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Abstract

Many computer vision applications rely on matching fea-
tures of a query image to reference data sets, but little
work has explored how quickly data sets become out of
date. In this paper we measure feature matching perfor-
mance across 5 years of time-lapse data from 20 static cam-
eras to empirically study how feature matching is affected
by changing sunlight direction, seasons, weather, and the
structural changes over time in outdoor settings.

We identify several trends that may be relevant in real-
world applications: (1) features are much more likely to
match within a few days of the reference data, (2) weather
and sun-direction have a large effect on feature matching,
and (3) there is a slow decay over time due to physical
changes in a scene, but this decay is much smaller than ef-
fects of lighting direction and weather.

These trends are consistent across standard choices for
feature detection (DoG, MSER) and feature description
(SIFT, SURF, and DAISY). Across all choices, analysis of
the feature detection and matching pipeline highlights that
performance decay is mostly due to failures in key point de-
tection rather than feature description.

1. Introduction

Robust approaches to matching features taken at differ-
ent times and from slightly different viewpoints have made
numerous computer vision applications possible. For some
of those applications, the problem domain requires match-
ing a current image to older imagery. These applications,
including approaches to geo-location, geo-orientation [13],
geo-tagging [16], landmark recognition [23], image based
localization [14], camera-pose estimation [7], and historical
rephotography [1], are all based on a database of reference
imagery.

Here we ask the question, “how does this reference im-
agery age?”, or more precisely, “how does feature matching
performance change over time?”

This question is relevant at different time scales; over
short time periods, the illumination conditions may change,
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Figure 1. Our pipeline starts by extracting key points and comput-
ing feature descriptors in a static webcam image from within 24
hours of either the summer or winter solstice. We then extract key
points and compute feature descriptors in every subsequent image
from that camera at the same time of day, and find the number of
inliers between each image pair. This process reveals significant
trends over time that are explored throughout this paper.

and over longer time periods there may be effects due to
weather, seasons, and erosion, plant growth or building con-
struction. How much can these factors change before fea-
ture matching fails, and what components of the algorithm
cause this failure?

To answer this question, we empirically study image
data captured over five years from 20 static outdoor web-
cams. This is an ideal data set because we know that fea-
ture matches should occur at the same scene location, and



the only change in imagery comes from extrinsic changes
in the scene. In practice, small camera jitters force us to
allow small geometric transformations between frames, but
since these are due to camera rotations, those transforms are
captured by a homography. Because most real world appli-
cations of feature matching arise in conditions with cam-
eras that are not static, we explicitly validate that we see
the same trends of matching efficiency over time on several
cases where we have images from a different viewpoint.

Given the importance of feature matching, there has been
surprisingly little work to evaluate its performance over
time. This is because it is challenging to structure an ex-
periment where the correct feature matches are known even
if current feature matching algorithms fail — especially in
the context of long term, real-world data sets. Related work
includes tests on synthetic dataset from a photorealistic vi-
sual world, lit to simulate different times of day [5]. The
only study we know of that uses real data tests location
recognition for autonomous driving. They capturing data
by driving around a neighborhood several times over a nine-
month period [20]. Both studies report that feature match-
ing decreases substantially as a function of changes in illu-
mination direction, and the real-world data also highlights
weather as an important determiner of feature matching ef-
ficiency.

Relative to these previous works, our contributions are
fourfold:

First, we define an experimental protocol that uses long
term static webcam archives as a structured data
source, allowing the first comparative evaluation of
different feature detectors and feature descriptors over
time in many real-world settings over time scales of
many years.

Second, we show feature matching over time in fixed view-
point images has the same trends as matching features
from different viewpoints, so the experimental results
will hold across standard application domains that re-
quire feature matching.

Third, we show that the effects of lighting and weather
variation are the dominant cause of matching failures
and dominate accumulated physical scene changes
even after many years. These trends are consistent
across all tested feature detectors and matchers.

