
SECURE MATHEMATICALLY-ASSURED COMPOSITION OF
CONTROL MODELS

ROCKWELL COLLINS

SEPTEMBER 2017

FINAL TECHNICAL REPORT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

STINFO COPY

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

AFRL-RI-RS-TR-2017-176

 UNITED STATES AIR FORCE ROME, NY 13441 AIR FORCE MATERIEL COMMAND

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for any purpose
other than Government procurement does not in any way obligate the U.S. Government. The fact that
the Government formulated or supplied the drawings, specifications, or other data does not license the
holder or any other person or corporation; or convey any rights or permission to manufacture, use, or
sell any patented invention that may relate to them.

This report was cleared for public release by the 88th ABW, Wright-Patterson AFB Public Affairs Office and is
available to the general public, including foreign nationals. Copies may be obtained from the Defense Technical
Information Center (DTIC) (http://www.dtic.mil).

AFRL-RI-RS-TR-2017-176 HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION IN
ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

FOR THE CHIEF ENGINEER:

 / S / / S /
STEVEN DRAGER JOHN MATYJAS
Work Unit Manager Technical Advisor, Computing
 and Communications Division
 Information Directorate

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of
information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

SEPTEMBER 2017
2. REPORT TYPE

FINAL TECHNICAL REPORT
3. DATES COVERED (From - To)

AUG 2012 – APR 2017
4. TITLE AND SUBTITLE

SECURE MATHEMATICALLY-ASSURED COMPOSITION OF
CONTROL MODELS

5a. CONTRACT NUMBER
FA8750-12-9-0179

5b. GRANT NUMBER
N/A

5c. PROGRAM ELEMENT NUMBER
62303E

6. AUTHOR(S)

Darren Cofer, John Backes, Andrew Gacek, Daniel DaCosta (Rockwell
Collins), Michael Whalen (University of MN), Ihor Kuz, Gerwin Klein,
Gernot Heiser (Data 61), Lee Pike, Adam Foltzer, Michal Podhradsky
(Galois), Douglas Stuart, Jason Grahan, Brett Wilson (Boeing)

5d. PROJECT NUMBER
HACM

5e. TASK NUMBER
RO

5f. WORK UNIT NUMBER
CK

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Rockwell Collins
400 Collins Rd NE
Cedar Rapids, IA 52498

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Air Force Research Laboratory/RITA
525 Brooks Road
Rome NY 13441-4505

10. SPONSOR/MONITOR'S ACRONYM(S)

AFRL/RI
11. SPONSOR/MONITOR’S REPORT NUMBER

AFRL-RI-RS-TR-2017-176
12. DISTRIBUTION AVAILABILITY STATEMENT

Approved for Public Release; Distribution Unlimited. PA# 88ABW-2017-4397
Date Cleared: 12 SEP 17
13. SUPPLEMENTARY NOTES

14. ABSTRACT

The Secure Mathematically-Assured Composition of Control Models project (SMACCM) has developed new tools for
building UAV software that is provably secure against many classes of cyber-attack. The goal of the project is to provide
verifiable security; that is, system designs which provide the highest levels of confidence in their security based upon
verifiable evidence. The SMACCM team has developed system architecture models, software components for mission
and control functions, and operating system software, all of which are mathematically analyzed to ensure key security
properties.

15. SUBJECT TERMS

Cybersecurity, software assurance, verification, formal methods

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

NA

18. NUMBER
OF PAGES

19a. NAME OF RESPONSIBLE PERSON
STEVEN DRAGER

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

19b. TELEPHONE NUMBER (Include area code)
NA

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

134

Contents

List of Figures iv

1 Summary 1

2 Introduction 2

3 Methods, Assumptions, and Procedures 4

4 Secure Architecture 8
4.1 The Assume Guarantee Reasoning Environment 9

4.1.1 Informal Description of Architecture and Behavior 10
4.1.2 ULB Modeling Assumptions 11
4.1.3 Scheduling Constraints . 13
4.1.4 ULB Component Contracts 15
4.1.5 ULB Properties . 23

4.2 Resolute . 27
4.2.1 The Resolute Language 28
4.2.2 Claims and Rules . 29
4.2.3 Computations . 30

5 Secure Components 34
5.1 Ivory . 34
5.2 Tower . 38

6 Secure Operating System 41
6.1 seL4 Microkernel . 42
6.2 seL4 Verification . 42

6.2.1 Background: Verified seL4 properties 42
6.2.2 ARM-hyp Verification . 43
6.2.3 x86 64 Verification . 46
6.2.4 WCET and Schedulability Analysis 48

6.3 CAmkES . 50
6.4 eChronos RTOS . 55
6.5 Hardware . 56
6.6 Device Drivers . 56
6.7 File System . 58
6.8 CAN Protocol . 60
6.9 Ground Control Station Communication Protocol 63
6.10 CAN Gateway . 64

7 Trusted Build 67
7.1 AADL Modeling Language . 68
7.2 Code Generation . 69
7.3 Code Generator Architecture . 73

i

8 SMACCMcopter Demonstration 77
8.1 Hardware Architecture . 77
8.2 Software Architecture . 78
8.3 Build Process . 79
8.4 Demonstration . 80

8.4.1 Successful Attack on Unsecure Vehicle 81
8.4.2 Failed Attack on Secure Vehicle 81

9 ULB Demonstration 83
9.1 Background . 83

9.1.1 Challenge Problems . 83
9.1.2 Unmanned Little Bird . 84

9.2 Applying HACMS Technologies to the ULB 87
9.2.1 Architecture . 88
9.2.2 Components . 94
9.2.3 Kernel . 98
9.2.4 Build Process . 99

9.3 Demonstrations . 99
9.3.1 Initial Demonstration . 100
9.3.2 Final Demonstration . 101

10 Results and Discussion 104
10.1 Type-Checking for Embedded Programming 104
10.2 Type-Safe System Plumbing . 105
10.3 Faking a Module System . 105
10.4 Control Your Compiler . 106
10.5 Everything is a Library . 106
10.6 Semantics . 106
10.7 Integration Problems . 108

10.7.1 Drivers . 108
10.7.2 Legacy/Untrustworthy Code Support 109
10.7.3 Make Issues . 110
10.7.4 Exceeding Static Memory when Generating System Image 110
10.7.5 C Linker and Typing . 111
10.7.6 System Image Loading and Debugging 111

10.8 Modeling Concerns with AADL 112
10.8.1 IRQ/ISR Representation 112
10.8.2 Thread/Process Semantics 113
10.8.3 Events and Schedulability 113

10.9 Lessons Learned from ULB Application 114
10.9.1 Ivory . 114
10.9.2 HCOL and Spiral . 115
10.9.3 AADL and Trusted Build 115
10.9.4 Tool Integration . 116
10.9.5 Build Times . 116
10.9.6 Debugging . 117

ii

10.9.7 Development Ecosystem 117

11 Conclusion 118

12 References 119

13 List of Acronyms 125

iii

List of Figures

1 Constraints to force variables representing fields of incoming and
outgoing data the same between components 13

2 The definition of the variables for component clocks rising and
falling . 14

3 Constraints about when a component may begin executing . . . 14
4 Constraints about when a component may stop executing 15
5 Constraints overriding the normal semantics of the connections

to the loi component . 16
6 Definitions for the state variables of the loi component 17
7 Definition for the loi approved for message component. The

definition of this variable was based on the STANAG 4586 spec-
ification . 18

8 The guarantees and assumptions of the loi component 19
9 The contract of the authin component 21
10 Definitions for CUCS Authorization Request and Payload Steer

STANAG 4586 message types . 22
11 The contract for the input component 23
12 Definitions for the state variables referenced by the system level

guarantees . 24
13 The assignment statements used to reference state variables in

the top level contract . 25
14 The guarantee that whenever an authorization message is re-

ceived and the current LOI is 3 the vehicle accepts this message
within a specified latency . 26

15 The guarantee that if the vehicle input receives a navigation com-
mand then the current LOI is 4 26

16 Guarantees about the state machine in the input component. . . 26
17 A guarantee about mode transitions under a certain LOI 27
18 A guarantee about routes being uploaded to the aircraft 28
19 Example Resolute rules . 30
20 Definition of bound in the Resolute standard library 31
21 A simplified picture of the software architecture for the SMAC-

CMcopter. The red line illustrates the path that valid commands
take to reach the motor controller. 32

22 Example of a successful assurance case from Resolute 32
23 Example of a failed assurance case from Resolute 32
24 Example Ivory module definition 37
25 Tower (top), Task (middle), Graphviz output (bottom) 39
26 Overview of seL4 verification. 43
27 Architecture for microkernel-based hypervisor. 44
28 Overview of dataflow in the WCET analysis. 49
29 Overview of the CAmkES build process. 51
30 CAmkES theory dependencies. 54
31 Overview of Termite synthesis process. 57

iv

32 Code/Proof Co-Generation with Cogent. 58
33 Message passing between the different protocols/components. . . 61
34 SMACCM Build Process for eChronos 70
35 SMACCM Build Process for CAmkES/seL4 70
36 Excerpt from the SMACCMcopter Mission Software AADL model 72
37 AADL thread dispatch model . 73
38 C code generated from SMACCMcopter Mission Software AADL

model . 74
39 Communicating AADL threads A, B and their implementation

in CAmkES . 75
40 Flow of interaction between A, B, and monitor M 76
41 SMACCMcopter during final flight demonstration 77
42 SMACCMcopter computing hardware: Pixhawk flight control

computer (left) and TK1-SOM mission computer (right) 78
43 Software architecture for SMACCMcopter flight computer 79
44 Software architecture for SMACCMcopter mission computer . . . 79
45 Software architecture of the secure SMACCMcopter, illustrating

the attack . 80
46 Failed cyber-attack showing ground control station (left) and at-

tacker laptop (right) . 81
47 The Boeing Unmanned Little Bird 83
48 The Unmanned Little Bird Unmanned Aircraft System 85
49 ULB Baseline Architecture . 88
50 ULB HACMS Phase 1 Architecture 89
51 ULB HACMS Phase 2 Architecture 90
52 ULB HACMS Final Architecture 91
53 Dynamic Geo-Fence Enforcement 93
54 Original C++ Code . 95
55 Ivory Concrete Syntax . 96
56 Generated C Code . 96
57 ULB VSM Build Process . 100
58 ULB Risk Reduction Flight Demonstration 24 July 2015 102
59 ULB Final Demonstration 9 February 2017 102
60 Conditional Ivory macro. 107

v

1 Summary

Unmanned Air Vehicles (UAVs) and other military aircraft have off-vehicle net-
work connections for command and control, sharing sensor data, and coordina-
tion with other forces. This connectivity provides tremendous new functionality,
but also exposes these military assets to the same security risks that plague lap-
top computers and web servers.

Current approaches to cybersecurity rely on patching systems after a vul-
nerability is discovered. What is needed is a clean-slate, mathematically-based
approach for building secure software. DARPA initiated the High Assurance
Cyber Military Systems (HACMS) program to develop the technologies needed
to counter cyber-threats to network-enabled embedded systems.

The Secure Mathematically-Assured Composition of Control Models project
(SMACCM) has developed new tools for building UAV software that is prov-
ably secure against many classes of cyber-attack. The goal of the project is
to provide verifiable security; that is, system designs which provide the high-
est levels of confidence in their security based upon verifiable evidence. The
SMACCM team has developed system architecture models, software compo-
nents for mission and control functions, and operating system software, all of
which are mathematically analyzed to ensure key security properties.

Unique aspects our approach include:

• Integration of proof and software engineering

• Formally verified operating system software

• High-assurance control components based on formal design languages and
synthesis

We have prototyped these new technologies on a research quadcopter, and
then transitioned them to Boeing’s Unmanned Little Bird (ULB) helicopter to
demonstrate their practicality and effectiveness. Our tools for secure software
development and analysis and all software produced are available for transition
to other vehicle programs.

1
Approved for Public Release; Distribution Unlimited.

2 Introduction

Embedded systems form a ubiquitous, networked, computing substrate that
underlies much of society. Modern aircraft and automobiles are complex safety-
critical systems in which software is an integral part of the vehicle control and
functionality. Like other embedded systems, vehicles are now networked for a
variety of reasons, including the ability to conveniently access diagnostic infor-
mation, perform software updates, provide innovative features, lower costs, and
improve ease of use.

However, researchers (and hackers) have shown that all kinds of networked
embedded systems are vulnerable to remote cyber-attack. A number of hacks
and hacking attempts recently reported in the press target the control systems of
vehicles. For example, researchers at University of Washington and University
of California San Diego have demonstrated the ability to completely control an
unmodified automobile from a remote location [1]. Security researchers Charlie
Miller and Chris Valasek have recently extended this work [2]. Others [3], [4]
have been probing for vulnerabilities in the communication and avionics systems
of commercial aircraft, though with questionable success. The consequences of
a successful cyber-attack against these systems include loss of life or denial of
military capabilities, and not just the compromise of classified information.

Why are embedded systems so vulnerable now? Three trends in the way
vehicle control systems and embedded software of all kinds are developed have
conspired to bring us to this point. First, network connectivity has been added
to devices of all sorts to enable new functionality. In many cases, this addition
was done post hoc and introduced the cyber-threats from the Internet to the
embedded world – a world where in the past it was safe to assume that failures
were random and independent, rather than coordinated and malicious. Second,
embedded software is larger and more complex than ever. This complexity
means that, all other things being equal, embedded software will contain more
vulnerabilities that an adversary can exploit. Third, while in past decades most
embedded software was custom-built, modern systems are developed using the
same commercial and open source tools and software libraries used in traditional
computing platforms. This commonality of operating systems, communication
stacks, and even code generators and compilers exposes embedded software to
many potential exploits.

To combat this threat, DARPA initiated the HACMS research program to
create technology for the construction of cyber-physical systems that would
be resilient against cyber-attacks. The program is focused on vehicle control
systems (both air and ground) because of their complexity, criticality, and sig-
nificance for the military and civilian worlds. High assurance is defined to mean
functionally correct and satisfying necessary safety and security properties.
Achieving this goal requires a fundamentally different approach from what the
software community has pursued to date. Consequently, HACMS has adopted
a clean-slate, formal methods-based approach to enable semi-automated code
synthesis from executable, composable, formal specifications which are subject
to analytic verification. The term formal methods refers to the analysis of soft-

2
Approved for Public Release; Distribution Unlimited.

ware (or models of software) to prove its conformance to specifications. The
use of analytic techniques for verification is, of course, standard practice in the
control community, but is relatively new in the software community.

At least to some extent, we are in the current vulnerable state because we
have not paid attention to cybersecurity as a design requirement for safety-
critical control systems. We have allowed our software implementations to in-
clude network connectivity, grow in complexity, and use more COTS software
without sufficient regard to the associated security hazards. Cybersecurity is
a system property that must be designed-in from the beginning to be effec-
tive. New tools and techniques, such as those being developed in the HACMS
program, can help us to build control systems that are both safe and secure.

The traditional approach to cybersecurity is reactive, responding to cyber-
attacks after they occur by identifying a vulnerability and developing a software
patch to eliminate that specific vulnerability. This is a cycle that repeats itself
with each new vulnerability that is found. Even virus-scanning software cannot
keep up with the pace of newly created malware, and in fact, often introduces
new vulnerabilities that can be exploited. The situation is even worse for em-
bedded software because it is often difficult to patch due to logical issues or
certification constraints. The goal of HACMS program research is to break this
cycle by preventing security vulnerabilities from being introduced during the
development process.

Our project in the HACMS program, Secure Mathematically-Assured Com-
position of Control Models, brings together four main concepts based on formal
methods. The system architecture is first modeled in a way that permits formal
verification of its key security and safety properties. Software components in
this architecture are then implemented using languages that guarantee impor-
tant security properties. Constraints on component interaction and execution
specified in the architecture model are enforced by a secure microkernel whose
functional and security properties have been formally verified to the binary level.
Finally, the deployed system is automatically built from the verified architecture
model and component specifications.

To show that this approach is both practical and effective, we have applied
it to two aircraft. We first developed the technologies on a modified commercial
quadcopter that includes separate flight control and mission computers, a data
bus for communication, multiple sensors, a video camera payload, and radio
links for control, telemetry, and surveillance. We refer to this research vehicle
as the SMACCMcopter. We then applied the same technologies to Boeing’s
Unmanned Little Bird, a full-sized optionally-crewed helicopter capable of au-
tonomous flight. Successful flight demonstrations and security evaluations by
the HACMS “Red Team” show that our approach can be used to build real
systems that are resilient against most cyber-attacks.

3
Approved for Public Release; Distribution Unlimited.

3 Methods, Assumptions, and Procedures

The design of complex military systems such as UAVs can be greatly improved
through the use of advanced modeling and analysis tools. Model-Based Develop-
ment (MBD) environments such as Mathworks Simulink or Esterel Technologies
SCADE have long been used in the automotive and aerospace industries. MBD
supports early simulation of designs, test case generation, and automatic code
generation.

Recently, formal analysis tools have been integrated in MBD environment
for verification of software requirements. However, these tools still face scala-
bility issues that limit the size of systems that can be analyzed. Furthermore,
system-level descriptions of the interactions of distributed components, resource
allocation decisions, and communication mechanisms are still largely captured
ad hoc, rather than through the use of precise modeling tools. Application of
formal analysis methods at the system level requires 1) an abstraction that de-
fines how components will be represented in the system model, and 2) selection
of an appropriate formal modeling language.

The Architecture Analysis and Design Language (AADL) has been devel-
oped to capture the important design concepts in real-time distributed embed-
ded systems [5]. AADL is well-suited to this domain, and provides an excellent
mechanism for capturing the important details of system design. The AADL
language can capture both the hardware and software architecture in a hier-
archical format. It provides hardware component models including processors,
buses, memories, and I/O devices, and software component models including
threads, processes, and subprograms. Interfaces for these components and data
flows between components can also be defined. The language offers a high de-
gree of flexibility in terms of architecture and component detail. This supports
incremental development where the architecture is refined to increasing levels of
detail and where components can be refined with additional details over time.

AADL has both a graphical and textual format, and tools exist for de-
veloping models in both of these formats and converting between them. The
graphical format is useful for visualizing and communicating the system struc-
ture while the textual format is preferred for specification of system details and
for automated analysis.

Properties are defined for AADL components to specify important configu-
ration data such as execution period, scheduling deadlines, worst case execution
time (WCET), and bus latencies. This information can be used to support
computation of CPU and bus utilization and schedulability analysis. Data in
AADL models provides the basis for generating configuration data for the kernel
or operating system and synthesis of “glue code” that implements component
interactions and access to kernel services.

In AADL, the architectural model includes component interfaces, intercon-
nections, and execution characteristics, but not their implementation. It de-
scribes the interactions between components and their arrangement in the sys-
tem, but the components themselves are “black boxes.” The component imple-
mentations are described separately using model-based specification languages

4
Approved for Public Release; Distribution Unlimited.

or traditional programming languages which are included by reference in the
architecture model. This separation of implementation and architecture is an
important factor in achieving scalability for the analysis tools that we have
developed.

