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1. SUMMARY
This report describes research and testing 
carried out by The Charles Stark Draper 
Laboratory (Draper) and its subcontractors 
Assured Information Security (AIS) and 
Oxford University (Oxford) as the Red Team 
in the Defense Advanced Research Projects 
Agency (DARPA) High-Assurance Cyber 
Military Systems (HACMS) program under 
contract FA8750-12-C-0261. 

The Draper team acted as “the voice of the 
offense” in the HACMS program, ensuring 
that the development and verification tasks undertaken by the Blue Teams focused on preventing 
realistic attacks on the demonstration systems.  To this end, we (a) conducted extensive penetration 
testing of original and secured demonstration platforms and (b) developed novel formal methods-
based tools to directly analyze software produced by Blue Team performers.  This report describes 
how this approach resulted in the detection of numerous vulnerabilities over the course of the 
program and explains the research contributions made by our formal methods team in the 
development of a collection of new static analysis tools. 

Over the course of the program, we applied our penetration testing technique described in Section 
2 to initial vulnerability assessments on the unmodified platforms, and additional assessments on 
the secured platforms at the end of each phase.  The initial assessment of each vehicle platform 
found numerous vulnerabilities that were made available to the Blue Teams to focus their formal 
verification efforts. While the final assessment demonstrated that the Blue Teams succeeded in 
building systems with an unprecedented level of security against many important classes of attack, 
vulnerabilities in these systems remained at the end of the program. 

Our formal methods analyses focused on Blue Team code implemented in Galois’ Ivory/Tower 
language. Here, we obtained a formal proof that the LED blink system behaves correctly. We also 
demonstrated that we could find a manually discovered replay attack using our Failures 
Divergence Refinement (FDR) tool, described in Section 2.2.1; and by analyzing a model extracted 
from the generated C code with CspGen (Section 2.2.3). 

Engineering Possibilities 
Draper is an independent, not-for-profit corporation, which 
means its primary commitment is to the success of customers' 
missions rather than to shareholders. For either government 
or private sector customers, Draper leverages its deep 
experience and innovative thinking to be an effective 
engineering research and development partner, designing 
solutions or objectively evaluating the ideas or products of 
others. Draper will partner with other organizations — from 
large for-profit prime contractors, to government agencies, to 
university researchers — in a variety of capacities. Services 
Draper provides range from concept development through 
delivered solution and lifecycle support. Draper's 
multidisciplinary teams of engineers and scientists can deliver 
useful solutions to even the most critical problems. 
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2. INTRODUCTION 
The Draper Team, composed of the Charles Stark Draper Laboratory, Assured Information 
Security, and Oxford University, was funded to provide the Government with an integrated 
solution for Red Teaming and Penetration Testing for the DARPA HACMS program. Our 
technical approach developed new and innovative methods for reliably discovering vulnerabilities 
in increasingly secure systems.  Our team consists of:  

• Draper, a premier not-for-profit controls and systems engineering company in the U.S., with 
core capabilities in red teaming, systems engineering, autonomous vehicle integration, and 
formal methods  

• AIS, one of the leading penetration testing companies in the United States, regularly 
conducting classified penetration tests for the Federal Government and unclassified 
commercial work 

• Oxford University—with over twenty years of formal methods experience—provides the team 
with the world’s leading expert in applying formal methods testing to military systems  

The HACMS goal was to create technology to build high-assurance cyber-physical systems, where 
high-assurance means functionally correct, safe, and secure.  HACMS does this using a clean-
slate formal methods-based approach.  Our Red Team, Technical Area 5 (TA5), focuses on 
assessing the security of the targeted systems.  Our technical approach assesses security using 
proven penetration testing techniques and our novel formal methods tools.   

Our approach had two tightly-coupled components, bridged by Draper’s technical and 
management expertise: state-of-the art penetration testing techniques and a new formal methods 
toolchain. 

2.1 Penetration Testing 
The first component is penetration testing performed by AIS, using their demonstrated state-of-
the-art techniques.  Penetration testing evaluates the security of an embedded system by simulating 
an attack from malicious outsiders without authorized access.  This process involves active system 
analysis for potential vulnerabilities caused by poor or improper system configuration, known and 
unknown software flaws, or operational weaknesses. 

Over the course of the program, the Red Team applied this penetration testing technique in initial 
vulnerability assessments on the unmodified platforms, and additional assessments on the secured 
platforms at the end of each phase.  The initial assessment of each vehicle platform found 
numerous vulnerabilities.  This information was made available to the Blue Teams, who used it to 
focus their formal verification efforts.  Some of these vulnerabilities were considered out of scope 
for the objectives of the HACMS program.  Via the intermediate end-of-phase assessments and 
regular collaboration with the Red Team, many additional vulnerabilities were identified and 
eliminated from the final delivered systems. 

A more detailed description of the penetration testing strategy employed can be found in Section 
3.2.  The results of our penetration testing are catalogued in the end-of-phase Vehicle Security 
Assessment Reports and in the Final Vehicle Security Assessment Report.  Therefore, this Final 
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Report describes these results at a high level in Section 4.1, but refers to the Vehicle Security 
Assessment Reports for the detailed conclusions. 

2.2 Formal Methods Tools and Analysis 
The second component uses formal methods to 
discover vulnerabilities in embedded systems.  This 
approach is based on two insights about the nature 
of the problem posed by HACMS.  First, security 
has increasing significance at higher levels of 
abstraction.  Second, software vulnerabilities and 
flaws manifest themselves in the physical 
implementation and machine code.  We have 
developed technology to extract formal models 
from the source code of as-built systems, allowing 
us to perform a formal, independent verification 
and validation of the implementation’s security. 

Figure 1: Formal Toolchain Architecture illustrates 
the formal tool architecture.  Tools developed by 
the Draper team are depicted in green boxes, while 
blue boxes depict external tools that are compatible 
with our approach. The Draper formal assessment 
tools are centered around the Communicating 
Sequential Processes (CSP) language.  Failures 
Divergence Refinement, the Oxford model 
checker, can be used to formally verify properties 
of CSP programs.  Section 3.3.1 provides more 
background on CSP and the application of FDR to 
formal verification tasks.  The other tools shown in Figure 1: Formal Toolchain Architecture are 
used to translate systems to CSP. 

This section briefly describes the purpose of each tool.  Descriptions of the research conducted in 
the development of the tools may be found in Sections 4.2 - 4.5.  Over the course of the HACMS 
program, these tools were used in several analyses of software developed using the Galois 
developed Ivory language and its Tower concurrency library.  These engagements are described 
in Section 4.6.  

2.2.1 FDR 
FDR is the Oxford model checker for CSP and has been under continuous development since the 
1990s.  It is used to check properties of the models constructed by the other pieces of our tool-
chain.  Over the course of the program, FDR has undergone a complete rewrite, its model-checking 
speed has been improved by an order of magnitude, and substantial features have been added 
including the addition of type-checking for CSP and support for parallel processing of model 
checking.  This research is described in Section 4.2. 

 

Figure 1: Formal Toolchain Architecture 
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2.2.2 SpecGen 
Draper has developed a graphical capture capability for hierarchical and concurrent state machines, 
a subset of statecharts.  This tool, SpecGen, translates statecharts drawn in the commercial 
Enterprise Architect (EA) modeling tool to CSP.  These CSP translations may be analyzed directly 
to verify properties of a system model, or may be used as a specification to compare with a CSP 
model extracted from a source code implementation.  This research is described in Section 4.3. 

2.2.3 CspGen 
CspGen is a Draper-developed tool that builds CSP models of programs written in imperative 
languages, like C.  These models may be analyzed using the FDR3 model checker to check 
properties of the initial program.  Draper uses this tool in the analysis of software provided by the 
other performers.  The research undertaken in CspGen’s development is described in Section 4.4.  

2.2.4 Fracture 
Fracture is a decompiler that translates ARM binaries to the Low Level Virtual Machine (LLVM) 
intermediate language.  Draper implemented Fracture as a modification and extension of the 
LLVM compiler suite and has made it publicly available.  Fracture’s novel decompilation strategy 
is described in Section 4.5. 

2.2.5 Formal Assessments 
Application of the formal tools described above to Blue Team code focused on systems developed 
in Galois’ Ivory language and its Tower concurrency library.  This research direction was chosen, 
following the advice of the DARPA HACMS Program Manager, because Ivory/Tower compiles 
to C, a language understood by our tools, and because these programs have an understandable and 
formalizable specification.  There were two main thrusts of this analysis: (1) verifying as-
implemented Ivory/Tower programs, and (2) verifying the Tower concurrency model directly.  
This research, which resulted in formal verification of key correctness and security properties for 
Ivory/Tower software, is described in greater detail in Section 4.6. 
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3. METHODS, ASSUMPTIONS, AND PROCEDURES 
Our approach applied two tightly-coupled verification components.  The first is penetration testing 
performed by AIS using their demonstrated state-of-the-art techniques.  The second uses formal 
methods to automatically analyze the behavior of systems.  We begin by describing the high-level 
assessment procedure undertaken by our team, and then describe the methods and assumptions of 
the two techniques in more detail. 

3.1 Overall Procedure 
The HACMS Red Team acted as “the voice of the offense” to ensure the development and 
verification tasks undertaken by the Blue Teams focused on preventing realistic attacks on the 
demonstration systems.  At the beginning of the program (and again at the beginning of Phase 3, 
when a new platform was selected), an Initial Assessment of each platform was performed.  As 
expected, substantial vulnerabilities were discovered in every platform, and these results were 
documented in Initial Vehicle Assessment Reports and provided to the Blue Team performers.  Of 
these vulnerabilities, some were determined to be out-of-scope for the HACMS program 
objectives, and the rest guided the Blue Team work on securing the platforms. 

