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1. Introduction

Dielectric breakdown occurs when a high voltage or field is applied to matter (solid,
liquid, or gas) and the material undergoes rapid degradation due to the stripping of
electrons from their nuclei. These newly freed electrons form a plasma channel as-
sociated with high temperatures and light and sound emission. In solid materials,
permanent material failure is seen along the breakdown channel, and secondary
fractures may occur in brittle materials due to thermal expansion. This presents a
challenging phenomenon to model due to the coupled, multiphysics nature of the
problem. Accurate modeling of dielectric breakdown is useful in several applica-
tions, including the design of energy-dense capacitors (including structural capaci-
tors1), the design of high-power electronic devices, the design of hardened electron-
ics to electromagnetic pulse attack, and so forth. Indeed, the multiphysics approach
used here is especially useful for structural capacitors as mechanical loading could
be incorporated into a simulation along with electrical loading.

Previously, a dielectric breakdown method was presented that coupled nonlin-
ear electro-quasi-statics, adiabatic heating, and peridynamics using a finite differ-
ence approximation of the electro-quasi-static problem with a 1-phase temperature-
conductivity dependency.2 Here, the method is improved by first using a finite
element (FE) discretization of the electro-quasi-static problem, and a 2-phase
temperature-conductivity material model. As results will show, the simulated break-
down patterns better match experimental breakdown patterns and can reproduce
both channel-like and tree-like geometries.

While dielectric breakdown is a challenging modeling problem, there are other at-
tempts in the literature as well, many of which are listed in Reference 2. The pur-
pose of this report is to first give an overview of the formulation of the journal
article cited in Reference 2 while highlighting any differences between that method
and the updated FE-based method. In addition, the method is verified against other
computational methods and several new geometries are modeled.

The remainder of the report is organized as follows: First, Section 2 details the for-
mulation of the method including the physical model, the discretization, and other
approximations. Next, Section 3 verifies the proposed method against other compu-
tational techniques. Section 4 presents several different examples of the method on
different geometries, including 3-D, and finally Section 5 concludes the report.

1



Approved for public release; distribution is unlimited.

2. Formulation

This section details the formulation of the dielectric breakdown problem in terms
of 3 coupled partial differential equations. The formulation is similar to that of Ref-
erence 2, though it is repeated here for clarity. The main differences are the model
used for the temperature dependence of the conductivity and the spatial discretiza-
tion, which are discussed in Sections 2.3 and 2.4 respectively.

2.1 Physical Model

The model used here couples 3 field equations: electro-quasi-statics, the adiabatic
heat equation, and solid mechanics. First, the electo-quasi-static approximation
used has the form

∇ · (σ(T, |E|)∇Φ) +
∂

∂t
∇ · (ε∇Φ) = 0, (1)

where E is the electric field, Φ is the electrostatic potential, T is temperature, σ is
conductivity, and ε is permittivity. Note that the equation is nonlinear as the con-
ductivity depends on the potential (via the electric field) and also that the material
properties may be spatially inhomogeneous and time-dependent. Next, the temper-
ature dependence is defined as

∂

∂t
T =

1

cpρ
Q− βδ(T − Tc), (2)

where δ(·) is the Dirac delta function, cp is the heat capacity, Tc is a phase change
temperature, β is related to the energy required for the phase change, and Q is a
heat source term, which will be defined in Section 2.2.

Finally, solid mechanics will be used to model forces on a solid body due to thermal
expansion and electrostatic forces (Lorentz and Kelvin), though peridynamics will
be used rather than standard elastodynamics as we wish to model fracture and fail-
ure of a material due to high strains and temperatures. Peridynamics is a nonlocal
formulation of elastodynamics that naturally incorporates discontinuities that arise
from fracture.3,4 Bond-based peridynamics may be stated as

ρ
∂2

∂t2
u =

∫
Hx

f(u′ − u, x′ − x, T )dV ′, (3)

2
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where the so-called microforce function is given as

f(η, ξ, T ) = c [s(η, ξ)− α∆T ]
η + ξ

|η + ξ|
, (4)

where ∆T is the temperature difference relative to ambient Tamb and α is the
isotropic thermal expansion coefficient. The peridynamic stretch s is defined as

s(η, ξ) =
|η + ξ| − |ξ|

|ξ|
, (5)

where
ξ = x′ − x, (6)

and
η = u′ − u, (7)

and constant c is defined as
c =

6E

πδ3 (1− ν)
, (8)

for 2-D plane stress, or

c =
6E

πδ4 (1− 2ν)
, (9)

for 3-D in terms of Young’s modulus E and Poisson’s ratio ν. The only difference
between this formulation and that in Reference 4 is that isotropic thermal expansion
is included.