One of our core innovations is to structure verification arguments by follow-
ing the AADL descriptions of the system. We do this through the use of formal
assume-guarantee contracts that correspond to the behavioral requirements for
each subsystem or component. Each component in the system model is anno-
tated with a contract that includes the requirements and constraints that are
specified and verified as part of its development process. We then reason about
the system-level behavior based on the interaction of the component contracts.
Contracts provide a layer of abstraction, allowing architectural-level reasoning
to be done in a top-down fashion: before a component is even implemented, its
contract can be used in reasoning about how the component interacts with its
environment.

Next, we present an overview of the four main technologies developed under
the HACMS program and how they have been integrated into a development
process to produce systems that are functionally correct and free from security
vulnerabilities. Each technology provides the basis for one of four key elements
of architecture-driven assurance.

The architecture model is correct. We must first establish that the AADL
architecture model is correct. The model specifies the overall organization of the
system and defines the interfaces for each subsystem and component, how they
interact, and what data they share. Properties to be verified can be divided into
structural or behavioral properties.

Structural properties of the model can be checked statically. That is, they
do not change over time. Many of the baseline AADL tools distributed with
the Open Source AADL Tool Environment (OSATE) address these structural
properties of the model. For example, schedulability analysis of CPUs and data
busses based on allocation of computational threads and messages is performed
by examining static characteristics of the model. Similarly, basic data flow anal-
ysis is accomplished by examining the connections between and within AADL
components.

Behavioral properties of the system are checked using assume-guarantee con-
tracts added to the AADL model. These contracts provide an abstraction of
the implementation of subsystems and components of the model, and allow the
dynamic requirements of large systems to be verified compositionally and hier-
archically using our Assume Guarantee Reasoning Environment (AGREE) tool.
AGREE translates the AADL structure and contracts into a collection of model
checking problems that are verified or falsified with counterexamples. AGREE
can also check contract consistency and realizability.

We have also developed a tool (Resolute) for constructing an assurance case
based on the structure of the AADL architecture model. An assurance case
provides the capability to address properties of the system that may be less

5
Approved for Public Release; Distribution Unlimited.

precisely defined, or which combine verification evidence from multiples sources.
Assurance cases based on the architecture model may address structural or
behavioral properties, or both.

Tools developed for verifying that the architecture model is correct are de-
scribed in Section 4.

The components are correct. Next, we must establish that the components
have been implemented correctly. This means that they must satisfy their re-
quirements as specified in the AADL contracts, and that they must be free from
vulnerabilities that could be exploited by cyber-attackers.

Our approach is based on developing new Domain Specific Languages (DSLs)
for specifying software component implementations. The new DSLs, Ivory and
Tower, are embedded in the Haskell programming languages. As a result, they
inherit important properties from Haskell, including memory safety. Once spec-
ified in the DSL, components are compiled to a restricted subset of the C pro-
gramming language, so that these properties are preserved. In addition, asser-
tions are added to the C code that check for run-time errors such as arithmetic
over/underflow.

Component implementations must also be verified to satisfy their contracts
with the rest of the system. This can be done by model checking, or by gen-
erating test cases from the contracts. In separate work [6], we have developed
automated tools for exporting AGREE contracts from AADL into the Simulink
MBD environment to support component verification by model checking. A sim-
ilar approach can be used to automate verification of components implemented
in other languages.

Languages and tools developed in the HACMS project for verifying the cor-
rectness of components are described in Section 5.

The system execution conforms to the architecture model. The ar-
chitecture model makes both explicit and implicit statements about how the
system should execute. It explicitly specifies execution times and periods for
tasks, binds threads and processes to CPUs, specifies connections between com-
ponents, and routes messages on communication busses. At least as important
are the implicit requirements embodied in the architecture. If there is no con-
nection defined between components, then it must be the case that no data
can flow between these components. This prevents unintended access to mem-
ory across component boundaries that might be intentionally exploited by an
attacker or accidentally by a faulty component.

The operating system is responsible for carrying out or enforcing all of these
characteristics of the system as specified in the architecture model. Inter-estingly,
the operating system is not explicitly modeled in AADL as a separate component
or subsystem. Rather, it manifests itself in the specification of com-ponent
execution properties, connections between components, and properties that
define relationships between hardware and software in the system.

6
Approved for Public Release; Distribution Unlimited.

We have based much of our work in the HACMS program on the seL4 oper-
ating system kernel. Both the explicit and implicit characteristics of the system
are guaranteed by the seL4 kernel. seL4 was developed with formal proofs of
correctness of its functional and security properties. These proofs extend from
the requirements all the way down to the seL4 binary implementation.

The seL4 operating system and its proof of correctness are described in
Section 6.

The system implementation corresponds to the model. None of the
previous three elements of assurance really matter unless we have confidence that
the system implementation preserves the properties that have been established
for the architecture and components. For this reason, it is important that our
models be generative. This means that we can automatically generate all of
the code and configuration data needed to build the system directly from the
architecture and component models.

We have implemented a collection of tools and scripts called Trusted Build
that allow us to build the complete binary for a system from its AADL architec-
ture model. The AADL model specifies all the information needed to configure
the seL4 operating system. It also specifies the models or source code needed
to build all components in the system. Given this input, Trusted Build gener-
ates the files, configuration data, and small amounts of “glue code” needed to
compile the system software. The transformations performed are simple enough
that the resulting system can easily be determined to conform to the verified
system models.

The Trusted Build process and tools are described in detail in Section 7.

Together, these four elements provide the basis for claiming that the system
is correct and satisfies its requirements.

Another important part of this project is the demonstration of our technolo-
gies on different vehicles to show that our methods and tools are practical and
effective. We have applied these technologies on a commercially available quad-
copter that would be easily accessible to academic researchers. We also applied
them on an actual military vehicle, Boeing’s Unmanned Little Bird helicopter.

Both platforms have a similar top-level avionics architecture that is useful
as a notional model for the identification of critical assets and threats. Each
platform includes a real-time flight control computer for sensor processing and
flight control actuation, and a mission computer that manages aircraft and
mission state, radio communication with the ground control station, and hosts
mission payloads such as a camera for surveillance. The flight control and
mission computers communicate over an internal bus, and the mission computer
communicates with the ground station over an encrypted data link.

Details about the application of HACMS technologies to these air vehicles
and the flight experiments performed are provided in Sections 8 and 9.

7
Approved for Public Release; Distribution Unlimited.

4 Secure Architecture

The system design and its ultimate implementation in source code will be or-
chestrated by an AADL model and associated tools. The AADL model is also at
the heart of our proof architecture: the verification of a complex system is par-
titioned into a series of sub-verifications integrated into the top-down decompo-
sition of the system in AADL. By partitioning the verification effort into proofs
about each subsystem within the architecture, the analysis scales to handle large
system designs. The approach naturally supports an architecture-based notion
of requirements refinement: the properties of components necessary to prove a
system-level property in effect define the requirements for those components.

Assume-guarantee contracts provide an appropriate mechanism for captur-
ing the information needed from other modeling domains to reason about system-
level properties. In this formulation, guarantees correspond to the component
requirements. These guarantees are verified separately as part of the compo-
nent development process, either by formal or traditional means. Assumptions
correspond to the environmental constraints that were used in verifying the com-
ponent requirements. For formally verified components, they are the assertions
or invariants on the component inputs that were used in the proof process.

The compositional approach we have developed is based on the use of formal
assume-guarantee contracts. Each component in the system model is annotated
with a contract that includes the requirements and constraints that were speci-
fied and verified as part of its development process. We then reason about the
system-level behavior based on the interaction of the component contracts.

A contract specifies precisely the information that is needed to reason about
the components interaction with other parts of the system. Furthermore, the
contract mechanism supports a hierarchical decomposition of the verification
process that follows the natural hierarchy in the system model. This is an
essential aspect of our proof architecture, discussed next.

The goal of the formal analysis tools developed under the HACMS program is
to give developers high confidence that the system they build accurately reflects
the same system that they reason about. Our tools accomplish this by:

• Allowing users to model the system that they intend to build in a language
with clear syntax and semantics (AADL)

• Analyzing this model to verify that it meets user defined specifications

• Generating the software that runs on the target platform directly from
this model

This last point is important because it gives assurance that the model that
was analyzed closely matches the model of the system that is built.

We have developed two different analysis tools to reason about AADL mod-
els. The first tool is the Assume-Guarantee Reasoning Environment. AGREE is
a compositional verification tool that proves behavioral properties about AADL

8
Approved for Public Release; Distribution Unlimited.

models using modern Satisfiability Modulo Theories (SMT)-based model check-
ers. The second tool is called Resolute. Resolute is a language and analysis
tool that generates assurance cases from information embedded in the AADL
models.

There is a small overlap between these tools in terms of what types of prop-
erties they can be used to prove. In general, Resolute is used to prove structural
properties about the model. For example, one may use Resolute to express prop-
erties about what types of components are present in the model or what types
of paths exist for information to traverse through the model. AGREE should
be used to verify logical and behavioral properties about the system, especially
those that involve state or temporal characteristics. For example, AGREE can
be used to prove that a system is only ever in its initial state at power-up.

The next sections describe these two tools in greater detail, and illustrate
their use in two example from the HACMS program. We first show how AGREE
was used to prove that the Unmanned Little Bird obeys behavioral requirements
provided by Boeing. Next we show how Resolute was used to generate an as-
surance case demonstrating that the SMACCMcopter only executes commands
that were sent by an authorized ground station.

4.1 The Assume Guarantee Reasoning Environment

AGREE verifies properties of about a system compositionally. This approach
is designed to exploit the verification effort and artifacts that are already part
of typical software component verification processes. Each component in the
system model is annotated with an assume-guarantee contract that includes
the requirements (guarantees) and environmental constraints (assumptions) that
were specified and verified as part of its development process. We then reason
about the system-level behavior based on the interaction of the component
contracts.

There were two objectives in using this verification approach. The first is to
reuse the verification already performed on components. The second is to enable
distributed, parallel development of components via virtual integration. In this
process, we specify formal component-level requirements, demonstrate that they
are sufficient to prove system guarantees, and then use these requirements as
specifications for suppliers. If the suppliers’ implementations meet these specifi-
cations, we have a great deal of confidence that the integrated system will work
properly.

AGREE was originally developed to reason about systems that execute syn-
chronously. These systems have straightforward translations to Lustre, a syn-
chronous dataflow language interpreted by the model checkers used by AGREE.
However, many systems that are modeled in AADL do not behave synchronously.
Ideally one can implement a communication protocol between components, such
as Physically Asynchronous Logically Synchronous (PALS) [7] that allows the
abstraction of synchronous communication to be sound. However, for many
systems this is not the case.

9
Approved for Public Release; Distribution Unlimited.

In order to model non-synchronous systems we have added additional fea-
tures to the tool to allow users to place components on different clock domains.
Users can then specify constraints to dictate when a component’s clock may tick.
Informally, the value of a component’s clock affects its state in the following way:

• When a component’s clock transitions from false to true (or is set to true
in the initial state) the component’s inputs are “latched”. That is, from
the component’s perspective its inputs do not change until the next time
its clock transitions from false to true.

• When a component’s clock transitions from true to false, its state may
change. The next state depends on the values of its current state, its
latched input values, and the constraints given by its guarantees (provided
that its assumptions have been historically satisfied).

In the remainder of this section we describe how we used AGREE to verify
some important requirements for the Boeing ULB.

4.1.1 Informal Description of Architecture and Behavior

Some of the important security properties of the ULB are related to proper
handling of requests from ground control stations. The ground control station
for the ULB uses the Standardization Agreement (STANAG) 4586 protocol for
controlling both the vehicle and its surveillance camera payload. The mission
computer software includes two Vehicle Specific Modules (VSM) that handle
requests from the ground. The “flight” VSM is responsible for control of the
aircraft and the “camera” VSM is responsible for operation and positioning of
the surveillance camera. For the properties of interest in the ULB, we will not
need to model the behavior of every thread running on the mission computer.
Specifically, we only modeled the behavior of the authentication components
(authin and authout), the Level of Interoperability (LOI) component (loi),
the “Input” component (input), and the Flight Control Computer (FCC) com-
ponent (fcc). Informally, these five components are responsible for the following
tasks:

1. authin: The authentication in component receives incoming STANAG
4586 messages. If the message is determined to be “valid” (it decrypts
and passes authentication) then the message is forwarded to the loi com-
ponent.

2. authout: The authentication out component receives STANAG 4586 mes-
sages from loi component and forwards them to a ground station.

3. loi: The LOI component receives STANAG 4586 messages from various
components and forwards them to other components based on rules defined
in the STANAG 4586 protocol.

4. input: The Input component receives STANAG 4586 messages, parses
them, and then sends relevant information to the fcc component.

10
Approved for Public Release; Distribution Unlimited.

5. fcc: The FCC component is responsible for sending information to the
FCC and receiving status information from the FCC and sending it to
other components.

4.1.2 ULB Modeling Assumptions

The ULB’s mission computer software was modeled in AADL and the Trusted
Build tool was used to generate the actual binary that runs on the vehicle from
this model. Because the software is generated from the model we have high
assurance that any formal properties that we prove about the model should
hold on the real system. We believe the following properties to be true of any
software generated from an AADL model by the Trusted Build:

1. The only communication paths between threads running on the vehicle
are present in the AADL model.

2. The AADL model accurately describes the scheduling context for each
thread (the period of its dispatch).

3. The structure of the data described in the AADL model is the same as
that in the running software.

AGREE attempts to formally reason about the semantics of AADL models.
However, AADL is a very complex language, and defining a formal semantics
for all of its constructs is exceedingly difficult. AGREE tries to strike a balance
by using the scaffolding provided by AADL to constrain the communication
paths between components. AGREE requires the user to specify more com-
plex notions about a model that are hard to generally infer from AADL models.
For example, AGREE assumes by default that connections between components
indicate equality between the variables on the source and destination of the con-
nection. However, AGREE does not automatically generate constraints about
how threads in a system are scheduled. It is up to the user to explicitly list
these constraints in the form of assertions in a component’s implementation.

AGREE is also limited by the specification language it generates (Lustre)
and the model checkers that it uses to prove properties. In order to tractably
model the behavior of the ULB software we made several strong assumptions
about software generated from an AADL model. These assumptions are spelled
out implicitly by the assertions that we introduced to model the execution of
the software’s threads. We explicitly list the assumptions below:

1. Threads do not produce new outputs until they have completed executing.

2. Threads do not preempt each other.

3. Serialization and deserialization of messages between components is im-
plemented correctly.

4. Data sent between components is not queued. If a new message is received
it overwrites the previous message.

11
Approved for Public Release; Distribution Unlimited.

The first assumption is bad in general. The Trusted Build translates thread
event dataports into notifications that may cause another thread to dispatch
before the sending thread completes execution. Furthermore, threads that con-
tain data ports may be preempted and have their outputs read by other threads
before they complete execution.

However we feel that assumption 1 is fine for this model because the compo-
nents that we are modeling only produce a single output event per dispatch. We
do not need to consider executions where a component’s outputs are produced
at different times during execution because a component will only ever produce
a single output during execution.

The second assumption is actually false. Since all of the components that
we reason about in this model run at the same priority, the OS will switch
between executing each currently scheduled thread based on a specified time
slice. However, we believe that this assumption is sound with respect to the
properties that we attempt to prove for this model. Specifically, the properties
that we prove bound the amount of time it takes for events to propagate through
the system. Because the execution times of each component that we modeled is
orders of magnitude smaller than its period, we do not believe that our model
is over constrained enough to eliminate concrete real counterexamples to these
properties. We argue that if we increase the worst case execution time of each
component in our model to be the sum of the worst case execution time of
all threads and we are still able to prove the properties of interest, then the
properties should hold for the actual software.

The third assumption allows us to more easily reason about the types of data
that are transmitted between components for this model. Because the ULB
mission software flattens STANAG 4586 messages into arrays before transmit-
ting them between components, it is difficult for AGREE to reason about the
structure of the data. Instead we place assertions in the main component im-
plementation to constrain the source and destination values of these messages
to be the same. For example, the authin component has a state variable to
represent the message id of an outgoing STANAG 4586 message. We assert
that the value of this variable is the same as a variable representing the message
id of an incoming STANAG 4586 message in the loi component. This allows
us to write expressions about the content of a STANAG 4586 message without
fully describing the algorithm for serializing and deserializing the message in
AGREE. This assumption about equality of these interface variables between
components is made explicit in the AGREE annex of the process implementa-
tion. These assertions are shown in Figure 1.

The final assumption is not true for the real system, but there is no good
way to model queuing behavior in AGREE. We feel that the results that the
tool produces still gives us some assurance of correctness even if this assumption
is not true.

In the remainder of this section we discuss 1) the constraints that are used
to model the scheduling behavior of each component, 2) the contract of each
component, and 3) the properties that we have formalized and checked.

12
Approved for Public Release; Distribution Unlimited.

--constrain the interfaces between components

assert loi.auth_in = authin.auth_in;

assert loi.mid = authin.stanag_mid;

assert input.stanag_mid = loi.mid;

assert loi.to_auth_stanag_mid = authout.stanag_mid;

assert input.sender_mid = loi.from_sender_mid;

Figure 1: Constraints to force variables representing fields of incoming and
outgoing data the same between components

4.1.3 Scheduling Constraints

When the Trusted Build tool generates a binary from an AADL model it uses
certain annotations in the form of AADL properties to determine how to sched-
ule the threads present in the model. However, AGREE does not use these
annotations to automatically generate constraints for the clocks associated with
each thread. Instead a user must manually assert constraints about how the
system executes. There are two reasons why AGREE does not automatically
generate these constraints:

• The exact semantics of the system may be difficult to or impossible to
model accurately in AGREE. This is primarily true for components that
have more than one dispatch. AGREE implicitly assumes that each AADL
component has a single thread of execution. However, the Trusted Build
generates a thread for each input event port (and input event data port)
when a dispatch is specified for that port.

• A user may wish to express a set of constraints that is more abstract than
the true scheduling semantics. This can make it easier to prove properties
that are true for both the abstraction and the true concrete executions of
the model

The constraints shown in Figures 2, 3, and 4 were used to model the schedul-
ing semantics of the components running on the mission computer. In order to
simplify the specification we introduced Boolean variables with suffix clk rise

and clk fall to represent when the clock of a component has a rising or falling
edge. The definition of these variables is shown in Figure 2.

