

How Well Can Existing Software-Support Processes Accomplish Sustainment

of a Non-Developmental Item-Based Acquisition Strategy?

Graciano Nikolich

April 6, 2017

PUBLISHED BY
The Defense Acquisition University
Project Advisor: Dr. Craig Arndt

The Senior Service College Fellowship Program
Aberdeen Proving Ground, MD

ii

iii

Table of Contents

Table of Contents ... iii

List of Figures ... v

Abstract .. vi

Chapter 1 – Introduction ... 1

Background ... 1

Problem Statement .. 3

Purpose of This Study ... 3

Significance of This Research ... 3

Overview of the Research Methodology ... 4

Research Questions ... 4

Research Hypotheses ... 5

Objectives and Outcomes .. 5

Limitations .. 5

Chapter 2 – Literature Review .. 7

Laws, Policies, Audits, and Guidebooks ... 7

Research Papers and Articles .. 11

Summary ... 13

Chapter 3 – Research Methodology .. 15

Research Hypothesis ... 15

Research Design .. 15

Bias and Error .. 16

iv

Chapter 4 – Findings ... 17

Collected Data ... 17

Analysis ... 19

Stable Software Baseline ... 19

Potential Actions to Improve Sustainment Posture ... 29

Chapter 5 – Interpretation ... 35

Conclusions ... 35

Recommendations ... 38

Limitations of the Study .. 40

References ... 41

Glossary of Acronyms and Terms .. 45

Note ... 47

Author Note .. 48

v

List of Figures

Figure 1 – Software Engineering V-Model .. 22

Figure 2 – Hardware Program ... 25

Figure 3 – Hybrid Program (Software Dominant) .. 26

Figure 4 – Maturity Levels ... 32

vi

Abstract

The Department of Defense is increasingly moving toward software-intensive tactical

systems. Software sustainment presents a differing set of characteristics over its hardware

counterpart. To understand better how these differing characteristic may affect the current

support processes established for the hardware-dominated landscape, this paper examines how a

recent, ongoing, acquisition of a software-intensive tactical system (Joint Tactical Radio System)

is aligning to the existing DoD and Army policy and guidelines for software sustainment. The

paper further tries to identify potential disconnects presented by the DoD/Army’s movement

toward acquiring systems under the Non-Developmental Item (NDI) strategy. Under an NDI

acquisition, the program manager acquires the end system with little to no development

contribution or design insight. Recommendations are made to assist the Army in recognizing

such challenges and considering modifications to the current processes.

1

Chapter 1 – Introduction

Background

In the Department of Defense (DoD) system acquisition process, sustainment1 is the final

phase of that cycle. Formal DoD instructions (DoDI) and Army regulations (AR) provide the

guidance for a system to transition from development and fielding to sustainment. Furthermore,

statutory law for core logistics capabilities mandates for no less than 50 percent of the system

sustainment to be executed by a federal government organization (Title 10 United States Code

(U.S.C.), sections 2464 and 2466). Historically concentration for this final phase of a product’s

life cycle has been aligned toward support of a hardware-centric design. That is not to say that

software is not acknowledged within these instructions. For example, post production software

support is a defined process that recognizes the presence of software within a system and the

necessity to support it through the end of the system’s life cycle. However, the guidance

provided infers a system that has been developed through its acquisition milestones in joint

participation with an Army program manager (PM) and the other party’s development team

(typically a prime contractor). That typically provides the PM with full design knowledge, from

the initial allocation of system requirements (hardware vs. software), followed by prototyping,

and culminating with the final design and production. Under this type of system development

approach, the government’s sustainment organization is well positioned to execute system

sustainment by following a mature set of preparatory steps for the eventual transfer from the

original equipment manufacturer to the government agent.

The trend over roughly the last decade by the Army has been from hardware- to software-

centric tactical system designs. These designs introduce a unique set of sustainment variables

that may not align well to the processes and procedures supporting hardware-centric system

2

sustainment. To further drive down weapon acquisition costs, the DoD/Services are placing

greater emphasis on leveraging commercially available software applications. An even further

step in this strategy has been a shift to acquiring systems as a Non-Developmental Item (NDI). In

the case of an NDI acquisition, a complete end-system is typically procured without a

government funding contribution for its up-front development and maturation to production-level

status. In effect, the government has no involvement with the up-front design of the system. An

example of this acquisition strategy evolution is the Joint Tactical Radio System (JTRS)

program. The majority of the JTRS functions, including some that in the past have typically been

executed in hardware (e.g., cryptographic engines), are executed in software modules. This

provides much greater flexibility for function and capability enhancements without having to

redesign expensive hardware. A decision in 2014 by the Milestone Decision Authority identified

the acquisition strategy for this program to be NDI based. In effect, the product would be

purchased as an end item, government acceptance tested in developmental test and operational

test environments, and then fielded. This is the first time a family of complex tactical (next-

generation) communications systems is being procured in an off-the-shelf strategy. It is a

reasonable assumption that these communications systems will experience frequent software

design changes (based on what is witnessed in the commercial communications market). Thus

the expectation is for perpetual changes driven by a variety of modifications (bugs, security

vulnerabilities), increased functionality, adaptations to software operating systems, and even

business models of companies (for example, the next version of software typically results in

abandonment of previous versions, creating obsolescence dilemmas for customers).

3

Problem Statement

The trend to software-centric systems will not abate. Cost avoidance attempts, such as

NDI acquisition strategies, will only increase. As this proliferation of software increases within

the DoD weapon systems, the NDI pursuit will create hybrid software products (tactical systems)

that will include elements of commercial off-the-shelf (COTS) software, government furnished

software (GFS), open system software (OSS, a.k.a. freeware), and native system software,

developed by a confluence of independent vendors. An NDI acquisition strategy does not afford

the government team insight into system design (detail). Under these circumstance, how well can

existing software-support processes accomplish sustainment of NDI-based acquisition strategy?

How will a third-party government sustainment organization accomplish organic system

readiness?

Purpose of This Study

The purpose of the study is to examine the impact that software-intensive systems, being

acquired under the NDI strategy, will have on the existing support processes. The study

examines the current set of policies, instructions, and regulations that guide system support, and

assesses their sufficiency to accommodate military acquisition trends for procuring software-

centric systems under an NDI construct. The review looks for potential disconnects between the

guidelines and the actual situations this trend presents.

Significance of This Research

This study adds to the body of knowledge regarding the increase of software-centric

tactical systems in the military and the challenges they present for life-cycle sustainment. The

study concentrates on examining a communications family of radios. The study assumes an

increase in NDI-type system acquisition as the DoD looks to leverage industry (commercial

4

and/or defense) adoption of third-party software applications that avoid the need for original

development. Under these assumed circumstance, it is important to determine how the existing

support structure will accommodate this change, or whether changes in life-cycle sustainment

approach are necessary to account for the dynamic situation presented by this software, and in

particular by NDI system acquisition.

Overview of the Research Methodology

This is an evidence-based research project that uses case study methodology in order to

examine the present-day acquisition policies, instructions, and regulations for life-cycle

sustainment of systems, and asses their capability to sustain software- centric systems. The

research focuses on the growing trend of the Army to acquire tactical systems under an NDI

strategy. The research also reviews published reports and papers from academia, as well as a

reviews Service-specific best practices for software development and support. The research

includes perspectives taken from personnel from the Army’s software support agencies

(Communications-Electronics Command [CECOM]; Software Engineering Center [SEC]), as

well as some defense industry players involved with delivering software-centric products for the

DoD and Army.

Research Questions

Given the language of the current laws, policies, and regulations governing military

system acquisition and life-cycle sustainment, how are the variables of software-centric products

aligned to those of traditional hardware-centric products? How well can existing Army software-

support organizations accomplish sustainment of NDI-acquired products?

