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Abstract

We investigate modeling strategies for English code-switched words as found in a Swahili spoken term detection system. Code

switching, where speakers switch language in a conversation, occurs frequently in multilingual environments, and typically de-

teriorates STD performance. Analysis is performed in the context of the IARPA Babel program which focuses on rapid STD

system development for under-resourced languages. Our results show that approaches that specifically target the modeling of

code-switched words, significantly improve the detection performance of these words.
c© 2016 The Authors. Published by Elsevier B.V.
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1. Introduction

Multilingual environments provide many challenges to current speech recognition systems. One aspect that impacts

the performances of such systems is code switching. Code switching occurs when speakers switch to a different

language during a conversation, borrowing words, phrases or sentences. In terms of code switching, it is useful to

define the primary language as the matrix language and the language used to source borrowed terms, as the embedded

language. An important part of current speech recognition acoustic modeling, is the pronunciation dictionary. This

resource defines the manner in which speakers generally pronounce words in a language. An implication of code

switching is that additional languages are effectively introduced into the pronunciation dictionary. The goal is then to

develop an approach to model the code-switched words accurately, given the constraints of the matrix language and

available resources.
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Our research focuses on pronunciation modeling of English (embedded language) words within a Swahili (matrix

language) domain, and the implications on Swahili spoken term detection (STD). The Swahili orthography lends itself

to graphemic pronunciation modeling as the written and spoken forms are quite regular. English, however, performs

significantly poorer with such modeling given its irregular orthography. Thus, the challenge is to produce robust

English pronunciations given the under-resourced Swahili context, and specifically the absence of any pronunciation

lexicons.

Following a brief overview of the Babel program and code-switched speech recognition (Section 2), we describe

the experimental setup and data used (Section 3). A description of our approach to various aspects of the tasks and the

results obtained are interspersed in Section 4: we describe the baseline we wish to optimize, the process of identifying

code-switched words, and modeling options with and without using additional English resources.

2. Background

The Babel program1 is an international collaborative effort sponsored by the US Intelligence Advanced Research

Projects Activity (IARPA) and aims to develop techniques for the rapid development of STD systems. On completion

in 2016, this four-year project will have investigated 26 different languages from across the globe. Audio data consists

mostly of spontaneous speech recorded over telephone lines, with a variety of recording conditions and noise levels

included.

The program is run as a challenge, with initial analysis on so-called “development languages” culminating in a

yearly “surprise language” evaluation. Once the surprise language has been announced and data made available,

participating teams have a limited amount of time to process data and develop fully-fledged STD systems (one week

in 2016). Various training and test conditions are applicable, with our focus here the Very Limited Language Pack
(VLLP) condition, which makes only three hours of transcribed audio available for training. Apart from allowing the

inclusion of multilingual data from earlier Babel languages, no external resources are allowed for this condition, and

no pronunciation lexicon provided.

The 2015 surprise language was Swahili, as spoken in Kenya. Swahili is a Bantu language spoken by more than

120 million people across especially East Africa, even though less than 2 million are considered native speakers2

(quoting Wald3). It is therefore not unexpected that, in conversational speech, Swahili is often mixed with other

languages, most notably English and Arabic2.

Code switching is frequently observed in many of the Babel languages (including, for example, Igbo, Javanese and

Zulu). This reflects a known tendency when languages co-occur, with high frequencies of code-switching observed

for a variety of languages4. This phenomenon has been studied in the context of both STD and speech-to-text (STT)

systems, with various approaches to model adaptation and combination demonstrated5,6,7. These studies typically

assume language-specific pronunciation lexicons exist. When pronunciation lexicons exist, a simple strategy for mod-

eling code-switched speech, or otherwise generating multilingual acoustic models, is to use some form of mapping

from the embedded to the matrix language. Approaches that have been applied in practice, include knowledge-based

mappings such as IPA, and data-driven approaches such as confusion matrices5, or hierarchical clustering based on

phone mappings7. This phenomenon is not as well studied for English / African language pairs, but some results are

available8,9.

3. Experimental Setup

The Swahili analysis was performed using the IARPA-babel 202b-v1.0d release. Data consisted of audio collected

over telephonic channels (land-lines, cellular, in-car) and split into conversational and scripted speech. Evaluation

data contained only conversational speech. Each training utterance had an accompanying transcription that contained

time-marked word-level orthography. In addition, untranscribed speech was made available for unsupervised acoustic

model improvement. No pronunciation lexicon was made available, but a document describing the language, referred

to at the language-specific peculiarities (LSP) document2 was provided. For the VLLP condition analyzed here, three

hours of transcribed training data, three hours of tuning data and 10 hours of evaluation data were provided.