The node rise defined in the AgreeTypes package evaluates to true if and
only if its input was false on the previous step and true on the current step.
Similarly the node fall defined in the AgreeTypes package evaluates to true
if and only if its input was true on the previous step and false on the current
step. On the initial state rise evaluates to true if its input is true and fall

evaluates to true if its input is false.
Figure 3 shows the constraints that we used to dictate when a component

may begin executing (when its clock rises). Threads modeled in AADL may
dispatch under two conditions: 1) the thread receives an event on an input event

13
Approved for Public Release; Distribution Unlimited.

eq authin_clk_rise : bool = AgreeTypes.rise(authin._CLK);

eq authout_clk_rise : bool = AgreeTypes.rise(authout._CLK);

eq loi_clk_rise : bool = AgreeTypes.rise(loi._CLK);

eq input_clk_rise : bool = AgreeTypes.rise(input._CLK);

eq fcc_clk_rise : bool = AgreeTypes.rise(fcc._CLK);

eq authin_clk_fall : bool = AgreeTypes.fall(authin._CLK);

eq authout_clk_fall : bool = AgreeTypes.fall(authout._CLK);

eq loi_clk_fall : bool = AgreeTypes.fall(loi._CLK);

eq input_clk_fall : bool = AgreeTypes.fall(input._CLK);

eq fcc_clk_fall : bool = AgreeTypes.fall(fcc._CLK);

Figure 2: The definition of the variables for component clocks rising and falling

-- non-periodic components

assert loi_clk_rise =

 ((event(authin.stanagout) and authin_clk_fall) or

 (event(input.sender) and input_clk_fall)

);

assert authout_clk_rise = (event(loi.loi2auth) and loi_clk_fall);

-- periodic components

assert condition authin_clk_rise occurs each VSMPkg.commsec_bound;

assert condition input_clk_rise occurs each 100000.0;

assert condition fcc_clk_rise occurs each 100000.0;

Figure 3: Constraints about when a component may begin executing

(or event data) port or 2) the thread is dispatched by a periodic timer. The first
assertion in Figure 3 constrains the loi thread to begin executing if and only if
the authin component sends a STANAG 4586 message to the loi component
or the input component sends a STANAG 4586 message to the loi component.
The second assertion constrains the authout component to only begin executing
when it receives a STANAG 4586 message from the loi component. The third
assertion forces the authin component to run periodically with a constant time
bound1. This bound is the assumed frequency of incoming messages. The final
two assertions constrain the input and fcc components to run periodically at
a rate of 100ms.

The constraints in Figure 3 assert that the components must run when cer-
tain events occur (either a periodic dispatch occurs or an event arrives on an
input). To model the components’ minimum and maximum execution times we
make the additional assertions shown in Figure 4.

The first five assertions guarantee that a component will complete execution

1Initially we assumed these messages would arrive periodically. We can change this pattern
to assume that messages arrive sporadically (with some bound) and still prove the properties
that we are interested in.

14
Approved for Public Release; Distribution Unlimited.

assert whenever input_clk_rise occurs input_clk_fall occurs during [10.0, 50.0];

assert whenever fcc_clk_rise occurs fcc_clk_fall occurs during [10.0, 50.0];

assert whenever authin_clk_rise occurs authin_clk_fall occurs during [10.0, 50.0];

assert whenever authout_clk_rise occurs authout_clk_fall occurs during [10.0, 50.0];

assert whenever loi_clk_rise occurs loi_clk_fall occurs during [10.0, 50.0];

assert whenever authout_clk_rise occurs authout._CLK holds during [0.0, 10.0);

assert whenever loi_clk_rise occurs loi._CLK holds during [0.0, 10.0);

Figure 4: Constraints about when a component may stop executing

during the interval specified by its minimum and maximum execution times.
However, for the authout and loi components we must also assert that their
clocks remain high until at least their minimum execution time. This is because
the semantics of the pattern used in this assertion does not constrain the second
event to only occur during the specified interval. However, for the input, fcc,
and authin components the periodic constraints listed in Figure 3 implicitly
prevent the clock from rising again before its minimum execution time2.

Because the loi component has two possible dispatches we need to add a
couple other constraints to change the typical behavior of its input event data
ports. These constraints are shown in Figure 5.

The AGREE connection statements override the normal semantics of the
specified AADL connection. Normally AGREE asserts the equality of the vari-
ables on the source and destination of each connection. The connection state-
ments in Figure 5 force the event variables associated with the loi.auth2loi

and loi.sender inputs to be cleared whenever the loi component finishes exe-
cuting. Without these connection constraints the contract of the loi component
may behave as if it was dispatched by the wrong component.

Note that we have not included any constraints that prevent components
from executing simultaneously. Clearly since the software is only running on a
single processor components cannot execute in parallel. This constraint could be
expressed by creating a variable that non-deterministically decides which com-
ponent is running (assuming it has be scheduled to run and has not completed
executing). Additional constraints would also need to be added to keep track of
how much execution time elapses while a component is running. While feasible,
it would be very difficult to express these constraints correctly. It would also be
more difficult to reason about this more complex set of constraints. The weaker
set of constraints that we have discussed so far in this section are strong enough
to prove the properties that we are interested in.

4.1.4 ULB Component Contracts

Next we describe the assume-guarantee contracts for several critical components.

The LOI component. The AGREE annex in the LOI component houses the
most detailed contract. The assumptions and guarantees that are present in the

2This is only true because the period is larger than the minimum execution time

15
Approved for Public Release; Distribution Unlimited.

--auth1: port authin.stanagout -> loi.auth2loi;

connection auth1 :

 authin.stanagout = loi.auth2loi and

 event(loi.auth2loi) =

 (if authin_clk_fall then

 event(authin.stanagout)

 else if loi_clk_fall then

 false

 else

 event(authin.stanagout) -> pre(event(loi.auth2loi)));

--vin1: port input.sender -> loi.sender;

connection vin1 :

 event(loi.sender) =

 (if input_clk_fall then

 event(input.sender)

 else if loi_clk_fall then

 false

 else

 event(input.sender) -> pre(event(loi.sender)));

Figure 5: Constraints overriding the normal semantics of the connections to the
loi component

process were derived from the STANAG 4586 specification and from discussions
with Boeing. The LOI component is responsible for keeping track of the current
LOI and the Common Unmanned Control System (CUCS), or ground station
that is in control of the vehicle. It is also responsible for forwarding STANAG
4586 messages to the correct components in the system.

Figure 6 shows definitions for the state variables used in the LOI component
contract. In Figure 7 we define the variable loi approved for message to be
true if the current message type is correct with respect to the LOI that has been
authorized. Whether or not a specific message ID is authorized at a particular
LOI level comes directly from the STANAG 4586 specification. This variable is
used to determine whether or not a message is routed to either of the VSMs or
if the message is ignored. In total, the LOI component makes three guarantees,
as shown in Figure 8.

1. If no message is received, or the message that is received is not an autho-
rization request, then all of the LOI state variables remain the same. This
property is likely implicit to any software implementation of the compo-
nent, but we must make it explicit or else the model checker will choose
non-deterministic values for these variables.

2. If a message is received and it is an authorization request, then it is handled
according to the STANAG 4586 specification. Specifically this guarantee

16
Approved for Public Release; Distribution Unlimited.

--this represents the state of the variable that comes out of the

--auth_in component

agree_input auth_in : AgreeTypes::STANAG_4586_message.cucs_auth_req;

--this represents the message id from the autho component

agree_input mid : int;

agree_input from_sender_mid : int;

eq loi : int;

eq id_in_control : int;

eq none_in_control : bool;

eq control_station : int;

eq to_auth_stanag_mid : int;

--in the actual implementation this should be ascertained

--by checking to see if the CUCS is in the auth_map with

--a specified loi

eq is_auth_loi : bool;

eq loi2 : bool = loi = 2;

eq loi3 : bool = loi = 3;

eq loi45 : bool = loi = 4 or loi = 5;

eq prev_loi : int = 0 -> pre(loi);

eq initial_state : bool =

 loi = 0 and

 prev_loi = 0 and

 none_in_control = true and

 control_station = 0;

Figure 6: Definitions for the state variables of the loi component

17
Approved for Public Release; Distribution Unlimited.

eq loi_approved_for_message : bool = (

 if(mid = 1) then --note that this is an auth request, so we don't route it

 false

 else if(mid = 20 or mid = 21) then

 loi2 or loi3 or loi45

 else if(40 <= mid and mid <= 46) then

 loi45

 else if(mid = 47) then

 loi3 or loi45

 else if(mid = 100) then

 loi45

 else if(mid = 101) then

 loi2 or loi3 or loi45

 else if(102 <= mid and mid <= 108) then

 loi45

 else if(200 <= mid and mid <= 206) then

 loi3

 else if(mid = 207) then

 loi3 or loi45

 else if(300 <= mid and mid <= 306) then

 loi2 or loi3

 else if(mid = 307 or mid = 308) then

 loi3

 else if(400 <= mid and mid <= 404) then

 loi2 or loi3 or loi45

 else if(500 <= mid and mid <= 503) then

 loi2 or loi3 or loi45

 else if(mid = 600) then

 loi3 or loi45

 else if(mid = 700) then

 loi3 or loi45

 else if(800 <= mid and mid < 1000) then

 loi45

 else if(mid = 1000 or mid = 1001) then

 loi3 or loi45

 else if(mid = 1100 or mid = 1101) then

 loi3 or loi45

 else if(1200 <= mid and mid <= 1203) then

 loi2 or loi3 or loi45

 else if(1300 <= mid and mid <= 1303) then

 loi2 or loi3 or loi45

 else if(1400 <= mid and mid <= 1402) then

 loi2 or loi3 or loi45

 else if(mid = 1403) then

 loi3 or loi45

 else if(mid = 1500 or mid = 1501) then

 loi45

 else if(mid = 1600) then

 loi45

 else if(mid = 2000) then

 loi45

 else

 false);

Figure 7: Definition for the loi approved for message component. The defi-
nition of this variable was based on the STANAG 4586 specification

18
Approved for Public Release; Distribution Unlimited.

initially:

 not event(loi2auth) and

 not event(loi2vehicle) and

 not event(loi2wescam) and

 loi = 0 and

 none_in_control = true and

 control_station = 0 and

 prev_loi = 0;

guarantee "No message recieved behavior":

--keep this up to date as new message types are implemented

 (not event(auth2loi) or mid != 1) => (

 initial_state ->

 loi = pre(loi) and

 id_in_control = pre(id_in_control) and

 none_in_control = pre(none_in_control) and

 control_station = pre(control_station)

);

guarantee "CUCS Authorisation Requestion Behavior" :

 event(auth2loi) and mid = 1 => (

 --auth request is message #1

 if(auth_in.csm = 0 and id_in_control = auth_in.cucsid) then

 --relenquish control

 none_in_control = true and

 loi = 0

 else if ((auth_in.csm = 1 or auth_in.csm = 2) and auth_in.rloi > 3) then

 --request control w/ greater loi

 id_in_control = auth_in.cucsid and

 none_in_control = false and

 control_station = auth_in.cs and

 loi = auth_in.rloi

 else

 initial_state ->

 id_in_control = pre(id_in_control) and

 none_in_control = pre(none_in_control) and

 loi = pre(loi) and

 control_station = pre(control_station)

);

guarantee "message routing" :

 if(event(auth2loi) and loi_approved_for_message) then

 if(control_station = 1 and loi = 3) then

 event(loi2wescam) and

 not event(loi2vehicle)

 else

 not event(loi2wescam) and

 event(loi2vehicle)

 else

 not event(loi2wescam) and

 not event(loi2vehicle);

guarantee "acknowledge authorised 800 series and 2000 messages" :

 (event(auth2loi) and

 loi_approved_for_message and

 ((800 <= mid and mid < 900) or mid = 2000)) =>

 (event(loi2auth) and to_auth_stanag_mid = 1400);

guarantee "forward messages from the sender input to the auth" :

 event(sender) =>

 event(loi2auth) and to_auth_stanag_mid = from_sender_mid;

guarantee "nothing is sent to auth if nothing is received":

 not (event(auth2loi) or event(sender)) => not event(loi2auth);

assume "valid auth data" :

 event(auth2loi) =>

 (0 < auth_in.rloi and auth_in.rloi <= 5 and

 0 <= auth_in.csm and auth_in.csm <= 2 and

 0 < auth_in.cucsid and auth_in.cucsid < 255 and

 --right now we model just two control stations

 0 <= auth_in.cs and auth_in.cs <= 1);

Figure 8: The guarantees and assumptions of the loi component

19
Approved for Public Release; Distribution Unlimited.

covers the following scenarios3

(a) If the CUCS who is in control is relinquishing control, then no one is
overriding control, no one is in control, and the LOI is set to zero4.

(b) If a CUCS is requesting control or attempting to override control and
the previous LOI is 3 and the requested LOI is greater than 3, then
the CUCS is granted control.

(c) If a CUCS is requesting control and no CUCS is currently overriding
control, then the CUCS is granted control.

(d) If a CUCS is attempting to override control and no CUCS is currently
overriding control, then the CUCS overrides control.

3. If the message is received and the current LOI is approved for the message
type, then it is forwarded to the appropriate VSM. If the LOI is 3 and the
control station is set to the camera VSM, then the message is forwarded
to the camera VSM.5. Otherwise, the message is forwarded to the flight
VSM. If no message is received or if the message is not approved at the
current LOI then the message is not forwarded to either VSM.

These guarantees could possibly be broken out into smaller requirements
rather than large nested “if then else” blocks. This is more of a choice of
style and readability. The LOI component assumes that the data fields for
authorization messages are in their correct ranges. This assumption should be
satisfied by guarantees from the authin component.

The LOI component implementation provided by Boeing includes logic for
searching through a list of pre-authorized CUCS to determine whether or not
the requesting CUCS can obtain a certain LOI. We did not explicitly model
this with our requirements. Although, it could be trivially added by creating a
boolean variable that indicates whether or not the requesting CUCS was present
in the list and has permissions for the requested LOI. One could even model
the list in AGREE if desired. The best solution might be to just include this
“CUCS is allowed requested LOI” variable in the guarantees and then make it
an obligation on the component designer that lookup works correctly.

The Authentication In component. The contract for the authin compo-
nent is shown in Figure 9. The component guarantees that it only produces a
STANAG 4586 messages on its output if it received a commsec message on its

3The described scenarios for allowing control override are as described in the STANAG
4586 documentation. However, Boeing does not implement this standard as described. They
allow any CUCS to override accesses as long as it meets the correct LOI requirements. We
have simplified this guarantee to meet Boeing’s requirements.

4Setting the LOI to zero is not explicit in the specification, but it needs to be set to some
non-permissive value.

5These restrictions about the control station are based on Boeing’s requirements and not
part of the STANAG 4586 specification. The specification states that camera control com-
mands require LOI of 3.

20
Approved for Public Release; Distribution Unlimited.

eq auth_in : AgreeTypes::STANAG_4586_message.cucs_auth_req;

eq stanag_mid : int;

initially:

 not event(stanagout);

guarantee "we only send a message out if we get one in" :

 event(stanagout) => event(commsecin);

guarantee "valid auth data" :

 (0 < auth_in.rloi and auth_in.rloi <= 5 and

 0 <= auth_in.csm and auth_in.csm <= 2 and

 0 < auth_in.cucsid and auth_in.cucsid < 255 and

 --right now we model just two control stations

 0 <= auth_in.cs and auth_in.cs <= 1);

Figure 9: The contract of the authin component

input. This restricts the component to only output STANAG 4586 messages
if it just received a commsec message. The component also guarantees that
any authorization message that it passes on to the LOI component has valid
data. By valid data we mean that specific fields in an authorization message are
within the ranges specified by the STANAG 4586 specification. This is needed
to prove the assumption listed in the loi component. We use an initially

statement to say that before the component’s clock ticks it has no events being
sent on its STANAG 4586 output.

We represented different STANAG 4586 message types by including multiple
subcomponents within the STANAG 4586 message data implementation. This
is shown in Figure 10. Implementing the message data this way is similar to how
someone would implement it as a structure in the C language using a union for
different structures over the message data field. In the contract for the authin

component we use the variable auth in to specifically reference this portion of
the STANAG 4586 message data field.

The Input component. The input component is responsible for decoding
STANAG 4586 messages and forwarding commands to the FCC component. It
also determines which “mode” the ULB is in. The input component transitions
to various modes based on the different STANAG 4586 messages it receives from
the loi component and information it receives about the state of the vehicle
from the FCC. The input component also reports some status messages back
to the ground station via the loi component.

The contract of the input component is shown in Figure 11. We have
introduced AGREE variables in the input component’s contract to model the
message ID of incoming STANAG 4586 messages, the vehicles mode, a status
flag indicating whether or not a waypoint was sent to the fcc component, the

21
Approved for Public Release; Distribution Unlimited.

data STANAG_4586_message

end STANAG_4586_message;

data implementation STANAG_4586_message.i

 subcomponents

 m_id : data Base_Types::Integer;

 m_data : data STANAG_4586_message_data.i;

end STANAG_4586_message.i;

data STANAG_4586_message_data

end STANAG_4586_message_data;

data implementation STANAG_4586_message_data.i

 subcomponents

 cucs_auth_req : data STANAG_4586_message.cucs_auth_req;

 payload_steer : data STANAG_4586_message.payload_steer;

end STANAG_4586_message_data.i;

data implementation STANAG_4586_message.cucs_auth_req

 subcomponents

 tstamp : data Base_Types::Integer;

 vid : data Base_Types::Integer;

 cucsid : data Base_Types::Integer;

 vtype : data Base_Types::Integer;

 vsubtype : data Base_Types::Integer;

 dlid : data Base_Types::Integer;

 rloi : data Base_Types::Integer;

 cs : data Base_Types::Integer;

 csm : data Base_Types::Integer;

 wait : data Base_Types::Integer;

end STANAG_4586_message.cucs_auth_req;

data implementation STANAG_4586_message.payload_steer

 subcomponents

 tstamp : data Base_Types::Integer;

 vid : data Base_Types::Integer;

 cucsid : data Base_Types::Integer;

 station_num : data Base_Types::Integer;

 azimuth : data Base_Types::Float;

 elevation : data Base_Types::Float;

 hfov : data Base_Types::Float;

 vfov : data Base_Types::Float;

 hsr : data Base_Types::Float;

 vsr : data Base_Types::Float;

 lati : data Base_Types::Float;

 long : data Base_Types::Float;

 alti : data Base_Types::Integer;

end STANAG_4586_message.payload_steer;

Figure 10: Definitions for CUCS Authorization Request and Payload Steer
STANAG 4586 message types

22
Approved for Public Release; Distribution Unlimited.

message id of outgoing STANAG 4586 messages, and a status flag indicating
whether or not an uploaded route is accepted.

The guarantees of the component contract describe the state transitions that
the component makes as well as when information is forwarded to the fcc and
loi components.