As the teams delivered platforms at the end of each phase, the modified systems were assessed.  
The vulnerabilities were documented in end-of-phase vehicle assessment reports and provided to 
the Blue Teams for work in the next phase.  Simultaneously, throughout the phases, the Red Team 
developed novel static analysis verification tools and worked with performers to apply these tools 
to their systems.  Application of the developed formal static analysis tools centered around an 
examination of the Galois Ivory programming language and its Tower concurrency system.  
Verification of these systems involved a combination of hand-written, high-level CSP versions of 
their intended model of computation and extracted CSP models of the as-implemented systems.  

3.2 Penetration Testing 
Penetration testing was carried out primarily by AIS, a member of the Draper team.  This section 
outlines the state-of-the-art penetration testing methodology employed by the AIS team. 

The AIS vulnerability assessment methodology is a cyclic assessment process where the team’s 
knowledge of a target evolves, and new test cases and attack vectors are identified and incorporated 
into the assessment. The testing team familiarizes themselves with the basic functionality of the 
system through standard user interaction and analysis of the functional system specification. The 
team then identifies potential areas of weakness in the target system’s design and implementation. 
Further experience with the target while analyzing these potential weaknesses provides the team 
with further system knowledge and identifies additional potential attack vectors. This cyclic 
process repeats throughout the testing process, making the team extremely familiar with the target. 

The approach is used to identify security vulnerabilities in software systems, computer networks, 
infrastructure devices, wireless networking equipment, and embedded systems. The basic process 
taken by AIS to perform a security analysis of any software system or hardware device is 
guaranteed to follow the same basic steps every time. The roots of this process lie in the 
fundamental engineering need to fully understand and evaluate any piece of technology that is 
tested. This process is separated into five major phases: 
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• Target Understanding 
o Target Familiarization 
o Behavioral Observation 

• Design Review 
• Disassembly & Reverse Engineering 
• Target Analysis 
• Vulnerability Assessment 

o Vulnerability Identification 
o Vulnerability Testing 

The first phase of target analysis provides the general level of understanding required to effectively 
analyze any system. Marketing material, design documentation, specifications, user manuals, and 
administration guides are all analyzed.  Reviewing this material provides a thorough understanding 
of the system, its goals and functionality, supporting components, and the anticipated concept of 
operations (CONOPS).  

Using the knowledge learned in the document review, some basic tests are performed against the 
target. The team interacts with and monitors the system to identify basic functional characteristics 
and behavioral traits as it performs its normal tasks. This process allows the Red Team to develop 
an intimate knowledge of the system while becoming familiar with standard user level interaction, 
as well as a better understanding of procedures to configure, administer, and operate the system. 
This helps to identify how individual components interact with each other. The knowledge learned 
in this phase furthers understanding of the target system’s design and often identifies potential 
areas of interest for later security analysis. 

An understanding of the basic system’s features and components allows a reference model to be 
designed and built to identify additional potential weaknesses. When building the reference model, 
the AIS analysis team incorporates assumptions about resource and time constraints the system 
builders may have faced into the reference model’s design. The Red Team may make assumptions 
about the problem types encountered during the development process and concessions designers 
may have made to meet requirements or deadlines. These assumptions are based on our own 
experience with designing and developing systems, as well as other systems we have evaluated in 
the past. This step’s goal is identifying the potential areas within the original system where 
designers and developers may have encountered problems or limitations. Based on the information 
generated during this phase, assumptions can be made about where vulnerabilities may exist within 
the system and where to focus initial analysis efforts. 

Using these potential weak areas as a starting point, the team begins to disassemble and reverse 
engineer the software and hardware. This process exposes the system’s intricate configuration 
details, its underlying application structure, hardware and software properties, and component 
interaction that may not normally be available. Analyzing this data provides the system’s low-
level details and allows the team to generate a complete and thorough definition of the system’s 
functionality, behavior, and potential weaknesses. Using this material and our increased system 
understanding, individual subsystems are identified and an overall block diagram of the system 
and its functional components are developed. 

Directly probing the individual components identified within the system representation assists in 
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the overall target analysis process. Interacting with the individual system components provides a 
mechanism to identify where vulnerabilities may exist and which system components (both major 
and minor) are most vulnerable. The general process followed and the actions performed are 
normally very similar across different systems, although interactions with any individual 
component may be target specific. To properly analyze a target and identify the weaknesses 
between components we observe the system while it performs its standard actions, collecting and 
analyzing the data the system generates and exchanges. We often collect this data using software 
mechanisms (e.g., a debugger) or hardware components (e.g., a serial or Joint Test Action Group 
(JTAG) interface). These mechanisms monitor data flows between system applications and 
components, and provide the system’s behavioral and functional details required to further 
understand and investigate the system.   

Using the information from the previous steps, the vulnerability identification process tries to 
demonstrate observable impacts on the target. Each interest point we have defined is thoroughly 
investigated and the system’s behavior is monitored and documented for each test case. Some of 
the attack vectors or exploitation techniques tested in this process may be like those previously 
encountered in other tests or presented by vulnerability researchers. However, we expect most of 
the attack vectors we pursue will be unique and driven completely by the information gained 
during analysis. The vulnerability identification process focuses primarily on identifying situations 
where:  

• Input is provided or passed, but is not properly validated, leading to code execution 
• System output is not properly controlled/secured, allowing information leakage and 

data exfiltration 
• Access to critical system components is not controlled using proper authentication or 

authorization mechanisms allowing adversarial access 
• Communication protocols are not authenticated or encrypted, allowing attackers to 

monitor, manipulate, or inject network communications 
• Software flaws allowing resource exhaustion or system crashes induced by internal or 

external inputs  

Identifying a potentially vulnerable system component drives development of a tailored 
vulnerability test case. This process and the tools used to generate and execute these individual 
test cases are system and component specific and vary across test environments and targets. The 
goal of these test cases is to demonstrate the vulnerability. We do this by providing data or inputs 
to the system or component with the goal of having a negative impact on the system’s execution, 
integrity, or availability. This vulnerability test is monitored and observed using the same 
processes from the earlier phases. Test case refinement and adaptation, as well as expanding to 
cover other focus areas, follow the same monitoring and observation process. 

3.3 Formal Verification 
Formal tool development was carried out primarily by Draper and Oxford.  The Draper tools are 
focused around the Communicating Sequential Processes language as a “lingua franca”.  Draper 
built tools that translate system models and source-code implementations to CSP.  Simultaneously, 
Oxford enhanced FDR, the CSP model checker.  Using FDR, the extracted models of HACMS 
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systems can be explored and checked for vulnerabilities.  In the remainder of this section, we 
describe CSP and outline our approach to modeling and evaluating systems with it. 

3.3.1 The CSP Language and Refinement Checking 
The CSP language [1, 2, 3] is a process algebra.  Originally invented by Tony Hoare in 1978 [4], 
CSP has seen continuous development and use in academia and industry as a model of concurrent 
systems since its introduction [5].  CSP programs, also called processes, can intuitively be thought 
of as collections of concurrently running threads that communicate with each other and with the 
external world via events.  We refer the reader to the FDR tutorial [6] or one of the books cited 
above for a complete introduction to the language.  This report will focus on a few key features 
and a description of CSP’s use in analysis of systems. 

When writing a CSP program, one picks an alphabet that codifies what events can occur.  For 
example, when using CSP to build models of a C program, the alphabet of events might contain 
“read” and “write” memory operations.  When considering a more abstract system, like a model 
of the classic “dining philosophers” concurrency example [1], the alphabet would contain events 
that are correspondingly more abstract (like events representing a philosopher sitting, or picking 
up a fork, or eating).  This generic notion of events allows the use of CSP to model a wide variety 
of systems at different levels of granularity. 

CSP is a useful language for formal analysis of systems because it has a formal semantics that 
support a natural notion of refinement.  In general, questions about CSP models are phrased in 
terms of a high-level, relatively abstract process S representing a specification for the system, and 
a low-level, relatively detailed process I representing an implementation of the system.  We say 
that I refines S when every possible behavior of I is also a behavior of S.  This notion of refinement 
can be used to capture nearly any relevant safety, security or correctness property of a cyber-
physical system.  The primary purpose of FDR, the Oxford CSP model checker we employed, is 
to check refinement between two processes in an extremely efficient and parallelizable manner. 

3.3.2 Modeling Cyber-Physical Systems with CSP 
Draper follows an iterative, four step process when modeling and verifying a system via CSP 
refinement checking. 

Step 1: Build a Model of the System’s Environment. 

The first step is to identify and model the relevant environment of the system being verified.  For 
example, if the system under test is an HVAC controller, it may expect to interact with its 
environment by turning on and off the air conditioning.  A formal model of this environment will 
codify its constraints, like the idea that the AC can only be “turned on” when it is in the “off” state, 
and vice versa. 

As another example, consider the verification of a computer program written in C.  This program 
will expect to interact with a persistent memory by reading and writing to particular addresses.  
The program may also use functions from a binary library, or make system calls that depend on its 
operating system.  If we wish to model the behavior of this program in CSP, we need to model the 
effects of these interactions. 
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Building a model of this environment begins by adding events representing external interactions 
to the alphabet of the system, as described in Section 3.3.1.  Then CSP programs that model the 
environment and the effects of these events are written, typically by hand.  It is important that these 
models accurately capture the real environment of the system in question at the appropriate level 
of detail.  This can often be achieved by careful adherence to relevant documentation.  For 
example, when building an environment for C programs, the Draper team worked directly from 
the C language definition [7] and tested the resulting models to ensure they behaved as expected. 