Fourth, we characterize where in the feature matching
pipeline the failure occurs and highlight that the vast
majority of failures occur at the feature detection stage,
not the feature description stage.

We choose to use widely accessible implementations of
standard feature detectors (DoG, MSER) and descriptors
(SIFT, SURF, DAISY). To support future comparisons with

alternative implementations, the features, datasets and code
for all parts of this paper will be released.

2. Background and Related Work

There have been a number of works comparing choices
in the feature detection/description pipeline. Prior works
have a large variation in the way that they create or find data
with known ground truth matches. Early work evaluating
interest point detection [17, 10] explored performance with
respect to image transformations (affine geometric transfor-
mations and intensity variations), and viewpoint variability
from moving video data of a location. Viewpoint variabil-
ity was evaluated both in terms of the stability of the key
point detection and matching the description, as a function
of the angular viewpoint change [11], based on 144 cali-
brated views of objects, such as telephones, pineapples, and
statues. In the context of video streams, combinations of
detectors and descriptors have been evaluated with respect
to changes in lighting conditions, geometric changes and
motion blur [3].

Fewer works explicitly consider the effect of long-term
time variations on feature matching. The matching of SIFT
features in historical imagery has been used to to sort them
by date, based on the construction and demolition of build-
ings [15]. Matching of World War II era aerial images to
modern aerial images was used to detect possible buried
unexploded ordnance based on short line features [12].
[22] explored matching modern images to a few historical
images for each of 10 specific landmarks and found that
SIFT and SUREF are similar and work better than Harris or
KLT feature matching. Work with photorealistic rendering
of scenes [5] over the course of a day, and outdoor robotic
driving around a neighborhood [20] also found minimal dif-
ference between standard detector and descriptor combina-
tions. To our knowledge, there is no large scale systematic
study of the impact that years long time differences have on
the effectiveness of feature matching in varied, real-world
environments, nor has anyone studied where failures occur
in the feature matching pipeline for features imaged at dif-
ferent times.

3. Implementation Details & Method

We assess the robustness of commonly used key point
extraction methods and local feature descriptors over time
by extracting key points and computing feature descriptors
on a large number of stable webcam images. In this section,
we describe our experimental design and implementation
details.

3.1. Image Selection

We collected images from 20 particularly stable, long-
lived webcams from the Archive of Many Outdoor



Scenes [4]. For each of these 20 cameras, we select a sin-
gle clear daytime image, from within 48 hours of either the
winter or summer solstice, as a reference image. We then
find one image per day captured by that camera within 30
minutes of the reference image. Once we have this set of
images, we manually remove any images that substantially
moved relative to the reference image (i.e., a pan-tilt-roll
camera that turned to a different view of the scene).

3.2. Key Point Extraction & Feature Description

We extract key points from each one of these images. We
use both scale-space local maxima of Difference of Gaus-
sian (DoG) filters as implemented by [21] and the MAT-
LAB Computer Vision Toolbox implementation of Maxi-
mally Stable Extremal Regions (MSER) [9].

We then find SIFT [8], SURF [2], and DAISY [18, 19]
descriptors at the locations identified by the key point ex-
traction methods listed above. We use the VLFeat [21] im-
plementation of SIFT, the MATLAB Computer Vision Tool-
box implementation of SURF, and the author provided im-
plementation of DAISY.

3.3. Feature Matching & Assessment of Robustness

For every image, we use the VLFeat implementation of
the matching algorithm described by [8], to find the set of
features which are considered matches in feature space be-
tween the reference image and the subsequent image. We
then solve for the optimal homography and subset of the
feature matches that are geometrically consistent using [6]’s
RANSAC implementation. This allows for the slight cam-
era jitter that can be present in even very stable webcams
(less than 10 pixels of movement). It also allows us to
check that the 3 x 3 homography, Mj, computed through
this matching process is close to the identity matrix, using
the following protocol:

1. Normalize the homography by its bottom right ele-
ment: M; = My/My(3,3).

2. If IM1(1,1) — M7(2,2)| > 0.1, the homography is not
consistent with small camera pans and tilts.

Our dataset is derived from very stable webcams, that
had occasional small pan, tilt and zoom variations. This
simple rule above was more consistent than any threshold
comparing M to the identity matrix. Visual inspection of
many cases where M failed this test found that all arose in
situations where all inliers after RANSAC were in a nearly
degenerate configuration with all matches nearly colinear.