--TODO fill in the logic of this component

agree_input stanag_mid : int;
eq mode : int;
eq waypoint_sent_to_fcc : bool;
eq sender_mid : int;
eq route_accepted : bool;

initially:
 mode = VSMPkg.NO_MODE and

 not waypoint_sent_to_fcc;

 guarantee "initially the vehicle starts in NO_MODE":
 (mode = VSMPkg.NO_MODE) -> true;

 guarantee "the vehicle never transtions back to NO_MODE":
 true -> not pre(mode = VSMPkg.NO_MODE) => not (mode = VSMPkg.NO_MODE);

 --this guarantee just abstracts the meaning of a waypoint being sent to the fcc

 guarantee "a waypoint message is only sent to the fcc if something is sent to the fcc" :
 waypoint_sent_to_fcc => event(send2fcc);

 guarantee "whenever a waypoint is sent to the fcc an acknowledgement is sent to the loi" :
 waypoint_sent_to_fcc => sender_mid = 900 and event(sender);

 guarantee "a received route is always accepted" :
 route_accepted = (event(loi2vehicle) and stanag_mid = 801);

 guarantee "if we transition to MANUAL WAYPOINT MODE it is because we saw certain message ids" :
 true -> (mode != pre(mode) =>
 (event(loi2vehicle) and stanag_mid = 42) or
 mode = VSMPkg.WAYPOINT_MODE and pre(mode) = VSMPkg.LAUNCH_MODE);

Figure 11: The contract for the input component

The FCC and Authentication Out components. The contracts for the
fcc and authout components do not contain any assumptions nor any guar-
antees. However, we have defined several AGREE variables in the contracts to
represent state variables of the components. This allows us to specify guaran-
tees in the top level contract about when data is sent from and arrives at these
components.

4.1.5 ULB Properties

Many of the properties of the system reference state variables of the system’s
components (such as the mode variable in the input component). In order to
reference these variables in the system level contract we have created a number of
equations variables that are asserted to be equal to component state variables
in the system implementation. These variables are listed in Figure 12. The
assignment statements used to define in the system implementation are shown
in Figure 13.

23
Approved for Public Release; Distribution Unlimited.

-- state variables

eq current_loi : int;

eq loi_control_overriden : bool;

eq cucs_id : int;

eq stanag_message_received : bool;

eq incoming_stanag_mid : int;

eq auth_in : AgreeTypes::STANAG_4586_message.cucs_auth_req;

eq vehicle_received_stanag : bool;

eq vehicle_stanag_mid : int;

eq stanag_out_receives_ack : bool;

eq mode : int;

eq fcc_mode : int;

eq eo_ir_sensor_valid : bool;

eq waypoint_sent_to_fcc : bool;

eq stanag_out_receives_900 : bool;

eq input_accepts_route : bool;

eq is_hovering : bool;

eq speed : real;

eq altitude : real;

eq in_air : bool;

Figure 12: Definitions for the state variables referenced by the system level
guarantees

Provable Guarantees. The first property that we prove about the system is
that “whenever an authorization message is received and the current LOI is 3
the vehicle accepts the message within a specified latency.” The formalization of
this property is shown in Figure 14. An authorization message is STANAG 4586
message with a message ID of 1. We define the time in which an authorization
message is received as the time that the authin finishes executing and forwards
a STANAG 4586 message to the LOI component with a message ID of 1. The
current LOI is the value of the current LOI in the LOI component at the time
the authorization message is received. We consider an authorization message to
be accepted if the LOI component changes the current LOI and the ID of the
CUCS in control to be the values requested in the authorization message. In
order to prove this property we set the specified latency to 200ms.

The second property that we prove is shown in Figure 15. This guarantee
states that if a navigation command reaches the input component then the

24
Approved for Public Release; Distribution Unlimited.

assign current_loi = loi.loi;

assign auth_in = authin.auth_in;

assign cucs_id = loi.id_in_control;

assign stanag_message_received =
 (false -> authin_clk_fall and
 event(authin.stanagout));

assign incoming_stanag_mid = authin.stanag_mid;

assign vehicle_received_stanag =
 loi_clk_fall and
 event(input.loi2vehicle);

assign vehicle_stanag_mid = input.stanag_mid;

assign waypoint_sent_to_fcc =
 input.waypoint_sent_to_fcc and
 input_clk_fall;

assign input_accepts_route = input.route_accepted;

assign fcc_mode = fcc.mode;

assign speed = fcc.speed;

assign altitude = fcc.altitude;

assign stanag_out_receives_ack =
 authout_clk_rise and
 event(authout.stanagin) and
 authout.stanag_mid = 1400;

assign stanag_out_receives_900 =
 authout_clk_rise and
 event(authout.stanagin) and
 authout.stanag_mid = 900;

assign mode = input.mode;

Figure 13: The assignment statements used to reference state variables in the
top level contract

current LOI is 4. The LOI component guarantees that a navigation message is
only forwarded to the input component if the LOI is 4.

Figure 16 shows properties that depend only on the state machine described
by the guarantees of the input component. The state of the mode variable in
the input component depends on the previous mode and any STANAG 4586
messages that are received. Currently we do not have a complete description of
the state machine so we are only able to prove two of the properties. To prove
the latter two properties we would need to strengthen the contract of the input

component to describe in more detail how state transitions occur.

25
Approved for Public Release; Distribution Unlimited.

guarantee "loi greater than three always gets control" :

 whenever

 received_auth_message_3

 occurs

 acted_on_auth_message

 occurs during [0.0, VSMPkg.system_latency];

Figure 14: The guarantee that whenever an authorization message is received
and the current LOI is 3 the vehicle accepts this message within a specified
latency

guarantee "Do not accept NAV commands with loi less than 4":

 vehicle_received_stanag and

 vehicle_stanag_mid >= 800 and

 vehicle_stanag_mid < 1000 =>

 current_loi >= 4;

Figure 15: The guarantee that if the vehicle input receives a navigation com-
mand then the current LOI is 4

guarantee "The aircraft is initially in NO_MODE" :
 (mode = VSMPkg.NO_MODE) -> true;

guarantee "The aircraft never transitions back into NO_MODE" :
 true -> mode != pre(mode) => mode != VSMPkg.NO_MODE;

guarantee "The aircraft can only enter SLAVE2SENSOR mode from WAYPOINT or LOITER mode" :
 true ->

 (mode = VSMPkg.SLAVE2SENSOR_MODE and not pre(mode = VSMPkg.SLAVE2SENSOR_MODE) =>

 pre(mode = VSMPkg.WAYPOINT_MODE) or
 pre(mode = VSMPkg.LOITER_MODE));

guarantee "The aircraft can only enter MANUAL_WAYPOINT mode from WAYPOINT or LOITER mode":
 true ->

 (mode = VSMPkg.MANUAL_WAYPOINT_MODE and not pre(mode = VSMPkg.MANUAL_WAYPOINT_MODE) =>
 pre(mode = VSMPkg.WAYPOINT_MODE) or
 pre(mode = VSMPkg.LOITER_MODE));

Figure 16: Guarantees about the state machine in the input component.

Possible Counterexamples. There were several properties that we assumed
were true about this model, but for which the tool was able to produce coun-
terexamples. The first of these properties is shown in Figure 17. The guarantee
states that the vehicle cannot transition into MANUAL WAYPOINT MODE unless the
current LOI is 4 or 5. Intuitively this should be true because in order to transi-
tion into MANUAL WAYPOINT MODE the LOI component must forward a STANAG
4586 message that requires an LOI of at least 4.

However, the tool produces a counterexample where the following scenario
occurs:

1. The current LOI is 4 and the LOI component receives a STANAG 4586

26
Approved for Public Release; Distribution Unlimited.

guarantee "The aircraft requires LOI of 4 or 5 in order to transition into MANUAL_WAYPOINT_MODE":
 true -> mode != pre(mode) and mode = VSMPkg.MANUAL_WAYPOINT_MODE =>

 current_loi = 5 or
 current_loi = 4;

Figure 17: A guarantee about mode transitions under a certain LOI

message with ID #42. Because the current LOI is 4 this message is for-
warded to the input component.

2. The input component receives this STANAG 4586 message with ID #42
message and begins transitioning its mode.

3. Before the input component finishes the loi component receives a request
to relinquish control (setting LOI to 0).

4. The input component completes execution and the vehicle is now transi-
tions to MANUAL WAYPOINT MODE with LOI 0.

While this counterexample does not seem spurious, it might instead illustrate
an error in our formalization of the property. We probably do not care about
the value of the LOI the instant that the mode transition occurs. Instead we
care that the mode transition occurs in response to a STANAG 4586 message
that was received while the LOI was 4 or 5.

The other property that produces a counterexample is shown in Figure 18.
The tool produces a counterexample where the following scenario occurs:

1. The authin component receives a STANAG 4586 message and forwards
it to the loi component.

2. The loi component has LOI of 4 and forwards the message to the input

component.

3. The loi component forwards a message to the authout component. This
“erases” the event signal from the loi component to the input component.

4. The input component executes without receiving the route message.

The reason that the tool produces this counterexample is because we do not
accurately model the queuing behavior of the real software. In our AGREE
model previous messages are overwritten by new messages.

4.2 Resolute

While AGREE is used to reason precisely about how the system behaves over
time, Resolute is useful for proving semi-formal properties of a model that do
not require reasoning about the system state.

In an ideal world all requirements for embedded control systems would lend
themselves to a straightforward formalization. However, it can often be difficult

27
Approved for Public Release; Distribution Unlimited.

eq route_message_received : bool =
 stanag_message_received and
 (current_loi = 4 or current_loi = 5) and
 (incoming_stanag_mid = 801);

guarantee "A route can be uploaded to the aircraft regardless of state (but correct LOI)":
 whenever
 route_message_received
 occurs

 input_accepts_route
 occurs during [0.0, VSMPkg.system_latency];

Figure 18: A guarantee about routes being uploaded to the aircraft

or impossible to express many requirements with formal precision. Resolute
is a good tool for capturing and reasoning about these types of requirements.
Resolute reasons about the structure of an AADL model. Users express claims
about how a model is constructed in a formal language. The tool then verifies
whether a given model satisfies these claims. If the claims can be satisfied,
the tool produces an assurance case whose structure mirrors that of the AADL
model and the stated claims. Otherwise, it produces output showing exactly
where in the model the claims could not be satisfied.

In the remainder of this section we describe Resolute in detail and give
examples of how it was used in the HACMS project.

4.2.1 The Resolute Language

Resolute is a language and tool for constructing assurance cases based on AADL
models. Users formulate claims and rules for justifying those claims, which
Resolute uses to construct assurance cases. Both the claims and rules are pa-
rameterized by variable inputs which are instantiated using elements from the
models. This creates a dependence of the assurance case on the AADL model
and means that changes to the AADL model can result in changes to the as-
surance case. This also means that a small set of rules can result in a large
assurance case since each rule may be applied multiple times to different parts
of the architecture model.

We have implemented Resolute as an AADL annex using the OSATE [8]
plug-in for the Eclipse Integrated Development Environment (IDE). Using OS-
ATE, users are able to interact with Resolute in the same environment in which
they develop their AADL models. In addition, the resulting framework provides
on-the-fly syntactic and semantic validation. For example, references to AADL
model elements in the Resolute annex are linked to the actual AADL objects
in the same project so that undefined references and type errors are detected
instantly.

The syntax of Resolute is inspired by logic programming. Each rule defines
the meaning and evidence for a claim. The meaning of a claim is given by a text
string in the rule which is parameterized by the arguments of the claim. The
body of the rule consists of an expression which describes sufficient evidence to
satisfy that claim. Claims may be parameterized by AADL types (e.g., threads,

28
Approved for Public Release; Distribution Unlimited.

systems, memories, connections, etc.), integers, strings, Booleans, or sets.

4.2.2 Claims and Rules

In Resolute, each claim corresponds to a first-order predicate. For example, a
user might represent a claim such as “The memory of process p is protected
from alteration by other processes” using the predicate memory protected(p

: process). The user specifies rules for memory protected which provide
possible ways to justify the underlying claim. Logically, these rules correspond
to global assumptions which have the form of an implication with the predicate
of interest as the conclusion. For example, an operating system such as Data61’s
secure microkernel seL4 might enforce memory protection on its own [9]:

memory_protected(p : process) <=

(property_lookup(p, OS) = "seL4")

Here we query the architectural model to determine the operating system for the
given process. Another way to satisfy memory protection may be to examine all
the other processes which share the same underlying memory component. Note
that in AADL a “process” represents a logical memory space while a “memory”
represents a physical memory space.

memory_protected(p : process) <=

forall (mem : memory). bound(p, mem) =>

forall (q : process). bound(q, mem) =>

memory_safe_process(q)

In the above rule, we are querying the architectural model via the universal
quantification over memory and process components. Note that quantification
is always finite since we only quantify over architectural components and other
finite sets. The built-in bound predicate determines how software maps to hard-
ware. In addition, we call another user defined predicate memory safe process

to determine if a process is memory safe. In the resulting assurance case, the
claim that a process p is memory protected will be supported by subclaims
that all processes in its memory space are memory safe. Thus there will be one
supporting subclaim for each process in the memory space.

The above rules for memory protection illustrate a couple of ways to justify
the desired claim, but they do not constitute a complete description of mem-
ory protection nor a complete listing of sufficient evidence. This is a critical
point in Resolute: rules are sufficient, but not complete. The negation of a
claim can never be used in an argument (i.e., in logic programming parlance,
we do not make a closed world assumption). This is a manifestation of the
traditional phrase “absence of evidence is not evidence of absence.” Instead,
if the user truly wants to use a claim in a negative context, that notion must
be formalized as a separate positive claim with its own rules for what consti-
tutes sufficient evidence. For example, one may be interested in a claim such as
memory violated which has rules which succeed only when a concrete memory
violation is detected.

29
Approved for Public Release; Distribution Unlimited.

only_receive_decrypt(x : component) <=

** "The component " x " only receives messages that pass Decrypt" **

forall (c : connection).

(parent(destination(c)) = x) =>

is_sensor_data(c) or only_receive_decrypt_connection(c)

only_receive_decrypt_connection(c : connection) <=

** "The connection " c " only carries messages that pass Decrypt" **

let src : component = parent(source(c));

unalterable_connection(c) and (is_decrypt(src) or only_receive_decrypt(src))

Figure 19: Example Resolute rules

4.2.3 Computations

Separate from claims, Resolute has a notion of computations which are complete
and can thus be used in both positive and negative contexts. Usually these com-
putations are based on querying the model. For example, the bound predicate
above is a built-in computation which returns a Boolean value and is used in a
negative context in the rule for memory protected. Users may also introduce
their own functions which are defined via a single equation such as

message_delay(p : process) =

sum({thread_message_delay(t)

for (t : thread) if bound(t, p)})

Here sum is a built-in function and thread message delay is another user-
defined function.

Computations may contribute to an assurance case, but they do not appear
in it independently since they do not make any explicit claim. Instead, a user
may wrap claims around computations as needed, for instance a claim such as
“message delay time for p is within acceptable bounds” using the message delay

function.
Since claims cannot be used negatively while computations can, claims may

not appear within computations. This creates two separate levels in Resolute:
the logical level on top and the computation level beneath it. The logical level
determines the claims, rules, and evidence used in the assurance case argument,
while the computation level helps determine which claims are relevant in a par-
ticular context and may directly satisfy some claims by performing computations
over the model.

External analyses are incorporated in Resolute as computations. An external
analysis is run each time the corresponding computation is invoked. This is
useful for deploying existing tools for analyzing properties such as schedulability
or resource allocation.

Figure 19 shows an example of two Resolute rules. The meaning of the claim
is given by the associated text, for example only receive decrypt(x) means:

30
Approved for Public Release; Distribution Unlimited.

bound(logical : component, physical : component) : bool =

memory_bound(logical, physical) or

connection_bound(logical, physical) or

processor_bound(logical, physical)

memory_bound(logical : component, physical : component) : bool =

has_property(logical, Deployment_Properties::Actual_Memory_Binding) and

member(physical, property(logical, Deployment_Properties::Actual_Memory_Binding))

connection_bound(logical : component, physical : component) : bool =

has_property(logical, Deployment_Properties::Actual_Connection_Binding) and

member(physical, property(logical, Deployment_Properties::Actual_Connection_Binding))

processor_bound(logical : component, physical : component) : bool =

has_property(logical, Deployment_Properties::Actual_Processor_Binding) and

member(physical, property(logical, Deployment_Properties::Actual_Processor_Binding))

Figure 20: Definition of bound in the Resolute standard library

“The component x only receives commands that pass Decrypt.” An instanti-
ated version of this string is what will appear in the corresponding assurance
case. The built-in functions like destination and source return the feature to
which a connection is attached, and the built-in parent then gives the compo-
nent which holds that feature. These rules also make use of other user-defined
claims such as is sensor data and unalterable connection which talk about
the content and integrity of connections. Note that the two claims shown in the
figure are mutually recursive. Together, these claims walk over a model cata-
loging the data-flow and constructing a corresponding assurance case.

Many claims, rules, and functions will appear within a Resolute annex li-
brary which is typically a top-level file in an AADL project. These libraries
define the rules for all claims in Resolute, but do not make any assertions about
what arguments the claims should hold on. In addition, Resolute comes with a
standard library of predefined functions for common operations. For instance,
the bound predicate for determining if a logical component is bound to a specific
physical component is part of the standard library and defined as in Figure 20.

In Phase I of HACMS we prototyped our claims on a simplified AADL model
of the SMACCMcopter architecture. This allowed us to test our requirements
against a baseline version of the architecture before we started development. A
simplified picture of this architecture is shown in Figure 21. Figure 22 shows
a portion of a successful assurance case generated by Resolute for this model.
Each claim is shown on a single line. Supporting claims are shown indented one
level beneath the claim they support. A check next to a claim indicates that it
is proven. Figure 23 shows a portion of a failed assurance case. An exclamation
point indicates that a claim has failed. In this case, the AADL model includes a
safety controller which is allowed to bypass the Decrypt component and directly
send messages to the UAV. This bypass is detected Resolute. In fact, the only
difference between Figures 22 and 23 is the AADL model. The claims and rules
are identical in both.

31
Approved for Public Release; Distribution Unlimited.

Wireless

network

Comm

Unknown

credentials

command
Attacker

Attacker A
Comm

Key

Actuator

Control

Laws

Validate

Vehicle

Mission computer Flight computer

Internal bus

Decrypt

Encrypt

Key

command
User

Ground Station

Figure 21: A simplified picture of the software architecture for the SMACCM-
copter. The red line illustrates the path that valid commands take to reach the
motor controller.

Figure 22: Example of a successful assurance case from Resolute

Figure 23: Example of a failed assurance case from Resolute

32
Approved for Public Release; Distribution Unlimited.

Although the real SMACCMcopter AADL model contained seven times as
many software components as the simplified model, very few of the Resolute
rules needed to be changed for the assurance case to hold true for the real
model. The most significant change was that the true UAV model has data-flow
cycles, and therefore the simple recursive rules used in Figure 19 are insufficient.
Instead, we created more sophisticated rules which recursively computed the
set of components which were reachable prior to passing through the Decrypt
component, and then we justified the claim that the given set was complete and
did not have access to the motor control component.

Assurance cases as shown in Figures 22 and 23 are interactive in the Resolute
user interface. The user can navigate through the assurance case and select a
claim to navigate to locations in the model relevant to the claim. For example,
the user can navigate to any of the AADL components referenced as input
parameters to the claim or can navigate to the rule that defines the claim. This
makes it much easier to figure out why an assurance case is failing or why a
particular part of the assurance case has a given structure.