5

Research Hypotheses

NDI acquisition is characterized by no research, development, test and evaluation

funding provided by the government for the development of the system. The combination of NDI

and software-based tactical systems is an attractive acquisition strategy because the former

avoids the government cost of funding development, while the latter provides a much greater

design flexibility for future additive functionality over the historically hardware-centric designs.

This increased software content of a product will require a change in the policies and procedures

governing life-cycle support of a traditional hardware-based system. Without considering the

unique differences between hardware and software sustainment, the Army will face difficulties

in maintaining the readiness of these tactical systems.

Objectives and Outcomes

The findings of this research will provide PMs with a better understanding of the

characteristic differences between a hardware-centric versus a software-centric tactical system

that is being acquired under an NDI strategy. Understanding these inherent differences will allow

the PM to partner with the sustaining organizations by recognizing and accounting for such

situations over the system’s life cycle.

Limitations

This study is limited to the available statutes, policies, regulations, and professional

articles available from institutions and journals. The proliferation of software into military

systems is a relatively new situation in comparison to the overall existence of military weapons.

The commercial industry, by its creation and publication of software standards (e.g., Object

Management Group), has played a major role in bringing about the military Services’ adoption

of software-based capabilities for tactical systems. Much less has been experienced regarding

6

sustainment of such systems. Most of the examined literature comes from academia. Limited

Service experience is available to address the software-centric situation. The Services and DoD

have published a handful of best practices, but the majority assume the government (PM) is part

of the program’s development phase, and thus a participant in the up-front knowledge of the

software-based system being fielded. Much less information was found that reflected an NDI

situation, which in effect acquires the system after it has been designed and built.

7

Chapter 2 – Literature Review

This chapter summarizes the literature review that was found regarding acquisition and

life-cycle support of major weapon systems. The review includes academic publications about

sustaining software-intensive systems in the DoD. The literature is organized to identify laws,

policies, audits, and guidebooks governing the DoD and Army, and research papers and articles.

Laws, Policies, Audits, and Guidebooks

DoDI 5000.02 (DoD, 2017). This gives directions to PMs for major weapon system

acquisition. It includes descriptions of a program’s acquisition milestones, required

documentation, and planning for transition from development to the operation and support phase.

The instruction addresses software development in Enclosure 3, system engineering (Section 11,

Software), and system sustainment in Enclosure 6 (Life-Cycle Sustainment), including the

development of a life-cycle sustainment plan that maintains affordable operational effectiveness

of the system throughout its life cycle.

DoDI 8510.01(DoD, 2016). This describes the requirements for obtaining an authority to

operate a fielded system. The emphasis of the document is on cybersecurity.

Title 10, United States Code. Section 2464 defines the necessity for the core logistics

capability to be executed by a government-owned and government-operated entity in order to

ensure a ready and controlled source of technical competence and resources for national defense.

Section 2466 establishes that no more than 50 percent of the yearly depot-level maintenance

funds may be used for contract support. These laws govern the role a sustainment organization

must execute for a system transitioning form development/fielding to sustainment.

Memorandum on Intellectual Property and Software Optimization (Assistant

Secretary of the Army for Acquisition, Logistics and Technology [ASA(ALT)], 2016). This

8

identified the need for an intellectual property (IP) strategy as part of a program’s acquisition

strategy. The IP strategy is to address life-cycle support technical data needs (including

documentation, rights, licenses, patents, copyrights, and trademarks).

Defense Acquisition Guidebook (DAG; Defense Acquisition University [DAU], 2013).

The DAG provides guidance to the PM regarding development and sustainment of software. The

need for a strong application of software engineering principles is emphasized. The DAG

advocates establishing a software team to address the acquisition strategy (i.e., what is to be

developed, planned use of government off-the-shelf/COTS/OSS, mix/hybrid, etc.). Open system

architecture is encouraged for ease of future sustainment and/or capability upgrades. The DAG

provides recommendations for specifically addressing software in a software development plan,

consideration for post-deployment software support (PDSS), a software data management

approach, and consideration for data rights and software safety.

Section 4.3.18.4 describes the benefits and concerns of using COTS. For example, some

of the benefits are that it reduces development time (none required), allows for faster insertion of

technology, and lowers life-cycle costs by leveraging the commercial industrial base.

Conversely, some of the concerns are embedment of proprietary functions, restricted rights,

possible lack of access to design information, and difficulty in finding a suitable replacement

once the vendor moves on to another application (marketplace drives COTS, not the

government).

United States Air Force Weapons Systems Software Management Guidebook (United

States Air Force, 2008). This document provides guidance for organizations that acquire or

sustain systems that involve significant development, integration or modification to the

embedded software. An overview identifies activities necessary to have a successful

9

system/software acquisition. It describes some common issues that historically drive software

problems for PMs. Some examples include planning based on unrealistic expectations; software

teams that are inadequately staffed, unstable, or incapable; and an ineffective systems

engineering interface to the software development process.

Army Regulation 70-1 (Department of the Army, 2016a). Section 6-4 of the policy

defines the requirements for software acquisition. It identifies the role the materiel developers

play in software acquisition and defines what software generational languages are to be used. It

indicates the need for Software Engineering Institute Level 3 compliance for a contractor’s

software development capability and process maturity.

Section 7-15 of the policy identifies the materiel developer’s responsibility for a post-

production support plan until such time that the materiel developer determines it is appropriate to

transition the responsibility to the sustaining command. It states the system will not transition

before the first full fiscal year after close of the hardware production line. The term “post-

production software support” (PPSS) is applicable to systems that have transitioned to

sustainment and the depot maintenance OP-29 process.

Army Regulation 700-127 (Department of the Army, 2016c). Section 8-10 identifies

the materiel developer’s responsibility for prudent software support planning for transition to

sustainment. Note that software is an integral component of that materiel.

Reliability Tools (Army Materiel Systems Analysis Activity [AMSAA], 2016).

AMSAA offers the PM two software tools to be applied in contracts that anticipate having a

software component as part of the materiel solution. Software reliability is an important

contributing factor in lowering the cost of system sustainment. The tools help the PM gauge the

degree to which the system is meeting its reliability requirements, as well as provide guidance in

10

establishing a reliability growth program. Recommendations are offered for establishing a

software reliability program, as a subset of the overall system reliability program. A scorecard

tool provides 57 elements to use in assessing the developer’s software experience.

 Executive Order 062-17 in Support of Software Solarium II (Department of the

Army, 2016b). This order directs a follow-up discussion of software development and

sustainment in the Army’s portfolio of systems (Solarium I and II were conducted in September

2016 and February 2017, respectively). It identifies the problem as follows: “There is a lack of

unity of effort in the development, testing, and sustainment of software in order to enable current

and future Army warfighter functions in the execution of unified land operations” (p. 1.B). In

order to address the problem, the order identifies four software Lines of Effort to be further

discussed at the follow-up forum.

 Lifecycle Sustainment Strategies for Acquisitions of Items Developed Exclusively at

Private Expense; Suggested Considerations (Gomes, 2017). This guidebook offers the

audience assistance in the type of language to be inserted into a solicitation that is acquiring

items developed by vendors with their own funds. It addresses approaches to technical data

packages, data rights, and other life-cycle considerations for sustainment strategies. It also offers

a few examples of systems acquired, and provides samples of language for sections L and M

within a request for proposal.
Software Communications Architecture (SCA), Version 4.1 (Joint Tactical

Networking Center, 2015). “This architecture was developed to assist in the development of

Software Defined Radio (SDR) communication systems, capturing the benefits of recent

technology advances which are expected to greatly enhance interoperability of communication

systems and reduce development and deployment costs” (p. x). The SCA intent is to “[provide]

11

portability of applications software between different communications systems, leverage

commercial standards to reduce development cost, reduce software development time through

the ability to reuse design modules, and build on evolving commercial frameworks and

architectures” (p. x). The SCA models the approach being promoted by tenets of Open Systems

Architecture: in other words, to ease function upgrades and reduce sustainment cost through

modular designs. The SDRs are configured to operate an application referred to as a waveform.