When M, passes this test, we consider all inliers to be
geometrically consistent feature matches between this im-
age and the reference image for this camera. Because dif-
ferent cameras have reference images that may have dra-
matically different numbers of features, we normalize the
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Figure 2. For three scenes we compare match features back
through time when using an image from the webcam (left images)
and when using an image captured at the same date and time from
a different viewpoint (right images). The plots over time show the
normalized inlier count as a function of time-difference from the
query image, (+) indicating matching to the webcam image and (*)
the image from a different viewpoint. The black plots on the right
show the correlation in feature matching efficiency as a function
of time, highlighting that matching webcam images across time is
a good proxy for multiview matching performance.

inlier counts by the maximum number of inliers ever seen
between that reference image and any other image.



3.4. Webcams as a Proxy for Multiple Viewpoints

Applications of feature matching usually do not involve
images from exactly the same viewpoint, so in this section
we test whether the feature matching experiment described
in the previous section is consistent with feature matching
from different viewpoints.

To assess this, we adapt the experiment described in Sec-
tions 3.1 - 3.3. We find images of the same scene as several
of our webcams, but from taken from different viewpoints.
We use these as our multiview reference image. We select a
webcam image taken within 24 hours of the multiview refer-
ence image to use as the webcam reference image. We then
run the matching protocol once using the multiview refer-
ence image and once using the webcam reference image. In
the multiview case, we use RANSAC to fit a fundamental
matrix rather than a homography, again using [6].

In Figure 2, we observe that the same trends seen in we-
bcams over time and described later in Section 4, are also
observed in this multiview approach. The correlation be-
tween the single view and multiview approaches is very
strong, and we visually observe similar trends over time
in the number of features that are matched. This justifies
our use of feature matching in static webcam images over
time as a proxy for the more general feature matching that
is required for many applications. This is fortunate because
the static camera matching problem can be evaluated more
rigorously, and we can discover more easily where in the
pipeline failures occur.

4. Analysis

We apply the procedure from Sections 3.1 - 3.3 to com-
pute feature matching performance across many years for
many cameras. In the data collected through this proce-
dure, we observe four persistent trends, shown in the plots
in Figure 3. First, there are day-to-day fluctuations in fea-
ture matching performance due to factors such as weather or
temporary occlusions like people walking through a scene.
Second, there is an annual trend due to changes in illumina-
tion as a function of sun position that can be seen clearly in
Figure 3, where feature matching performance peaks cycli-
cally every year. Third, feature matching performance is
extremely good across the first few images taken in simi-
lar weather conditions, due to the similar scene illumination
and lack of long term changes that can occur over longer pe-
riods of time. Fourth, there is an overall decrease in feature
matching performance over time due to factors like plant
growth in natural scenes or larger scale construction activi-
ties in urban scenes, such as a building being put up or street
lanes being painted.

We now discuss why these patterns emerge by closely
studying the effects of weather and lighting variation, and
investigating where the feature matching pipeline fails.
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Figure 3. Each of the above plots show the (normalized) number
of inliers after RANSAC for various feature matching routines
through time using stable webcams from the Archive of Many
Outdoor Scenes [4]. We show the average plot for all cameras
with DoG key points (a) and MSER key points (b), along with
three of the 20 cameras (c) using DoG key points. Across all cam-
eras, feature matching performance has a cyclic pattern, where the
most likely images to be matched are taken exactly a year (or two,
or three...) later. Furthermore, feature matching performance is
roughly equivalent for all feature extraction routines.