An assurance case generated by Resolute is also a stand-alone object. After
construction, it no longer depends on Resolute or even the AADL model, though
it of course still refers to elements of the model. This means the assurance case
can be used as an independent certification artifact. In addition, Resolute allows
assurance cases to be exported to other formats and assurance case tools such
as CertWare [10].

33
Approved for Public Release; Distribution Unlimited.

5 Secure Components

Recent reports of car-hacking via software flaws [11] and insecure low-level net-
working code [12] point toward the need for safe low-level programming lan-
guages. Languages like C or C++ are still the gold standard in embedded
system development given the low-level control they provide in terms of mem-
ory usage and timing behavior. Unfortunately, these languages provide little
support for creating high assurance software—they are unsafe and unanalyz-
able.

In this section, we describe two embedded domain-specific languages (EDSLs)
developed for HACMS, Ivory and Tower. These languages were ultimately used
to re-implement all of the flight control functions in the research vehicle software
(referred to as SMACCMpilot) as well as other critical control and communica-
tion functions in the ULB.

5.1 Ivory

The language we developed for generating safe embedded C code is called Ivory.
Ivory compiles to restricted C code suitable for embedded programming. Ivory
shares the goal of other “safe-C” languages and compilers like Cyclone [13] and
Rust [14]. Our main motivation for not using those languages is our desire
for an EDSL providing convenient, Turing-complete, type-safe macro-language
(Haskell) to improve our productivity.

There have also been some “safe-C” EDSLs including Atom [15], Copilot [16],
and Feldspar [17]. The most significant difference between these languages and
Ivory is that they are focused on pure computations (e.g., Feldspar is a DSL for
digital signal processing), and do not provide convenient support for defining
in-memory data-structures and manipulating memory. Ivory is designed to be
a EDSL that can be used for writing safe memory-manipulating embedded C.

Ivory also makes contributions from a programming language perspective,
namely in its expressiveness and type-safety. We overview each, then present a
small example, to give the reader a feel for the language.

Expressiveness Regarding the expressiveness, Ivory has a variety of useful
features, including:

• Memory-areas: the ability to allocate stack-based memory and manipulate
both local and global memory areas [18].

• Product types: C structs with well-typed accessors.

• FFI : typed interfaces for calling arbitrary C functions.

• Bit-fields: support for typed manipulation of bit-fields and registers [19].

We built Ivory with some limitations to simplify generating safe C programs.
Ivory does not support heap-based dynamic memory allocation (but global vari-
ables can be defined). C arrays are fixed-length. There is no pointer arithmetic.

34
Approved for Public Release; Distribution Unlimited.

Pointers are non-nullable. Union types are not supported. Unsafe casts are
not supported: casts must be to a strictly more expressive type (e.g., from an
unsigned 8-bit integer to an unsigned 16-bit integer) or a default value must be
provided when the cast is not valid. The most common unsafe C cast is not
possible: no void-pointer type exists in Ivory.

In Ivory, these have not been limiting factors, particularly because of the
power of using Haskell as a macro system. For example, while arrays must be
of fixed size at C compile-time, we can define a single Haskell function that is
polymorphic in the array size that becomes instantiated at a particular size at
each use site.

Type-checking Ivory’s domain-specific type checking focuses on guarantee-
ing memory safety and helping programmers reason about their programs’ non-
functional behaviors more easily.

In addition, Ivory programs have an effects type associated with them, im-
plemented as a parameter to the Ivory monad. There are three kinds of effects
tracked:

• Allocation effects: whether a program performs (stack-based) memory
allocation as well as whether pointers point into global or stack memory.

• Return effects: whether a program contains a return statement.

• Break effects: whether a program contains a break statement.

Allocation effects allow memory allocation to be restricted and tracked at the
type level. For example, from a program’s type alone, we can determine whether
it allocates memory on the stack, making stack usage easier to track. More
importantly for memory-safety, allocation effects also ensure Ivory programs
contain no dangling pointers: it is a type error to return a pointer to locally-
allocated memory.

Return and break statements fundamentally affect control-flow and can re-
sult in unexpected behavior by breaking out of the current block or returning
from a function. For example, in a top-level while loop implementing a real-time
operating system task, there should be no break or return statements; we can
enforce this with the type system. Tracking these effects is novel, we believe,
and particularly important in the context of an EDSL in which programs are
generated and manipulated heavily in the host language.

In an EDSL, we have at least two options for type checking: (1) write
a domain-specific type-checker in Haskell (relying on Haskell’s type-system
just for macro-language type-checking), or (2) embed the domain-specific type
checker into Haskell’s type system.

We were motivated to pursue option (2) because it allows us to discover
problems sooner in the development cycle. In the case of option (1), we only
find out about problems in the program’s Abstract Syntax Tree (AST) during
code generation. Option (2) ensures that all macro and library code is typed
correctly, independent of its use in the generated code.

35
Approved for Public Release; Distribution Unlimited.

When we began developing Ivory, our hypothesis was that recent type-system
extensions to the Glasgow Haskell Compiler (GHC) make it feasible to embed
the invariants necessary to ensure memory-safe C programming into the type-
system [20]. From a practical standpoint, Ivory demonstrates just how far the
type-system has come, allowing us to replicate the type safety of compilers like
Cyclone, etc.

We do not have space to adequately describe Ivory’s type system; we leave
that to a forthcoming paper. Here we will note that the embedding depends on
the use of data kinds [21], type families [22], and rank-2 polymorphism [23].

Ivory example We present a small example of Ivory code. The example
omits many features of the language, but should give the reader a feeling for it.

Consider Figure 24, in which an Ivory program is shown, as well as the
corresponding generated C sources and headers (making a few syntactic changes
to the C for readability, not relevant to the example).

First, we define a struct (or product type) using a quasiquoter that is part
of the Ivory language. The Ivory code generated by Template Haskell [24]
constructs a struct definition containing two fields consisting of an unsigned
byte and an array of 10 signed 16-bit integers. Template Haskell also constructs
a new type-level literal, fooStruct, that is unique to the defined struct. The
Stored type constructor signifies that the value is allocated in-memory [18].
The Array type constructor takes a type-level natural number as a parameter
(available as a Glasgow Haskell Compiler extension) to fix the size of an array.

A procedure, corresponding to a C function, has a type of the form

Def (params :-> out)

where params are the procedure’s parameter types and out is its return type.
The procedure setBaz takes two arguments and its return type is unit, corre-
sponding to the void type in C. The types of the procedure’s arguments are
types in a type-level list: the first argument is a reference, a non-null pointer
by construction, to a struct, and the second argument is a signed 16-bit in-
teger. The Ref type constructor takes a scope type and a memory-area type.
The scope type denotes either stack-allocated scope, or global (and statically
allocated) scope. In the example, we expect global scope.

Procedures are defined with the proc operator that takes a string, corre-
sponding to the name of the function that will be generated in C, and a function
from the procedures arguments to its body. The body of the function is an Ivory
program that sets each element in the baz field of the struct with the value val

passed to it, leaving the bar field unchanged.
Following [18], Ivory guarantees memory-safe array access in the type system

since array lengths are statically known. Ivory provides an arrayMap operator
that applies a function to each valid index into the array. The function applied
in this case is a store operation that takes a reference to a memory area, a
value, and stores the value in the area. It is a type-error if the value’s type and
memory-area’s type do not match.

36
Approved for Public Release; Distribution Unlimited.

[ivory|

struct fooStruct

{ bar :: Stored Uint8

; baz :: Array 10 (Stored Sint16)

}
|]

setBaz :: Def ([Ref Global (Struct ‘‘fooStruct’’), Sint16] :-> ())

setBaz = proc ‘‘setBaz’’ $ \ref val -> body (prgm ref val)

prgm :: Ref Global (Struct ‘‘fooStruct’’) -> Sint16 -> Ivory eff ()

prgm ref val = arrayMap $ \ix ->

store ((ref ∼> baz) ! ix) val

// foo_source.c

#include ‘‘foo_module.h’’

void setBaz(struct fooStruct* n_var0, int16_t n_var1) {
for (int32_t n_ix0 = (int32_t) 0

; n_ix0 <= (int32_t) 9

; n_ix0++) {
n_var0->baz[n_ix0] = n_var1;

}
}

// foo_module.h

struct fooStruct {
uint8_t bar;

int16_t baz[10U];

};

void setBaz(struct fooStruct* n_var0, int16_t n_var1);

Figure 24: Example Ivory module definition

37
Approved for Public Release; Distribution Unlimited.

The operation (ref ∼> baz) takes the struct reference and returns a refer-
ence to the baz field. The bang (!) operator takes a reference to an array, an
index, and returns a reference to the value at that index. The safety of indexing
is maintained since the operator has the type

(!) :: Ref s (Array len area) -> Ix len -> Ref s area

tying the length of the array to the maximum index. For example, an index
type (Ix 10) supports index values from 0 to 9.

The example only shows a small part of Ivory’s language and does not exhibit
some of its additional features to prevent unsafe programs. For example, if
setBaz had allocated stack memory and created a reference to it, then tried
to return the reference (creating a dangling pointer), it would result in a type
error.

Additionally, for application-specific properties that cannot be type-checked,
Ivory permits the insertion of assertions, assumptions on arguments, and re-
quirements on return values. Ivory also automatically inserts checks for arith-
metic underflow/overflow and division-by-zero. All these checks are useful dur-
ing testing and we have used them to assist with static analysis and model-
checking the generated C.

5.2 Tower

In many embedded systems, programmers produce an entire system of software
that interacts with multiple input and output peripherals concurrently using a
real-time operating system (RTOS). Typical RTOSes provide just a few low-level
locking and signaling primitives for scheduling. Since microcontrollers do not
have the virtual memory management units (MMUs) found on larger processors,
the RTOS kernel cannot protect any system memory against badly behaved
user code. These restrictions put significant burden on programmers: they
must ensure all tasks, and all communication between tasks, are implemented
correctly.

During our initial development of SMACCMpilot, we found ourselves gener-
ating high-quality C functions from Ivory, which guarantees memory-safety of
the generated code. But whenever we needed “glue code” to implement inter-
process communication, initialize data-structures, read the system clock, lock
the processor, etc., we were forced to abandon our well-typed world and te-
diously use C directly via Ivory’s foreign function interface. Furthermore, the
hand-written C is OS-specific, meaning it would have to be rewritten for any
OS port.

Extending Ivory The hand-written glue code was ruining both our produc-
tivity and our assurance story. We wanted a language to describe the structure
of the glue code that would generate it for us. Our key insight was that such
an EDSL could be built as a macro over Ivory, using Ivory’s code-generation
facilities, without losing anything.

38
Approved for Public Release; Distribution Unlimited.

blinkTower :: Tower ()

blinkTower = do

(tx,rx) <- channel

task ‘‘blink’’ (blinkTask tx)

task ‘‘lightswitch’’ $

onChannel rx $

\lit -> do

ifte_ lit (turnOn light)

(turnOff light)

blinkTask :: ChannelSource (Stored IBool)

-> Task ()

blinkTask chan = do

tx <- withChannelEmitter chan

res <- taskLocal

onPeriod period $ \now -> do

res <- call blinkFromTime now

emit_ tx res

where period = Milliseconds 100

"blink" task

periodic @ 100ms

emitter

"lightswitch" task

event handlerIBool

Figure 25: Tower (top), Task (middle), Graphviz output (bottom)

From these ideas, the Tower EDSL was born. Tower is an extension to
the Ivory language that is designed to deal with the specific concerns of multi-
threaded software architectures. Tower still allows the programmer to use all the
low-level power of Ivory for general programming, but uses a separate language
for describing tasks and the connections between them. It took about 4 engineer-
months and 3k lines of Haskell code to build Tower. This is one of the great
productivity features of working with EDSLs: if we discover the language we
built is difficult, tricky, or unsafe for solving a particular problem, we can extend
that language with a library without modifying the compiler.

In Tower, one specifies tasks and communication channels, and the Tower
compiler generates correct Ivory implementations, as well as architecture de-
scription artifacts. Tower hides the dangerous low-level scheduling primitives
from the user, and keeps type information for channels (i.e., the datatype of the
channel message), expressed as Ivory types, in the Haskell type system.

39
Approved for Public Release; Distribution Unlimited.

Tower allows the programmer to describe a static graph of channels and
tasks. For the intended use case in high assurance systems, a static configura-
tion of channels and tasks simplifies reasoning about memory requirements and
permits the system to be analyzed for schedulability.

Multiple interpreters In the Tower front end, the programmer specifies a
system that can be compiled to multiple artifacts.

Tower is designed to support different operating systems via a swappable
backend. Since all code that touches operating system primitives is generated
by Tower, it is easy for the user to specify a system and compile it for different
operating systems. Tower supports both the open-source FreeRTOS [25] as well
as the formally-verified eChronos RTOS [26] developed by Data61.

Tower also has a backend which generates a system description in AADL [27].
We also built a backend for the Graphviz language to generate graphs of tasks
and channels. These output formats make it possible to visualize, analyze, and
automatically check properties about the system.

Tower example In Figure 25, we sketch a small Tower example that is repre-
sentative of a device driver that blinks an LED. Small simplifications to Tower
have been made in the code, eliding details relating to code generation and
backend selection.

In the first column of the figure, the communication architecture is defined
in the Tower monad. The program initializes a unidirectional channel between
two tasks as well as the tasks themselves. A channel, or queue, consists of
transmit (tx) and receive (rx) endpoints, respectively. The blinkTask task is
an RTOS task that will send output to the lightswitch RTOS task via an
RTOS-mediated channel. The lightswitch task toggles the LED based on the
incoming Boolean values. (In the third column, a graph of the tower program is
shown, generated from the Tower compiler’s Graphviz dot output, showing the
architectural structure of the two tasks as well as the queue between them.)

To conserve space, we only define blinkTask. The second column contains
the definition of blinkTask, defined in the Task monad. The blinkTask task
takes a channel source and returns a task. The task first initializes an emitter for
the channel then creates a reference to allocated memory that is private to the
task. Every 100 milliseconds, an Ivory action is taken. In this case, the action
is to call Ivory function blinkFromTime that is executed whenever the task is
enabled (we elide the implementation of blinkFromTime in this example). The
boolean value res is then emitted on the channel.

40
Approved for Public Release; Distribution Unlimited.

6 Secure Operating System

An operating system (OS) is system software that manages computer hardware
and software resources and provides common services for computer programs
such as scheduling tasks and managing access to memory. From an assurance
standpoint, the main objectives of the OS are:

• to provide the software platform and abstractions for EDSL-generated
components to run in and communicate with the rest of the system,

• to enforce the high-level software system architecture specified in AADL,

• and to provide the formal base-level guarantees that enable higher-level
reasoning and compositional verification.

The OS-level theorems discharge assumptions we make on the model level,
as well as individual component assume and guarantee conditions by reducing
reasoning to access control configurations. The formal verification of the OS
connects both to the architecture-level description of the system, and the verifi-
cation of components. The SMACCM project relies on two different operating
systems: seL4 and eChronos.

seL4 is a microkernel-based operating system that provides isolation guaran-
tees and is used on the mission computers of both the SMACCMcopter and the
ULB. The seL4 operating system consists of the seL4 microkernel, the Compo-
nent Architecture for Microkernel-based Embedded Systems (CAmkES) compo-
nent platform, and a collection of user-level device drivers and OS services such
as network stack, file system and virtual machine monitor (VMM). The seL4
microkernel has formally verified functional correctness, and has formally ver-
ified isolation properties, including confidentiality and integrity. CAmkES can
generate proofs for architecture correctness and correctness of glue code. For
the user-level system components, we use code synthesis and code and proof
co-generation to provide assurance of their correctness.

eChronos is a real-time operating system that runs on highly resource-
constrained hardware, does not provide isolation guarantees, and is used on
the flight computer of the SMACCMcopter. We have verified safe execution,
i.e. the absence of undefined behavior, in eChronos’ C code by model checking,
we have constructed an abstract, but detailed formal specification of eChronos,
including its fine-grained interrupt concurrency, and we have proved the cor-
rectness of its scheduling mechanism on this model. The fact that eChronos
runs on microcontrollers without hardware memory protection means that it is
not possible to provide isolation guarantees as in seL4. We therefore use type
and memory safe languages (such as Ivory) and static analysis to ensure that
user code is well-behaved.

The OS work falls into two broad categories: the OS kernel, such as seL4
and eChronos, and user-level OS components on top of the kernel that deliver
services to control components, such as network protocol stacks, file systems,
and device drivers.

41
Approved for Public Release; Distribution Unlimited.

6.1 seL4 Microkernel

seL4 is a third-generation microkernel that builds on the strengths of the L4 mi-
crokernel architecture, such as small size, high performance, and policy freedom,
and extends it with a built-in capability model, which provides a mechanism to
enforce security guarantees at the operating system and application levels.

seL4’s implementation is formally proved correct relative to its specification
using mathematical machine-checked proofs in the higher order logic instance of
the Isabelle logical framework (Isabelle/HOL) [28]. It is also proved to enforce
strong security properties, and its operations have proved safe upper bounds on
their worst-case execution times.

As such, seL4 provides the secure software base upon which further secure
software layers (system and application services) can be composed to form a
trustworthy embedded system.

During the SMACCM project, seL4 was ported to several new platforms
(ARM Cortex A15, and NVIDI Tegra K1), extended with formally verified vir-
tualization functionality on the ARM platform (i.e. ARM-hyp), as well as the
x64 platform. The formal verification in the project was for functional correct-
ness of the C code in ARM-hyp, and of the executable, design-level specification
in x64.

6.2 seL4 Verification

6.2.1 Background: Verified seL4 properties

The past formal verification of the seL4 microkernel includes full functional cor-
rectness down to the C implementation level [29], as well as high-level security
theorems, in particular integrity and authority confinement [30]. We exploit
the functional correctness theorem to provide assurance about the behavior of
user-level components interacting with the kernel. We exploit the integrity and
authority confinement theorems to discharge architecture-level assumptions on
untrusted or less trusted components with very low overhead. The seL4 kernel
also comes with a tool set for the automatic initialization of user-level com-
ponents, in particular initialization of the systems access control configuration.
Research conducted independently of this project has delivered a verified version
of this tool that we can use to enforce the system-level architecture boundaries
described in CAmkES and AADL using kernel-level access control. Further re-
search that was already ongoing on seL4 includes a non-interference theorem
that could be used to reason about secrecy, work on extending the formal verifi-
cation down to the binary level that allows us to remove the compiler and linker
from the chain of trusted tools, and extension of the verification to include
existing hard real-time features.

The formal verification of seL4 is based on a precise formal semantics of a
large, practical subset of C and a reasoning framework for Hoare-Logic and re-
finement in higher-order logic (Isabelle/HOL), which can be re-used and applied
for verifying component implementations, such as control components generated

42
Approved for Public Release; Distribution Unlimited.

from Ivory, or manually written and verified library components. The corre-
sponding C-to-Isabelle/HOL parser is publicly available under a liberal open
source license. The current verification framework is geared towards single-
threaded execution. For the verification of the eChronos model, we have ex-
tended this framework with Owicki-Gries concurrency [31].