A waveform is the set of transformations applied to information that is transmitted over the air

and the corresponding set of transformations to convert received signals back to their

information content. A Mobile Ad-hoc Networking waveform is a dynamic ad hoc network that

continuously self-forms (and re-forms broken connections between its network members)

without the need for any fixed infrastructure, such as cell towers.

National Defense Authorization Act for Fiscal Year 2010, Section 804 (2009). This

section requires the DoD to develop and implement a new acquisition process for information

technology systems.

Common Operating Environment Implementation Plan Core (ASA[ALT], 2011).

This document provides direction for implementing the common operating environment (COE)

to ASA(ALT)’s portfolio of systems.

Research Papers and Articles

Sustaining Software-Intensive Systems (Lapham & Woody, 2006). This technical

note discusses the challenges of sustaining DoD systems that are increasingly software

dependent. The note poses a series of questions that are then explored by the authors. The

authors address use of COTS and highlight the specific challenges that acquisition presents.

12

Recommendations are made to the materiel-developing PM, along with the top 10 issues that

should be addressed.

A Decision Framework for Selecting Licensing Rights for Noncommercial

Computer Software in the DoD Environment (Gross, 2011). The report highlights the

importance of a PM determining the correct software licensing strategy. It offers a framework to

help determine the type of noncommercial software license a PM should pursue in support of the

program. The various rights identified in the Defense Federal Acquisition Regulations

(Unlimited, Government Purpose, Restricted, and Specifically Negotiated) and their variables are

defined. Four questions are identified that should be asked in order to determine the program’s

licensing needs.

An Investment Model for Software Sustainment (Ferguson, 2013). This blog post

offers some insight into the increasing cost of software sustainment (as much as 70 percent of

total life-cycle cost for software). It discusses the Software Engineering Institute’s (SEI’s)

development of a systems dynamic model that can be applied to a software product in order to

forecast better a future event that will create a tipping point for the PM, thus giving the PM time

to take action in advance.

Software Sustainment Now and Future (Lapham, 2014). This report discusses the

criteria necessary to prepare a product to enter sustainment. It also looks at some future trends in

software sustainment.

Modeling Software Sustainment (Ferguson, Phillips, & Sheard, 2014). This report

describes a systems dynamic model that can be used by PMs to anticipate major product tipping

point. A tipping point is defined as a sudden and dramatic change in the condition of the

program. The model can be used to measure (1) operational performance, (2) operational needs

13

analysis, (3) engineering and delivery, (4) capacity and capability, and (5) improvement funding.

Feeder data will let the PM determine the appropriate course of action to get ahead of the

situation.

 Addressing Software Challenges for the DoD (McLendon, Scherlis, & Schmidt,

2014). This report characterizes the growth of software in the DoD’s weapon systems and the

commensurate cost of sustainment. The report further characterizes some distinctions between

hardware and software (e.g., software does not wear out). The report concludes with a

recommendation for a more holistic approach to software sustainment that addresses the

technical, management, and business perspectives in a balanced manner.

Summary

 A substantial amount of information was drawn from the statutory laws, regulations, and

guidebooks that address system acquisition, including accountability for software development

and sustainment. Based on the cursory review of these documents, little is said regarding NDI

acquisition of capability. It is a category of acquisition characterized by conscious acceptance of

limited design knowledge. The academic literature was a rich source of information largely

cautioning about the challenges of NDI software sustainment. These resources highlighted the

need for appropriate support planning during the development phases of programs. Nevertheless,

that may not be entirely possible for an NDI acquisition.

There appears to be gaps between the government laws, policies, instructions,

regulations, academic reports, and the conditions an NDI acquisition creates. The NDI will have

a hybrid of originally developed software, special-purpose software (e.g., near real-time

operating systems), COTS software, GFS (waveform applications), and OSS.

14

15

Chapter 3 – Research Methodology

Research Hypothesis

For this research project, the null hypothesis (H0) is that the current set of statutes,

policies, and regulations provide sufficient guidance for a PM, acquiring a system under an NDI

strategy, to accomplish software sustainment throughout the life cycle. The alternative

hypothesis (H1) is that although the guidance and direction exist, an NDI acquisition presents the

PM with a unique set of variables that differ from an engineering-and-manufacturing-

development-phased acquisition, which requires a change to the governance process. For an NDI

situation, a tailored support strategy may be required that combines the sustaining organization’s

core depot repair responsibility for hardware with the PM’s continued sustainment responsibility

for software under PDSS for the entire life-cycle (versus transitioning to PPSS). This has the

added advantages of allowing for continued capability additions by the PM in support of the user

community and of accommodating advancing software applications by the vendors.

Research Design

 My approach to this project was to conduct evidence-based research. A case study

methodology was used in order to examine the present-day acquisition policies, instructions, and

regulations for life-cycle sustainment of systems, and assess their capability to sustain software-

centric systems acquired under an NDI strategy. Focused interviews were conducted with

members from Army Material Command (AMC), CECOM, SEC, and individuals in military-

sector industry in order to gather their perspectives. Information was also gathered from various

academic and software affiliated institutions. Technical articles were reviewed regarding

management of software development efforts.

16

Bias and Error

The selection of the research topic was driven by my experience and continued

involvement with the JTRS program. This experience may create a bias toward the belief that the

current (hardware-oriented) AMC/CECOM support process will not be able to sustain a complex

software system. JTRS efforts identified the dynamic nature of the software development

environment. Through my participation in the development phase, concerns were raised that a

complex software system was not going to fit the support framework of a hardware-based

system. To mitigate my bias, I attempted to conduct interviews with other professionals in the

field of acquisition. It is also possible that their perspectives introduce some bias based on past

experience.

17

Chapter 4 – Findings

Collected Data

The objective of this research is to find out whether the existing software support

processes can satisfactorily sustain products acquired under the NDI approach. Or are there

structural changes necessary to the governance process for such acquisition strategies. The

literature research indicated there is a general DoD awareness of the exponential growth in

software within the military IT and tactical systems. Literature indicated a growing statutory and

regulatory policy emphasis on software acquisition and sustainment complexities. This chapter

will highlight a few major topics of concern to the PM that may be exacerbated by the increased

migration to software-centric systems. Some of discussed topics are directly correlated to

software sustainment challenges, while others topics (such as security vulnerabilities) have an

indirect sustainment effect that may trigger a necessary change to the software design (i.e., code

changes).

Life-cycle sustainment is described as follows: It translates force provider capability and

performance requirements into tailored product support to achieve specified and evolving life-

cycle product support availability, reliability, and affordability parameters. Life-cycle

sustainment considerations include supply; maintenance; transportation; sustainment

engineering; data management; configuration management; human systems integration;

environment, safety (including explosives), and occupational health; protection of critical

program information and anti-tamper provisions; supportability; and interoperability. Initially

begun during the Materiel Solution Analysis (MSA) phase and matured during the

Technology Maturation and Risk Reduction phase, life-cycle sustainment planning spans a

system’s entire life cycle from MSA phase to disposal. Maintenance (as a component of

18

sustainment) is described as “Action necessary to retain or restore an item to a specified

condition” (DAU, 2016). Software maintenance is further defined by the International Standard

14764 as including corrective maintenance, adaptive maintenance, perfective maintenance, and

preventive maintenance (International Organization for Standardization/International

Electrotechnical Commission [ISO/IEC], 1999, p. 6). Each term in effect categorizes the

maintenance such that it can assist the owner in determining the immediacy of needed repair.