State-of-the-art techniques were used to develop STT and STD systems. Briefly, the system utilizes multilingual

stacked bottleneck features for feature extraction10 and discriminatively trained GMMs for acoustic modeling. To
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improve keyword spotting, a modified search algorithm was implemented, as described by Tsakalidis et al.11. When

combining whole word systems with sub-word systems, the techniques described in Karakos and Schwartz12 were

used. Given the limited amount of transcribed training data, the text used for language model training and the pronun-

ciation lexicon were augmented with web data13.

4. Approach

The starting point for our investigation was to perform an acoustic analysis of the Swahili audio, specifically

listening to randomly selected samples of English word pronunciations. From the analysis it was concluded that in

most cases English words were pronounced using standard English letter-to-sound rules with limited nativization. The

pronunciation variation was quite large and ranged from standard to accented English. All spelled words (e.g. SMS)

were pronounced in an English manner.

Based on this analysis, different approaches to modeling the English words were investigated. We first apply an

existing approach to lexicon development, as used in earlier work14 (Section 4.1). This provides the baseline we

wish to optimize. We then consider the task of identifying possible code-switched words, using techniques from text-

based language identification (Section 4.2). The 2015 VLLP condition specified that no external resources (such as

an English pronunciation lexicon) could be used. We therefore first consider approaches to modeling English words

without having access to English resources (Section 4.3), before considering the improvements possible if English

resources were allowed (Section 4.4).

4.1. Baseline process

The baseline process is described in more detail in Davel et al.14 and relies heavily on the LSP document. This

document contains a host of language-specific information such as an overview, written orthography, potential dialect

differences, and importantly, basic phonemic translation of letters into IPA and X-SAMPA representations. The

initial step was to create a letter-to-phone (L2P) mapping based on the LSP document. Once a basic mapping has

been generated, rare phonemes are removed. This process is iterative, where phones are merged based on phonemic

distance. A decision to remove a phone is based on frequency of occurrence and a threshold of 30 was chosen. Careful

consideration is given to resultant homophone creation when merging phones.

Two maps are created: one for general words and another for spelled letters – the LSP document contains different

definitions for these two cases. The spelled letter map transliterates spelled letters to phonemic representation. These

are predominantly defined for English pronunciations of spelled letters. When merging phones, both maps contribute

to the phone occurrence counts.

Syllables were generated automatically for sub-word modeling purposes using a simple, language-independent

algorithm also described in Davel et al.14. The algorithm is applied to pre-processed text, and uses known word-

beginning and word-ending consonant clusters to discover the syllable structure of the language.

4.2. Language identification

The English word identification process was constrained as only a pre-defined list of resources could be used to

develop the system. Our sources were: BABEL-wide shared web data, Omniglot15 and common English knowledge.

The initial English word classifier was a direct look-up. The English words were extracted from the web data and

100k words were selected based on frequency. After a manual inspection of the identified words, it was found that the

look-up method generated many false positives. This is due to noisy English word list extracted from the web data.

Therefore, two follow-up processes were introduced to prune non-English words. The processes were rule-based

inclusion and exclusion, and, word removal based on length.

The defined rules were:

• English sub-word pattern detection with exclusion e.g. x, q, c but not ch

• Letter pair detection e.g. ss, ll

• Swahili sub-word pattern exclusion e.g. hawa, sai
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The first version of the rules contained Swahili sub-word pattern detection and vowel pair detection rules. These

rules were excluded, however, as they generated many false positives. Lastly, all words that were three letters or less

in length were excluded from the English word detection. This threshold was chosen based on visual inspection and

balancing false positives and misses.

Table 1 shows number of unique Swahili and English words detected in the Full Language Pack (FullLP) tran-

scription set. As can be seen, there is a large proportion of unique English words (types): 13% of all words. For

comparison, a joint-sequence-model (JSM), developed using Sequitur16,17 and trained on the CMUDict0.7b18 Amer-

ican English dictionary (over 134k words), was used to detect English words in the FullLP set. The JSM system

detected 5,467 words at a 90% confidence threshold. This indicates that there may be many more English words

present, that are not detected via the closed resource English word identifier.

Table 1. English/Swahili words in FullLP training data.