Damage is modeled in bond-based peridynamics with a bond-breaking scheme,
wherein the microforce is set to zero if a pair of points has ever had a stretch that
exceeds a given critical value. The microforce is then modified as

f(η, ξ, T ) = ch(t, ξ) [s(η, ξ)− α∆T ]
η + ξ

|η + ξ|
, (10)

where the health h of a given bond may be expressed as

h(t, ξ) =

1 if s(t′, ξ)− α∆T (t′) < s0 and Tavg(t
′) < Tc for all 0 < t′ < t

0 otherwise
,

(11)

3
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and the critical stretch s0 is

s0 =

√
4πG0

9Eδ
, (12)

for 2-D plane stress or

s0 =

√
5G0

6Eδ
, (13)

for 3-D. In Eq. 11, excessive temperature will also fail a bond, and Tavg is the av-
erage temperature of the 2 nodes x and x′ and Tc is a given critical temperature.
Finally, peridynamics has no concept of discrete cracks or fracture surfaces, though
damage can be defined as the ratio

d = 1−
∫
Hx
h dV ′∫

Hx
dV ′

. (14)

This value is useful for postprocessing and will also be used in a modified permit-
tivity as described in the next section.

2.2 Coupling

The main field equations (Eqs. 1, 2, and 3) are coupled together in several ways.
First, electrostatic forces couple the electric field to the displacement, the first of
which is the Lorentz force, defined as

FL = qE = ∇ · (εE) E, (15)

where q is the charge density. This force acts on free charges in the material in
areas of high conductivity. The second force is the Kelvin force, or the force on a
dielectric, defined as

FK = P · ∇E = (ε− ε0) E · ∇E, (16)

where P is the polarization and ε0 is the permittivity of free space. The equation of
motion is then modified to

ρ
∂2

∂t2
u = FPD + FL + FK, (17)

where FPD is the peridynamic force defined on the right-handside of Eq. 3.

4
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Here, the peridynamic damage is coupled to the permittivity by the linear
relationship

ε = ε0 [εr (1− d) + d] . (18)

The intent is to model the effect of damage in a material as the formation of voids
so that a fully damaged material point (with d = 1) acts as free space.

The heat source term Q in Eq. 2 is derived from Joule heating, or the heat generated
from current flowing through a dissipative material, and is given by

Q = J · E = σ |E|2 . (19)

Finally, thermal expansion (defined in Eq. 4) couples the temperature to the me-
chanical displacement.

2.3 Conductivity Model

As mentioned above, the conductivity is dependent on both the electric field E and
the temperature T . The model used here is exponential and given by

σ(T, |E|) = σ0f(T )eγ|E|, (20)

where σ0 is a base conductivity with zero applied field, and f is a function de-
scribing the temperature dependence.5 The temperature dependence is a 2-phase
Arrhenius model given by6

f(T ) =

{
A1e

−B1/T T < Tc

A2e
−B2/T T ≥ Tc

, (21)

where the Ai and Bi are constants of the model. The constants A1 and B1 are as-
sociated with the weakly conductive phase and A2 and B2 are associated with the
highly conductive phase, meaning that A1 � A2.

2.4 Discretization

The spatial discretization of Eq. 3 is a basic collocation method as is used perva-

5
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sively in the literature,4 given by

FPD =

Ni∑
j|rj∈Hri

f
(
ηij, ξij,

∆Ti + ∆Tj
2

)
Vj, (22)

where Vj is the volume of node j. The temporal discretization is a Velocity Verlet
method, given as

vk+1/2 = vk +
∆t

2
ak,

uk+1 = uk + ∆tvk+1/2,

ak+1 =
FPD + FK + FL

ρ
,

vk+1 = vk+1/2 +
∆t

2
ak+1.

(23)

The main difference between this work and that of Reference 2 is that the electro-
quasi-static equation is solved using a finite element method (FEM). First, the FE
formulation is given as

∑
n

φn

∫
Ωm

σ∇tm · ∇bndV +
∂

∂t

∑
n

φn

∫
Ωm

ε∇tm · ∇bndV = 0, (24)

where the bn and tm are basis and testing functions respectively, Ωm is the support
of the mth testing function, and φn are the nodal potentials. As usual, the region
is broken into elements, where here quadrilateral (2-D) and hexahedral (3-D) ele-
ments are used with bilinear and trilinear basis and testing functions. Further, the
peridynamic nodes are located at the centroids of the elements.