These definitions are helpful in categorizing the subtle sustainment differences between

hardware and software that are addressed in this paper. But regardless of the category, the use of

these collective terms recognizes that software does not remain unchanged over its life cycle.

Current legislative policy in 10 U.S.C. 2464 states:

It is essential for the national defense that the Department of Defense maintain a core

logistics capability that is Government-owned and Government-operated (including

Government personnel and Government-owned and Government-operated equipment and

facilities) to ensure a ready and controlled source of technical competence and resources

necessary to ensure effective and timely response to a mobilization, national defense

contingency situations, and other emergency requirements. (p. 1447)

It is further stated in 10 USC 2466 that

Not more than 50 percent of the funds made available in a fiscal year to a military

department or a Defense Agency for depot-level maintenance and repair workload may

be used to contract for the performance by non-Federal Government personnel of such

workload for the military department or the Defense Agency. (p. 1449)

These statutory requirements present a challenge for large software-based systems, and even

more so when these systems are acquired as NDI.

19

Analysis

There are a number characteristics associated with software-centric products that differ

from the more commonly sustained hardware products. Guidelines from DoD and the Services

offer the PM help in tackling software sustainment. However these guidelines largely assume the

PM has started on the ground floor with the developer and possesses all the artifacts and

knowledge needed for the system’s transition to sustainment. This unfortunately is far removed

from the situation presented by an NDI strategy. The following will identify how these

guidelines align to the characteristics presented with JTRS, a highly software-centric product

line, and the NDI acquisition strategy. The JTRS program is used as the case study for this

research paper.

Stable Software Baseline

The general guideline is that a software baseline should be stable before it is transitioned

to sustainment. A typical stability measure might be that no Category 1 (catastrophic) or 2

(critical) software trouble reports exist against the system. A sustainment transition plan,

developed between the collective development organizations and the sustaining organizations

(Lapham & Woody, 2006), provides the means for both parties to verify that stability measures

have been met and the product has the necessary documentation to accomplish sustainment. To

that end, as the software component of a system is developed, produced, and fielded, it

transitions from PDSS to PPSS. The assumption is that once the system has completed fielding,

its software has achieved stability and is now mature enough to be sustained by a maintenance

PPSS organization. Software stability is very much correlated to software reliability. Software

reliability is the measure translated from the system’s required operational availability figure

identified in a capability requirements document. In order for the software to be considered

20

reliable (i.e., does not suffer from code defects, or “bugs”), it must execute the intended

functions in the required manner. It must be repeatable, failure-free, consistent, and so on. In

other words, it must be stable. As an acquisition assistance tool, AMSAA (2016) has developed

software reliability language and a software reliability scorecard that can assist the acquiring PM

in vetting the maturity of a system’s software. The tool can be effective at all stages of the

program, but is most effective when applied at the earliest stages of development.

Under an NDI acquisition, it is up to the vendor to select any and all software that will

run in the system (in this case a radio). Experience with JTRS has shown that the mix of software

modules will be a hybrid of vendor-contracted software (government funding), vendor-native

software (own funding), second-party tailored software (own funding; e.g., programmable

cryptographic engines), and aggregates of COTS and OSS components. Each one will be

governed by its originator’s intellectual property rules. Adding to this mix are the waveform

(WF) applications, which are GFS. The vendor is required to run the WFs in the radio. Lastly,

the radio (i.e., the WFs) must be managed on the battlefield by a government-developed network

manager application. The configuration of this confluence of software will be jointly managed

(vendor and government PM). From this mixed ensemble, you can quickly infer that finding a

stable software baseline is challenging. Any one of these software modules may undergo a

change (bug fix or vendors moving on to next version) at any point in time throughout its 20-

year life cycle. In fact, the PM fully expects that an improved version of the WFs will be issued

every 3 to 4 years. It is also acknowledged that an improved version of a WF will at some point

break backward-interoperability with its predecessors. Similar conditions can be expected from

COTS software vendors. Commercial vendors frequently improve their products and abandon

support for previous versions.

21

At the beginning of chapter 4, I listed four categories of software maintenance

(corrective, adaptive, perfective, and preventive). However, none of these captures yet another

trigger for software maintenance: hardware obsolescence. In particular, hardware components

have an effect on software. Obsolescence or supply chain interruptions of electronic components

such as processors, field programmable gate arrays, and application-specific integrated circuits,

will force the vendors to re-engineer the software to accommodate the next generations of these

components. This collective dynamic environment presents the antithesis of a stable software

baseline.

Documentation. A strong emphasis is placed on obtaining thorough (and complete)

software design documentation to support sustainment. This is a reasonable expectation where

the PM is contracting a vendor to develop a product. In such a situation, the PM can follow a

standard systems engineering process that defines all desired software documents and conduct

design reviews along the path from the initial requirements capture, requirements allocation to

hardware or software. Figure 1 depicts a typical systems engineering process for product

development. Following this process would generate the associated software documents at each

step of the engineering iteration. Such documents would include the software development plan,

design descriptions, requirements specifications, test documentation, interface requirement

specifications, product specifications, and software version description.

22

Figure 1 – Software Engineering V-Model
(Source: Tutorialspoint.com, 2017)

 Through the contract, the PM’s team is able to be involved in every step of the product

design and to determine jointly when the software design portion is ready for the next step.

Along the way, software design documents are generated to capture each step and development

tools are identified. This also provides the PM with design insight for subsequent transfer of

sustainment to a government owned/operated entity (per the 10 USC 2464/2466 requirements).

However, the NDI acquisition strategy skips not only the development stage of the program, but

also avoids providing any insight into how the product’s software was engineered. In this

situation, the PM is acquiring the product after it has been designed and built. The type and

fidelity of the product’s software documentation is unknowable. A contractual request can

certainly be made for the desired set of document. However there may be many risks. The price

may be high. The quality may be substandard (not governed by government based standards).

The content may be incomplete (missing each step of the engineering process, or not written with

23

a third-party user in mind). In some instances, the content may not be available due to

proprietary claims. The prime vendor may not have access to all the software contained in the

product. No assurance that an independent verification and validation was employed by the

vendor. All these areas tend to drive up the cost of the product, making it a safe assumption that

vendors most likely do not have the level of documentation required (i.e., cost avoidance).

As described below in the Authority to Operate (ATO) section, the sustaining

organization will be faced with pursuing re-certifications of a fielded system. An updated and

correct set of cybersecurity design documentation becomes critical in the pursuit of any re-

certifications.

 COTS software. Many will tout that leveraging COTS for the Army’s business and

tactical systems is beneficial to delivery of capability. From the financial avoidance to increased

flexibility for additive capability, COTS offers advantages that should be exploited. There are,

however, some drawbacks to leveraging COTS. The DAG (DAU, 2013) and an academic report

(Lapham & Woody, 2006) highlight some of the concerns that must be addressed in the

sustainment strategy. To mention just a few, COTS is very cyclical in nature. A COTS vendor

may target a very fluid customer base, frequently abandoning prior application in pursuit of new

business. The pedigree of COTS may be suspect. Quality of code may be much lower than

required for tactical military needs. Revising COTS is highly discouraged, as it creates versioned

orphans that may not have sustainability. Licensing agreements can vary and be very restrictive.

COTS can be open source, freeware, or proprietary (Gross, 2011). Subsequent versions of COTS

can outpace the system’s infrastructure or digital processing budgets (McLendon et al., 2014).

This can lead to hardware design upgrades.