Step 2: Identify and Codify System Specifications. 

Next, we identify and formally state the safety, security, or correctness properties that we’d like to 
verify for the relevant system.  These properties take the form of high-level “specification” CSP 
programs, as described in Section 3.3.1.  They can come from many sources, like government 
requirements, coding standards, or discussions with the system implementers. 

In some cases, these will be standard properties with fixed definitions: for example, one common 
property is “deadlock freedom”, ensuring the system never enters a “stuck” state.  In other cases, 
they can be properties that are specific to the system in question: for example, in Section 4.3.1 we 
show how to capture the property “after sitting, no philosopher stands without eating” for a model 
of the “dining philosophers” problem, and in Section 4.6.1 we show how we captured the property 
that two LEDs should blink on and off indefinitely for a model of an Ivory/Tower program. 

These specifications often refer to the environment model defined in Step 1.  For example, in the 
case of the blinking LEDs, events that represent a light turning on or off form part of this 
environment. 

Step 3: Build or Extract an Implementation Model.   

The previous step resulted in CSP processes representing the system’s specification.  In this step, 
we obtain a process representing its implementation. 

In the HACMS program, we built CspGen, a tool to automatically extract such processes from 
programs written in the C or any language that can be compiled to the LLVM Intermediate 
Representation (IR) with the Clang compiler.  This results in a very detailed model of the system’s 
behavior, and ensures that our verification applies to the actual behavior of the as-built system.  
The research undertaken in the design and implementation of CspGen is described in Section 4.4. 

Like the specifications, these implementations typically refer to the environment model built in 
Step 1. 

Step 4: Perform Verification 

At this stage, we have a formal definition of the relevant safety, security or correctness properties, 
and a formal model of the system under test and its environment.  The last step is to apply the FDR 
refinement checker to see if the implementation meets its specification. 

Often, an attempt to perform Step 4 results in a need to iterate upon the previous steps.  This can 
occur for many reasons.  For example, it may be that the environment model did not capture some 
real-world constraint that the implementation relies on, and a more precise version can be created.  
Alternatively, it may be the case that the implementation model is too complex for the refinement 
checker to handle in the available time.  In this case, several strategies are available, like improving 
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CspGen to generate more efficient models, or decomposing the system into components that can 
be checked individually and combined at a higher level. 

Examples of verification of HACMS software are described in Section 4.6. 
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4. RESULTS AND DISCUSSION 
This section provides the results of the activities described at a high level in Section 3, and 
describes, in detail, the research that went into the development of the tools the Draper team has 
delivered to the Government.  We begin in Section 4.1 with a high-level description of the results 
of our penetration testing, with additional detail provided in the Final Vehicle Security Assessment 
Report.  In Sections 4.2 - 4.5, we describe the research conducted during development of the static 
analysis toolchain outlined above in Section 2.2.  In Section 4.6, we describe the application of 
that toolchain to software developed in Galois’ Ivory/Tower system.  Finally, Section 4.7 catalogs 
the relevant academic papers published by Red Team members.   

4.1 Results of Penetration Testing 
Over the course of the program, the Red Team conducted initial vulnerability assessments on the 
unmodified platforms, and additional assessments on the secured platforms at the end of each 
phase.  These results have been delivered in individual reports throughout the program - we do not 
repeat all of these findings here, but summarize the most important points. 

The initial assessment of each vehicle platform found numerous vulnerabilities.  This information 
was made available to the Blue Teams, who used it to focus their formal verification efforts.  Some 
of these vulnerabilities were considered out of scope for the HACMS program.  Via the 
intermediate end-of-phase assessments and regular collaboration with the Red Team, many 
additional vulnerabilities were identified and eliminated from the final delivered systems. 

The final assessment demonstrates that the Blue Teams succeeded in building systems with an 
unprecedented level of security against many important classes of attack.  This assessment also 
illustrates that vulnerabilities in these systems remain.  The remaining issues with the systems fall 
into several categories: 

- Specification weaknesses: In some cases, the specifications used in the design of the 
systems did not match the intuitive desired properties.  This is illustrated by a geofencing 
violation on an air platform, and by a technique for causing a ground platform to crash into 
obstacles because of a poor model of its deceleration capability. 

- Communication weaknesses: Communications security is a complex area of system 
development.  Early in the program, a decision was made that many aspects of 
communications security were out of scope for the HACMS program.  As an unsurprising 
result, the final systems exhibit communications vulnerabilities. 

- Toolchain misuse: As illustrated in the final assessment report, the intended and verified 
uses for each tool are not always clear to non-expert users.  As a result, these users may 
believe they are getting more security guarantees than are actually available, resulting in 
an insecure system. 

These findings do not call into question the revolutionary advances in security and resilience made 
by the HACMS performers.  However, they do suggest that work remains in learning how to apply 
these technologies throughout an entire system and to help non-experts check that the formal 
guarantees accurately capture the desired security properties. 
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4.2 FDR Research and Development 
FDR, the Oxford CSP refinement checker, is the primary 
model checking back-end for our tools.  Its place in our 
toolchain is illustrated in Figure 2.  In this section, we 
describe the development of FDR3.  This summarizes work 
contained in several academic papers [8, 9]. 

FDR has been in continuous development since the early 
1990s.  Version 2 of FDR was released in 1996, and has 
been used broadly in academia and industry for verifying 
systems [10, 11].  FDR3 is a complete rewrite of FDR, 
funded partially by HACMS.  This rewrite substantially 
enhanced FDR’s user-friendliness and scalability as 
described next. 

4.2.1 Language and user-friendliness improvements 
One major enhancement in FDR3 is the design of a new, 
statically-typed version of machine-readable CSP.  
Previous versions of FDR used an untyped CSP input 
language, which allowed many CSP scripts with subtle 
errors that could only be detected during model checking 
and were hard to trace back to their source.  The new type 
checker permits the vast majority of reasonable CSP 
programs, while ruling out many incorrect programs and keeping errors readable. 

The type system resembles that of a simply-typed functional programming language, extended 
with base types and constructors for CSP primitives.  For example, the base types include Event, 
the type of elements of the current program’s alphabet, and Proc, the type of processes.  Type 
constructors like “a => Event” describe events that are parameterized by data of type a.  The 
language also includes type constructors for several standard classes of datatypes, like lists, maps, 

Figure 2: FDR's place in Draper's 
static analysis toolchain 

Figure 3: Example of FDR3's interfaces for interactively exploring processes 
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and sets. 

FDR3 also includes a new graphical user interface, with support for interactively animating and 
exploring the behavior of processes.  Figure 3 shows two examples of graphical views, using a 
“fork” process from the Dining Philosophers problem as an example.  On the left is the “probe” 
interface, which allows the user to explore what events are available after a trace.  On the right is 
the “graph” interface, which creates a graphical representation of a process.  Users can select nodes 
in the graph to see information about possible system states. 

4.2.2 Scalability improvements 
FDR3 includes a completely new backend, designed to support refinement checks on processes 
with orders of magnitude more states than FDR2.  This is achieved in two ways: First, the core 
data structures used in the refinement checking have been heavily optimized.  Second, the core 
refinement checking algorithm has been parallelized and distributed.  This allows it to take 
advantage of modern multi-core processors and of cloud computation platforms like Amazon 
Elastic Compute Cloud (EC2).  This section describes the core refinement checking algorithm and 
how it was parallelized in FDR3.  Section 4.2.3 describes how the algorithm was enhanced to allow 
distributing a check across a cluster of computers, and Section 4.2.4 provides data showing the 
orders-of-magnitude improvements compared with FDR2. 

Refinement checking in FDR3 occurs in two steps. 

Step 1: Compilation. 

The first step is to compile the implementation and specification processes to generalized labelled 
transition systems (GLTSs).  A GLTS is similar to a standard labelled transition system, but also 
allows nodes to be labelled with information related to the particular semantic model of CSP in 
use. 

FDR3 supports two internal GLTS representations, also called machines, with various tradeoffs.  
The Explicit machine is a standard graph data structure, where nodes are states in the represented 
process and are stored in a sorted list.  The Super-Combinator machine represents a GLTS by a 
series of component GLTSs along with a list of rules to combine the transitions of the components.    
Here, process states are represented as tuples, with one entry for each component machine. 

The advantage to super-combinator machines is that the GLTS is not explicitly constructed.   For 
example, a super-combinator representation for two parallel processes can be constructed almost 
instantly from the representations of the components, while an explicit representation could require 
considerable time to construct since the Cartesian product of the processes would need to be 
formed.  The disadvantage of super-combinator machines is that it is slower to explore the 
transitions. 

FDR3 supports four strategies for compiling processes.  The strategies differ in the processes they 
support and the GLTS representation generated.  The simplest strategies are the low-level and high-
level strategies, which directly interpret the operational semantics of CSP to produce explicit or 
super-combinator representations, respectively.  However, the high-level strategy does not support 
recursive processes.  To mitigate this, the mixed-level hybrid strategy uses the high-level strategy 
on non-recursive components and the low-level strategy on recursive components, then wraps 
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them in a super-combinator.  Finally, the recursive high-level strategy, which is new in FDR3, 
compiles to a super-combinator machine and supports many well-behaved classes of recursion. 

Different CSP operators are most efficiently represented by different GLTS machines.  When 
selecting a compilation strategy, FDR attempts to compile each operator at its preferred level, 
falling back to the low-level strategy when the environment of a process does not permit its 
preferred level.  We have found that the recursive high-level strategy, which was unavailable in 
FDR2, has dramatically decreased compilation time on many examples. 

Step 2: Exploration. 