Binary Code Semantics

C Code Semantics

Executable Specification

Abstract Specification

Confidentiality Availability Integrity

Haskell Prototype

C Code

Binary Code

WCET Analysis

Chronos

Isabelle

Isabelle

IsabelleIsabelleIsabelle

Isabelle/SMT/HOL4

Figure 26: Overview of seL4 verification.

Figure 26 provides an overview of seL4 verification. The key parts are the
abstract specification, which formally specifies the kernel’s API and functional-
ity (i.e. what the kernel does), the executable specification which is a formal
specification of how the kernel provides the functionality, and the combination
of C code semantics and C code, which models the actual kernel implementa-
tion. The functional correctness proof consists of a refinement from the abstract
specification to the executable specification, and a refinement of the executable
specification to the C code model. Further proofs show that the abstract spec-
ification provides confidentiality, availability, and integrity properties. Recent
work has further shown that the compiled binary is a refinement of the C code
model.

6.2.2 ARM-hyp Verification

The ARM Hardware Virtualization Extensions are extensions to the ARMv7
instruction set architecture that provide additional hardware mechanisms for
the (more) efficient implementation of hypervisors and virtual machines. In
particular, these extensions concern the following main areas:

• a new processor mode, the hypervisor mode (typically shortened to hyp

43
Approved for Public Release; Distribution Unlimited.

mode). Unlike a similar extension in Intel VT-x to the x86 architecture,
this mode is strictly more privileged than the previous kernel mode.6 The
new mode makes it possible to intercept kernel-mode instructions such as
setting a new current page table root or cache or translation lookaside
buffer (TLB) maintenance instructions. This allows a guest operating
system to run unchanged in kernel mode while intercepting and safely
emulating these privileged instructions in hypervisor mode. The aim is
to remove the need for para-virtualization and to gain the ability to run
arbitrary guest operating systems unchanged.

• a new virtual interrupt controller and distributor that makes it easier to
hand over interrupt handling to guest OSes directly without emulation.
This is mainly a simplification and performance improvement measure.

• a new System MMU, loosely comparable to Intel VT-d extensions that
enables a MMU-like translation layer for devices that can perform direct
memory access (DMA). It enables the safe isolation of devices used in
one guest OS from other guest OSes and from the VMM as well as the
underlying microkernel. Unlike the other features above, the System MMU
is not implemented on the CPU itself, but on the board the CPU runs on.
While the CPU interface is specified by ARM, the implementation and
precise feature set of the System MMU is specified by and depends on the
board manufacturer.

In general, for microkernel-based hypervisors that support full virtualization,
the architecture depicted in Figure 27 has been suggested in the literature.

guest OS guest OS

virtual machine monitor

microkernel

other
components

applications applications

hyp mode

user mode

user mode

kernel mode

Figure 27: Architecture for microkernel-based hypervisor.

In this figure, the bottom layer is occupied by a microkernel such as seL4,
enforcing separation and providing controlled communication as well as further
OS mechanisms that the upper layers can use. The second layer is the Virtual
Machine Monitor. It uses microkernel mechanisms to emulate a full hardware

6We use the terms supervisor mode and kernel mode synonymously in this report

44
Approved for Public Release; Distribution Unlimited.

abstraction for guest operating systems running on top. These guest operating
systems form the top layer of the architecture. This setup corresponds to a pure
hypervisor use case. In a more general setting, as for instance in the later stages
of the HACMS program, small trusted native components can be run next to the
VMM layer, enjoying isolation guarantees from guest OSes and VMM provided
by the microkernel. An additional benefit of separating the hypervisor into a
part provided by the microkernel and another part provided by the VMM is
that a large part of the VMM can remain untrusted and does not have to be
formally verified to provide assurance about other parts of the system.

As mentioned above, the ARM hardware virtualization extensions enrich the
set of processor modes with an additional hyp mode of a higher privilege level
(PL2) than user mode (PL0) and kernel mode (PL1).

For supporting this mode, the kernel was extended to provide a new assembly-
level entry point for hyp mode. The new hyp mode can be entered either by
explicit hypervisor call instructions or by highly configurable traps and faults
that are generated in kernel mode during guest OS execution.

Since this mode adds new execution state that the kernel must track, we
introduce an additional virtual CPU (VCPU) object that stores this additional
state and that is associated with the thread control block (TCB) of the guest
OS thread. Formally, this adds a new type of kernel object to the specification
that models this VCPU object.

In the virtualization setting, threads executing on the microkernel may run
in either of two processor modes: kernel mode or user mode. Therefore, the
corresponding assembly-level kernel exit code needs to be able to decide which
mode to switch to when handing off control. With the new VCPU object asso-
ciated to a thread, this information is available: if a VCPU thread is associated
with a TCB, the corresponding thread runs in kernel mode, otherwise in user
mode. On the API and formal specification level this is again mostly visible in
the interface to the machine model: the exit transition will lead to the kernel
mode or the user mode control state depending on the boolean condition above.

The ARM virtualization extensions add new mechanisms for virtual inter-
rupts and distributing specific interrupts directly to guest operating systems,
and allowing the guest to directly acknowledge specific device interrupts.

Since seL4 already provides general-purpose interrupt support to user level
components, the existing mechanisms can be used for intercepting and acknowl-
edging device interrupts into and from guest operating systems. We have ex-
tended these operations with the ability to inject interrupts into the guest OS.

The virtualization extensions also add new types of faults and traps, i.e. new
reasons for entering the kernel, and new types of fault messages to forward from
the microkernel to the user and/or VMM.

While the above ARM virtualization extensions are part of the official ARM
documentation, the System MMU is not. We have provided a formal specifi-
cation of ARM System MMU behavior and page table format, but have not
included this feature in the verification.

In general the System MMU works by imposing a standard MMU-like ad-
dress translation to devices with (then not so) direct memory access. Without

45
Approved for Public Release; Distribution Unlimited.

a System MMU, a device would be configured to read from or write to a spe-
cific area of physical memory. Usually this configuration is done via memory-
mapped registers, and notification whether new data from the device is available
in physical memory happens via interrupts. For the latter two, existing micro-
kernel mechanisms already provide adequate protection. It is the direct access
to physical memory that is the problem: a device could be configured by a ma-
licious driver to overwrite kernel memory or other applications. What is more,
sufficiently complex devices such as high-performance network cards could be
attacked from the outside with the same effect. The main new API visible
mechanism is the association between each device and the page table root that
defines the address translation for that particular device.

We have proved functional correctness for this new abstract specification
and extended C implementation of seL4, including new page tables, new inter-
rupts and interrupt features, new faults types and delivery mechanism, and the
new VCPU (guest OS) API mechanisms. As before, the proof is a machine-
checked refinement proof between abstract specification and seL4 C code in
Isabelle/HOL. It includes new invariants for the abstract specification, an up-
dated design specification, refinement between abstract specification and design
specification, as well as refinement between design specification and seL4/arm-
hyp C code.

6.2.3 x86 64 Verification

As part of an extension to the original HACMS proposal, we have produced a
high-assurance seL4 version for the x64 platform with formally verified, machine-
checked functional correctness.

The x64 platform, similarly to ARM-hyp contains hardware extensions for
hypervisor support, but in contrast to the ARM-hyp verification had the addi-
tional challenge of a completely new architecture on a different basic machine
word size (64 instead of 32). The implementation changes resulted in about
50% code change between the ARM and x86 versions of seL4, on 32 bit, and
was invasive in implementation, model and proofs, impacting nearly all of the
existing artifacts.

As part of this project, we enhanced the tool support for C verification in
Isabelle, extending the AutoCorres tool [32] to work incrementally inside an
existing proof, increasing verification productivity, and we made extensive use
of the new Eisbach [33] proof method language for Isabelle/HOL which we
developed in parallel to this project, again to increase verification productivity.

In addition, we invested effort into formally splitting the seL4 proof into
generic and architecture-independent parts, using two main mechanisms: Firstly,
simple name hiding and qualified name access in the specification artifacts made
sure that the generic specification does not make inadvertent use of architecture-
specific constants. Secondly, the introduction of formal interfaces between
architecture-specific and generic proofs in the form of explicit assumptions on
the behavior and properties of architecture-specific functions enabled us to reuse
proofs about generic functions between the ARM, ARM-hyp, and x64 architec-

46
Approved for Public Release; Distribution Unlimited.

tures.
This split required a number of small extensions to the Isabelle/HOL theo-

rem prover to better support access and hiding of qualified names.
The refactoring necessary to implement this split on the abstract and design

specifications, as well as the invariant proofs for the abstract specification was
significant, but given the demand for multiple further verified architecture ports
we consider it a good investment for the future. We intend to carry this formal
architecture split further into the access control and information flow proofs,
as well as into the refinement proof to further reduce duplication and enhance
maintainability.

Due to the limited time scope of this extension, we focused this part of the
project on the highest-effort and highest-return part of the proof: functional cor-
rectness. Within the time of performance, we achieved the architecture port and
split for all specifications, the enhanced tool support for AutoCorres, Eisbach,
and Isabelle/HOL, the proof that abstract specification satisfies its correctness
invariants (this is the highest-effort part of the overall functional correctness
proofs), and the refinement proof between abstract and design specification. At
the time of writing, the proof between design specification and C still contains
a number of open assumptions that we aim to close after the project.

The x64 port of seL4 contains the following new features:

• Hardware IO ports. IO ports provide access to devices. The concept
does not exist on the ARM architecture. The x86 kernel protects ac-
cess to IO ports and provides capability-based access control to them for
user programs. For x64, the mechanism is the same as implemented on
seL4/x86.

• IOMMU. The Input Output Memory Management Unit (IOMMU) on
advanced x86/x64 hardware (e.g. most i7 processor boards) controls DMA
access for devices. Its main use is for improved performance in virtu-
alization, because it allows a hypervisor to give guests direct hardware
device access. The seL4/x64 implementation implements control struc-
tures, access control, and initialization for the IOMMU. We have included
x64 IOMMUs in the specification, but not yet in the verification of the
seL4/x64 port. They are optional (configurable) in the implementation.

• Virtual Memory. Virtual memory, i.e. page table data structures and
corresponding access control, are different between the ARM, x86, and
x64 implementations of seL4. This was the most substantial code part to
re-verify.

• Hardware operations. The hardware interface for cache and TLB man-
agement as well as context switching are different from ARM. While the
internals of these functions form assumptions of the proof, i.e. are not
verified themselves, their interface use is part of the proof, and therefor
led to changes.

47
Approved for Public Release; Distribution Unlimited.

• IRQ handling. At the beginning of this work stream, seL4’s interrupt
request (IRQ) handling code was shared between ARM and x86, leading
to inefficiencies on x86 and x64. It was redesigned for the verified version,
and included in the verification.

6.2.4 WCET and Schedulability Analysis

Knowledge of the worst-case execution times in a critical real-time (RT) system
is necessary to determine whether the system is temporally safe, meaning guar-
anteed to meet all its critical deadlines. Given that real-time tasks invoke the
kernel for their operation, kernel execution adds to their WCET and must be
known for schedulability analysis.

Kernel invocations during execution of real-time code can be explicit, e.g.
when sending a message to a different task, or implicit, during interrupts. For
(average-case) performance reasons as well as to make verification tractable,
the seL4 kernel runs with interrupts disabled. This means a kernel operation
cannot normally be preempted, even when the kernel is operating on behalf of
a low-priority task while a high-priority interrupt is triggered. This means that
the WCET of the kernel is that of the longest-running system call.

By design, seL4 system calls are mostly short, able to execute in a few
microseconds at most. However, there are a few long-running operations, mostly
to do with unwinding state resulting from derivation chains of access rights
and their delegation. In order to limit their latency, the kernel has a number
of explicit preemption points. These establish a consistent state of the kernel,
including ensuring that of the partially-completed operation, checks for pending
interrupts, if there are any, aborts the operation, adjusts its arguments to restart
it correctly, and returns to user mode. At that time, interrupts are enabled and
the kernel processes them normally. When interrupt handling is completed, the
original kernel operation is restarted.

We had in prior work (independent of DARPA funding) developed a tool
chain that allowed us to analyze [34] and optimize [35] the WCET of the seL4
microkernel on ARM processors. This work relied on manual (and highly error-
prone) determination of safe loop bounds, which are essential to computing a
finite WCET bound. Furthermore, standard WCET analysis, which evaluates
all code paths through the software, produces many infeasible paths, sequences
of basic blocks which depend on mutually-exclusive predicates. Eliminating
those is important to obtain a reasonable tight WCET bound.

Our previous approach used static analysis of the kernel binary to detect loop
bounds and infeasible paths [36, 37]. This had been only partially successful,
being able to bound about half the loops in the kernel. The main reason is
that the binary is semantics-poor, most of the information of the semantics-rich
source code is discarded by the compiler. This is most important for aliasing
analysis, i.e. inferring whether two pointers may refer to the same memory
location.

In contrast, such analysis is relatively straightforward to do at the source-
code level. However, information inferred at the source level does not easily

48
Approved for Public Release; Distribution Unlimited.

C Graph

Program

Binary Graph

Program
Translation Validation

Binary

CFG
Loop

Bounds

Trace

Refutation

WCET
Execution Trace

Figure 28: Overview of dataflow in the WCET analysis.

carry through to the binary, as the compiler may re-order and restructure the
code.

Under HACMS we took a new approach to solve this problem [38]. Our
translation-validation toolchain, which we had in the past used to prove that
the seL4 binary was a correct translation of the C source[39], establishes an
explicit correspondence between the source and the binary, within our formal
verification framework. We can use this correspondence to make assertions
about the source code available in the binary, and thus to the WCET analysis.

This allows us to use the wealth of proved kernel properties in the WCET
analysis. Furthermore, if the analysis fails to discover a particular loop bound,
and the bound can easily be found with some new assertions about the source,
we can explicitly insert such an assertion in the source, and make it available to
the analysis. Such a new assertion then becomes a new proof obligation in the
kernel verification, which is discharged by an explicit proof in the verification
framework.

The translation-validation framework provides a high-assurance way of con-
structing the kernel’s control-flow graph (CFG). Constructing the CFG from
the binary is difficult and error-prone, extracting it from the validation frame-
work establishes a high-assurance process for producing the CFG. Overall, the
WCET analysis not only becomes complete, but also high-assurance.

This new, high-assurance process for WCET analysis is schematically shown
in Figure 28. It succeeded in determining upper bounds to all loops in the
kernel. Furthermore, the small number of extra (verified) assertions needed
(22) proved very stable: During one year of significant evolution of the kernel,
only one extra assertion had to be added to keep the analysis working correctly.
This means that the manual interference through assertions is mostly a one-off
effort, after which the analysis can be repeated fully automatically after changes
to the kernel.

We also introduced and verified one new preemption point in the kernel, to
make a certain, potentially long-running case in object creation pre-emptible.

49
Approved for Public Release; Distribution Unlimited.

One serious although presently unavoidable limitation of our analysis is the
availability of sufficiently accurate information about the hardware. In the past,
ARM published detailed information about the processor pipeline and instruc-
tion latencies, allowing us to perform an accurate and sound WCET analysis,
e.g. on ARM11 cores (ARMv6 architecture). Starting with the A9 cores (ARM
v7 architecture), ARM discontinued this openness, and a sound analysis is no
longer possible. Hence we perform all analysis using our sound ARM11 mod-
els. The result is not guaranteed to be safe for the more modern cores used
in SMACCM. Should a sound analysis be required in the future, this will need
cooperation from the hardware manufacturer.

The result of our analysis was to establish a kernel WCET of 1 ms (for a 572
MHz ARM11 processor) for a “closed-system” configuration, where no long-
running kernel operations happen after system initialization. All configurations
used in HACMS match the closed-system model. The access-control mechanisms
of seL4 can be used to enforce the restriction of no long-running system calls.

6.3 CAmkES

CAmkES provides a component architecture for microkernel-based embedded sys-
tems [40]. Its purpose is to support the development of (embedded) systems
on top of microkernels. Since the underlying philosophy of microkernel-based
operating systems is to componentize the OS by implementing its services as
servers running at user level, it makes sense to apply component-based soft-
ware engineering techniques to the design and development of these systems.
Our approach to doing this involves providing a component platform that sup-
ports the modeling of microkernel-based systems as collections of interconnected
components. This platform defines a component model, provides languages to
describe components and componentized systems, and provides tools that pro-
cess these descriptions to generate glue code and combine this with hand-crafted
component code to produce runnable systems.

The development of CAmkES-based systems has four stages: design, imple-
mentation, deployment, and runtime.

At design time a component-based system is defined using an interface defi-
nition language (IDL) and an architecture description language (ADL). The IDL
is used to define interfaces through which components communicate with one
another. The ADL specifies the actual components, including which interfaces
they provide and which interfaces they use. The ADL is also used to specify a
complete component-based system, that is, the set of components in the system
and the connections between the components. Once all the components have
been specified, the CAmkES compiler generates header files and stub code from
the IDL and ADL.

At the implementation stage the actual component code is written based
on the component descriptions and code generated in the previous stage. The
implementation consists of regular C code that provides functionality as defined
in the header files generated from IDL descriptions. The elements of a system
provided by the user, a collection of ADL, IDL and C files, are depicted on the

50
Approved for Public Release; Distribution Unlimited.

trait MyInf {
...
void method1(in int i);

}

IDL

assembly {
...
connection RPC c(from a.x, to b.y);

}

ADL

void run(void) {
...
x_method1(42);

}

C

CAmkES
compiler

int main(int argc, char **argv) {
 ...
}

runtime

C
compiler

void x_method1(int i) {
...
seL4_Send(...);

}

glue

100000010000001...

image

Figure 29: Overview of the CAmkES build process.

At deployment time all of the code (both hand-crafted and generated) is
compiled, linked and combined with the core runtime, the operating system
and any non-CAmkES services to form a system boot image. Depending on
platform requirements this stage may require that extra code responsible for
creating, initializing and monitoring components also be generated, compiled
and linked into the boot image.

At run time the boot image is loaded onto hardware and the system is started
running. During startup, CAmkES runtime code will create and initialize all
the components contained in the image. It will also establish any connections
between components and initialize any component attributes as defined in the
architecture description. After this any component threads are started and the
system enters a running state.

The CAmkES platform supports a component model that includes the fol-
lowing architectural elements: components, interfaces, connectors, connections
and configurations.

The CAmkES ADL defines components and component-based system de-
scriptions consisting of component instances and connections between them.
On the one hand an ADL specification describes the system to be developed,
and on the other hand it drives the code generation, compilation, and linking
of code required to generate the final runnable system image.

The CAmkES IDL is a subset of the Common Object Request Broker Archi-
tecture (CORBA) specification with a few small extensions. Interfaces specified
in CAmkES IDL are compiled to a subset of the CORBA C mapping. Us-ing the
CORBA nomenclature, IDL files define a number of interfaces, each of

51

left side of Figure 29 in green.

Approved for Public Release; Distribution Unlimited.

which is composed of one or more operations. An operation takes zero or more
parameters of various types, and can either return a value or is of type void.