24

Licensing Rights. Obtaining the right type of rights (unlimited rights, government

purpose rights, or restricted rights) necessary for future sustainment of software is a key decision

a PM needs to make early in the program. As product development proceeds, the PM may have

to adjust the licensing rights strategy to accommodate the mix of software in the system. In a

developmental program, that decision can be determined based on a vendor’s proposed approach

to developing that product (e.g., government-funded software development provides the

government unlimited rights, mixed-funding provides Government Purpose Rights). The

Software Engineering Institute offers a decision framework for determining the type of licensing

rights that ought to be pursued by a DoD customer (Gross, 2011). It offers a series of questions

to be answered by the customer in order to purchase the right level of a license. The DAG

(Section 4.1.3.1, DAU, 2013) states,

It is not uncommon for weapon system acquisitions to contain a mix of Government-off-

the-shelf (GOTS) software with complete technical data and software rights, other

software items with restricted Government purpose rights, and software with virtually no

rights other than the commercial license to use or access the software. (p. 17)

In the JTRS NDI acquisition strategy, this is exactly the situation in which we find

ourselves. The design is complete. Thus greatly limiting what rights the PM can insist on. If the

vendor has selected third-party proprietary software modules as part of the overall software

design, it is unlikely that these parties will offer unlimited or government-purpose rights. A good

example of this is the industry’s privately funded development of programmable cryptographic

modules. These modules enable the radio to operate with multiple cryptographic algorithms and

keys by executing the vast majority of functions in software. They provide the capability to

simultaneously communicate on multiple networks, at differing security levels. In relative terms,

25

the technology of these modules is very new. Thus the vendors have not offered the government

any data rights. Perhaps data rights (or specifically negotiated license rights) may be offered at

some point in the future, once the vendors no longer anticipate a business value for the software.

However, it should be cautioned that providing rights does not provide needed software

documentation, which may or may not exist in any useable form.

 Multiple Software Versions. An ideal situation for any fielded product is that only a

single configuration is in existence at any one time. The number of different configurations is

highlighted as one of the major drivers of sustainment costs. That situation is depicted in Figure

2, a typical hardware-centric acquisition program.

Figure 2 – Hardware Program
(Source: DoD, 2017, p. 11)

However, the multiple vendor mix of software contained within the radio products, and

the computer-like electronic nature of the products themselves, will force multiple versions to

simultaneously exist on the battlefield. Contributing to this problem is the Army’s lengthy

26

fielding timeline for the JTRS products (although certainly not unique to JTRS), which will

stretch to more than 12 years in total. This creates a situation where initial fielded radios will be

generationally behind the technology of their successors. Assuming a typical 2- to 3-year

technology turnover, coupled with a 3- to 4-year period for waveform application capability

upgrades, this will lead to multiple product versions coexisting in the field during the fielding

and at the completion of fielding (roughly the 12-year mark). Therefore the JTRS situation is

much more realistically depicted in Figure 3, a hybrid program acquisition that is software-

centric. Configuration management will be critical in maintaining interoperability between JTRS

radio form-factors and even own self-versions (within a form-factor). Periodic upgrades will

have to be planned by the configuration control board.

Figure 3 – Hybrid Program (Software Dominant)
(Source: DoD, 2017, p. 17)

27

Component obsolescence. It is a reasonable assumption that any system that remains in

the field in excess of 5 years will face component obsolescence. In fact a number of Army

regulations require the program manager to address the potential situation for component

obsolescence in the acquisition strategy and life-cycle support plans (as a minimum). An

additional requirement is to address diminishing manufacturing sources and material shortages.

The typical approaches to resolving these areas is to acquire the technical data from the

designing or manufacturing vendor(s) such that system components can be replaced by either re-

engineering of the component or alternate sources identified. The PM is expected to address

hardware and software within the system. However when one examines the construction of

hardware versus the software in a system, the behavior of software is such that it has no logical

sub-systems that can be replaced in the same manner as hardware sub-systems. Software tends to

operate in a very tight functional dependency. Even a minor code change in one software

component can have a large performance impact throughout the system. With this highly

dependent framework of software components within a system, it is practically impossible to

attempt positioning for software obsolescence of any one component without the very real

potential of breaking the performance of the system.

One principle worth highlighting is the DoD’s recent emphasis on modular open systems

approach (MOSA) for future competitive upgrades of sub-systems (DoD, 2017). This effort will

also help the software obsolescence situation by creating logical functionality partitions with

defined interfaces. In effect, the pursuit of MOSA will modularize the system’s software for

easier sub-system replacement or upgrade. This is much like what has been the situation on the

hardware side of the designs.

28

Authority to operate. The cybersecurity Risk Management Framework (RMF) for DoD

Information Technology (DoD, 2016) defines the requirements for a system intended to be

fielded to obtain an ATO in order to operate. The ATO is received from the Service designated

approving authority (DAA), and will typically be valid for a 3-year period. The ATO is issued

after an extensive cybersecurity assessment is conducted on the system. From its origins in 1997

as DITSCAP (DoD Information Technology Security Certification and Accreditation Process) to

its current version as RMF, the process continues to be very labor intensive and lengthy (the final

phase can take 24- to more than 30 months). The process typically starts at the very outset of

product development (i.e., system categorization at Milestone A), and continues throughout its

milestones till system fielding. Detailed design information is required for the assessment. Very

often, design corrections are necessary along the development path to account for discovered

cybersecurity vulnerabilities. The National Security Agency (NSA) is a key player on the

system’s path to ATO. Their information assurance assessment is an input to the overarching

cybersecurity assessment. The acquisition PM must work closely with NSA in order to provide

the agency with necessary design documentation for review. The increase in software-centric

systems has outpaced NSA’s ability to keep up with accreditation requests. The NDI acquisition

strategy has further exacerbated the backlog. This is due to the vendors’ desire that their products

obtain NSA’s information security certificates prior to contract awards. This in turn lowers the

product’s risk of not obtaining an ATO from the Service DAA.

Based on the limited 3-year ATO accreditation period, it is clear that a sustaining

organization will have to pursue a system re-certification at least every 3 years (barring

extensions). This period could be even shorter if a cybersecurity-critical design component

undergoes a change. In case of a software-centric design, this could be triggered by a discovered

29

vulnerability or a replacement of an obsolescent module that requires revetting for security

posture. In such occurrences, the degree of design insight becomes critical in order for the owner

of the product to convey the degree of change (via revised documentation).

Potential Actions to Improve Sustainment Posture

 Compared to hardware, software’s unique characteristics present different sustainment

challenges. The following is a list of some potential actions that are already taking place or, if

adopted, can assist in tackling these challenges.

 Fundamental recognition of the challenge. It is axiomatic that in order to solve a

problem, you first have to admit there is a problem. Evidenced by researched literature, the DoD

and Services have recognized the inevitable growth of software-intensive systems in their

military portfolios. A number of guidebooks are provided by DoD and the Services to assist the

PM in acquiring and managing software systems. The Army has gone so far as to issue a set of

executive orders, the latest being 062-17, in order “to provided key stakeholders the opportunity

to illuminating the challenges associated with the exponential growth of software” (Department

of the Army, 2016b, p. 2). The problem statement speaks to the “lack of unity of effort in the

development, testing and sustainment of software” (Department of the Army, 2016b, p. 2). The

goal for the invited organizations is to identify actionable lines of effort that will drive software

life-cycle efficiencies.

Similarly, other agencies are recognizing the software acquisition sustainment challenges.

The Army Contraction Command (Gomes, 2017) and agencies such as AMSAA (2016) are

providing the PMs with acquisition strategy language and assessment tools to be used in requests

for proposals that put the government sustainment organizations in improved positions to tackle

software maintenance. In fact, the Army Contraction Command’s suggested considerations

30

document offers a case study based on two JTRS NDI programs, the Manpack and Rifleman-

radio form-factors.

