(0)

〉
‖z(0)‖

=
z(0)

j

‖z(0)‖

where z(0)
j is the jth entry of z(0). As entries of z(0) are drawn from N(0, 1), the

squared norm of z(0) follows a Chi-squared distribution with N − 1 degrees of free-
dom. Write CN(0,1)(a) as the critical value N(0, 1) and probability a, and Cχ2(a,N)

16
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is the critical value for χ2
N and probability a. Then, with probability 1 − 2a,

CN(0,1)(1 − a)√
Cχ2(1 − a,N − 1)

≤ ci ≤
CN(0,1)(a)√

Cχ2(1 − a,N − 1)
.

Due to the symmetry of N(0, 1), this is equivalent to

|ci| ≤
CN(0,1)(a)√

Cχ2(a,N − 1)
.

For a = 0.99 and N = 2000, we have CN(0,1)(a) ≈ 2.33 and Cχ2(1 − a,N − 1) ≈
1854.86. Then |ci| ≤ 0.0542 with probability at least 0.99.

We combine this upper bound on |ci| with the computed maxima of ‖q j(x)‖ over
[0, λp] and the values of |q j(G)z(0)| to get upper bounds on cosϑ

(
ui, z j

)
. The re-

sults are shown in Table 1, and we compare these with the computed values for
maxui∈Unoise cosϑ

(
ui, z j

)
. The upper bounds on cosϑ

(
ui, z j

)
are tighter than those

produced from Corollary 1. Also, it is clear from Table 1 that the space span {z2, z1}

is ρ-free of noise for all ρ ≥ 0.0007.

Table 1 Computed values for max0≤x≤λp |q j(x)|, ‖q j(G)z(0)‖, probabilistic upper bounds on
cosϑ

(
ui, z j

)
, and computed maxui∈Unoise cosϑ

(
ui, z j

)
for the Ritz vectors z j from K6

(
G, z(0)

)
.

Small values of ‖q j(G)z(0)‖ contribute substantially to large upper bounds on cosϑ
(
u j, zi

)
.

Quantity z6 z5 z4 z3 z2 z1

max
0≤x≤θ6

|q j(x)| 8.05×10−4 3.55×10−5 8.32×10−6 4.40×10−6 2.56×10−6 1.28×10−6

‖q j(G)z(0)‖ 7.4×10−4 7.8×10−5 4.19×10−5 4.68×10−5 2.1×10−4 5.56×10−3

probabilistic max 5.87×10−2 2.46×10−2 1.07×10−2 5.09×10−3 6.69×10−4 1.25×10−5

cosϑ
(
u j, zi

)
ci bounded
with a = 0.99
computed max 4.02×10−2 1.16×10−2 5×10−3 2.37×10−3 3.11×10−4 5.78×10−6

cosϑ
(
u j, zi

)

The bounds in Lemma 2 indicate that noise may be due to either a large value of
max0≤x≤λp |q j(x)ci| or due to a relatively small value of ‖q j(G)z(0)‖.
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4. Conclusion

We have presented sufficient conditions for a Krylov subspace approximation of the
tSVD to be ρ-free of noise. Generally speaking, one can see that minimal Krylov
subspace substitutions for the tSVD are doomed to be noisy if n is large enough,
even if the start vector is orthogonal to the noise space up to machine precision.
However, for moderate n, one can use the sufficient conditions to design a filter to
produce a start vector z(0) that has a small enough cosϑ

(
ui, z(0)

)
for noise space

ui so that Kn

(
G, z(0)

)
is ρ-free of noise. We are then motivated to find methods to

compute good start vectors for minimal Krylov subspaces.

When considering methods to prepare start vectors that satisfy the sufficient con-
ditions presented here, we recall the overarching purpose for minimal Krylov sub-
space approximations to the tSVD: dramatically smaller compute times. Start vec-
tor generation methods that have smaller computational costs are preferable. Start
vectors may be implicitly filtered with either Implicitly-Restart Lanczos25 or Thick-
Restart Lanczos26 when n is small, and Lemma 2 gives a criterion for which Ritz
vectors to discard. When n is large, the asymptotic cost of computing Ritz vectors—
O(n2N)—may become prohibitive. Implicit start vector filtering may also be less at-
tractive when matrix-vector products scale better than dot products or matrix norms,
as is the case for some classes of distributed matrices. Then filtering methods, such
as Chebyshev polynomials or approximation of sigmoidal functions27 may be less
expensive. Since G is a positive semi-definite matrix, simple power iteration on a
block vector as in Halko et al.28 may also be an effective method for preparing a
start vector that satisfies our sufficient conditions.
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