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a b s t r a c t 

With its low work function and high mechanical strength, the LaB 6 /VB 2 eutectic system is an interest- 

ing candidate for high performance thermionic emitters. For the development of device applications, it

is important to understand the origin, value, and spatial distribution of the work function in this system.

Here we combine thermal emission electron microscopy and low energy electron microscopy with Auger

electron spectroscopy and physical vapor deposition of the constituent elements to explore physical and

chemical conditions governing the work function of these surfaces. Our results include the observation

that work function is lower (and emission intensity is higher) on VB 2 inclusions than on the LaB 6 ma- 

trix. We also observe that the deposition of atomic monolayer doses of vanadium results in surprisingly

significant lowering of the work function with values as low as 1.1 eV.

© 2017 Elsevier B.V. All rights reserved.
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. Introduction

LaB 6 has been used as thermionic emitter for several decades. It

as recognized early on that LaB 6 had many properties that were

eneficial for use as a cathode, such as low work function (2.7 eV)

nd lower operating temperatures ( ∼1500 K) [1] . LaB 6 also has an

nergy spread roughly half that of tungsten under the same ac-

elerating voltage [2] . All of which are an improvement over the

tandard tungsten electron sources with the main limiting factor

o more widespread use being cost. As a result, LaB 6 has been

mployed in a wide variety of applications requiring an electron

ource, which include electron microscopes, traveling wave tubes,

nd Hall/ion thrusters. 

Directionally solidified eutectics consist of a two-phase mate-

ial with one phase distributed throughout the matrix of the sec-

nd phase. This class of materials have been shown to have de-

irable high-temperature mechanical properties compared to exist-

ng composites [3–9] . Somewhat more recently LaB 6 directionally

olidified eutectic (DSE) materials have been shown to offer fur-

her mechanical improvements over standard LaB 6 [10] . LaB 6 DSEs

onsist of a LaB matrix phase with a transition metal di-boride
6 
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Distribution A. Approved for public relea
hase that forms fibers homogenously throughout the matrix. Typ-

cal transition metals consist of Zr, Hf, Ti, and V. The improvement

n mechanical properties is attributed to the interface between the

wo phases in the eutectic. Additionally, this material system has

lso shown significant improvements in thermionic emission cur-

ent density when compared with standard single crystal LaB 6 [11,

2] . LaB 6 /VB 2 was shown to have an order of magnitude improve-

ent in current density when compared to single crystal LaB 6 [12] .

The combination of high mechanical strength and current den-

ity make LaB 6 DSEs ideal candidates for use in applications where

igh power and long term stability are critical such as use in

all/ion thrusters where cathode requirements up to 400 A and

0 4 h could be necessary [13] . Although previous electron emission

tudies of LaB 6 DSEs have shown significant improvements over

xisting thermionic cathodes, a fundamental understanding of why

s lacking. It is the purpose of this paper to investigate dynamic

hanges in work function for LaB 6 /VB 2 with low energy electron

icroscopy (LEEM). The thermionic electron emission microscopy

ThEEM) imaging mode and reflectivity curves were used to char-

cterize the work function of the surface under stoichiometric and

onstoichiometric conditions. 
on of directionally solidified LaB6–VB2 eutectic, Ultramicroscopy 

se (PA): distribution unlimited.
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Fig. 1. Reflectivity curve from HOPG. Using the linear fit method resulted in a work 

function of 4.67 eV. 
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2. Experimental procedures 

The LaB 6 /VB 2 samples were directionally solidified by a zone

melting technique previously described elsewhere [10] . The crystal

growth resulted in cylindrical rods which were then cut and pol-

ished. After polishing the samples were transferred into a spin po-

larized low energy electron microscope (SPLEEM) at the National

Center for Electron Microscopy at Lawrence Berkeley National Lab-

oratory. Before imaging the samples were introduced into a sample

preparation chamber for cleaning that consisted of Ar ion sputter-

ing in a background of O 2 , 3.0 × 10 −8 Torr. During sputtering the

sample was flashed to 1250 °C for 40 s with a final flash in vacuum.

This was repeated multiple times until the sample surface was

free of carbon and oxygen which was checked with Auger elec-

tron spectroscopy (AES). Once clean, the sample was transferred

into the SPLEEM imaging chamber which maintained a base pres-

sure of 2 × 10 −11 Torr. All images were acquired in the bright field

imaging mode. The SPLEEM setup has been described elsewhere

[14,15] . 

In order to determine work function, a series of images were

acquired by systematically changing the starting voltage on the

sample to generate a reflectivity curve. The curves can be used to

determine at what point the transition from mirror mode to scat-

tering mode, sometimes referred to as the MEM-LEEM transition,

occurred. This transition can be used to determine the work func-

tion of the sample surface using the relationship ϕ S =eV onset + ϕ G ,

where ϕS is the work function of the sample in eV, V onset is

the threshold voltage in volts and ϕG is the effective work func-

tion of the electron gun [16–19] . In order to accurately determine

the work function of the sample by this method the effective

work function of the electron gun in the LEEM must be known.

