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1 Project Summary 

This research project was aimed at developing and implementing consistent models in both particle 
(direct simulation Monte Carlo – DSMC) simulations and continuum CFD simulations of hypersonic 
flows, and in addition, implementing a number of numerical procedures required to perform hybrid 
particle-continuum calculations.  

The main numerical procedures added to the Molecular Gas Dynamic Simulator (MGDS) particle 
method (DSMC) code included (i) a parallel Adaptive Mesh Refinement (AMR) algorithm that can 
process large grids accurately and efficiently, (ii) a parallel post-processing algorithm that enables 
rapid (low cost and low memory) analysis of large solution files using the hdf5 file format, (iii) the 
capability for users to specify arbitrary inflow/outflow planes and therefore simulate only the flow 
region of interest, and (iv) the capability to generate inflowing particles on such arbitrary surfaces 
and therefore perform decoupled CFD-DSMC simulations, where inflowing particles to DSMC can 
be specified from a CFD solution extracted along an arbitrary surface. 

Large-scale DSMC simulations were performed of near-continuum canonical flows, such as the 
Hollow Cylinder Flare (HCF) geometry. Prior to comparing DSMC and CFD solutions for these 
near continuum flows, research was required in order to develop a consistent dissociation model for 
both particle and continuum methods. A preliminary model was developed, using quantum 
chemistry collision data from a related project. The new DSMC model accurately reproduces the 
quantum chemistry data and also analytically integrates to provide a continuum two-temperature 
dissociation rate model that could be used in CFD. 

The progress made on this research project is a significant advancement in the development of a 
state-of-the-art hybrid DSMC-CFD of general applicability to complex hypersonic flows. 

2 DSMC ADVANCEMENTS 

As discussed in the proposal, the current state of hybrid DSMC-CFD research is that this capability 
has been demonstrated on simple geometries (cylinders, planetary probe geometries, etc.) [1-5], 
internal energy physics for nitrogen has been included [6], and preliminary results for multispecies 
mixtures [7-8] have been presented. However, hybrid DSMC-CFD capability for complex 3D 
vehicle geometries and, most importantly, including chemical reactions, has not yet been 
demonstrated.  

As a result of the current grant research, we are now in a position to pursue hybrid DSMC-CFD 
capability including chemical reactions and also for computationally demanding 3D flows. The 
DSMC code under development at the University of Minnesota, called the Molecular Gas Dynamic 
Simulator (MGDS) code [9-11], is now capable of large-scale DSMC simulations of near-continuum 
flow conditions. This is essential for a hybrid DSMC-CFD code, since the flow conditions of most 
interest are continuum flows where only localized regions exhibit strong non-equilibrium. In 
contrast, if the entire flow is rarefied then pure DSMC simulations would be computationally 
feasible. The real need for hybrid DSMC-CFD capability is for challenging near-continuum flows 
where key regions of thermochemical nonequilibrium must be accurately resolved, and therefore, the 
capability to run near-continuum DSMC calculations is essential. 
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In particular, during this grant, a number of advancements were made to the MGDS DSMC code. 
First, the adaptive mesh refinement algorithm (AMR) was separated from the main MGDS source 
code. Adaptive mesh refinement is now compartmentalized such that every L1 cell can be adapted 
independent of all other L1 cells. Recall, each L1 cell (the largest cell structure) contains many L2 
and L3 cells, where L3 cells are sized to the local mean-free-path. This enables AMR to be 
performed in parallel where each L1 cell is refined independently by a different processor. The 
MGDS code is now able to rapidly perform AMR for the very large grids required for near-
continuum flows. Second, the post-processing code has been compartmentalized in a similar fashion. 
Specifically, each L1 cell (including all L2/L3 cells and all particles within them) can be interrogated 
by direct access to the hdf5 data file format. This avoids the process of loading the entire grid and 
solution into memory before post-processing. Rather, a precise region of the flow can be interrogated 
directly from the hdf5 solution file with little memory and cost. This is a significant upgrade for the 
MGDS code in terms of its ability to simulate near-continuum flows. 

Such near-continuum flows require an enormous number of computational cells, which must be 
sized to the local mean-free-path for the DSMC method, and an enormous number of simulated 
particles. Since the DSMC grid (sized to the local mean-free-path) is dependent on the solution (the 
local density within the flowfield), adaptive mesh refinement (AMR) is essential. As a result of the 
current grant, the MGDS code now has an efficient and precise AMR strategy.  

An example grid, created using AMR, for hypersonic flow over a Hollow Cylinder Flare (HCF) 
geometry is shown below in Fig. 1. 

Figure 1: MGDS –DSMC adapted grid for hypersonic flow over a hollow cylinder flare geometry. Insets 
show the CUBRC test model geometry, and a close-up view of the grid near the shock-boundary layer 
interaction, the location of peak heating seen experimentally. Simulation contains ~0.5 billion particles. 

The hollow cylinder flare is a canonical geometry that has been the focus of many experimental test 
campaigns at the Calspan University of Buffalo Research Center (CUBRC) over many years. This 
geometry involves a very sharp leading edge, which induces a degree of “slip flow” in the boundary 
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layer. The shock wave from the flare ultimately causes the boundary layer to separate leading to a 
complex shock-boundary layer interaction that is challenging to accurately predict and is relevant for 
hypersonic control surfaces. The conditions for this flow are near-continuum and the DSMC 
simulation requires a large number of cells and particles, and precise AMR. In fact, for visualization 
purposes, the grid in Fig. 1 is actually 4x coarser than was used for the simulation. The simulation 
involves a 5 species reacting air chemistry model and requires approximately 0.5 billion particles.  