# unique words 26,202

# Swahili words 22,726 (87%)

# English words 3,476 (13%)

Table 4.2 shows the manner in which English words were detected for both the FullLP and VLLP data-sets. The

results show that for the vast majority of cases the look-up methods detects the most number of English words. The

English sub-word patterns detect around 20% for FullLP and less than 10% for VLLP. The exclusion rules remove

roughly 10% of the English detected words. These results show the importance of a large clean English word set.

Table 2. English word detected based on method of classification

Method # English words
FullLP VLLP

lookup 3,026 1,542

rules detection 693 124

rules exclusion 170 34

length exclusion 70 52

Total 3,479 (13%) 1,580 (30%)

Given the reliance on English word look-up, as shown in Table 4.2, a comparative evaluation was run on the VLLP

set using an external source of 30k most frequent English words derived from the 100M word British National Corpus

(BNC)19. The results showed a 72% precision and 94% recall.

4.3. No additional English resources

Building on the baseline process, a series of increasingly complex L2P maps were created. The first version

(gra) was a close to graphemic system, with each letter mapped to a single phone. The next L2P map, (swa-lsp),

implemented the baseline approach, using information from the LSP to expand the graphemic system by adding rules

for Swahili letter sequences (e.g. n j → /n dZ/, ng → /N g/). The following map (mixed) augmented the swa-lsp
Swahili mappings with English-specific letter sequence mappings. These included double letters (e.g. ll → /l/) and

other unique English sequences (e.g. qu → /k w/, chr → /k r/. Where a sequence is realized differently in Swahili

or English, only the Swahili sequence was applied.

For the next two sets, text-based language identification was used to identify English words, and an English-specific

L2P map applied. For one of the sets (eng-tagged) vowels were kept separate and tagged with predicted language

origin. For the other (eng-translit) all English phones were transliterated to Swahili graphemes, as also proposed in

Basson and Davel20. This map contained an extended set of English letter sequences which included diphthongs.

Diphthongs were modeled using the closest Swahili vowel or vowel combination. In both cases these English L2P

predictions were added to a dictionary as variants to swa-lsp Swahili predictions – a single English-specific prediction

was generated for each identified word. Both variants were added given (a) the possibility that the word may exist



132   Neil Kleynhans et al.  /  Procedia Computer Science   81  ( 2016 )  128 – 135 

in both English and Swahili, and (b) for true English, the possibility that a specific Swahili speaker may produce a

Swahili pronunciation for the English word.

Table 3 shows an example of the swa-lsp, eng-tagged and eng-translit L2P predictions.

Table 3. Swahili L2P mappings for English word “anyway”

Mapping Result

swa-lsp A n j w A j

eng-tagged A n j w A j A EN n j w A EN j

eng-translit A n j w A j A n i w E j

Results are summarized in Table 4. Standard Word Error Rate (WER) and Actual Term-Weighted Value (ATWV)21

are used to report on STT and STD results, respectively. The Term-Weighted Value (TWV) indicates the STD’s

performance as a trade-off between false accepts and misses – a perfect system would score 1. TWV is calculated by

subtracting, from 1, the average loss per term. The ATWV indicates the TWV at the system’s set detection threshold.

STD results are shown separately for in vocabulary (IV) and out-of-vocabulary (OOV) keywords. (OOV keywords

were not included in the language model during term detection.)

Table 4. STD and STT results obtained with different mappings, when no additional English resources are used

WER ATWV
Mapping IV OOV All

gra 54.95 0.4756 0.4533 0.4716

swa-lsp 55.19 0.4693 0.4715 0.4697

mixed 54.62 0.4821 0.4629 0.4786

eng-tagged 54.82 0.4773 0.4551 0.4733

eng-translit 54.81 0.4803 0.4621 0.4771

The results in table4 show the mixed map produces the best system across measures. Surprisingly, the graphemic

(gra) system performs marginally better compared to the initial LSP map (swa-lsp) system – except for the OOV

ATWVs. In terms of the English mappings, the eng-translit map produced a slightly better result compared to the

eng-tagged map, but both these maps do not out-perform the mixed map.

4.4. Additional English resources

Given the restrictions determined by the Babel evaluation process, we modeled code-switched English words by

performing simple LID followed by “common knowledge-based” L2P mappings specific to English. However, an-

other realistic scenario involves adapting and applying freely available and extensive pronunciation resources to this

task (such resources certainly exist for English and many other major world-languages). Investigating this, we ana-

lyzed the STD results obtained by the eng-tagged system on English queries as a function of overlap/correspondence

with an existing reference English pronunciation dictionary.