To accomplish this highly oriented pyrolytic graphite (HOPG) and

W(1 1 0) were used for calibration. Reflectivity curves were ac-

quired from these samples by collecting a series of images cre-

ated by changing the starting voltage on the sample. To determine

the work function from these curves several fitting methods are

possible. Recently, Mathieu et al. [20] used a complementary er-

ror function (erfc) to obtain a work function value. This method

worked well when transitions are sharp and energy resolution is

high. However, for instances where the transition is broad the erfc

fit tends to over-estimate the work function. The erfc fit is sen-

sitive to the energy-width of the transition (for LEEM this is the

transition from mirror mode to scattering) and broader distribu-

tions tend to yield higher work function values. Another previously

used method [16–19] involves the use of two linear fits to deter-

mine work function from the intersection of these two lines. Al-

though simple, it is found that this method is more consistent with

work function determination reported elsewhere [16,21] , particu-

larly when the energy-width of the transition from mirror mode to

scattering is relatively broad, a condition that exists in the data re-

ported here. For calibration, the linear fit method was used to de-

termine the work function of both W(1 1 0) and HOPG which was

found to be 5.2 eV and 4.7 eV, respectively. These experimentally

determined values agree well with values previously reported for

W(1 1 0) [22–26] and HOPG [27–32] . Fig. 1 is a reflectivity curve

from HOPG demonstrating the linear fit procedure. All work func-

tion values were corrected for Schottky barrier lowering of the

work function due the field between the sample and the objective

lens, which was estimated to 0.048 eV. 

This intersection represents the transition from mirror mode

into scattering mode. These curves were used to create a spa-

tially resolved work function map. In order to characterize the ef-

fects of non-stoichiometric surfaces on work function the samples

were dosed with monolayer (ML) coverages of La, V, and B sepa-

rately during image acquisition. V and B were deposited by e -beam

evaporation and La by thermal evaporation. For calibration of de-
Please cite this article as: T.C. Back et al., Work function characterizati

(2017), http://dx.doi.org/10.1016/j.ultramic.2017.05.006 2 
Distribution A. Approved for public re
osition rate each individual elemental component was deposited

nto a clean LaB 6 surface. The deposition rate was determined by

onitoring the image intensity oscillations that are consistent with

tomic layer-by-layer growth. Samples were also imaged in ther-

al emission imaging mode or ThEEM. In ThEEM only thermally

mitted electrons from the sample are used for imaging. In this

maging mode, thermionic emission curves were obtained by plot-

ing the total intensity of the image as a function of temperature

33] . 

. Results and discussion 

It was previously shown thatLaB 6 –MeB 2 (where Me = V, Zr,

i, and Hf) materials exhibit significant improvements in thermal

mission current density compared to pure LaB 6 [12] . It was found

hat for all the compositions tested it was the eutectic composi-

ion that always yielded the highest current density [34] . Of the

ransition metal di-borides tested, the VB 2 compound yielded the

ighest current density. Fig. 1 shows a LEEM image of the LaB 6 /VB 2 

urface. The dark areas in the image consist of circular features

oughly 500 nm in diameter which are the VB 2 phase. The lighter

reas in the image are the LaB 6 matrix phase. 

Taran et al. conjectured that the origin for the improvement in

lectron emission was due to improved La diffusion mobility along

he interface between the two phases compared to bulk LaB 6 . This

rocess resulted in excess La concentration at the surface of the

athode. Berger et al. recently showed that for the LaB 6 –ZrB 2 eu-

ectic enhanced emission around the phase boundaries was evi-

ent in ThEEM [35] . Diffusion at the phase boundaries is a likely

echanism for the observed emission enhancement. It was shown

hat by replacing ZrB 2 with a solid solution of (Zr, Ti)B 2 the emis-

ion activity decreased [11] . This was partially attributed to the

resence of Ti atoms at the phase boundary interface. The solid

olution di-boride is thought to form a more perfect interface, lim-

ting the diffusion of La. Fig. 2 (a), (b) show a LEEM image of the

aB 6 –VB 2 surface with corresponding work function map. It can

e seen in Fig 3 (b) that low work function areas are primarily con-

entrated around the phase boundary between the two materials,

ith values ∼1.6 eV. It should be noted that the surface cleaning

rocedure involves multiple high temperature flashes to 1250 °C. It

s possible that the cleaning procedure promoted diffusion of La to
on of directionally solidified LaB6–VB2 eutectic, Ultramicroscopy 

lease (PA): distribution unlimited.
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Fig. 2. LEEM image of LaB 6 /VB 2 surface, electron landing energy 2 eV. The eutectic

consist of a LaB 6 matrix with VB 2 rods. The rods are typically ∼600 nm in diameter. 

Scale bar is 1 μm.
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a

he surface of the eutectic similar to an effect previously shown

ith LaB 6 –ZrB 2 [35] . 