Another advancement in the MGDS code, developed during the current grant, is the capability to 
impose arbitrary boundary surfaces. Such surfaces can be seen in the Hollow Cylinder Flare solution 
depicted in Fig. 2, which allows the user to simulate only the flow region (cells) of interest, instead 
of always being restricted to rectangular flow domains. As seen in Fig. 2, inflow conditions are 
imposed on the surfaces shown (planes shaded in grey). An outflow surface is also placed inside the 
cylinder portion of the HCF geometry to remove particles that enter the hollow portion of the 
geometry. Since we are not interested in the flow inside of the HCF, only the small region around the 
leading edge need be simulated in order to accurately capture the weak leading edge shock wave. All 
particles outside of these surfaces are removed. The ability to restrict the flow domain to only the 
regions of interest is a necessary step when simulating near-continuum, large-scale DSMC problems. 

Figure 2: MGDS –DSMC solution for the Hollow Cylinder Flare problem employing arbitrary 
inflow/outflow planes. These planes ensure that particles are only simulated in regions of interest, resulting in 
significant cost and memory savings. 

In addition to the large-scale parallel capability of the MGDS code, the current research grant has led 
to the development of key hybrid DSMC-CFD related algorithms. A hybrid code requires 
capabilities to interpolate solutions between CFD and DSMC computational grids and also requires 
the capability to perform DSMC simulations of sub-regions of an overall flowfield (i.e. only use 
DSMC for regions in strong nonequilibrium). Figure 3 depicts a DSMC solution for flow over a 
cylinder, where only the wake is simulated. Specifically, flow information from the forebody flow is 
prescribed as in inflow boundary condition (along the inflow plane shown in Fig. 3) to a DSMC 
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simulation of only the wake region. The MGDS DSMC code now has the capability to surround 
DSMC simulation regions by arbitrary inflow surfaces, where the flow properties for the inflow 
surfaces can be provided by any general means (such as data from an accompanying CFD [12] 
simulation). In this manner (Fig. 3), we now have the capability to transfer information between 
CFD and DSMC grids for general 3D flows. 

Figure 3: Hypersonic flow over a cylinder. Decoupled simulation where flow information from the forebody 
region is extracted along an “Inflow Plane”, which is used as an inflow boundary condition for a DSMC 
simulation of only the wake region. 

3 DSMC and CFD MODELING 

As described in the previous section, a number of the required capabilities for a hybrid DSMC-CFD 
code have been developed during this research grant. We have also made progress on one of the 
most significant remaining obstacles; namely the lack of consistency between DSMC and CFD 
models for chemistry in flows exhibiting thermochemical nonequilibrium.  

Essentially, current chemistry models for both CFD and DSMC are empirical models developed 
independently for each method. These existing empirical models are not consistent in the continuum 
limit. As mentioned in the introduction, hybrid simulation capability for reacting flows has not yet 
been demonstrated in the literature.  
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Significant progress has been made during the current grant in this area. We have developed a new 
dissociation model using results from quantum chemistry [13] performed under a grant from 
AFOSR. The new model was constructed from first-principles, and made inherently consistent at the 
molecular level (DSMC) and continuum level (CFD).  

To summarize, a new simulation approach (called direct molecular simulation – DMS, developed in 
Schwartzentruber’s group [14,15]) is able to directly simulate the rovibrational excitation and 
coupled dissociation physics of a shock-heated gas, where the only model input is an ab-intio 
potential energy surface (PES) [16-18]. The DMS method reveals the evolution of non-Boltzmann 
internal energy distributions and has revealed key details regarding the coupling between vibrational 
energy and dissociation. These DMS results have been used to construct a coupled vibration-
dissociation model for DSMC. In the limit of near-equilibrium flow, this molecular model can then 
be integrated to obtain a new two-temperature model for use in CFD.  

For DSMC, the new dissociation rate model has the following form: 

This gives the probability of a molecule dissociating, given its vibrational energy state (εv), the 
average translational energy of the gas (<εt >) and the dissociation energy (εd). This is the expression 
that should be used within a DSMC simulation when simulation particles collide and are tested for a 
dissociation reaction. 

A new model for the distribution of vibrational energy in a nonequilibrium gas has also been 
developed. Specifically, the new model captures deviations from a Boltzmann distribution due to 
overpopulation of the high-v states due to rapid excitation, and the depletion of high-v states due to 
dissociation. This non-Boltzmann distribution function is given by: 

This equation is a Boltzmann distribution based on the average vibrational energy (εv), however, it 
contains two additional exponential terms containing parameters λ1 and λ2. The λ1 term accounts for 
overpopulation during excitation and the λ2 terms accounts for depletion during dissociation. 
Comparisons of this simple model with non-equilibrium distributions during an excitation simulation 
(using DMS) is shown below in Fig. 4. This model is quite accurate despite it simplicity. 

With a simple model for the non-Boltzmann velocity distribution function, one can now integrate the 
probability of dissociation given a v-level over the population of v-levels. This gives the overall 
probability of dissociation in the gas, which is directly linked to the reaction rate used in CFD: 
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Figure 4: Vibrational energy distribution functions, plotted during an isothermal excitation to 20,000K in 
nitrogen gas. Direct Molecular Simulation (DMS) results are plotted as symbols. The new model results are 
plotted as dotted lines and the corresponding Boltzmann distribution is plotted as a solid line. During the 
excitation, the distribution function transitions from overpopulation compared to Boltzmann to depletion 
compared to Boltzmann. 

We propose to use these new, consistent DSMC and CFD dissociation models and demonstrate 
hybrid DSMC-CFD solutions for reacting flows in the near future. 
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