An entry in a system matrix is defined as

[Da]mn ≡
∫

Ωm

a∇tm · ∇bndV , (25)

with a being a dummy variable representing either σ or ε. The system matrices are
formed in the usual way using assembly of element matrices.

Next, the time dependence of the adiabatic heating model is discretized using ex-

6
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plicit forward Euler as

T k+1 = T k +
∆t

cpρ
Qk −∆tβδ

(
T k − Tc

)
. (26)

To facilitate the evaluation of Eq. 26, the delta function is regularized with a Gaus-
sian as follows

δ(t) ≈ 1√
πa
e−t

2/a2 , (27)

where a is the variance and is a parameter of the model.

2.5 Linearization

The electro-quasi-static equation is nonlinear in the potential because the conduc-
tivity depends on the magnitude of the electric field. This equation may be solved in
a few ways, and here we use a linearization procedure along with a backward Euler
temporal discretization. First, the FE-discretized approximation may be expressed
as

DσΦ +
∂

∂t
DεΦ = 0, (28)

where system matrices Dσ and Dε are defined in Eq. 25 and Φ is a vector of nodal
unknowns representing the potential. Now, the temporal derivative is applied to both
the potential and the permittivity, as the permittivity is time-dependent (because it
depends on peridynamic damage), giving

DσΦ + Dε′Φ + Dε
∂

∂t
Φ = 0, (29)

where ε′ is the temporal derivative of the permittivity. Backward Euler is used to
discretize the temporal dependence, giving

(∆tDσk + 2Dεk − Dεk−1)Φk = DεkΦ
k−1. (30)

Note that superscript k indicates the variable at the kth time step and that the dis-
cretization is also applied to the time derivative on the permittivity.

Now, Eq. 30 may be linearized by expressing the conductivity times the electric

7



Approved for public release; distribution is unlimited.

field as a Taylor series about the field at the previous time step, which gives

σ
(
T k,
∣∣Ek
∣∣)Ek ≈ σ0f

(
T k
)
eγ|E

k−1| [Ek

+ γ
Ek−1 ⊗ Ek−1∣∣Ek−1

∣∣ (
Ek − Ek−1

)]
.

(31)

Finally, this linearization is inserted into Eq. 30 giving,(
∆tDσk

1
+ ∆tDσk

2
+ 2Dεk − Dεk−1

)
Φk =(

Dεk + ∆tDσk
2

)
Φk−1,

(32)

where Dσk
1

is the FE matrix associated with the first term on the right-handside of
Eq. 31 and Dσk

2
is the FE matrix associated with the second term. Note that the

second term is a tensor, and so the definition of Eq. 25 is extended to

[DA]mn ≡
∫

Ωm

∇tmA [∇bn]T dV . (33)

2.6 Nonlocal Force Computation

The final step in the formulation is the computation of the electrostatic forces FK

and FL. Unfortunately, they require that the basis functions be at least twice differ-
entiable (see Eq. 15 and Eq. 16) though here only bilinear (or trilinear in 3-D) basis
functions are used. Rather than using a higher-order basis, a nonlocal approxima-
tion to the force computation will be used. The following is akin to the state-based
peridynamic formulations7 and concepts from nonlocal calculus.8

The first step in computing the electrostatic forces is to compute the electric field E,
which may be obtained by using the derivative of the basis functions. Here, the field
will be evaluated at the centroid of each element, coincident with the peridynamic
nodes. Next, the gradient of the field is needed for computing the Kelvin force and
is approximated as

∇E ≈
[∫
Hx

c (|ξ|) (E′ − E)⊗ ξdx′
]

K−1, (34)

where c (|ξ|) is a shape function (which is simply constant over the horizon here)
and the same horizon is used as the peridynamic method discussed above, and K is

8
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a shape tensor given by

K =

∫
Hx

c (|ξ|) ξ ⊗ ξdx′. (35)

Finally, the divergence of the electric flux density, D = εE, is needed to compute
the Lorentz force, and is given as

∇ · D ≈ trace
{[∫

Hx

c (|ξ|) (D′ − D)⊗ ξdx′
]