Once the implementation and specification have been compiled, refinement checking between the 
two GTLS machines begins in earnest.  This check consists of an exhaustive search over the 
implementation GLTS, confirming that every implementation state is compatible with every 
specification state reachable by the same sequence of events.  This search is done in breadth-first 
order, which produces minimal counterexamples when the check fails. 

FDR2’s implementation of this search was single-threaded.  The algorithm keeps track of three 
sets of states: current, next, and done.  These sets are represented as B-Trees, which allows the 
checks to efficiently use disk-based storage when RAM is exhausted.  This brings the additional 
benefit that inserts into done (from current) can be performed in sorted order.  Since B-Trees 
perform almost optimally under such workloads, this makes insertions into done highly efficient.  
To improve efficiency, inserts into next are buffered, with the buffer being sorted before insertion. 

Parallelizing this algorithm essentially reduces to parallelizing the breadth-first search of the 
composed machine.  To accomplish this, FDR3 partitions the state space based on a hash of pairs 
of implementation and specification machine nodes.  Each available thread is assigned a partition, 
and has local current, next, and done sets.  As before, memory usage is a primary concern, and 
becomes even more critical in a parallel setting.  For example, with 16 cores, FDR3 can visit up to 
7 billion states per hour, consuming 70GB of storage.  Thus, checks will exceed the available 
RAM, and B-Trees are again a natural choice for storing these sets. 

All access to the done and current sets of a given thread are restricted to that thread.  However, 
one thread may need to insert node pairs into the next set of another thread (the one whose partition 
includes that pair).  An obvious approach to support thread-safe access to the next sets would be 
locks, but considering the volume of data and the way hashing distributes the pairs across threads, 
this is likely to be extremely inefficient. 

Therefore, instead of locks, we have generalized the buffering that is used to insert into next in the 
single-threaded algorithm.  Each thread maintains a buffer for each other thread, and a list of 
buffers for its own next set received from other threads.  When a buffer fills, it is immediately 
transferred to the target thread’s list.  Each thread periodically checks its incoming list, and when 
it reaches a certain size a bulk sort and insert operation is performed. 

Experimental results (Section 4.2.4) indicate this algorithm can achieve a near linear speed up as 
the number of worker threads grows.  

4.2.3 FDR in the cloud 
Section 4.2.2 described improvements that allow FDR3 to make use of a multicore processor and 
achieve substantial improvements in scalability.  This section describes additional enhancements 
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that allow FDR to make use of networked clusters of machines, rather than just multiple cores on 
a single processor.  These enhancements enabled the use of Amazon’s EC2 cloud computing 
platform to check a model with 1.2 trillion states and requiring 6 TB of total storage.  The ability 
to distribute this computation across 64 16-core machines in the cloud made it possible to check 
this model in 5 hours. 

The abstract algorithm employed by the cluster implementation of FDR is essentially the same as 
the parallel algorithm described in Section 4.2.2, but differs significantly in implementation 
details. 

Each machine in the cluster runs a single FDR process, using the algorithm described above to 
distribute work to its individual cores.  These threads still maintain next buffers for each other 
worker on the local machine.  To reduce overhead, buffers for remote threads are reduced to one 
per remote machine.  When one of these remote buffers fills, it is passed to a special thread called 
the controller, which sends it to the appropriate remote machine.  The controller also receives next 
buffers from other machines, and must sort these into separate buffers for each local thread.   

The most obvious potential issue with this technique is the amount of network bandwidth required 
to send and receive the next buffers.  On a 16-core server, we have observed FDR3 visiting up to 
30 million transitions per second.  With each state pair costing 16 bytes to store, this would require 
3.6 Gb/s second to be sent and received on each compute node.  Data transferred between machines 
is compressed, which reduces the requirement to approximately 2 Gb/s. 

Clearly, a commodity 1-gigabit connection is not sufficient to sustain such a volume of messages. 
However, a 10-gigabit ethernet connection (which are becoming increasingly common) is not only 
sufficient, but leaves more than enough for transient increases in rate and for future increases in 
processor speed or, more likely, the number of cores per machine. 

The above suggests that the individual network connections are sufficient, and thus it remains to 
consider the total volume of data that is flowing through the network.  This could be problematic: 
in a 64-node cluster, if each machine is sending (and receiving) 2 gigabits per second, this requires 
the network to be able to deal with a total of 28 Gigabytes per second.  Thankfully, many modern 
data centers use full-bisection networks, which allow each compute node to send and receive at 
the maximum rate no matter what else is occurring on the network.  One common network 
architecture is a fat-tree arrangement where the network is arranged in a tree, but the links increase 
in bandwidth going up the tree in such a way to ensure that all nodes have sufficient bandwidth.  

Thus, in practice, while distributed FDR3 makes very heavy use of the network, recent 
developments in network design mean that FDR3 does not saturate it.  As the number of cores 
increases per node, this may change, but network bandwidth is also equally likely to increase. 

4.2.4 FDR benchmarks 
In this Section, we describe experiments performed to measure the impact of the performance 
improvements described in the previous two sections.  We use models of several systems as 
examples: 

• bully.n is a version of the “Bully” algorithm from Chapter 14 of [3]. 

• cuberoll.0 is a puzzle based on rolling 8 cubes around a 3 x 3 square. 
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• ddb.n is the distributed database example described in Chapter 15 of [2].

• knightex.n.m is a puzzle involving swapping pegs from colored regions of a n x m
board.

• phils.n is the dining philosophers problem, with n philosophers.

• solitaire.n is a model of a solitaire peg-jumping puzzle.  The version where n = 0
is a standard 33-peg puzzle.  This was considered too large for FDR at the time [2] was
published, but is now too small for our distributed cluster experiments.  The n = 1 and
n = 2 versions add 1 or 2 additional rows at the end of the four edges of the puzzle.

• tnonblock.n is a timed version of the non-blocking ring system from Chapter 4 of
[3].

• bakery.n.m is a CSP file generated from an implementation of a mutual exclusion
algorithm due to Lamport, and found in Chapter 18 of [3].  This is the largest example
we considered – bakery.6.30 is the trillion state example described above.

• knightstour.n.m is a straightforward coding of a system that explores all possible
knights’ tours on an n x m board.

The experiments described in Table 1 and Table 2 were performed on a Linux server with two 8 
core 2GHz Xeon Chips with hyperthreading (i.e. 32 virtual cores) and 128GB RAM.  Checks that 
took over 6 hours are marked with “–”, while checks that were not attempted are marked with “*”. 

Table 1 compares the performance of FDR2 and FDR3 on several models, and compares the 
performance of FDR3 with 1 and 32 threads.  There are several interesting observations. First, 
FDR3 with 1 worker is faster than FDR2.  We believe this is because FDR3’s B-Tree has been 
very heavily optimized, and that it makes far fewer allocations during refinement checks.  FDR3 
with 1 worker also uses less memory than FDR2: this is due to a new compaction algorithm used 
to compress B-Tree nodes that efficiently compacts sorted data by only storing the difference 
between keys.  The extra memory used for the parallel version is for the extra buffers that are 
required for inserts into other workers’ trees. 

The speed-up that Table 1 exhibits between 1 worker and 32 workers varies according to the 
problem. solitaire is sped up by a factor of 15 (which is almost optimal given the 16 cores), 

Table 1: Comparing FDR2, FDR3 with 1 thread, and FDR3 with 32 threads. 
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while knightex.5.5 is only sped up by a factor of 9. The reason for this difference is the size of 
the iterations during the check: the time spent waiting for other 
workers at the end of the iteration is a larger percentage of the 
overall time when there are many iterations (as in 
knightex.5.5). 

Table 2 shows FDR3’s per-core scaling in more detail.  As 
summarized above, performance scales nearly linearly with 
the number of threads, up to 16.  As the machine in question 
had only 16 physical cores, performance improved less when 
increasing to 32 threads. 

Measuring the performance of FDR when distributed in the cloud, as described in Section 4.2.3, 
required larger examples.  Table 3 shows the size of the examples we used for cluster experiments, 
in terms of the number of states and transitions each model contains, as well as the amount of 
memory consumed.  Experiments on these examples were run on Amazon’s Elastic Compute 
Cloud.  This service allows the user to rend machines of varying size on-demand.  On EC2, we 
utilized clusters of up to 64 r3.8xlarge 
machines, each of which had two 8-core 
2.6GHz Intel Xeons and 240GB of RAM.  
The machines are connected using a 10-
gigabit network. 

Table 4 and Table 5 summarize the 
absolute and relative time taken for 
refinement checks using FDR in the cloud.  
Table 4 shows the absolute time that each 
check took on each cluster, in seconds. 
Table 5 shows the speedup factor that a 
given cluster provided for a given model, 
relative to the next-largest cluster.  In these tables, the † symbol indicates that the check required 
more memory than was available on the given cluster.  As Table 5 shows, on EC2 FDR3 achieves 
an average speedup of 67 over a single server on a 64-machine cluster, which equates to a speedup 
of over 1000 compared to the sequential version. Surprisingly, this is a super-linear speedup.  We 
believe that this is because the size of the B-Trees decreases as the cluster size increases, meaning 
that any given B-Tree block is more likely to remain in the cache between accesses. 

Table 3: Size of examples used in cloud experiments

Table 4: Absolute time taken by cloud refinement experiments 

Table 2: The scaling performance
of FDR3. 
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Table 5 also indicates that the cluster version imposes a small overhead, since the average speedup 
from one to two nodes is 1.61.  Some of this slowdown will be because the state pair blocks must 
be compressed before being sent to remote nodes, but the source of the remainder is unclear to us.  
Thanks to the superlinear scaling observed above, this effect is cancelled out with clusters of 32 
compute nodes or more. 