A component is a basic unit of encapsulated behavior. It is used to orga-
nize operations and data into interfaces that have well defined semantics and
behaviors. Components expose (or export) interfaces that allow applications
and other components to access their features. A component must also specify
which external interfaces, that is, interfaces provided by other components, it
will use.

CAmkES supports three types of interfaces: procedure, event and dataport
interfaces. Interfaces are defined separately in the CAmkES IDL.

• Procedure: A procedure interface defines synchronous communication be-
tween components through remote procedure calls (RPC). A component
must explicitly state whether it provides or uses a procedure interface.

• Event: CAmkES supports a very simple event model. Events are used for
asynchronous notifications between components and they are emitted or
consumed by components at event interfaces. Events are used to signal
other components, but do not carry any data.

• Dataport: The dataport interface represents shared variables that allow
components to transfer data between each other. A pair of connected dat-
aports represents the same variable or the same range of memory. Note
that this is unlike the data-only interfaces (or ports) defined in other com-
ponent models that are used to transfer or copy data between components,
but do not have sharing semantics. True data-sharing allows us to reduce
performance overhead as compared to copying.

The CAmkES component model encapsulates communication between com-
ponents in explicit architectural elements called connectors and connections (a
connection is an instance of a specific connector). A connection is a runtime
pathway of interaction between two components. For example, a connector
connecting a pair of dataports describes a data sharing relationship between
them. In our model, a connector has a name and a list of interface types that
it connects. A connector describes a 1-to-1 relationship between interfaces.

In the SMACCM project we extended CAmkES with the ability to generate
proofs of functional correctness of the generated code. In order to do this we
first developed a formal specification of CAmkES syntax, then defined a formal
semantics for CAmkES glue code, and finally added proofs about correctness
properties of generated connector glue code [41].

The formal Isabelle/HOL specification of CAmkES defines the abstract syn-
tax of the ADL and IDL in terms of formal datatypes and records. This allows
wellformedness constraints to be specified, and consequently for specifications
to be checked for wellformedness.

The formal Isabelle/HOL specification of CAmkES semantics defines the
behavior of component systems defined by ADL descriptions. This formal spec-
ification is intended to apply to the glue code, i.e. the generated communication

52
Approved for Public Release; Distribution Unlimited.

stubs that are provided to the user by the CAmkES platform. However, the
specification goes beyond providing just the glue code semantics. Instead, when
combined with specifications of the behavior of user-code, it provides an abstract
high-level specification of the behavior of an entire CAmkES-based system.

The specification is high-level, because it abstracts from the underlying ker-
nel mechanisms and message formats. Instead, it is based on a general con-
current message passing framework that can transmit messages of arbitrary
high-level types. Instantiating this framework, we restrict it to the kinds of
message types of the ADL description and map CAmkES mechanisms to the
message passing primitives. Showing that the kernel and glue code indeed im-
plement this high-level semantic view is the main proof obligation of the glue
code correctness proof.

The basic communication principle of the underlying semantic framework is
synchronous message passing. This is presented in a way that makes it con-
venient to additionally model atomic asynchronous events and shared memory
reads/writes by adding intermediate simulated components. These intermediate
model processes map to kernel event buffers and the usual behavior of shared
memory pages.

We represent events and shared memory as components. These connec-
tor components, unlike the component instances in the system, always have a
well-defined, constrained execution because they are effectively implemented by
CAmkES and the kernel.

In a static component platform such as CAmkES, correctness can be decom-
posed into correctness of the components themselves, correctness of CAmkES
and correctness of seL4. For the component platform, the property we choose
to focus on is the correctness of the generated communication code for RPC
communication. More precisely, the desired property is that a remote function
invocation (via a CAmkES-provided RPC mechanism) is equivalent to a local
invocation of the same function.

With this property available, a user is free to reason about their component-
based system as if RPC communication was simply a local function call. Proper-
ties that they derive under this abstraction of RPC invocations as function calls
remain valid when introducing the complete semantics of CAmkES primitives,
as introduced assumptions are discharged by the generated theorems the plat-
form supplies. By composing these generated and hand written proofs together,
with the pre-existing kernel correctness guarantees, it is possible to achieve a
whole system assurance property while only manually reasoning about the hand
written component code.

Similar to how the instantiation of a component system is generated from its
ADL description in conjunction with provided user code, we generate the formal
specification of a complete CAmkES component system from the same ADL de-
scription together with a set of generic base definitions and a set of user-provided
behavior definitions for trusted components (i.e. those that are claimed to be
more constrained in their behavior than the architecture boundaries enforce).

The definitions of a full system are expected to come from a combination of
generated and user-provided theories. The CAmkES generator utility creates

53
Approved for Public Release; Distribution Unlimited.

6 Component Behaviour

The definitions of a full system are expected to come from a combination of generated and
user-provided theories. The CAmkES generator utility creates a base theory using the types and
definitions previously discussed that defines primitive operations of a specific system. The user is
then expected to provide a theory that defines the trusted components of the system, building on
top of these definitions. The generator also produces a theory describing the system as a whole
that builds on top of the user’s intermediate theory. Final reasoning about system properties is
expected to be done in another theory building on this generated system theory.
These theory dependencies are depicted in Figure 6.1.

Base

User

System

Final

User-provided

Generated

Figure 6.1: Theorem dependencies

The remainder of this section describes the default contents of the intermediate user theory if
none other is provided.

When using the generated theories, the user is expected to provide the following type instantiations
and definitions:

• A type for component_state representing the local state that should be represented for
each component;

• An initial component_state for untrusted components to be given on startup; and
• A (possibly empty) mapping from component instance identifiers to trusted component

definitions.

Copyright c� 2013 NICTA, ABN 62 102 206 173. All rights reserved except those specified herein.
Government Purpose Rights
Agreement No.: FA8750-12-9-0179; Recipient’s Name: NICTA; Recipient’s Address: Level 5, 13 Garden Street, Eveleigh, New South Wales, Australia.
The Government may use, modify, reproduce, release, perform, display or disclose these data within the Government without restriction, and may release or
disclose outside the Government and authorize persons to whom such release or disclosure has been made to use, modify, reproduce, release, perform, display
or disclose that data for United States Government purposes, including competitive procurement.

21

Figure 30: CAmkES theory dependencies.

a base theory using the types and definitions previously discussed that defines
primitive operations of a specific system. The user is then expected to provide
a theory that defines the trusted components of the system, building on top of
these definitions. The generator also produces a theory describing the system
as a whole that builds on top of the users intermediate theory. Reasoning about
system properties can then be done in another theory building on this generated
system theory. These theory dependencies are depicted in Figure 30.

The desirable correctness property of connector glue code is dependent on
other, more specific properties. For example, remote procedure call connectors
should ensure, among other things, that the function call and parameters that
are sent by the caller are correctly received and decoded by the callee. A common
requirement for all the glue code is safe execution with respect to the C standard
and the state of the system at runtime.

This property requires that the glue code only accesses valid memory, that
it obeys the restrictions of the C99 standard and that it always terminates.

In proving this behavior of the glue code, we rely on some explicit assump-
tions on user code within the system. In particular, we assume that the user
code also obeys the C99 standard and does not modify any glue code state. The
glue code state covers memory regions relevant for communication with seL4,
thread identification and thread-local storage. This state is disjoint from the
expected user state; that is, non-malicious user code should never have cause to
modify any of the glue code state. As for the seL4 proofs, the generated proofs
of CAmkES glue code are intended to apply to an ARM, unicore platform and
may not hold in other operating environments.

The current proofs reason about the behavior of the glue code at the level
of C, targeting the seL4 microkernel.

It is worth noting that the glue code proofs currently assume valid CAmkES

54
Approved for Public Release; Distribution Unlimited.

glue code at the other side of the communication mechanism. If the other side
of the communication is an untrusted, potentially malicious actor, the proofs do
not apply, an extra checking for message wellformedness etc, is necessary. This is
relevant for instance for CAmkES components that communicate directly with
virtual Linux guest components.

6.4 eChronos RTOS

To accommodate hardware without an MMU in the overall verified setup, we
have used a verified RTOS developed by Breakaway and Data61, called eChronos.
eChronos is used on the flight control computer in our research quadcopter since
that is based on a microcontroller with no MMU. During the HACMS program,
we ported eChronos to the ARM and PPC platforms.

eChronos is a real-time OS targeted for use in tightly constrained embed-
ded devices, running on microcontrollers with limited memory and no memory
protection. The role of the OS in such systems is closer to that of a library
than of a fully-fledged operating environment, allowing the application running
on it to be organized in multiple independent tasks and providing a set of API
functions that the application tasks can use to synchronize (signals, semaphores,
mutexes).

The OS also provides the underlying mechanism for switching from one task
to another, and is responsible for sharing the available time between tasks,
by scheduling them according to some given OS-specific policy. For instance,
tasks can cooperatively yield control to each other (cooperative scheduling); or
tasks can be scheduled according to their assigned priority, and their execution
must then be preempted if a higher priority task is made available (preemptive
scheduling).

The system typically also reacts to external events via interrupts. An inter-
rupt handler needs to be defined for each interrupt by the application. When an
interrupt occurs, the hardware ensures that the corresponding interrupt handler
is executed (unless the interrupt is disabled/masked).

The job of the scheduler is to ensure that at any given point the running
task is the correct one, as defined by the scheduling policy of the system. For
instance, in a priority-based preemptive system, when a task in unblocked (e.g.
by an interrupt handler sending the signal it was waiting for) a context switch
should occur if this task is at a higher priority than the currently running one.

This defines the correctness of the scheduling behavior and is the target of
our proof about the eChronos OS.

To reason about such an RTOS, and to prove such a scheduling property,
we developed a verification framework supporting the concurrency reasoning
required by preemption and interrupt handling on uniprocessor hardware.

We provide a model of interleaving that faithfully represents the interaction
between application code, OS code, interrupt handler and scheduler, in such an
RTOS [42]. Roughly, the system is modeled as a parallel composition of the
code for each application (including calls to OS API functions), the code for
each interrupt handler, and the code for the scheduler.

55
Approved for Public Release; Distribution Unlimited.

The key feature of the framework is that the interleaving in the parallel com-
position is controlled using a small formalized API of the hardware mechanisms
for taking interrupts, returning from interrupts, masking interrupts, etc. We
have formalized our logic in

Using this logic, we have instantiated the model to the eChronos OS and
provided a proof of its scheduling behavior [43].

The property we prove is that the eChronos system, starting in any initial
state and never terminating, will satisfy the scheduler invariant at every point of
execution. The invariant property for the eChronos OS states that the running
task is always the highest priority runnable task.

In contrast to the verification of seL4, the verification of the eChronos OS
makes assumptions about the safe behavior of user-level code, such as type-
safe execution and memory safety to make up for the missing hardware MMU
mechanisms. The key for applying such verification successfully is to make
discharging these assumptions low overhead, if possible fully automatic. We do
this by writing user-code in a type-safe programming language such as Ivory or
by performing static analysis on user-code.

6.5 Hardware

During the SMACCM project we had two different hardware platforms for the
mission computer. Initially, in phase 2, we used an Odroid-XU, which is a
Cortex A15-based computer. However, the Odroid-XU was discontinued, so in
phase 3 we migrated to an Nvidia Tegra K1 based computer, the TK1-SOM.

Neither platform provided all the devices that we required (in particular
they were missing CAN controllers), so we designed and built daughter-boards
containing all the desired peripherals for these platforms. Besides providing
peripherals, these daughter-boards also provided power management to allow
the Odroid-XU and TK1-SOM to be powered by the SMACCMcopter’s battery.

Both daughter-boards were designed with extra sensors and pulse width
modulation (PWM) outputs so that they could be used together with their
parent computer to function as a flight-controller for the quadcopter (without
requiring a separate flight controller computer). This functionality was not used
in the SMACCM project, but was added to drive future research on using seL4
in real-time systems.

6.6 Device Drivers

In terms of OS service components, device drivers are the most common source
of critical defects. Our approach is to automatically synthesize device drivers
from formal specifications.

Termite [44] is a tool, previously developed at NICTA, that performs au-
tomatic device driver synthesis. This is a radical approach to creating drivers
faster and with fewer defects by generating them automatically based on hard-
ware device specifications. The key idea behind this approach is that the driver
synthesis problem can be formalized as a two-player game between the driver

56
Approved for Public Release; Distribution Unlimited.

and its environments, consisting of the hardware device and the OS. A correct
driver implementation can then be obtained from a winning strategy in this
game.

synthesis
engine

input specifications:
- device model
- OS model
- driver template

explanation of synthesis failure

corrected input specifications

the most general strategy

visual
debugger

user-guided
code

generator
synthesised driver

Figure 31: Overview of Termite synthesis process.

Figure 31 gives an overview of the driver synthesis process. Termite takes
three specifications as its inputs: a device model that simulates software-visible
device behavior, an OS model that specifies the software interface between the
driver and the OS, and a driver template that contains driver entry point dec-
larations and, optionally, their partial implementation to be completed by Ter-
mite.

Given these specifications, driver synthesis proceeds in two steps. The first
step is carried out fully automatically by the Termite game-based synthesis
engine, which computes the most general strategy for the driver – a data struc-
ture that compactly represents all possible correct driver implementations. This
step encapsulates the computationally expensive part of synthesis. At the sec-
ond step, the most general strategy is used by the Termite code generator to
construct one specific driver implementation in C with the help of interactive
input from the user.

The synthesis engine may establish that, due to a defect in one of the input
specifications, there does not exist a specification-compliant driver implemen-
tation. In this case, it produces an explanation of the failure, which can be
analyzed with the help of the Termite debugger tool in order identify and cor-
rect the defect.

The device driver synthesis technology is still in its early days and, as such,
has several important limitations. Most notably, Termite does not currently
support synthesis or verification of code for managing DMA queues. This code
must be written manually and is treated by Termite as an external API invoked
by the driver. As another example, in certain situations Termite is unable to
produce correct code without user assistance; however it is able to verify the
correctness of user-provided code.

For the SMACCM project we have used Termite to synthesize drivers for the
Universal Asynchronous Receiver/Transmitter (UART), Serial Peripheral Inter-
face (SPI), and Inter-Integrated Circuit (I2C) devices on the SMACCMcopter

57
Approved for Public Release; Distribution Unlimited.

COGENT compiler

generated
C code

ADT
library

COGENT code

C code
semantics

COGENT
specification

proof

import

generate

generate

high-level
proofs

Isabelle/HOL

Figure 32: Code/Proof Co-Generation with Cogent.

mission computer.

6.7 File System

A centrally critical OS component for any platform with persistent storage is
the file system. When the project started, no file systems that have been verified
to the code level existed, even model-level verifications have only managed to
prove specific aspects of file systems instead of overall functional correctness.
Our approach is to specify the file system code in a higher-level language, and
then co-generate C code and functional correctness proofs of the code. We have
developed Cogent [45] for this, and used to it to generate several file system
components: a custom FLASH file system called BilbyFS, ext2fs and VFAT.

Cogent is a restricted, polymorphic, higher-order and purely functional lan-
guage with linear types and without the need for a trusted runtime or garbage
collector. The Cogent compiler generates a low-level C implementation of the file
system, a Cogent specification that we use to verify the functional correctness
of the code written in Cogent, and a refinement proof that links the generated
C code to the generated Cogent specification. All the specifications and proofs
are machine checked in Isabelle/HOL.

Figure 32 depicts the Cogent approach. Cogent compiles to efficient C code,
which easily integrates with existing systems APIs and abstract data types,
while being designed as a purely functional language, making it very friendly to
reason about formally. This makes proving properties of programs written in
Cogent far easier than for traditional C code, because the level of abstraction is
much higher. Additionally, Cogent’s compiler automatically proves that the C
code it produces is a correct compilation of the functional source program [46].
Therefore, Cogent facilitates obtaining verification guarantees on par with the
seL4 approach by mere equational reasoning over pure functions, without unduly
sacrificing performance — the remainder of the reasoning is entirely automatic.

58
Approved for Public Release; Distribution Unlimited.

A key ingredient for achieving this double-act is Cogent’s linear type system [47],
which allows pure Cogent functions to be compiled to efficient C code without
the need for a garbage collector [48] on one hand, while still providing the
abstraction necessary to facilitate verification.

The linear type system restricts memory aliasing and avoids, at compile time,
many common file system implementation errors such as used-after-free bugs,
null pointer dereferences, etc. Cogent’s linear type system allows reasoning
about purely functional specifications when proving the functional correctness
of the code, while generating an efficient C implementation.

Cogent semantics is sequential (allowing asynchronous I/O, but not full con-
currency), restricted to total functions, and contains no built-in loops or recur-
sion. This simplifies reasoning, both for the compiler and on top of the language.
Iterators, external abstract functions, and types that rely on memory aliasing
in C, are invoked via Cogent’s foreign function interface and are implemented
using a custom template-style C extension. These external functions need to be
verified manually using traditional C verification techniques.

We used Cogent to implement three file systems, a custom flash file system
called BilbyFs, ext2fs, and VFAT. BilbyFs runs either as a native CAmkES
component on seL4, whereas ext2fs and VFAT run as regular device drivers in
Linux (either native or virtualized on seL4).

For BilbyFs, we also proved the functional correctness of two key file sys-
tem operations. We proved functional correctness of these operations against a
top-level abstract specification of their correct behavior [49] phrased as a non-
deterministic functional program in Isabelle/HOL.

Just as with seL4, the functional correctness proofs for BilbyFs relied on es-
tablishing global invariants of the abstract specification and its implementation.
For BilbyFs, the invariants include e.g. the absence of link cycles, dangling links
and the correctness of link counts, as well as the consistency of information that
is duplicated in the file system for efficiency.

Importantly, unlike with seL4, none of the invariants had to include the fact
that in-memory objects do not overlap, or that object-pointers are correctly
aligned and do point to valid objects. All of these details are handled automati-
cally by Cogent’s type system and are justified by the C code correctness proofs
generated by the Cogent compiler. Thus Cogent considerably raises the level of
abstraction for proving properties of systems programs.

Even better, when proving that the file system correctly maintains its invari-
ants, we did so by reasoning over pure, functional embeddings of the Cogent code
that the compiler has already automatically proved are correctly implemented
by the generated C code.

Our results indicate that Cogent allows verification effort to be meaningfully
reduced (by around a third to a half) without unfairly trading away perfor-
mance.

59
Approved for Public Release; Distribution Unlimited.

6.8 CAN Protocol

The Controller Area Network (CAN) protocol is a vehicle bus standard designed
to allow microcontrollers and devices to communicate with each other within a
vehicle without a host computer.7 Within the SMACCM project, the CAN bus
is used as the communication link between the flight controller and the mission
board of SMACCMcopter.

The CAN bus protocol itself is mostly a link-layer protocol that is concerned
with bit timing, and priorities of messages if multiple senders access the bus at
the same time.

Because of its extreme simplicity at the top level – single packet transmission
of 0-8 bytes of data with predetermined unique ID and priority – it is our
conclusion that the formal verification of the CAN bus protocol itself is not
beneficial for the purposes of the HACMS program. However, there is the need
of a fragmentation/reassembly protocol on top of the CAN bus. In this section
we will present such a protocol that has been designed and formally modeled
by Data61, in cooperation with Galois.