K−1

}
. (36)

2.7 Algorithm

To summarize, the previously discussed methods are assembled in the following
way:

1. Specify any initial electrical material properties given by the problem geom-
etry and compute initial potential

2. Update the displacement and velocity based on acceleration using Eq. 23

3. Update the temperature using Eq. 26

4. Update the bond health due to stretch and temperature (Eq. 11)

5. Update the permittivity based on the damage using Eq. 18

6. Update the conductivity based on the electric field and temperature using
Eq. 31

7. Compute the electrostatic potential (Φ) from Eq. 32, with specified boundary
conditions

8. Compute the electrostatic forces from the potential using nonlocal approxi-
mations (FL and FK) with Eq. 15 and Eq. 16

9. Update the velocity and acceleration using all forces FPD, FL, and FK

10. Repeat starting at Item 2

This method uses a number of approximations in not only the spatial and temporal
discretizations, but also in the computation of the electrostatic forces and other
regularizations. It is therefore important to verify various aspects of the method, as
discussed in the next section.

9
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3. Verification

A few approximations used in the approach were verified using other computa-
tional methods. First, the computation of the Kelvin force was verified against a
Mathematica solution wherein a fictitious force was specified and the permittivity
and potential that generate that force were computed. Next, the linearization of the
nonlinear conductivity model was verified with a fixed-point iteration scheme.

3.1 Nonlocal Kelvin Force Computation

The computation of the Kelvin force uses a nonlocal formulation due to the use of
bilinear basis functions, which is verified here using the following approach: First, a
fictitious force is specified in 1-D. Next, the permittivity and potential that generate
that force are solved numerically. Finally, the permittivity and potential are extended
to 2-D (constant along one dimension) and the Kelvin force is computed using
the nonlocal approach. The resulting force can then be compared to the original
fictitious force.

The force used here has the following form

fK (x) = −10−11 sin πx, (37)

with 0 ≤ x ≤ 1 and the permittivity ε and potential φ are defined via the coupled
ordinary differential equations (ODEs)

ε (x)φ′′ (x) + ε′ (x)φ′ (x) = 0 (38)

and
ε0 [ε (x)− 1]φ′ (x)φ′′ (x) + fK (x) = 0, (39)

subject to the boundary conditions

φ (0) = 0,

φ (1) = 1,

ε (0) = 2.

(40)

Equations 38 and 39 were solved for permittivity ε and potential φ numerically us-
ing Mathematica’s built-in ODE solver and are shown in Fig. 1. As stated above,
these solutions were extended to 2-D along one dimension and used with the non-

10
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local Kelvin force computation.
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Fig. 1 Permittivity a) and potential b) that generate the Kelvin force of Eq. 37

Figure 2 shows the nonlocal approximation of the Kelvin force in 2-D using 100
elements along each axis and a horizon size of 3∆x. To compare against the 1-D
solution, a slice along the center is used as shown in Fig. 3. Figure 3 also shows the
Kelvin force as computed by a finite difference implementation.2 The error conver-
gence of the Kelvin force computation was also assessed as shown in Fig. 4, where
both the finite difference and FE methods are shown. As can be seen, the error in
the Kelvin force decreases with an increasing number of elements.

3.2 Linearization

The linearization described above was verified against a fixed-point iteration solu-
tion of the system of equations given in Eq. 30. To perform the fixed-point iteration,
Eq. 30 is first rewritten as

F(Φ)Φ = b, (41)

where F is the matrix defined on the left-handside of Eq. 30 and is a function of Φ,
and b is the right-handside of Eq. 30. This leads to the fixed-point iteration

Φl+1 = F
(
Φl
)−1b, (42)

and superscript l refers to a step in the fixed-point iteration, not the time step. This
iteration was found to converge if the problem was well-behaved (i.e., at low enough

11
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voltages so that no damage occurred).

Fig. 2 Nonlocal approximation of Kelvin force in 2-D

Fig. 3 Comparison of Kelvin force computed using FEM and finite differences

For comparison, the fixed-point iteration solution was used rather than the lineariza-
tion scheme at a timestep size of 125 ps for the point–plane geometry shown in
Fig. 5. Only the blue region (dielectric) of Fig. 5 was meshed and an average ele-
ment edge length of 50 µm was used. The gold regions represent perfect conduc-
tors and are boundary conditions in the model. A homogeneous Neumann boundary

12
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condition was used on the dielectric-free space interfaces (top, left, and right edges).
In addition, the applied voltage had the form

Φapplied(t) = Vmax
(
1− e−t/τ

)
, (43)

where time constant τ is 0.3 µs unless specified otherwise.