As the reference dictionary, we used a South African English (SAE) pronunciation dictionary22 and mapped these to

the Swahili phoneset. Unseen words were generated using Default&Refine-extracted G2P rules23, obtained from the

same dictionary. The SAE dictionary was selected because it contains simplified versions of British pronunciations,

and had previously been applied in the context of English code switching. The experiment was performed on an

English-only subset of the VLLP development (dev) set (a total of 234 phrases). A histogram plot of ATWV vs

dictionary overlap score (dictscore) and phrase length is shown in Figure 1. The dictionary overlap score is the

phone accuracy averaged over all the variants in the reference dictionary (mapped SAE), where for each variant the

closest mapping in the target dictionary (eng-translit) was selected. Higher values of dictscore indicate greater overlap

between eng-tagged and the mapped SAE English pronunciations. Notwithstanding sparseness in sections of the result

space, the consistent gradient for the medium to longer phrases as dictscore increases, suggests the potential utility of

the mapped SAE English dictionary in the STD task.
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Fig. 1. Histogram of the ATWV as a function of dictionary overlap (SAE and eng-tagged) and phrase length.

Following up the result in Figure 1, further STD and ASR experiments with the mapped SAE dictionary were

performed. Tables 5 and 6 contain results on the VLLP dev and dev+tune sets respectively. Table 5 compares the

ASR and STD results when using the Web data and BNC English word lists for LID combined with the mapped SAE

approach. The WERs and ATWVs show that the LID systems produce comparable results. The BNC LID system

was trained on “cleaner” English data but this did not translate into a performance gain. This may allude to a minimal

overlap between the Swahili and reference English words.

Table 5. ASR and STD performance on the VLLP dev set using different LID resources.

LID system WER ATWV
IV OOV All

Web data 54.67 0.4898 0.4749 0.4871

BNC 54.30 0.4929 0.4783 0.4903

In Table 6 STD results are presented using comparable English word detection. Results are partitioned for English-

only, Swahili-only and Mixed phrases, indicating potential gains for both English-only and Mixed classes at a slight

cost to the Swahili-only accuracy. Focusing on the English-only result we present the phrase-length-dependent results

in Figure 2 which also supports the application of the mapped SAE dictionary.

5. Conclusion

The work presented here describes an investigation into pronunciation modeling approaches for code-switched

English in a Swahili spoken term detection system.
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Table 6. STD results for all of the systems tested on the VLLP dev+tune set.

- gra swa-lsp mixed eng-translit SAE # kwds

English 0.2193 0.2066 0.2111 0.2174 0.2732 415

Mixed 0.4906 0.4865 0.5107 0.5179 0.5203 519

Swahili 0.5251 0.5297 0.5310 0.5295 0.5266 2,111

All 0.4776 0.4783 0.4840 0.4850 0.4910 3,045

Fig. 2. STD results (dev+tune keywords on dev set) for English using the mixed, eng-translit and SAE mapped dictionaries, with linear interpolation

used to indicate trends.

As expected, English words perform much more poorly than Swahili or mixed phrases, across all systems. As

there is a difference in keyword length, these results are not directly comparable, but the same trends are seen when

analyzing results per keyword length (results are not presented here).

English-only results are comparable across systems, however, and there was a small gain in English STD per-

formance from mixed to eng-translit. The largest gain in English STD performance occurs when using an English

pronunciation dictionary for English words (SAE), where a more significant gain (0.217 to 0.273) is observed. Further-

more, while there is a benefit from both basic Swahili L2P over plain graphemic (gra vs swa-lsp) and mixed L2P over

plain graphemic (gra vs mixed), a slight degradation is observed when modeling English words more aggressively

(eng-translit and SAE).

A surprising result is the fact that the graphemic English average ATWV is comparable with and slightly higher

than all of the other maps apart from the SAE map. This is due to a lower number of false accepts (FAs) than the

other maps. (The eng-translit had 1,084 correctly identified English keywords compared to 1,038 using the gra map;

however eng-translit had 1,876 FAs while the system using the gra mapping had only 1,686 FAs.)
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This work confirmed that without explicit modeling, code-switched speech degrades both ASR and STD perfor-

mance, and showed that improved performance can be achieved using fairly straightforward approaches. It also

highlighted the need for trustworthy English resources during this process.
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