 Academia is recognizing the challenges of software sustainment for DoD. SEI, in

particular, has continued to highlight the increased use of software in fielded systems and has

expressed concerns similar to those described in this paper’s other sections. SEI is attempting to

develop a systems dynamics model for use by DoD that would guide the decision to upgrade or

replace software in the field (Ferguson et al., 2014. The model measures parameters such as

threat, support technology, and workforce capacity to help quantify the cost versus value of a

decision.

The efforts being made by the collective community are positive in that they are

recognizing and tackling the challenges. However, the results of these efforts are still too new to

assess their effectiveness.

Software architecture standards. Adoption of a standard software architecture is one

method that can greatly promote design modularity. As highlighted earlier, the DoD is

emphasizing MOSA for implementation into its future systems. If successful, the MOSA

initiative should result in modular systems for both hardware and software. This should in turn

create an opportunity for a sustainment organization to handle obsolescence at module level

(rather than impacting the entire system). Academic research (McClendon et al., 2014) also

points to the importance of system architecture in enabling effective sustainment. The research

highlights the benefits for management (i.e., incremental capabilities delivered to the users) and

to maintenance (i.e., replacement of individual modules versus entire suites). Better Buying

Power 3.0, a DoD acquisition efficiency initiative, identifies MOSA as one of its key

31

components under the “Incentivize Innovation in Industry and Government” principle (DoD,

2014).

The National Defense Authorization Act for Fiscal Year 2010 identified the need for a

new acquisition process for information technology systems by DoD. In response to this task and

the subsequent guidance from the Army CIO/G6, the ASA(ALT) published the COE

implementation plan. The goal of COE is to “enable the Army to develop, test, certify and

deploy software capabilities more quickly” (ASA[ALT]2011, p. iv). ASA(ALT), through its

principal program executive offices, has applied the COE model to a portfolio of mission

command systems. Program Executive Officer Command Control Communications–Tactical has

adopted the COE model by pursuing a transition of its Command Control Communications and

Computer systems from stove-piped to the common (shared) use of hardware and software

components. The unique application of each system is retained while the common function

modules are shared by all.

Similar to the principles of MOSA and COE, the JTRS has developed a software

communications architecture (SCA; Joint Tactical Networking Center, 2015). This architecture is

a specific standard for tactical radios that includes implementation of application program

interfaces, promoting modularity through abstraction of general services (software or hardware

components). The goal of SCA is to ease the integration of WF applications with the radio’s

native software. The government’s WFs are provided to the vendors with a complete

documentation package. The WFs are designed per the SCA definitions, thus creating a very

modular set of code. In practice, any vendor that adheres to the SCA standards in their radio’s

architecture design should be able to integrate subsequent versions of the WFs with minimal

impact. Having the vendor adhere to the SCA promotes the general importance of creating a

32

modular system (software) architecture for the overarching system design. As noted in CrossTalk

(McLendon et al., 2014),

Good architectural designs anticipate change by encapsulating variability to reduce cost

and risk. In this approach, change-prone areas (such as hardware and communications

infrastructures) are accessed via stable interfaces whose implementations can be replaced

without undue side-effects on other software components. (p. 30)

The SCA therefore creates a software modular design that helps the sustainment

organization make software sub-system changes much like the hardware sub-system counterpart.

Capability Maturity Model Integration (CMMI). Created by Carnegie Mellon

University, “CMMI is a process level improvement training and appraisal program…required by

many DoD and U.S. Government contracts, especially in software development. [It] can be used

to guide process improvement across a project, division, or an entire organization” (Wikipedia,

2017). Figure 4 depicts the five levels for process maturity.

Figure 4 – Maturity Levels
(Source: Wikipedia, 2017)

33

The core goal of CMMI is to force discipline into the software development process. Companies

that pursue excellence in software development look to be certified at the higher levels of

performance. A minimum of a Level 3 certification has been the norm as part of DoD

contracting requirements that involve large efforts in software (Department of the Army, 2016a,

Section 6-4). It is noteworthy that level of certification is not a guarantee of program success. For

example, a vendor can have a high-quality factory in place, but may still manufacture a faulty

design. Nevertheless, the CMMI maturity-level assessment can be applied as an indicator for a

disciplined approach to software development, thus increasing the potential for a successful code

development.

 Execute life-cycle support under PDSS. Per the Army acquisition policy (Department

of the Army, 2016a, Section 7-15), the system transitions to sustainment after the close of the

hardware production line. In the case of software, that is labeled as PPSS. For a radio portfolio

such as JTRS, that can translate to decades of radio production. This is due to the very large

quantity of product and the protracted integration into the Army’s brigades. With a life cycle

from 7 to 20 years (depending on the radio form factor), the production and fielding timeline

alone overlaps the life cycle of the product itself. The lengthy fielding situation presents an

opportunity for the PM to consider retaining the responsibility for the product’s software

sustainment until the end of the life cycle. In lieu of transitioning to PPSS (Operation &

Maintenance, Army [OMA] funded), the system software continues to be sustained under PDSS

(Other Procurement, Army [OPA] funded). Under the PDSS-funded sustainment, the PM has the

latitude to continually add functional capability to the product in concert with the requirements

community needs. As depicted in Figure 3, incremental capability can be fielded in a series of

34

software builds. This continued total ownership of sustaining fielded radios gives the PM the

flexibility to determine readiness of follow-on builds and allows for a coordinated capability

integration into the Army’s Training and Doctrine Command Concept of Operations.

35

Chapter 5 – Interpretation

Conclusions

 The proposed H0 of this research was that the current set of statutes, policies, and

regulations provide sufficient guidance for a PM acquiring a system under an NDI strategy to

accomplish software sustainment throughout the life cycle. The H1 was that, although the

guidance and direction exist, an NDI acquisition presents the PM with a unique set of variables

that differ from an engineering and manufacturing development phased acquisition, requiring a

change to the governance process. The conclusion reached by this author is that the basic system

development and subsequent sustainment guidance are in a state of policy transition. To that end,

H1 appears to be more prevalent. Research indicated that growth of software in the military has

not gone unnoticed by DoD and the Services. Published policies indicated the DoD has been

increasingly focusing attention on software acquisition (related to business and tactical systems).

In turn, the Army has also reflected these policies in their various regulations. However, these

regulations have not been able to keep up with the pace and variety of situations being presented

to the PM by industry. Arguably the most affected policies are those that are directed by Title 10

of the U.S. Code, pertaining to core logistics capability requirements of the federal government

(specifically sections 2464 and 2466). A change may be necessary in order to recognize the

exponential increase in software-driven tactical systems acquired not just under NDI, but in

general terms. Whether intentionally or through commercial market forces, the Army—as the

Service with the largest portfolio of systems—has recognized the functional and financial

advantages that software-centric systems (non-NDI and/or NDI) provide over the more

traditional hardware-based designs. Consequently, in addition to the various policies, the Army

has started to address more directly the challenges with acquiring and sustaining software.

36

Evidence of that is the recently conducted Software Solariums (Sept. 2016 and Feb. 2017) that

are bringing together every major Army acquisition and sustainment organization together to

discuss software acquisition and sustainment challenges (Department of the Army, 2016b). It is a

clear example of the Army’s very real recognition of the need to coordinate across the entirety of

the community. This is also an indication that, although a number of DoD and other Army

policies and regulations speak to software acquisition and sustainment, the evolving real-world

trends such as quick version turns on applications require continued reconsiderations of the

acquisition approach.

 The research indicated that DoD and the Services have identified a prudent set of policies

and guidelines that address the way a PM should approach software acquisition for the situations

where the government is part of the initial design phase (thus also most likely financing and

dictating the necessary artifacts created in these early phases). Gap analysis reveals no

substantive gaps in the set of guidelines outlining software design data that ought to be acquired.