Fig. 4 Error convergence of Kelvin force computed using FEM and finite differences

The linearized version was then run at 3 discretizations to a final time of 100 ns: 1
ns, 500 ps, and 250 ps. At the time step corresponding to 100 ns (800 for the fixed-
point solution and 100, 200, or 400 for the linearization) the error in the electric
field distribution was measured relative to the fixed-point iteration solution. Figure 6
shows the convergence of the linearization to the fixed-point solution for the 3 time-
step sizes. As can be seen from the figure, decreasing the time-step size improves
the accuracy of the linearized solution. Finally, Fig. 7 shows the log error in E of
the linearized solution with a 1 ns time-step size after 100 ns. As expected, the error
is highest near the highest field concentration, which is where the conductivity will
have the highest variation.
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Fig. 5 Schematic of the point–plane geometry

Fig. 6 Convergence of the linearization of Eq. 30 to a fixed-point iteration solution

4. Results

As a first set of tests, point–plane geometries—wherein a point probe is embedded
in a dielectric and placed above a ground plane—were modeled. First, a flat-tipped
electrode was modeled twice, first with material properties that generate a straight
channel-like breakdown pattern, and second with properties that generate a tree-
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like structure. Next, a sharply tipped electrode is modeled. The last 2-D example is
a parallel plate capacitor with a composite dielectric and a small conductive flaw.
Finally, a 3-D point–plane geometry is tested with a cylindrical dielectric.

Fig. 7 Error in E of the linearization with a time-step size of 1 ns vs. a fixed-point solution

Unless specified otherwise, all material properties used in this section are given in
Table 1 and the applied voltage has the form given in Eq. 43.

4.1 Flat Electrode

This example repeats the results from Reference 2, though now with the 2-phase
model described previously (a schematic of the geometry is shown in Fig. 5). Aside
from the 2-phase temperature-conductivity relation, the material properties and ge-
ometry are identical to those described in Reference 2. A mesh of quadrilateral
elements is used, with average edge length of 50 µm.

The results are shown in the following set of figures: Fig. 8 shows the peridynamic
damage at 4 time steps between 4 and 5.5 µs and Fig. 9 shows the temperature and
conductivity at 5 µs. Note that the conductivity is shown on a logarithmic scale.

In contrast to the results in Reference 2, a more clearly defined breakdown chan-
nel is formed, most likely due to the 2-phase model used for the temperature-
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conductivity dependence. Perpendicular fractures are also seen, which are due to
the thermal expansion in the breakdown channel applying a force to the surround-
ing material. This effect is seen in dielectric breakdown experiments.9

(a) (b)

(c) (d)

Fig. 8 Peridynamic damage in the flat-tipped point–plane model at 4 µs a), 4.5 µs b), 5 µs c),
and 5.5 µs d)

4.2 Tree-Like Breakdown

The same geometry was used as in the previous example, though now the follow-
ing material properties were altered: The electric field-conductivity coupling coef-
ficient was set to γ = 0, the ambient temperature was increased to Tamb = 670 K,
the maximum voltage was V0 = 50 kV, and the initial conductivity was raised to
σ0 = 1 S/m. Note that now the electro-quasi-static equation is linear. These mate-
rial properties lead to the tree-like breakdown pattern seen in Fig. 10, which shows
the peridynamic damage at 1.76 µs. It is hypothesized that the tree-like pattern (ver-
sus the straighter, channel-like pattern seen in Fig. 8) is because the nonlinearity in
the previous example generates a channel of high conductivity, and breakdown can
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only occur in this channel. In this example, breakdown may occur anywhere due to
the high conductivity throughout the material and so a tree-like pattern develops.
Further, the stochastic, unstable damage pattern is most likely due to the irregular
mesh.

(a) (b)

Fig. 9 Temperature a) and conductivity b) in the flat-tipped point–plane model at 5 µs

4.3 Sharply Pointed Electrode

Here, nearly the same model as that discussed in Section 4.2 is presented, though
now the tip of the electrode is sharp rather than flat. Overall, the results are nearly
the same, though the breakdown channel is thinner at first. In addition, breakdown
occurs over a longer period of time versus the flat-tipped model. The peridynamic
damage is shown in Fig. 11 between 2.5 and 10 µs.