4.3 SpecGen Research and Development 
SpecGen is a Draper-developed tool that translates 
statecharts drawn in the commercial Enterprise Architect 
modeling tool to CSP.  These CSP translations may be 
analyzed directly to verify properties of a system model, or 
may be used as a specification to compare with a CSP 
model extracted from a source code implementation.  
Figure 4 shows SpecGen’s place in our static analysis 
toolchain.  This section describes the research Draper 
performed in the development of SpecGen, and provides an 
example of its use, expanding on an academic research 
paper published during the HACMS program [12].  

Statecharts are a widely-used technique for graphically 
representing the high-level behavior of complex systems. 
Since their introduction by Harel [13], support for various 
versions of statecharts has been implemented in many 
commercial tools, including Enterprise Architect and 
Simulink Stateflow.  As the use of statecharts has become 
widespread, so too have techniques for formally verifying 
their behavior. Classic examples include modeling via 
translation to SPIN [14] or Symbolic Model Verification 
[15]. 

Translating statecharts to CSP has two main advantages. First, as discussed above, CSP is a rich, 
expressive language for writing specifications.  We may leverage FDR to check these 
specifications and to interactively explore the behavior of the translated systems.  Second, the other 

Figure 4: SpecGen's place in Draper's 
static analysis toolchain 

Table 5: Speedup factor scaling in cloud refinement experiments 
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tools in Draper’s static analysis toolchain already use CSP as a common modeling language. 
Statecharts are a convenient way to represent specifications for more complex systems already 
translated to CSP (e.g., by CspGen).  In this context, statecharts provide an intuitive, graphical 
common language for specifications.  This common language can be used to agree on 
specifications with a domain expert who implemented a system in C, but is not familiar enough 
with CSP to write formal specifications directly. 

The SpecGen tool builds on previous work for modeling statecharts in CSP [16].  During HACMS, 
we have added support for several additional statechart features and designed a new, simplified 
algorithm by using new CSP language constructs, described in Section 4.3.2.  The tool supports 
statecharts developed with Enterprise Architect and is the first practical implementation of any 
such translation.  The SpecGen distribution also includes several examples, described in Section 
4.3.1, and is available freely under a permissive open-source license [17]. 

4.3.1 A Statechart Example: The Dining Philosophers 
To illustrate the use of SpecGen, we consider the classic dining philosophers problem [1]. Our 
distribution of SpecGen includes this example, implemented as a statechart in Enterprise Architect, 
for 2, 3 and 4 philosophers. Figure 5 shows statecharts representing Philosopher 2 and Fork 2 from 
the four-philosopher system. We elide the full system for clarity – it consists of four philosophers 
and forks, like those shown, as parallel sub states of one top-level node. 

We begin our explanation with the statechart for Fork 2.  Conceptually, it keeps track of which 
philosopher has permission to use the fork at any time.  It begins in the state Free, indicating that 
the fork is not in use and may be claimed by either philosopher.  Transitions to the Phil2Holds2 
and Phil3Holds2 states are guarded by the constraints In(WaitingRight2) and 
In(WaitingLeft3) respectively.  This ensures these transitions are not taken until the relevant 
philosopher is in the state where he is waiting on this fork, so the ownership of the fork is not given 
to a philosopher until he wants it. 

Figure 5: Statecharts for one philosopher and one fork 
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The system also includes four variables, f1, ..., f4, one for each fork.  Intuitively, the value 
in these variables indicates which philosopher, if any, currently has permission to use a given fork.  
Thus, the transition from state Free2 to state Phil3Holds2 sets variable f2 to 3.  These variables 
are set by the forks, and used by guards in the philosophers. For example, consider node 
WaitingLeft2 in Phil2.  This node models the state where Philosopher 2 is waiting to pick up 
his left fork (Fork 1).  The guard on this transition prevents it from being taken unless f1 = 2, 
indicating that Philosopher 2 has permission to use Fork 1. Similarly, the transition from Eating2 
to ReplacedRight2 is guarded by the requirement that f2 is not 2, indicating that Philosopher 
2 no longer has permission to use his right fork.  The semantics of statecharts require that all 
available transitions are taken immediately, ensuring that Fork 2 and Philosopher 2 remain 
synchronized here. 

Finally, we consider the edge from Sitting2 back to Standing2, which is labeled with the 
completion event complete(Sitting2).  In statecharts, events are named triggers that are often 
used to represent external events.  During execution, a set of enabled events is provided as input, 
and an edge labeled with an event may only be taken if the event is currently enabled.  Completion 
events are special events that are enabled when a node terminates, rather than by input. A node is 
considered to have terminated when all its concurrent subnodes have reached states with no out-
edges.  Here, the event label prevents the philosopher from standing until he is done eating. 

It is worth noting that this example is not intended to represent the most efficient or natural 
implementation of the dining philosophers as a statechart.  Rather, we have designed it to highlight 
several features supported by the tool. 

The Generated Model 

When run on an Enterprise Architect statechart like the one described above, SpecGen produces 
several files containing CSP definitions, including a top-level process RunSystem that models the 
statechart's behavior.  The behavior of a CSP process is most easily described by finite “traces” of 
observable events.  In the case of RunSystem, the relevant observable events include: 

- transition.N.E, indicating a transition between nodes. Here N is the name of the node 
that contains the transition, and E is the name of the edge itself.  Typically, SpecGen will 
generate node names that match the name given in the statechart if all nodes have unique 
names, and will otherwise pick a name based on the full path of a node. Edges are given 
names like Node1__Node2, indicating a transition from Node1 to Node2. 

- tock, indicating the completion of a “step” of the statechart. According to the semantics 
of statecharts, a step comprises a single transition in every currently-running subchart that 
can make one. 

- read.x.n and write.x.n, indicating reads or writes of a value n in variable x. 

- writeerror.x, indicating that the statechart has a race condition where two parallel 
subcharts attempted to write to the variable x in the same step. 
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Finding the Deadlock 

The most obvious property to check in the dining philosophers example is deadlock freedom. In 
our CSP scripts, this property is stated: 

assert RunSystem \ {| tock |} :[ deadlock free ] 

The \ (“hiding”) operator here is used to hide the tock events of RunSystem.  A statechart 
continues to take “steps”, represented by these events, even if no subchart can make a transition. 
Intuitively, to detect the deadlock, we must inform FDR that the mere passage of time does not 
count as progress. 

Asking FDR to check this property results in an assertion failure, as expected.  Indeed, because 
the semantics of statecharts require each parallel process to make a transition in each step if able 
to, this system will always deadlock.  FDR also displays the trace that leads to the deadlock. For 
the three-philosopher system, this trace ends with the events: 

transition.Sitting2.WaitingLeft2__WaitingRight2 , 

transition.Sitting3.WaitingLeft3__WaitingRight3 , 

transition.Sitting1.WaitingLeft1__WaitingRight1 

We see that the last three events are each philosopher transitioning to his WaitingRight node, 
indicating that each philosopher has picked up his left fork and is waiting on his right fork. 

More Complicated Properties 

While checking for deadlock is useful, the real power of FDR comes from its ability to write more 
interesting specifications as processes and check that these hold via refinement.  As an example, 
we consider the following property: “after sitting, no philosopher stands without eating”.  In this 
section, we will demonstrate how to state and check this property for the 3-philosopher system, 
and show how an error in the statechart could be caught. 

A convenient way to check that a trace never occurs in a system is to use a “watchdog process” 
[3].  The idea is to build a process that recognizes the disallowed sequence and issues an error 
event if it occurs.  This “watchdog” may then be synchronized with the system under test, and a 
refinement check may be used to see if the composed system ever issues the error event. 

We begin by identifying the events of interest for our property.  We define functions sitEvent, 
eatEvent, and standEvent, which identify the transitions on which a philosopher sits, stands, 
or eats, respectively.  We show only sitEvent: 

sitEvent :: (Int) -> Event 

sitEvent(1) = transition.Phil1.Standing1__Sitting1 

sitEvent(2) = transition.Phil2.Standing2__Sitting2 

sitEvent(3) = transition.Phil3.Standing3__Sitting3 

Next, we define the error event that will be thrown if a philosopher stands without eating.  It is 
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parameterized by the number of the philosopher so that we may see who transgressed: 

phils :: {Int} 

phils = {1,2,3} 

 

channel stoodTooSoon : phils 

We implement a philosopher's watchdog as a pair of mutually recursive processes.  The first 
process, watchStanding, waits for a philosopher's “sit” event and transitions to watchSitting.  
The watchSitting process waits to see whether an “eat” event or a “stand” event comes next.  
If “eat” occurs first, it waits for the “stand” event and then returns to watchStanding.  If “stand” 
occurs first, it throws the error.  The top-level watchdog is then the parallel composition of the 
watchdogs for each philosopher: 

watchStanding, watchSitting :: (Int) -> Proc 

watchStanding(i) = sitEvent(i) -> watchSitting(i) 

 

watchSitting(i) =  

    (eatEvent(i) -> standEvent(i) -> watchStanding(i)) 

 [] (standEvent(i) -> stoodTooSoon.i -> STOP) 

 

WatchDog :: Proc 

WatchDog = ||| i <- phils @ watchStanding(i) 

We define a set evs of the events of interest for our property.  The original system and the 
watchdog are placed in parallel and required to synchronize on the events in evs, so that the 
watchdog can keep track of the system as it executes. 

evs :: {Event} 

evs = { sitEvent(i), standEvent(i), eatEvent(i) | i <- phils } 

 

WatchdogSystem :: Proc 

WatchdogSystem = (RunSystem [| evs |] WatchDog) 

Finally, we state the property that the error event can never occur in the composed system.  This 
uses the CSP operator |\ (“projection”), which is the opposite of the hiding operator we saw above 
– only the projected events are visible.  The assertion says that the system where only the error 
event is visible is a refinement of STOP, the system which performs no events. 

assert STOP [T= WatchdogSystem |\ {| stoodTooSoon |} 
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FDR verifies that this property holds.  However, suppose we had made a mistake and left off the 
guard on the edge from Sitting2 to Standing2.  According to the StateMate semantics of 
statecharts, transitions between higher-level nodes are preferred when a choice is available.  So, 
the modified chart will transition out of Sitting2 immediately after entering it.  When we ask 
FDR to check the property for this modified version of the chart, it reports: 

Result: Failed 

Error Event: stoodTooSoon.2 

Performance 

The time to find the deadlock in FDR is summarized in 
Table 6, organized by the number of philosophers in the 
system.  These times are the averages of 5 runs 
performed on an Intel Xeon E5-2630 v3.  The machine 
had 32GB of RAM, but all tests consumed less than 6 GB. 