Of course, it is still incumbent on the PM to make the appropriate determination between data

contents (including IP rights) and what the government will need to sustain the system. That

determination should be reflected in the acquisition strategy document and the IP strategy within

that document.

The guidelines are much less sufficient in dealing with situations where the PM is

increasingly less involved with the system design, thus lacking insight into the particulars of the

software design and/or its collective developers. The extreme situation in this regard is the NDI

acquisition. The research indicated the DoD is poorly positioned to handle these type of

situations. Proposed approaches to resolving such challenges still cling to the notions of

obtaining necessary system design documentation (including software code) and the appropriate

37

IP rights for future sustainment by the government. That is not to say that acquiring the

necessary artifacts (software documents, code, and development environments) does not have a

place in the sustainment strategy. These items will be necessary in the event of vendor code

abandonment or vendor departures. In such situations, the PM must have the ability to continue

organic software sustainment, and for such anticipated situations the PM ought to establish an

escrow account for the deposit of necessary design data.

The JTRS program that is used as the case study for this research presents both

characteristics of the situation described above. The JTRS started as a DoD-funded development

program that included the creation of all design documentation from capture of technical

requirements, to their allocations to hardware or software, to the actual technical data packages

for hardware and software. In addition, the communications applications (known as waveforms)

that are now provided to industry as GFS were designed under this development phase. This

largely describes the ideal situation of being on the ground floor of development and dictating

what is to be delivered to the government. Now contrast this with the current JTRS program

situation in which the Army is contracting only for the production of the NDI radios. Industry is

provided the waveform applications as GFS. How to host (run) these waveform applications

inside the radio is the vendor’s decision. The only government oversight requirement is that the

applications be capable of communication to other radios hosting the same waveforms. Thus you

can see that the opportunity to select differing software architecture approaches is virtually

endless. Note also that it is the Army’s intent to continue upgrading these waveform applications

for increased performance, adding to the challenge of continuously changing software. This is

about as far away as one can get from the ideal situation of design-knowledge, maturity,

singularity of fielded software, and software stability.

38

The research identified the movement toward a modular architecture approach to system

design that increases the opportunity for function enhancements and/or future competition at the

module level. These modularity principles are promoted through the DoDI 5000 series

instructions regarding modular open systems approach, and via the Army’s regulations in the

pursuit of software COE. The COE breaks down stove-pipe Command, Control,

Communications, Computers and Intelligence systems by using a common software operating

system and treating the individual mission systems as applications that execute within this

environment. Although not directly targeting sustainment, the migration toward modular

software designs should have a beneficial impact on future software sustainment. For example,

rather than a singular, monolithic, highly complex, integrated design, the modular design allows

for much smaller scale, individual, module-code fixes or even replacements as a maintenance

action.

Recommendations

 It is a safe assumption that the DoD, and specifically the Army, will continue to be

affected by the exponential growth in software-centric systems, with an ever greater opportunity

to leverage NDI software. The JTRS program’s NDI-based acquisition strategy is most likely the

first of many such programs the Army will pursue in the future under the same type of strategy.

By recognizing that software acquisition is a major challenge, the Army has taken the first

critical step in developing a holistic software acquisition strategy including sustainment. It is

recommended that this holistic life-cycle view consider technical and nontechnical perspectives.

For example, forcing and rewarding modularity in system designs for the purpose of improved

future additive functionality and competition is a technical perspective. This in turn enables the

sustainment organization to assess a maintenance decision based on the cost of repairing or

39

replacing at the software module level, which is more of a business perspective than a technical

perspective.

 It is recommended that the Army continue to monitor the JTRS radio program portfolio

as a real-time case study regarding software sustainability approaches. The JTRS programs are a

microcosm of all the variables that challenge the PM/Army in an NDI-type acquisition. The

Army should learn from the JTRS program (positive outcomes as well as negative outcomes) and

adjust acquisition strategies to accommodate the industry trends.

It is further recommended that the Army allow for greater PM flexibility in program

decisions on transitioning to sustainment. It may be more advantageous to retain the program in

the development/fielding phase throughout its life cycle, thus enabling the product to

incrementally and continuously add capability. Note that a sustainment organization does not

have the authority to increase capability of a fielded system. This tends to create disconnects in

configuration management between versions of the system transitioned to sustainment and ones

still under the PM purview. Long timelines (sometimes decades) for system fielding are

especially vulnerable to this occurrence. The current financial structure—research, development,

test and evaluation (RDT&E)/OPA for the development and production/fielding phase of a

program, versus the Operational Maintenance, Army (OMA) for the sustainment phase—

discourages the acquisition community from maintaining a product through its life cycle. That is

because the acquisition community (i.e., the PM) is assessed for cost performance based on the

established RDT&E/OPA program cost estimates. These are identified in the Acquisition

Program Baseline (APB) document. Although the APB identifies the projected cost of sustaining

the product, the OMA funds are not issued to the acquisition community. The incentive for the

PM is to not breach the baselined RDT&E/OPA costs and to transition the product to the

40

sustaining organizations as quickly as possible. An all-inclusive ownership of funds by the PM

would reduce such incentives. It is a fair assumption that software-based products will provide a

much greater opportunity to continuously add capability over the entire life cycle, thus retention

of the system by the PM throughout the life cycle ought to be considered.

 A final recommendation is that the Army consider new definitions in order to fully

capture the varying types of software sustainment. For example, a criteria for transitioning to

sustainment is that the software baseline has achieved stability. However software changes can

be triggered by changes in electronic components such as obsolescence in processors or field-

programmable gate arrays. It is likely that such changes will be perpetual and may label the

system’s software to be unstable. Such a known condition should not prevent the PM from

transitioning the software to the sustainment organizations. Following or adopting a standard

such as the one identified in the International Standard 14764 (ISO/IEC, 1999) may be prudent.

Limitations of the Study

 The existing literature on the specific topic of an NDI acquisition in the Army tactical

weapon portfolio was very limited. The JTRS program is the only one that was found to have

been directed to acquire its systems under the NDI construct. Although it appears to be a rich

case-study candidate, it offers a number of unknown situations that will be better answered in the

future once we can gauge the program’s future sustainment successes or failures. The limited

time available for this research precluded an examination of the commercial industry approach to

software sustainment. Exploring similarities in challenges and any resolution strategies may have

been beneficial in considering them for adoption by the Army. In that regard, it is recommended

that future research explore the habits and trends of the software-related industry in order to

consider the applicability of their sustainment practices to the DoD/Army tactical systems.

41

References

Army Materiel Systems Analysis Activity. (2016). Reliability tools. Retrieved from

https://www.amsaa.army.mil/CRG_Tools.html

Assistant Secretary of the Army for Acquisition, Logistics and Technology. (2011). Common

operating environment implementation plan core (v3.0 draft). Retrieved from

https://www.army.mil/e2/c/downloads/232001.pdf

Assistant Secretary of the Army for Acquisition, Logistics and Technology. (2016). Intellectual

property and software optimization (Memorandum). Retrieved from

https://acqdomain.army.mil/AcqBusiness/

Defense Acquisition University. (2013). Defense acquisition guidebook. Retrieved from

https://www.dau.mil/tools/dag

Defense Acquisition University. (2016). Glossary of defense acquisition acronyms and terms.

Retrieved from https://dap.dau.mil/glossary/Pages/Default.aspx

Department of the Army. (2016a). Army acquisition policy (Army Regulation 70-1). Retrieved

from https://www.dau.mil/cop/rqmt/_layouts/15/WopiFrame.aspx?sourcedoc=/

cop/rqmt/DAU%20Sponsored%20Documents/Army%20Acquisition%20Policy%20AR

%2070%201.pdf&action=default&DefaultItemOpen=1

Department of the Army. (2016b). Execution Order 062-17 in support of Software Solarium II.