The same input parameters from the tree-like breakdown simulation discussed in the
previous section were repeated, resulting in the damage pattern shown in Fig. 12.
Again, a tree-like pattern is seen, though now only one branch originates from the
electrode tip. As before, it is believed that the unstable, tree-like damage pattern is
due to the irregular mesh.
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Table 1 Physical constants

Constant Value Units

Mechanical

ρ 2400 kgm−3

E 72 GPa

δ 0.15 mm

G0 5 Jm−2

Electrical

ε0 8.85× 10−12 Fm−1

εr 20 −
σ0 10−19 Sm−1

Thermal

cp 800 J kg−1 K−1

Tc 300 K

Tamb 1000 K

Coupled

α 9× 10−6 K−1

γ 5× 10−8 mV−1

a 5 K

β 8× 107 K2

A1 30 −
A2 3× 104 −
B1, B2 1.2× 103 K

4.4 Composite Capacitor with Conductive Flaw

The final 2-D example is a parallel-plate capacitor with a composite dielectric. The
model used 2 dielectric materials along with a small, conductive flaw in the inner
dielectric, as shown in Fig. 13, and the conductors were located along the top and
bottom edges. The model is 15 mm by 10 mm with a 3-mm-radius circular dielectric
located at the center. The outer region had a relative permittivity of 10 and a thermal
expansion coefficient of 9× 10−6 and the inner region had a relative permittivity of
20 and a thermal expansion coefficient of 20 × 10−6. Within the inner dielectric is
a circular, conductive inclusion (conductivity 10−3 S/m) with a radius of 75 µm. In
addition to having different dielectric constants, the 2 materials had different ther-
mal expansion coefficients to induce fracture at the interface. The maximum voltage
used in this simulation was 4 MV with the same time constant used previously.
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Fig. 10 Tree-like breakdown pattern for linear breakdown problem

In this model, breakdown initiates at the inclusion, since the inclusion concentrates
the electric field (as shown in Fig. 14) at a small point. The breakdown then prop-
agates towards the boundaries as shown in Fig. 15. This damage is associated with
high temperatures due to breakdown, though there are other fractures induced by
thermal expansion visible especially around the inner dielectric. Finally, the temper-
ature and conductivity are shown in Fig. 16 and Fig. 17. Note that the conductivity
is shown on a log scale.

4.5 Point–Plane Geometry in 3-D

A 3-D model was generated (shown in Fig. 18), which consisted of a sharply pointed
probe of length 1 mm and radius 0.1 mm embedded in a dielectric cylinder with a
height of 4 mm and a radius of 2 mm. As before, the voltage is applied to the probe,
while the entire bottom surface of the cylinder is the ground plane. While the ma-
terial properties were the same as above, the temporal discretization was reduced
to ∆t = 0.75 ns and the maximum voltage was reduced to 1.1 MV. The results
show a thin breakdown channel forming at approximately 375 ns and propagating
more slowly than the 2-D results. First, the electric-field magnitude and conductiv-
ity (on a logarithmic scale) are shown in a cutaway view of the dielectric at 2.2 µs

in Fig. 19. Next, Figure 20 shows a cutaway view of the peridynamic damage in
the center of the cylinder at 4 instances of time between 2.2 µs and 4.5 µs. Compar-
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ing Fig. 19b with Fig. 20a shows the peridynamic damage that is associated with
breakdown, and not other effects such as thermal expansion. Further, a threshold
view of the peridynamic damage is shown in Fig. 21 at 4.5 µs, first in a) with a
threshold on the damage of 0.25 and second in b) with a threshold on temperature
(1000 K). In other words, Fig. 21b shows the damage in regions with high tempera-
ture, above the specified breakdown temperature threshold. The difference between
the 2 figures illustrates the different types of damage: The thin channel in Fig. 21a
is due to high temperature (resulting from high conductivity as shown in Fig. 21b)
and the fractures at the bottom of the cylinder are due to thermal expansion as the
temperature in that region is below the breakdown threshold.