A similar result was obtained with ThEEM. Fig 4 (a) shows a

hEEM image at 977 °C. Most of the intensity in the image is con-

entrated on the VB 2 phase. Fig. 4 (b) shows a thermionic emis-

ion curve generated from image intensity at various temperatures.

sing the Richardson–Dushman equation [36] , I = AT 2 exp −( ϕ/kT) ,

here A is a material specific constant, T is temperature, ϕ is the

ork function and k is the Boltzmann’s constant. We note that

ince we use image intensity and not the true current density

n the Richardson–Dushman equation, no useful comparisons can

e made with previously reported values for this constant. In this

maging mode the dominant physical property that contributes to

mage contrast is work function. Low work function areas will ap-

ear brighter. This is somewhat contradictory to the work function

ap in Fig 2 (b), which showed the VB 2 phase to have similar work

unction as the LaB 6 matrix. The origin of this discrepancy is un-
ig. 3. (a) LEEM image of LaB 6 /VB 2 surface, electron landing energy 1.1 eV; b) work fun

round the phase boundaries between the LaB 6 (matrix) and the VB 2 (rods). Scale bar is 

Please cite this article as: T.C. Back et al., Work function characterizati

(2017), http://dx.doi.org/10.1016/j.ultramic.2017.05.006 3 
Distribution A. Approved for public relea
nown at this time. The fact that the work function observed in

he map and one calculated with the Richardson–Dushman equa-

ion are nearly identical indicates the origin of the work function

re possibly the same. Given the large temperature difference, sur-

ace diffusion is likely to play a role in the emission activity shift

rom phase boundaries at room temperature to the primarily the

B 2 at 977 °C. 

Although the SPLEEM is capable of heating the samples to tem-

eratures that are typical of a working thermionic emitter, imag-

ng at those conditions for extended periods of time is challeng-

ng for many reasons including detrimental e -beam heating of the

bjective lens and drift. Previous work involved thermionic emis-

ion experiments that exceeded 100 h [11] . However, simulating

he effects of changes in stoichiometry by dosing the surface is

uite easy in the SPLEEM. To do this La, V, and B were dosed

eparately on the surface, to roughly 1 ML coverage, by e -beam

nd thermal evaporation during image acquisition at room tem-

erature. Fig. 5 (a), (b), (c) shows the results of the dosing exper-

ments. From B dosing results shown in Fig 4 (a) it can be seen

hat the matrix has a significantly higher work function than the

B 2 phase. Higher work functions are also observed around the

hase boundaries. This agrees well with the ThEEM image shown

n Fig 4 (a), which showed the primary emission areas to be on the

B 2 phase. La dosing shown in Fig 5 (b) yielded low work func-

ion areas that were centered around the VB 2 phase. The V dosing

hown if Fig 5 (c) showed the most significant change in work func-

ion. Work functions as low as 1.1 eV were observed on the surface.

Qualitatively, the work function maps in Fig. 5 indicate an over-

ll increase in the work with excess boron and decrease with ex-

ess La and V. It is apparent from the maps that V yielded the

owest work function change with values as low 1.1 eV. This sug-

est that La diffusion may not play a role in thermionic emission

nder these experimental conditions. It should be noted that pre-

ious thermionic emission experiments were conducted at tem-

eratures much greater than 10 0 0 °C. The work function analysis

nd thermionic emission imaging presented in this work repre-

ents emission characteristics well below that regime. 

. Summary

The work function of the LaB 6 –VB 2 DSE was characterized

hrough analysis of reflectivity curves acquired in the LEEM and

hEEM. At room temperature, low work function areas were ob-

erved around the phase boundaries. Previous work would suggest

hat these areas were the result of La diffusion. However, for the

rst time it was shown through ThEEM and elemental dosing that
ction map created from a). Most of the low work function areas are concentrated 

1 μm for both images. 

on of directionally solidified LaB6–VB2 eutectic, Ultramicroscopy 

se (PA): distribution unlimited.
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Fig. 4. (a) ThEEM image of LaB 6 /VB 2 at 1250 K. Most of the intensity in the image is on or near the VB 2 phase. Scale bar is 1 μm. b) Thermionic emission curve generated 

from ThEEM images. A work function of 1.63 eV was calculated using the Richardson–Dushman equation. Blue dotted line indicates minimum value for integrated intensity 

on the detector. None of the points below this line were used for the calculation with the Richardson–Dushman equation. (For interpretation of the references to color in 

this figure legend, the reader is referred to the web version of this article.) 

Fig. 5. 1 ML depositions of a) B, b) La, and c) V. The B deposition showed an overall increase in the work function while both the La and V deposition showed decrease. The 

scale bar is 1 μm and is applicable to all images. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

vanadium may be responsible for the observed low work function

areas, as low as 1.1 eV, at least in the low temperature, < 10 0 0 °C,

regime. 
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