UNCLASSIFIED FOUO (not available to the general public).

Department of the Army. (2016c). Integrated product support (Army Regulation 700-127).

Retrieved from http://www.apd.army.mil/epubs/DR_pubs/DR_a/pdf/web/AR%20700-

127_Web_FINAL.pdf

42

Department of Defense. (2014). Better Buying Power 3.0. Retrieved from

http://bbp.dau.mil/docs/2_Better_Buying_Power_3_0(19_September_2014).pdf

Department of Defense. (2016). Risk management framework (RMF) for DoD information

technology (IT) (DoDI 8510.01). Retrieved from http://www.dtic.mil/whs/directives/

corres/pdf/851001_2014.pdf

Department of Defense. (2017). Operation of the Defense Acquisition System (DoDI 5000.02).

Retrieved from http://www.dtic.mil/whs/directives/corres/pdf/500002_dodi_2015.pdf.

Ferguson, R. (2013, July 22). An investment model for software sustainment [Web log post].

Retrieved from https://insights.sei.cmu.edu/sei_blog/2013/07/an-investment-model-for-

software-sustainment.html

Ferguson, R., Phillips, M., & Sheard, S. (2014, January/February). Modeling software

sustainment. CrossTalk. Retrieved from http://static1.1.sqspcdn.com/static/

f/702523/24156562/1388991346503/201401-Ferguson.pdf?token=

zI2qLlueENWp49rwPcke1HPmDMQ%3D

Gomes, G. M. (2017). Lifecycle sustainment strategies for acquisitions of items developed

exclusively at private expense; Suggested considerations (version 1.0.0, 2017JAN17).

Aberdeen Proving Ground, MD: U.S. Army Contracting Command. Retrieved from

https://www.fbo.gov/index?s=opportunity&mode=form&id=6bfaffad86ab2f4ca5ce7cecf

4481185&tab=core&_cview=0

Gross, C. (2011). A decision framework for selecting licensing rights for noncommercial

computer software in the DoD environment (Technical Report CMU/SEI-2011-TR-014;

Pittsburgh, PA: Software Engineering Institute. Retrieved from

http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=9995

43

International Organization for Standardization/International Electrotechnical Commission.

(1999). International Standard 14764 (Information Technology–Software Maintenance).

Retrieved from http://bcc.portal.gov.bd/sites/default/files/files/bcc.portal.gov.bd/page/

adeaf3e5_cc55_4222_8767_f26bcaec3f70/ISO_IEC_14764.pdf

Joint Tactical Networking Center. (2015). Software communications architecture (SCA), Version

4.1. Retrieved from http://www.public.navy.mil/JTNC/SCA/Pages/sca1.aspx

Lapham, M. A. (2014, January/February). Software sustainment—Now and future. CrossTalk.

Retrieved from http://static1.1.sqspcdn.com/static/f/702523/24156563/1388991346710/

201401-Lapham.pdf?token=U2fffkSCplGsh2ajafdxf5NM2kE%3D

Lapham, M. A., and Woody, C. (2006). Sustaining software-intensive systems (Technical Note

CMU/SEI-2006-TN-007). Pittsburgh, PA: Software Engineering Institute. Retrieved from

http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=7865

McLendon, M., Scherlis, B., & Schmidt, D. C. (2014, January/February). Addressing software

sustainment challenges for the DoD. CrossTalk. Retrieved from http://static1.1.sqspcdn.

com/static/f/702523/24156564/1388991346767/201401-McLendon.pdf?token=

%2FkdpaopBMsQirtEmJ8Gmvg3%2BnTg%3D

National Defense Authorization Act for Fiscal Year 2010, Public Law 111-84, Sec. 804, 10

U.S.C. 2225 note (2009). Retrieved from https://www.gpo.gov/fdsys/pkg/PLAW-

111publ84/pdf/PLAW-111publ84.pdf

Title 10, United States Code, Ch. 146, Sections 2464–2466. Retrieved from

http://uscode.house.gov/view.xhtml?req=granuleid%3AUSC-prelim-title10-

chapter146&saved=%7CZ3JhbnVsZWlkOlVTQy1wcmVsaW0tdGl0bGUxMC1zZWN0a

W9uMjQ2NA%3D%3D%7C%7C%7C0%7Cfalse%7Cprelim&edition=prelim

44

Tutorialspoint.com. (2017). Software engineering—Quick guide. Retrieved from

http://tutorialspoint.com/software_engineering/software_engineering

_quick_guide.htm

United States Air Force. (2008). United States Air Force weapon systems software management

guidebook (Version 1, Abridged). Retrieved from http://www.acqnotes.com/

Attachments/USAF%20Weapon%20System%20Sofware%20Management%20Guide.pdf

Wikipedia. (2017). Capability maturity model integration. Retrieved from

https://en.wikipedia.org/wiki/Capability_Maturity_Model_Integration

45

Glossary of Acronyms and Terms

AMCArmy Material Command

AMSAAArmy Materiel Systems Analysis Activity

APBAcquisition Program Baseline

ASA(ALT)Assistant Secretary of the Army for Acquisition, Logistics and Technology

CECOMCommunications and Electronics Command

COE................common operating environment

COTScommercial off-the-shelf

DAAdesignated approving authority

DAGDefense Acquisition Guidebook

DoDDepartment of Defense

DoDIDepartment of Defense Instructions

GFSgovernment furnished software

H0 null hypothesis

H1alternate hypothesis

IP intellectual property

JTRSJoint Tactical Radios System

MOSAModular Open Systems Approach

MSAMateriel Solution Analysis

NDI Non-Developmental Item

NSA................National Security Agency

OMAOperational Maintenance, Army

OPA................Other Procurement, Army

46

OSSopen source software

PDSSpost-deployment software support

PPSSpost-production software support

PM project manager/program manager

RDT&Eresearch, development, test and evaluation

RMFRisk Management Framework

SCAsoftware communications architecture

SDRSoftware Defined Radio

SEI..................Software Engineering Institute

WF..................Waveform

47

Note

1The terms “maintenance” and “sustainment” are at times used interchangeably by the

general community. While the term “software maintenance” does have a broadly accepted

Institute of Electrical and Electronics Engineers definition as “The process of modifying a

software or component after delivery to correct faults, improve performance or other attributes,

or adopt to a changed environment” (Lapham & Woody, 2006, p. 1), the term “sustainment”

does not have a generally accepted definition. Therefore this paper will use an SEI definition of

sustainment as “The processes, procedures, people, material, and information required to

support, maintain, and operate the software aspects of a system” (Lapham & Woody, 2006, p. 2).

The Defense Acquisition Guide uses the general term of “operations and support” for a system

that has completed production and been fully fielded (DAU, 2013).

48

Author Note

The author is an acquisition professional, with a Defense Acquisition Workforce

Improvement Act Level III certification in Program Management and Systems Engineering.

Correspondence concerning this paper should be addressed to Graciano.nikolich.civ@mail.mil.

	Table of Contents
	List of Figures
	Abstract
	Chapter 1 – Introduction
	Background
	Problem Statement
	Purpose of This Study
	Significance of This Research
	Overview of the Research Methodology
	Research Questions
	Research Hypotheses
	Objectives and Outcomes
	Limitations

	Chapter 2 – Literature Review
	Laws, Policies, Audits, and Guidebooks
	Research Papers and Articles
	Summary

	Chapter 3 – Research Methodology
	Research Hypothesis
	Research Design
	Bias and Error

	Chapter 4 – Findings
	Collected Data
	Analysis
	Stable Software Baseline
	Potential Actions to Improve Sustainment Posture

	Chapter 5 – Interpretation
	Conclusions
	Recommendations
	Limitations of the Study

	References
	Glossary of Acronyms and Terms
	Note
	Author Note