4.1. Weather Changes

To assess the extent to which feature matching perfor-
mance over time is affected by weather patterns, we ran-



(b) Images labelled as “not sunny”

Figure 4. Example image pairs and their corresponding weather
labels from three webcams collected from the AMOS data set.

Both Sunny | Both Not Sunny | Sunny-Not Sunny
DoG+SIFT 0.547 0.400 0.193
MSER+SIFT 0.450 0.332 0.139
DoG+SURF 0.504 0.362 0.160
MSER+SURF 0.459 0.343 0.139
DoG+DAISY 0.520 0.383 0.208
MSER+DAISY 0.497 0.347 0.172
Mean 0.496 0.361 0.196

Table 1. The mean normalized inlier count for different key point
extraction and feature description methods when comparing dif-
ferent weather conditions 24 hours apart. Matching between im-
ages taken during like weather conditions significantly outper-
forms matching between images taken during different weather
conditions.

domly select 25 images from 13 different webcams. Each
image is then paired with an image from 24 hours later. The
change in lighting direction between images taken 24 hours
apart is minimal, and so the driving force in feature match-
ing performance at this scale is due to weather.

We then hand label each of these 325 images as either
sunny or not sunny. We then find feature matches between
the image pairs and compute the normalized inlier counts
for each method under the different sets of weather condi-
tions, averaged across all 13 cameras.

This data is presented in Table 1, which shows the ro-
bustness of each key point extraction and feature descrip-
tor pair when matching between different combinations of
weather conditions. We find that the sunny-to-sunny match-
ing performance is best, because images that are taken ex-
actly 24 hours apart have shadows that provide strong fea-
tures and are in almost exactly the same position. Not
sunny-to-not sunny matching performance is better than
sunny-to-not sunny matching, indicating that weather plays
a large role in the success or failure of the matching pro-
tocol. Sunny-to-not-sunny matching is the worst, probably
because the strong shadow features often cause the feature
detectors to fire in different image locations. Figure 4 shows
example image pairs with their labels — the significant dif-
ference in these images’ appearances demonstrates why fea-
ture matching across different weather conditions is a diffi-

===~ DoG+SIFT

1’3‘&4 DoG+3URF
203 === DoG+DAISY
8E | ——MSER+SIFT
52028 MSER+SURF
§§m~ g b ——MSER+DAIST

g - A .

3D 40 &0

D%I‘?erence inzgun Direction (degrees)

Figure 5. This plot shows the normalized inlier count, over all cam-
eras for all key point detector/descriptor routines, as a function of
the difference in lighting direction. This demonstrates that match-
ing performance is strongly correlated when the sun positions are
similar, regardless of the feature.

cult domain.

It is notable that while Difference of Gaussian key point
extraction performs marginally better over all weather con-
ditions and descriptors, there is no feature descriptor that
performs significantly better the others. Indeed, this is con-
sistent with the results shown in Figure 3, where no one
particular combination of key point extraction or feature de-
scription method significantly out performs another.

4.2. lllumination Changes

The most noticeable trend over time is the clear annual
cycle noticeable in every plot in Figure 3. This trend is due
to the differences in the lighting direction of the scene as the
tilt of the Earth changes over the course of the year. The im-
pact of sun direction over the course of a year also becomes
less significant the closer the scene is to the equator, where
the maximum difference in sun direction over the course of
a year is less than at the poles.

In order to assess the role illumination changes have on
feature matching performance, we require that the starting
image for each camera be taken within 48 hours of either
the summer or winter solstices. We then compute feature
matches between each starting image and that webcam’s
subsequent images from the same time of day, using the pro-
tocol described in Section 3. Using the image time-stamp
and the geo-location of the camera, we compute the direc-
tion to the sun, and then the angular difference of the sun
direction between each pair of images.

Figure 5 summarizes this experiment, showing the nor-
malized inliers counts as a function of difference in illu-
mination angle. The particular combination of key point
extraction and feature description has minimal effect on
matching performance under different illumination condi-
tions. This relative matching performance of descriptors
over different lighting directions is consistent with the rel-
ative matching performance of SIFT and DAISY found
by [5], which assessed feature matching performance over
the course of a single day in synthetic scenes.