Predictably, the time to find the deadlock grows exponentially with the number of philosophers. 
Checking these translated statecharts is slower than checking more natural implementations of the 
dining philosophers in CSP, because accurately modeling the semantics of statecharts involves 
substantial coordination overhead and additional features like per-node timers. As statecharts offer 
the advantage of wider accessibility, we believe this overhead is sometimes justified. 

There was not time within the HACMS program to investigate substantial performance 
improvements in the SpecGen output models.  The current version of SpecGen generates models 
that were designed with the primary goal of semantic fidelity, not speed of model checking.  For 
these reasons, we believe it will be possible to improve the efficiency of these models in the future. 

4.3.2 Translation Enhancements 
As mentioned above, SpecGen builds on an earlier algorithm 
for modeling statecharts in CSP, by Roscoe and Wu [16]. In 
addition to providing a practical implementation, we have 
improved on that paper's translation by including support for 
two additional statechart features (the “in” guards and 
completion events described in Section 4.3.1) and exploiting 
a newer FDR feature to simplify the generated models. The 
remainder of this section describes this simplification. 

The biggest challenge in modeling statecharts in CSP is 
representing priority.  In CSP, a process may select freely 
among its available actions, but in statecharts certain 
transitions may be favored over others.  For example, nodes 
must be allowed to take an “idle” step if and only if no 
transitions are available.  Also, transitions out of a state may 
be favored over transitions within that state when both are 
available, or vice versa – classic Statemate semantics [18] 
favor outer transitions while Unified Modeling Language 
(UML) favors inner ones [19]. (In SpecGen we have followed 

Table 6: Time to find deadlock in CSP 
models generated from statecharts 

Philosophers 2 3 4 

Time 2s 6s 117s 

Figure 6: CspGen's place in Draper's 
static analysis toolchain 
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[16] in modeling Statemate, but it would be straightforward to prefer the alternate order, which is 
more common today). 

Roscoe and Wu's translation models these instances of priority with a subtle renaming and 
synchronization scheme [3].  Happily, modern versions of FDR include a new feature that 
SpecGen uses to simplify this: prioritise. This function takes as arguments a process P and an 
ordered list evs of sets of events.  If P may perform events from different sets in evs, then 
prioritise(P,evs) may perform only events from the first set that contains any of P's events.  
Combining prioritise with interrupts, where a CSP process may be preempted by certain 
events, also allowed for a simplified encoding of “promoted” actions in statecharts. These actions 
allow an inner node to transition directly to an outer node, terminating its parallel siblings. 

4.4 CspGen Research and Development 
CspGen is a Draper tool that builds CSP models of imperative programs.  Figure 6 shows its place 
in our static analysis toolchain.  These models may be analyzed using the FDR3 model checker to 
check properties of the initial program.  Draper uses this tool in the analysis of software provided 
by the other performers, and has made it available as free, open-source software [20].  This 
distribution comes with many example programs and specifications, which can be used to explore 
the concepts described in this section in more detail. 

The initial version of CspGen supported C source code as input.  The tool now also accepts the 
Low-Level Virtual Intermediate Representation.  Since many programming languages can be 
compiled to LLVM IR, this addition enables the application of the Draper toolchain to a much 
wider range of software. 

The architecture of the tool is shown in Figure 7, using C source code input as an example.  CspGen 
parses the C file and then generates two CSP source files from it: a memory model and a functional 
model.  The memory model captures information about the state that is used in the execution of 
the C program, like global variables and stack variables.  The functional model captures the 
operational behavior of the program, with reference to the memory model where appropriate.  
Finally, these are combined with a “runtime” or “environment” model.  This last piece captures 
information about the environment in which the C program expects to run, like libraries it uses and 
available hardware.  These three models are composed to form a complete model of the C 
program’s behavior, which can then be analyzed in FDR. 

Figure 7: CspGen Architecture 
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In the remainder of this section, we describe in greater detail CspGen’s model of operational 
semantics and state in imperative languages (Sections 4.4.1 and 4.4.2) and describe the formal 
verification of CspGen’s core translation in Coq (Section 4.4.3). 

4.4.1 CspGen’s Model of Addressable State 
The first question to answer when modeling an imperative program in CSP is how to represent 
state.  CSP is purely functional – it has no notion of mutable variables.  The traditional way to 
represent mutable variables is, therefore, via a process that runs in parallel with the main 
operational process; and can be communicated with via read and write events [2].  For example, 
the process VAR(x) below represents a variable with current value x: 

VAR(x) = (read!x -> VAR(x)) [] (write?y -> VAR(y)) 

This process can be communicated with via the event read.x, where x is the current value of the 
variable, or via the event write.y, which changes the current value to y.  This representation 
could be scaled to programs with n variables by putting n such variable processes in parallel with 
the main operational process, and give each variable process its own read and write event channel 
names. 

One problem with such a representation is that it does not offer a natural way to take the address 
of a variable.  Since we are working with imperative languages like C, which include pointers, we 
need to support this operation. 

It might seem natural to use the distinct read and write event names for each variable as an address 
representation.  However, channel names are not first-class data in CSP.  Instead, we use only one 
global read channel and one global write channel, but add an extra parameter that indicates which 
variable is being read from or written to.  This extra parameter can be thought of as the address of 
the variable: 

VAR(addr,x) =    (read!addr!x -> VAR(addr,x)) 

[] (write!addr?y -> VAR(addr,y)) 

Then memory is the parallel interleaving of all addresses.  CspGen calculates the number of 
addresses needed and builds, roughly, this process: 

ALL_VARS = ||| {(addr,init_val) <- ALL_ADDRS} @ VAR(addr,init_val) 

Dynamic allocation can be supported in this model by creating extra addresses at translation time, 
and including an “allocator” processes that accepts alloc events from the main operational 
processes and returns address ranges.  However, the software we encountered in HACMS used 
only statically allocated memory, so this was not necessary. 

A remaining issue with this representation is that it is relatively inefficient.  Each variable process 
will have a state for each possible value of that variable.  While FDR has been demonstrated to 
support processes with trillions of states (as described in Section 4.2.4), it does not take many 32-
bit variables to reach this limit.  This problem can be mitigated in several ways: 

- A traditional static analysis technique, like abstract interpretation, can be used to bound the 
possible range of variables before translation. 
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- We can support only a limited number of fixed values, and add an “unknown” value that 
introduces nondeterminism when examined. 

- We can use static analysis to determine which variable addresses can escape their scope at 
runtime, and use a cheaper, more local model for variables with limited scope. 

In practice, CspGen uses a combination of the second and third technique.  We discuss the cheaper, 
local model for non-escaping stack variables in Section 4.4.2. 

4.4.2 CspGen’s Model of Imperative Control Flow 
The next question to answer is how to support the control flow of an imperative program.  In this 
section, we write |c| => P to indicate that a statement c written in the C language is translated 
to the CSP process P. 

Consider compound C statements like “c1; c2” where c1 and c2 are C statements. CSP has a 
native notion of termination SKIP and a sequence operator “;”, so it would be natural to translate 
such an expression this way: 

 |c1; c2| => |c1|; |c2| 

This representation presents at least two problems.  First, no information is passed from the 
translation of c1 to the translation of c2.  This may not be a problem if all state is stored in globally 
accessible parallel processes like those described in the previous section.  But, as discussed there, 
this can be quite inefficient – we’d prefer a more local way of communicating local effects (like 
writing to thread-local variables) between c1 and c2.  Second, C includes features that circumvent 
the normal control flow, like break, which might occur in c1.  Because there is no analog to this 
non-local control flow in CSP, this representation provides no way to model these C features. 

To solve both these problems, we borrow a standard trick from compilers: continuation-passing 
style [21].  Rather than translating a C statement as a simple CSP process, we translate it as a CSP 
function with two arguments.  The first argument is the current local state.  The second argument 
is a continuation: another function describing what should occur after the current command ends.  
The continuation itself expects to be passed a copy of the updated local state.  Thus, the translation 
becomes: 

|c1; c2| => \(st,cont) @ |c1| (st, \st’ @ |c2| (st’,cont)) 

Non-local control flow is now naturally supported, because the translation of c1 or c2 may simply 
ignore its continuation argument. 

4.4.3 Formally Verifying the Core Algorithm of CspGen 
The purpose of CspGen is to construct a faithful model of an imperative program in CSP so that it 
can be analyzed with FDR.  If this model is inaccurate, then the results of the analysis cannot be 
trusted.  Since the model described in the previous two sections is complicated, such inaccuracies 
could easily be missed.  To prevent these problems, the Draper team performed a formal 
verification of the soundness of the core translation from imperative programs to CSP. 