(a) (b)

(c) (d)

Fig. 11 Peridynamic damage in the sharp-tipped point–plane model at 2.5 µs a), 5 µs b), 7.5 µs
c), and 10 µs d)

Finally, a tree-like breakdown pattern was generated in 3-D by first using a flat-
tipped electrode embedded in a dielectric cylinder with the dimensions the same
as those stated previously. In this case, the spatial discretization size was reduced
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to an average element-edge length of 40 µm. The material properties and initial
temperature were the same as those in the tree-like breakdown example in 2-D,
though here a maximum voltage of 10 kV was used. Figure 22 shows the damage
at 3.3 µs by superimposing a threshold view of the damage (with a threshold of
0.35) on a cut-away view of the damage. As before, a tree-like breakdown pattern
is evident that initiates at the flat-tipped electrode.

Fig. 12 Tree-like breakdown pattern for pointed electrode at 1.5 µs

5. Conclusions

A multiphysics, hybrid FE-peridynamics method was presented for solving dielec-
tric breakdown problems. The method coupled 3 field equations: electro-quasi-
statics for solution of the electrostatic potential, adiabatic heating for solution of
the temperature, and peridynamics for displacement. These 3 equations were cou-
pled in various ways: Lorentz and Kelvin electro-static forces, a temperature- and
electric-field-dependent conductivity model, damage-dependent permittivity, and
Joule heating. Results were presented for different geometries in 2-D and 3-D and
some characteristics were consistent with experiments. The most encouraging result
is that the method is capable of generating both channel-like and tree-like break-
down geometries depending on the material properties chosen. The channel-like
solutions were generated using the nonlinear electric-field-conductivity dependence
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and low initial conductivity and temperature. For the point-probe geometries, it ap-
pears the field configuration raises the conductivity along a straight path between
the electrode and ground plane, thus only allowing breakdown in this area. The
tree-like solutions were generated with a constant conductivity and high initial con-
ductivity and temperature. In this case, the higher background conductivity allows
for breakdown to occur on different, unstable paths. These results compare well to
Lichtenberg figures, some of which are generated by bombarding a polymer plate
with electrons and subsequently applying a large voltage. The embedded electrons
raise the charge in the material, which is similar to raising its conductivity.

10 mm

15 mm

= 20

= 20 × 10

= 10

= 9 × 10

= 10 S/m

Fig. 13 Composite parallel plate capacitor model with mesh

While this approach has generated results that resemble experiments, several im-
provements could be made. First, the displacement is not coupled to the electro-
static problem, meaning the deformation of the body does not affect the solution of
the electro-static problem. In the materials used here, the displacements are small
enough to be neglected, though for different materials, such as electro-active poly-
mers, large deformations would necessitate more accurate handling of this cou-
pling. Second, only a 2-phase model is used for the temperature-conductivity de-
pendence, representing low and high conductivity. In reality, a solid undergoing
dielectric breakdown may transition through all phases of matter, from solid to liq-
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uid, gas, and plasma. Future implementations may incorporate material models for
each phase, not just in the temperature-conductivity dependence, but also in the
equation of motion and elastic and thermal material properties. Third, the nonlinear
electric-field-conductivity dependence is based on experimental support that may
not cover the entire range of electric-field magnitudes used here, and so in the fu-
ture more sophisticated field-dependent conductivity models should be explored.
Finally, magneto-static forces may also be included, though it remains to be seen
whether or not the magnitude of such forces would impact the solution.

Fig. 14 Magnitude of the electric field for the composite capacitor model at 0.5 µs
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(a)

(b)

(c)

Fig. 15 Peridynamic damage in the composite capacitor model at 5 µs a), 5.5 µs b), and 6 µs c)
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(a)

(b)

Fig. 16 Temperature in the composite capacitor at 5.5 µs a) and 5.5 µs b)
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(a)

(b)

Fig. 17 Conductivity in the composite capacitor at 5.5 µs a) and 5.5 µs b)
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Fig. 18 Cylindrical point–plane model (cutaway)

(a) (b)

Fig. 19 Electric-field magnitude a) and conductivity b) in the 3-D point–plane model at 2.2 µs
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(a) (b)

(c) (d)

Fig. 20 Peridynamic damage in the 3-D point–plane model at 2.25 µs a), 3 µs b), 3.75 µs c), and
4.5 µs d)
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(a) (b)

Fig. 21 Peridynamic damage in the 3-D point–plane model at 4.5 µs shown with a threshold
on damage a) and temperature b)
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Fig. 22 Damage for the flat-tipped probe in 3-D at 3.3 µs
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List of Symbols, Abbreviations, and Acronyms

1-D 1-dimensional

2-D 2-dimensional

3-D 3-dimensional

FE finite element

FEM finite element method

ODE ordinary differential equation
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