All of the key point detection and feature descriptor com-
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Figure 6. Each vertical slice of this temporal histogram displays
the likelihood that a key point from the original image found a
match (magenta), found a key point in the right location with a
dissimilar descriptor (green), or failed to find a key point (blue), in
some new image taken at a later time. The main cause for match-
ing failure is that key points are not extracted in enough common
locations from frame to frame.

binations show a significant decline in matching perfor-
mance as the difference in sun direction between the ref-
erence image and each subsequent image increases. Ap-
proximately 60% of this decline occurs within the first 5
degrees of lighting direction difference. This corresponds
to the change in illumination direction that occurs in about
20 minutes on one day, or the illumination difference be-
tween images taken at exactly the same time 40 days apart
(depending on time of year and latitude). For any applica-
tions reliant on feature matching between outdoor images,
this highlights the importance that the images be captured
with as minimal a difference in lighting direction as possi-
ble.

4.3. Key Point Extraction vs. Feature Description

Feature matching can fail because the feature is not
detected or because the feature descriptor is not similar
enough to be matched. In this section, we evaluate what
parts of the feature matching routine break for images cap-
tured over time. Due to the similarly in feature matching
performance across the different key point extraction meth-
ods and feature descriptors discussed previously, and for the
purpose of having a simple and clear experimental design,
we only explore this using DoG key points and SIFT de-
scriptors.

For each camera, we find the set of SIFT features ex-
tracted from that camera’s reference image and then from
each subsequent image from the same time of day. For each
feature from the reference image, we then iterate through
every subsequent image and label that feature at each time
interval, as one of the following:

e Successful Match: There was a feature in the second
image that was geometrically consistent with the fea-
ture in the first image, and it was sufficiently close in

feature space.

e Feature Description Failure: There was a feature in
the second image that was geometrically consistent
with the feature in the first image, but it was insuffi-
ciently close in feature space.

e Key Point Extraction Failure: There was no key
point extracted in the second image that was geometri-
cally consistent with the feature in the first image.

Our criteria for geometric consistency were:

1. Difference in x, y position of SIFT features is less than
one of the first feature’s bin sizes,

2. The scale of each SIFT feature differs by less than
20%.

3. Difference in orientation between features is less than
10 degrees.

We calculate the percent of features from the reference
image that fit into each of these three categories for every
pair of images. Figure 6 shows these statistics, averaged by
day across all 20 cameras. We find that key point detec-
tion is the dominant source of failure in feature matching
between two images with different lighting or weather pat-
terns. If a match fails, it is almost always because the key
point detection algorithm did not find feature points at the
same locations and orientation.

5. Conclusions

In this paper, we offer the first empirical assessment of
feature matching performance in varied real-outdoor scenes
over the course of years. We analyze many-year sequences
across 20 webcams and find the following strong, common
patterns in feature matching performance over time:

1. There is day-to-day variation in feature matching due
to weather conditions and short term physical changes
in scenes.

2. Feature matching performance declines significantly
with seasonal effects and small variations in lighting
direction.

3. Changes in physical scene appearance over time, such
as vegetation growth, road re-painting or construction
projects cause small changes in feature matching per-
formance over time, but at the scale of 5 years, these
effects are dwarfed by changes in weather and lighting.

4. In the feature detection and matching pipeline, differ-
ent detectors and descriptors all show the same trends,
and the dominant cause of failure is in the feature de-
tection stage.



This leads to two conclusions.

First, when creating

datasets to optimize the potential for good feature match-
ing over time, it is important to have imagery from many
times of day and times of year, as well as both sunny im-
ages and cloudy day images. Second, when doing research
to improve feature detection performance over time, effort
should be concentrated on creating robust feature detectors,
or, potentially, working with dense descriptors.
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