This verification was performed in the Coq interactive theorem prover [22].  Proving soundness 
of a complete translation from C to CSP would be a task too large for the scope of the HACMS 
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program, so we instead verified the core model of imperative programs using a simpler source 
language.  This relatively standard language, which we call While, is based on the Imp chapter of 
the Software Foundations textbook [23] (which is itself based on Winskel’s classic introduction to 
the semantics of imperative langauges [24]).  We describe the formal proof in this section, 
assuming a basic knowledge of Coq.  It is also included with our CspGen distribution.  

The first step in this task was to create a formal definition of each language, including a semantics 
describing the meaning or behavior of programs in the language.  In both cases, we defined a 
relatively standard “small-step” operational semantics.  This is a relation describing how 
expressions from the language are transformed by small steps of computation, which can then be 
strung together to completely execute a program.  For CSP expressions, this relation had four 
arguments: 

Step : Env -> Proc -> Event -> Proc -> Prop 

The first argument, of type Env, is an “environment” that assigns a CSP process to each variable.  
The second argument, of type Proc, is the original CSP process.  The third argument, of type 
Event, is the CSP event that occurs in this step of computation (or the special event “tau” if no 
observable event occurs).  The final argument, of type Proc, is the transformed process after a 
step of computation. 

Based on Step, we can define the “traces” of a CSP processes as the lists of events that can occur 
by a series of steps from a given process: 

OpSemTraces : Env -> Proc -> Trace -> Prop 

For commands in the While language, we defined a similar step relation: 

CStep : cmd -> state -> option wevent -> cmd -> state -> Prop 

This relation differs in a few ways.  While commands have the type “cmd” in our Coq 
formalization.  Unlike CSP, where there is one input environment, this relation has two “state” 
arguments because execution of the command may change the state.  Finally, the While event 
argument (of type wevent) is optional, because the While language does not have a natural 
notion of “uninteresting” event like tau for the case where the step of computation has no 
observable effect.  Building on this, we define a “multi-step” relation that formalizes the idea of a 
series of steps: 

MCStep : cmd -> state -> list wevent -> cmd -> state -> Prop 

With a definition for each language in hand, we can define the translation from CSP “Proc”s to 
While “cmd”s, which is the core of CspGen’s algorithm. 

As described at the beginning of Section 4.4, this translation actually produces two distinct CSP 
processes from an input imperative program: a memory model and an operational model.  The 
memory model is built by the function MemProc: 

MemProc : nat -> state -> Proc 

This function takes as arguments a natural number, indicating the number of variables used by the 
While program, and the program’s initial state.  It produces a CSP process representing the 
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memory used by the program, and intended to be put in parallel with operational process, 
synchronizing on memory reads and writes. 

The operational model is built by the function compile: 

 compile : cmd -> Proc -> Proc 

Since we use a continuation-based translation, as described in Section 4.4.2, this function takes 
not only the command to be translated, but also a CSP process representing its continuation. 

These functions generate the memory model and operational model of a command, respectively.  
The results are intended to be put in parallel, synchronized on memory events.  In this simplified 
model, memory events are the only events, so it is enough to synchronize on all events.  So the 
complete translation of a While program wprog with initial state st in this Coq implementation 
is:  

 PGenPar (compile wprog PStop)  

        allEvents 

        (MemProc (fvs_cmd wprog) st))  

: Proc 

Here, fvs_cmd counts the number of variables used in a While command, and PGenPar is the 
Coq formalization of CSP’s “generalized parallel” operator.  Its first and third arguments are 
processes that are put in parallel, synchronized on the set of events given as the second argument. 

With the Coq formalization of the translation in hand, it is time to define and prove soundness of 
the translation.  The intuitive soundness property we’d like to capture is that any trace of 
“wevent”s that can occur in a valid execution of a While program is mirrored by a similar trace 
of “Event”s in the CSP semantics of its translation.  To state this property, we need to define 
“similar trace”.  Since the two event definitions are essentially just different names for reads and 
writes to memory, it is possible to define a direct translation: 

 whileToCSPTrace : list wevent -> Trace 

Therefore, we might guess the appropriate correctness property is: 

 Theorem translation_sound : forall wprog wprog' st st' wtrace, 

      MCStep wprog st wtrace wprog’ st’ 

   -> OpSemTraces WhileEnv 

                  (PGenPar (compile wprog PStop) 

                           allEvents 

                           (MemProc (fvs_cmd wprog) st)) 

                  (whileToCSPTrace wtrace). 

However, this proposition is not quite true.  The problem is the result of one of the state-explosion 
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mitigations described in Section 4.4.1.  The While program execution remembers precise values 
for each variable, but the CSP program remembers only values within a small range.  When a read 
or a write to a variable goes outside this range, it is replaced by a unique “unknown” value that 
induces non-determinism in the model.  Thus, we must allow for CSP traces that are less precise 
in that exact values can be replaced by this “unknown” value.  We introduce an approximation 
relation on CSP traces that captures this loss of information: 

 ApproxTrace : Trace -> Trace -> Prop 

We can now state the correct theorem: 

 Theorem translation_sound : forall wprog wprog' st st' wtrace, 

      MCStep wprog st wtrace wprog’ st’ 

   -> exists ctrace, 

          ApproxTrace (whileToCSPTrace wtrace) ctrace 

       /\ OpSemTraces WhileEnv 

                       (PGenPar (compile wprog PStop) 

                                allEvents 

                                (MemProc (fvs_cmd wprog) st)) 

                       (whileToCSPTrace wtrace). 

The definition and proof of this theorem required approximately 2500 lines of Coq proof script, 
after the definition of the two languages. 

4.5 Fracture 
Fracture is a decompiler that translates ARM binaries to the LLVM Intermediate Representation.  
Draper implemented a proof-of-concept version of Fracture as a modification and extension of the 
LLVM compiler suite and has made it publicly available [25]. 

The core idea of Fracture’s decompilation strategy is to reverse LLVM’s TableGen-based 
instruction selector.  Instruction selection is one the final stages of compilation, where machine-
specific instruction sequences replace machine-independent LLVM IR.  A common approach to 
instruction selection is for human experts to populate a map data structure from IR sequences to 
efficient machine-specific implementations, and an algorithm is used to match every piece of the 
IR program with corresponding implementations from the map.   

TableGen is LLVM’s generic implementation of this map data structure.  Fracture is implemented 
as a new TableGen map that reverses the map used in instruction selection, and some associated 
libraries.  It ingests a basic block of target instructions and emits a directed acyclic graph (DAG) 
which resembles the post-legalization phase of LLVM’s Selection DAG instruction selection 
process.  It leverages the pre-existing target LLVM TableGen definitions, without modification, 
to provide a generic way to abstract LLVM IR efficiently from different target instruction sets. 
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An initial proof-of-concept version of Fracture was completed in 2014.  Experimentation 
determined that the generated LLVM IR was still quite low-level, especially compared with 
LLVM IR generated via compilation from a source language with Clang.  For example, the 
Fracture-generated IR often made use of machine-specific memory layout information.  This made 
it challenging to model with our CspGen tool. 

Additionally, experimentation with the Fracture prototype revealed two flaws in the instruction 
selection reversal technique.  First, Fracture’s algorithm does not preserve single static assignment 
(SSA) form.  The means that the lifting of the binary to LLVM Intermediate Representation does 
not ensure that each variable to be defined and assigned once before it is used.  Since code 
generation relies on the SSA form during phases like basic block control flow and alpha renaming, 
the simple map inversion implemented in Fracture was behaviorally unsound.  Second, Fracture’s 
approach required following every branch to determine whether that branch led to a function or a 
continuation in the intraprocedural control flow graph. This fails when following a branch to a 
concrete address that resolves in a branch to an address that cannot be computed without reasoning 
about the dataflow into the branch target.  As a result, translation could terminate without 
examining all assembly in text sections.  

At the same time, research conducted in the DARPA Cyber Grand Challenge program was 
beginning to result in the release and maturity of other open-source decompilation and binary 
analysis frameworks, like BAP [26] and Angr [27].  Thus, the decision was taken to stop work on 
raising the abstraction level of Fracture’s output, with the intention to integrate with existing open-
source decompilers in the future.  As the assessments of Galois-provided software in the remainder 
of HACMS did not require formal binary analysis, this integration was unnecessary for HACMS, 
but would be an interesting avenue for future research. 

4.6 Formal Assessments 
Application of the formal tools described above to Blue Team code focused on Galois’ 
Ivory/Tower language.  This choice was made on the advice of the DARPA HACMS program 
manager, because Ivory/Tower compiles to C, a language already understood by our tools, and 
because these programs have an understandable and formalizable specification.  We attacked the 
problem of verifying Ivory/Tower code from two directions: verifying as-implemented 
Ivory/Tower programs from their C versions, and verifying the Tower concurrency model directly.  
Section 4.6.1 describes an example of the first direction in more detail.  This information also 
appears in our Formal Vulnerability Assessment Report.  Section 4.6.2 summarizes other efforts. 

4.6.1 Verifying an Ivory/Tower program in detail 
In one assessment, we formally verified that a Galois-supplied Ivory/Tower program had the 
expected behavior.  The program comprised two threads that caused an LED to blink.  We used 
Draper's CspGen tool and Oxford's FDR model checker for this task.  The high-level process of 
verifying the system followed the outline described in Section 3.3.2  

Step 1: Environment modeling 

Software runs in an environment of libraries, system calls, and hardware that provide services and 
a means to interact with the external world.  To model the behavior of the software, we need a 
model of this ecosystem. 
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In the case of the Galois LED program, we built models for two main components: the FreeRTOS 
threading primitive used to spawn the two threads, and the hardware pins that the software 
manipulated to adjust the LED.  The threading primitive was quite straightforward to model, 
considering CSP's natural support for concurrency and our previous experience modeling similar 
primitives from the standard Linux pthreads library.  For the hardware pins, a custom model was 
needed. 

Examination of the source code revealed that the LED is manipulated by turning on and off the 
current to two Universal Asynchronous Receiver/Transmitter (UART) pins (pins 14 and 15 on the 
relevant platform).  To keep the model simple, we modeled only these two pins: 

datatype PinState = CurrentOn | CurrentOff 

datatype PinName = Pin14 | Pin15 

We built CSP channels representing software-triggered interactions with the pins: 

channel pin_set   : PinName 

channel pin_clear : PinName 

channel pin_read  : PinName.PinState 

We built processes that stored the current state of each pin, and a wrapper to execute a program 
that can manipulate the pins: 

pin :: (PinName,PinState) -> Proc 

pin (nm,state) = pin_set.nm -> pin(nm,CurrentOn) 

[] pin_clear.nm      -> pin(nm,CurrentOff) 

[] pin_read.nm!state -> pin(nm,state) 

hardware :: Proc 

hardware = pin(Pin14,CurrentOff) ||| pin(Pin15,CurrentOff) 

runOnHardware :: (Proc) -> Proc 

runOnHardware (p) = 

    p [| {| pin_set, pin_clear, pin_read |} |] hardware 

Finally, we considered the way these pins are manipulated in C code.  The board on which this test 
was intended to run supported memory-mapped control of the pins.  The generated C code simply 
read from or wrote to fixed addresses in memory for this purpose.  To simplify modeling, we 
replaced these reads and writes with calls to new functions, and implemented a model for them: 

gpiob_pin15_current_on (stubState,stubCont) = 
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  pin_set!Pin15 -> stubCont(stubState, UnitVal) 

 

gpiob_pin15_current_off (stubState,stubCont) = 

  pin_clear!Pin15 -> stubCont(stubState, UnitVal) 

 

gpiob_pin14_current_on (stubState,stubCont) = 

  pin_set!Pin14 -> stubCont(stubState, UnitVal) 

 

gpiob_pin14_current_off (stubState,stubCont) = 

  pin_clear!Pin14 -> stubCont(stubState, UnitVal) 

The arguments to these functions are artifacts of the continuation-passing style used to represent 
C control flow in our model, as described in Section 4.4.2. 

Step 2: Building a CSP specification for the program. 

For this assessment, we were interested in confirming that the Galois program's behavior was to 
toggle the LEDs on and off indefinitely by manipulating the pins.  Thus, we built a simple model 
of the two threads and their interleavings. 

loop_250_spec :: Proc 

loop_250_spec = pin_set.Pin14 -> pin_clear.Pin14 -> loop_250_spec 

 

loop_333_spec :: Proc 

loop_333_spec = pin_set.Pin15 -> pin_clear.Pin15 -> loop_333_spec 

 

tower_entry_spec :: Proc 

tower_entry_spec =  

    pin_clear.Pin15 -> pin_clear.Pin14  

                    -> (loop_250_spec ||| loop_333_spec) 

Extracting a CSP model of the Ivory/Tower program 

To extract a model of the as-implemented system, we first compiled the Galois code from 
Ivory/Tower to C, and then used Draper's CspGen tool to translate the C code to CSP.  This resulted 
in a large CSP file that described the behavior of the Galois program, with calls to the environment 
model described above.  In particular, the translated CSP version of the "tower_entry" function 
captures all the behavior of the system. 
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Verifying that the implementation refines the specification. 

Finally, we wrote a CSP assertion capturing the property that the implementation is a refinement 
of the above specification, when restricting the set of observable events to pin manipulations: 

assert hideMemory(runInMemory(tower_entry((| |), \_,_@STOP)))  

   [T= tower_entry_spec 

Using FDR, we checked this assertion.  This confirms that the only possible behaviors of the as-
implemented system are captured by the expected formal specification.  Thus, no flaws were found 
in this Galois LED example and a formal proof has been obtained that the system behaves correctly 
up to the assumptions embodied by our model of computation. 

4.6.2 Other Ivory/Tower verification 
We applied our static analysis tools to several similar analyses.  Human analysis in preparation for 
formal modeling identified a replay attack against an early version of some Ivory/Tower Secure 
Mathematically-Assured Composition of Control Modules Pilot (SMACCMPilot) communication 
components.  We subsequently demonstrated that our tools can find this attack, both by analyzing 
a hand-built abstract model in FDR (as described in [28]), and by analyzing a model extracted 
from the generated C code with CspGen. 

We also directly considered the Ivory/Tower model of concurrency.  This language in intended to 
prevent common concurrency errors, like deadlock and race conditions, by construction.  Based 
on a formal semantics provided by Galois, the Draper team built a model of Ivory/Tower program 
execution in CSP.  The model is parameterized by several characteristics of a given program, like 
the numbers of threads and variables.  By analyzing the model in FDR, we confirmed that the 
abstract Ivory/Tower semantics prevent the concurrency errors described above, using parameters 
chosen from some example programs.  There are several avenues for future work in this space, 
like building a tool to extract the relevant parameters from an Ivory/Tower program automatically, 
or designing a more general model that could confirm these properties for all Ivory/Tower 
programs.  

4.7 Academic Publications 
The Draper team’s work on these formal verification tools contributed to several academic 
publications, listed here: 

Brandon Shapiro and Chris Casinghino.  “SpecGen: A Tool for Modeling Statecharts in CSP,” 
NASA Formal Methods, 2017. 

Pedro Antonio, Thomas Gibson-Robinson, and A.W. Roscoe.  “Tighter Reachability Criteria for 
Deadlock-Freedom Analysis,” 21st International Symposium on Formal Methods, 2016. 

Pedro Antonino, Thomas Gibson-Robinson, and A. W. Roscoe.  “Efficient Deadlock-Freedom 
Checking using Local Analysis and SAT Solving,” Proceedings of the 12th International 
Conference on integrated Formal Methods, 2016. 

Colin O’Halloran, “Verifying Critical Cyber-Physical Systems After Deployment,” Proceedings 
of the 15th International Workshop on Automated Verification of Critical Systems, 2015. 
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Thomas Gibson−Robinson and A.W. Roscoe.  “FDR into The Cloud,” Communicating Process 
Architectures, 2014.  

Thomas Gibson-Robinson, Philip Armstrong, Alexandre Boulgakov, A.W. Roscoe.  “FDR3 — A 
Modern Refinement Checker for CSP,” Tools and Algorithms for the Construction and Analysis 
of Systems, 2014. 
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5. CONCLUSION
This report has described the testing and research carried out by the HACMS Red Team.  The team 
comprised a novel combination of state-of-the-art penetration testing with formal methods 
research. 

Our formal methods research resulted in substantial improvements to the FDR CSP refinement 
checker, and several new tools for automatically building models of systems in CSP from existing 
artifacts, including source code.  We have described the research that went into these tools and 
how they have been applied to the HACMS platforms.  Many of the tools are now available as 
free, open-source software. 

Penetration testing discovered numerous vulnerabilities in the original, unsecured platforms. 
These vulnerabilities guided the blue team performers, ensuring their work applied in practice. 
The final vehicles delivered under the HACMS program, even as research prototypes, proved to 
be resilient against most forms of attack to a degree rarely seen even in hardened, fielded systems. 
Of all the final, formally verified components assessed under the final phase of the program, no 
memory corruption failures, mathematical operation faults, or security isolation compromises were 
identified. 

As highlighted in the companion Final Vehicle Security Assessment Report, there remain 
challenges in securing autonomous systems. First, the formal guarantees of security properties 
should be applied exhaustively throughout any system to be protected. Without careful application 
throughout all components integral to critical functionality, the system in question may remain 
highly vulnerable to broad classes of readily implemented cyber attack.  Second, HACMS 
technologies should be further applied to other forms of system security properties. This is most 
clearly observable regarding communications security. For nearly every critical communications 
security weakness identified in the baseline systems, a corresponding critical vulnerability was 
found in the communications security of the newly implemented final HACMS vehicles. This is 
not to be taken as a weakness in the tools developed under HACMS, as none made the claim that 
they offered proven secure cryptographic protections. However, it does highlight the security gains 
possible by expanding the formally proven build processes developed under HACMS to include 
other security properties, communications security or otherwise. 

Continuing to build on the successful application and advancement of HACMS techniques and 
technologies will continue to offer revolutionary advancements to the security of autonomous 
vehicles. At its hypothetical limit, the HACMS program has laid the groundwork for an 
autonomous vehicle for which there is no distinction between its functional specification and its 
operational behavior under duress; that is, a system for which an attacker provably cannot trigger 
anomalous behavior. 
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LIST OF SYMBOLS, ABBREVIATIONS AND ACRONYMS 

AIS Assured Information Security 

CONOPS Concept of Operations 

CSP Communicating Sequential Processes 

DAG Directed Acyclic Graph 

DARPA Defense Advanced Research Projects Agency 

Draper The Charles Stark Draper Laboratory 

EA Enterprise Architect 

EC2 Elastic Compute Cloud 

FDR Failures Divergence Refinement 

GLTS Generalized Labelled Transition System 

HACMS High-Assurance Cyber Military Systems 

IR Intermediate Representation 

JTAG Joint Test Action Group 

LLVM Low Level Virtual Machine 

Oxford Oxford University 

SMACCMPilot Secure Mathematically-Assured Composition of Control Models 
Pilot 

SSA Single Static Assignment 

TA Technical Area 

UART Universal Asynchronous Receiver/Transmitter 

UML Unified Modeling Language 
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