The protocol itself breaks long messages into data-streams that are 8 bytes
long. The length of a message (as well as its unique sender and set of pos-
sible receivers) is completely determined by its message type; thus a message
type determines the number of fragments into which a message will be split
– including fragments devoted to authentication and encryption. If a message
type prescribes splitting into n fragments, n adjacent CAN identifiers will be
allocated to this message type. Thus, a CAN identifier indicates the type of a
message, and additionally tells us that it is the kth fragment out of n.

Since split messages can be interleaved by other messages transferred on the
same CAN bus, the receiver of the message uses a simple queuing mechanism
to sort and store the incoming fragments. A node will use the CAN identifiers
to determine if all fragments of a single message have been received. If this is
the case the reassembled message is delivered to the corresponding application.
In the Open Systems Interconnection (OSI) model, our protocol covers aspects
of the layer 3 (network layer) and 4 (transport layer).

The CAN protocol comes with an in-built priority mechanism. It uses a bit-
wise comparison method of contention resolution, which requires all nodes on the
CAN bus to be synchronized at the point when transmission begins. While this
built-in priority mechanism works if only CAN drivers and CAN controllers are
considered, it is not sufficient for our research vehicle. In particular it is possible
for a priority inversion to occur when a device tries to send a number of low
priority messages followed by a high priority message. In this scenario the low
priority messages fill a transmission buffer, but cannot be sent due to another
device filling the network with medium priority messages. The high priority
message would have to wait indefinitely until the medium priority messages
stopped and the blocking low priority messages could be sent.

We have developed a protocol, called multiplexer, that addresses this prob-
lem and combines the CAN driver and several instances of the fragmentation

7http://en.wikipedia.org/wiki/CAN bus

60
Approved for Public Release; Distribution Unlimited.

Figure 6.1: Message passing between the different protocols/components

queue. It always sends the message that need to be transmitted next (the one with the lowest
CAN ID) to the CAN driver, if necessary after cancelling a lower-priority message sitting
in the transmission buffer of the CAN controller. This prevents the blocking example of
Section 4.2. In theory the multiplexer could be implemented as part of a (more complicated)
CAN driver. However, since we aim at clear structure with simple protocols and since we
plan to synthesise the CAN driver, we split the priority queue and the CAN driver.

All these layers exchange information through message passing. In the remainder of the section
we will therefore discuss the different types of messages that occur in our protocol chain.

Protocol Chain for Splitting and Sending a Message Any application is allowed to
submit new messages newpkt at any time. Every message contains a message type, next to
the payload. Depending on the message type the message is sent to a particular instance of
the fragmentation protocol. For this we assume that for each message type there is exactly one
instance of the fragmentation protocol; an instance, however, is allowed to handle more than
one message type. Furthermore we assume that each message type can be associated with a
particular application, i.e., there cannot be two applications sending the same message type. An
application usually sends one new message at a time; in case a second packet is injected before the
previous has been fully handled, the protocol yields an error and deadlocks. To avoid this scenario
the fragmentation protocol sends back an acknowledgement message ack to the application: in
case the entire message was successfully sent via the CAN bus, a positive acknowledgement is
returned; in case the transmission was not successful, a negative acknowledgement is sent. The

Copyright © 2015 NICTA, ABN 62 102 206 173. All rights reserved except those specified herein.
Government Purpose Rights
Agreement No.: FA8750-12-9-0179; Recipient’s Name: NICTA; Recipient’s Address: Level 5, 13 Garden Street, Eveleigh, New South Wales, Australia.
The Government may use, modify, reproduce, release, perform, display or disclose these data within the Government without restriction, and may release or
disclose outside the Government and authorize persons to whom such release or disclosure has been made to use, modify, reproduce, release, perform, display
or disclose that data for United States Government purposes, including competitive procurement.

26

Figure 33: Message passing between the different protocols/components.

protocol.
Figure 33 presents a schematic presentation of our protocol stack. For the

purpose of this report we distinguish 4 different layers.

• The application layer: applications are components that send messages to
and receive messages from the CAN bus (via the other 3 layers).

• The CAN layer: this layer combines the CAN controller and the CAN
driver.

• The fragmentation/reassembly layer: the fragmentation protocol receives
a message from an application, and, depending on the type of the message,
simply transmits the message via the CAN bus if it is a short or a legacy
message, or otherwise splits the messages into fragments of 8 bytes each.

• The multiplexer accepts messages from different instances of the fragmen-
tation protocol (all running on the same hardware, e.g. the mission board)
and stores them in a priority queue.

Backwards compatibility with standard CAN should be guaranteed. This
is important for legacy nodes that cannot be changed and that can only send
standard CAN messages. Such nodes frequently occur e.g. in the automotive
industry and so should not be affected by our protocol.

We designed our protocol in a way that ordinary CAN messages can be
used and are simply forwarded on and not processed. Such legacy messages

61
Approved for Public Release; Distribution Unlimited.

have a CAN ID, which doubles as message type, that identifies them as legacy
messages; they are not to be split (or equivalently, are split into one fragment).
Applications can send legacy messages (or any messages of a type that does not
prescribe splitting them) in two ways: (a) the application can just send them to
the fragmentation protocol. If the message is registered as one that is not to be
split (split into one fragment) the fragmentation protocol will just forward the
message to the multiplexer; (b) alternatively, the application could send them
straight to the multiplexer.

We have defined a formal specification of the fragmentation and reassembling
protocol, the multiplexer, and the CAN driver. Since the specification is fully
formal it does not contain any ambiguities.

We have chosen the modeling language Algebra for Wireless Networks (AWN)
for the specification. AWN is tailored for modeling and verifying routing and
communication protocols and therefore offers primitives such as broadcast. It
also defines the protocol in a pseudo-code that is easily readable – the lan-
guage itself is implementation independent, and it offers some degree of proof
automation and proof verification [50], using Isabelle/HOL. AWN is a variant
of standard process algebras [51, 52, 53, 54], extended with a local broadcast
mechanism and a novel conditional unicast operator—allowing error handling in
response to failed communications while abstracting from link layer implemen-
tations of the communication handling—and incorporating data structures with
assignments. Process algebras such as AWN are equipped with an operational
semantics [55, 56]: once a model has been described, its behavior is governed by
the transitions allowed by the algebra’s semantics. This can significantly reduce
the burden of proofs.

To prove properties of the protocol, we decided on a model-checking ap-
proach. To make the analysis available for non-experts we have developed a tool
that generates input for UPPAAL, one of the most established model checkers.
Using AWN and our tool, we believe it is possible that even non-experts in
formal methods and verification can perform tasks along the lines of creating,
specifying (modeling) and analyzing a protocol. The user need not be an expert,
but she must be able to read and write logical formulas; in our case computa-
tion tree logic (CTL) formulas. For our verification effort, however, we have to
intertwine the automatic reasoning with manual reasoning – in rely-guarantee
style. The reason is that we had to deal with state-space explosion.

We proved the following properties of the protocol.

Unreachability of ERROR State In our specification we use a special state
ERROR that is reached by a component process whenever it receives an input
from another component, or from the application layer, that is unexpected, and
for which no proper response in envisioned. The first property of the overall
protocol proved is that none of its components will ever reach the ERROR state.

The Protocol is Deadlock Free The next property proved is that the pro-
tocol is deadlock free, in the sense that each reachable state has an outgoing

62
Approved for Public Release; Distribution Unlimited.

transition. As termination of the protocol is not envisioned, a deadlock is a
clear case of undesirable behavior. This property does not rule out any state
where no further activity occurs due to lack of input from the application layer,
for the possibility of such input is modeled as an outgoing transition.

Any Message Received Has Been Sent Here a message counts as sent
when it is submitted by the application layer of the sending node to the fragmen-
tation protocol; it counts as received when it is passed on by the reassembling
protocol at each node listed as a destination of the message to the corresponding
application layer (optionally not counting messages that are discarded immedi-
ately by the application layer because they fail to decrypt).

Any Message Sent Is Received This is the central property of the protocol.
Obviously, this requirement cannot be guaranteed if there is message loss on the
CAN bus. Thus, we must assume that no loss on the CAN bus occurs.

The Application Layer Can Always Succeed in Submitting a New
Message The previous property guarantees that, under certain conditions,
messages submitted by the application layer to the fragmentation protocol will
eventually reach their destinations. As a liveness property for the application
layer, this is only convincing if in addition the application layer can always
succeed in submitting to the fragmentation protocol any message its want to
transmit.

6.9 Ground Control Station Communication Protocol

The protocol used to communicate between the SMACCMcopter and its ground
control station is a link-layer protocol that defines how to send packets. Strictly
speaking, it is not a complete communication protocol: it defines the type of the
messages that are being transmitted, but does not specify a method to ensure
reliable receipt and authentication of these messages.

Since the communication is wireless, in order to ensure that the messages re-
ceived by the air vehicle indeed stem from the ground station, and vice versa, the
messages should be encrypted and the sender should be authenticated. More-
over, the protocol needs to ensure reliable delivery of messages, in spite of pos-
sible message loss due to unreliable channels or sabotage by an attacker.

We have added functionality to provide secure, authenticated, and reliable
communication on top of such basic packet-based protocols.

As recommended by the Red Team, for most of these aspects we looked for,
and used, off-the-shelf solutions; there is no need to develop a new protocol
if existing protocols meet our requirements. Using existing technology reduces
the chance of making errors; moreover, at least some off-the-shelf solutions have
been under attack from the outside world and have been shown to be resistant
(although formalizations and proofs are often missing).

Our protocol extensions must satisfy the following requirements.

63
Approved for Public Release; Distribution Unlimited.

Guaranteed delivery Ideally, we would like a guarantee that each message
sent by the ground station is received by the air vehicle and vice versa.

Priority Usually, the ground station and the air vehicle exchange many mes-
sage. Some of them are important, e.g., a navigation control message directed
to the air vehicle. Other messages are of lower priority, e.g., a video stream
from the air vehicle to the ground station. The project is working with three
priority types on messages: high/medium/low. In cases where not all messages
can be delivered due to bandwidth limitations, possibly in combination with
other factors, these types determine which messages should be given priority.

Authentication A strict requirement is that the air vehicle only accepts mes-
sages from authorized parties such as the ground station. Hence messages should
be processed by the air vehicle only if it can be proven beyond a reasonable doubt
that they originate from the ground station. We assume that the ground station
remains a trusted entity.

Encryption It is an optional requirement, currently deemed less essential
than the ones above, that messages between the ground station and the air
vehicle cannot be deciphered by intercepting third parties. It is well known
that encryption also implies confidentiality.

Integrity Another optional requirement we might want to consider is data
integrity. Data integrity refers to maintaining and assuring the accuracy and
consistency of data. Note that (symmetric) encryption does not provide in-
tegrity. The amount of control that an attacker can have on encrypted data
depends on the encryption type. There are off-the-shelf solutions that combine
both encryption and authentication. An example is the message authentication
code (MAC).

We defined a light-weight encapsulation format that can be used with the
communication protocol to protect against forgery, replay attacks, and snooping.
The changes result in overhead of 16 bytes of additional bandwidth use per
message as well as encryption and decryption operations for each message sent
and received.

Our communications security is based on Advanced Encryption Standard
using Galois/Counter Mode (AES-GCM). Aside from providing high security,
AES-GCM has the advantages of running quickly on most platforms, benefits
from hardware acceleration on some platforms of interest, involves no bandwidth
increase due to padding, and includes authentication.

6.10 CAN Gateway

The CAN gateway provides a filter between untrusted CAN devices and trusted
CAN devices. Trusted devices are typically mission critical and trusted to be-
have correctly and to not send unauthorized, malformed, or malicious messages.

64
Approved for Public Release; Distribution Unlimited.

Untrusted devices, on the other hand, are not considered trustworthy (e.g. they
are low-assurance COTS devices) and could send unauthorized, malformed and
malicious messages.

It is important to protect the critical trusted devices from the untrusted
devices. We do this by placing the trusted devices on a trusted CAN network and
allowing no untrusted devices to be directly connected to the trusted network.
In this way trusted devices can expect to only receive authorized and correct
messages on this network.

However, it must still be possible for untrusted devices to send messages to
trusted devices, but we must ensure that only authorized and correct messages
are sent from untrusted devices to trusted devices. The CAN gateway’s role is
to filter and forward messages from untrusted devices onto the trusted network.
The filter prevents unexpected, malformed and potentially malicious CAN mes-
sages originating from the untrusted device from getting on to the trusted CAN
network and being delivered to trusted devices.

There are two options for the design of the CAN gateway.

1. a device that sits between each untrusted device and the trusted network.
With this option each untrusted device would have its own CAN gateway.

2. a device that connects the trusted network to an untrusted network. With
this option all the untrusted devices would be connected to a single un-
trusted CAN network and there would be a single CAN gateway device
between the untrusted and trusted networks.

We have implemented the second option, however, the design and implemen-
tation of the gateway and filter software will be applicable to both options.

Rather than implement the gateway as a separate device, we have integrated
it as part of the mission computer, running as an isolated subsystem on seL4.
This implementation requires

• a mission computer daughter-board with two CAN controllers so that the
mission computer can connect to two separate CAN networks.

• an implementation of the CAN gateway software to inspect, filter, and
forward CAN messages

• an implementation of appropriate native seL4 CAN and related device
drivers for the mission board, such as SPI and general-purpose input/out-
put (GPIO).

We used the Guardol[57] tool to generate high-assurance code for the filter
part of the CAN gateway.

The tool takes as input a set of packet rules, given as regular expressions,
that specify the format and content of correct packets. The regular expressions
are transformed into deterministic finite automata (DFA) that accept correct
packets. The DFAs are then used to generate C code that implements their
matching functions.

65
Approved for Public Release; Distribution Unlimited.

The code for transforming the regular expressions to DFAs is generated from
HOL theorems relating to regular expressions, and is backed by formal proofs
of correctness.

The DFA C code is integrated into a CAN filter component that receives
CAN packets on one CAN interface, checks whether they have an expected
CAN ID, and passes them through the appropriate DFA. If the DFA accepts
the packet, then it is sent out over another CAN interface. The CAN filter also
implements a simple rate limiter, limiting the rate at which CAN packets will
be forwarded.

We developed a demonstration of the gateway functionality, however, it was
not part of the final SMACCMcopter. For the CAN gateway demo we filtered on
correct GPS CAN messages as defined in http://www.caemax.de/Downloads/

QIC/QIC_GPS_DE.pdf. From the data sheet: “Data output takes place continu-
ously with a rate of 1Hz to the CAN bus (IDs 1800 to 1803). Positional data
(latitude and longitude) are transmitted separately in degrees, minutes and sec-
onds. Date, time, altitude, speed, and heading data are also available.” We
created regular expressions to represent these messages and generated the fil-
ter’s C code using Guardol. The filter code was combined with CAN drivers
and placed into a separate gateway component on the mission board.

66
Approved for Public Release; Distribution Unlimited.

7 Trusted Build

Model-driven development is an approach for constructing reliable and secure
software systems through the use of engineering models. For cyber-physical
systems, architectural models are especially important as they allow represen-
tation of both the physical and logical architecture of the system, allowing
design exploration and analysis in both of these dimensions. For the past sev-
eral years, we have been constructing analysis and design tools for AADL that
allow a designer to gain confidence in the quality of the architecture and to
use compositional formal proof to verify its behavior. Nevertheless, unless the
implementation matches the model, this confidence may not carry over into the
actual implementation of the system.

One way to ensure conformance is to generate the system image directly
from the architectural model. In this section, we discuss our experiences in code
generation using AADL. In the HACMS project, we used AADL to specify the
architecture and generate all of the glue code for all vehicles used in the final
demonstration. The data contained within our architectural model is used as the
basis for creating a system image that is loaded directly onto the target platform.
Over the course of the project, Trusted Build was used on the following avionics
platforms:

• a Pixhawk-based Parrot AR.Drone Quadcopter running CAmkES/seL4,

• a PowerPC-based Boeing Little Bird Flight Control Computer running
VxWorks,

• an x86-based Boeing Little Bird Mission Computer running CAmkES/seL4,

• an ODROID-based mission board within an IRIS+ quadcopter

• an NVIDIA Tegra-based mission board within an IRIS+ quadcopter

In addition, Trusted Build was used for the TARDEC Heavy Equipment Trans-
porter (HET) truck and GVR-Bot hardware platforms that ran a combination
of CAmkES/seL4 and Linux. The HACMS Red Team was given full access
to the design materials and the code of the code generator. Despite the many
features, configurations and supported operating systems, no security violations
have been found in the generated code to date (the final Red Team report is
pending).

This section describes the features of the AADL language as they pertain to
code generation, a brief description of the architecture of the tools and generated
code, and some information about the build process that was used for HACMS
vehicles. A more complete reference for using the Trusted Build tool is found
in the Trusted Build System User’s Guide which is available at the SMACCM
github in the documentation/trusted build directory.

Although our overall experience with AADL has been positive, we found
some deficiencies in the language for modeling certain aspects of our system
that were necessary to construct a system image directly from the model. These
include:

67
Approved for Public Release; Distribution Unlimited.

• Aspects of the code required to generate a system image lacked an ade-
quate representation in the AADL model

• Discrepancies between the thread model used by the target OS and that
specified in AADL

• Nonspecific aspects of AADL with respect to event-based communication
and scheduling

• Discrepancies between the expected communication model between threads
in AADL and our “glue” code

• Managing interactions with “legacy” code that did not fit the communi-
cations paradigms used within AADL

We describe these issues and suggest possible improvements to the notation
and our processes to ensure that we have very high confidence in system images
produced from our architectural models. We would like to both ensure that the
system image that we generate is compatible with the analysis tools that we
have written for AADL, and that existing AADL analysis tools can understand
our (somewhat idiomatic) use of the notation.

7.1 AADL Modeling Language

The architecture for both demonstration vehicles is described using AADL, an
architectural description language developed specifically for real-time embed-
ded systems that has been standardized by SAE International [27]. AADL is
well-suited to this domain and provides an excellent mechanism for capturing
the important details of system design. The AADL can capture both the hard-
ware and software architecture in a hierarchical format. It provides hardware
component models including processors, buses, memories, and I/O devices, and
software component models including threads, processes, and subprograms. In-
terfaces for these components and the data flows between components can also
be defined. The language offers a high degree of flexibility in terms of architec-
tural and component detail. This flexibility supports incremental development
where the architecture is refined to increasing levels of detail and where com-
ponents can be refined with additional details over time. AADL has both a
graphical and textual format, and tools exist for developing models in both of
these formats and converting between them. The graphical format, is useful for
visualizing the relationship among components while the textual format is the
preferred input language for most tools.

Properties are defined for AADL components to specify important config-
uration data such as execution period, scheduling deadlines, WCET, and bus
latencies. This information can be used for schedulability analysis and to sup-
port computation of CPU and bus utilization. Data in AADL models provides
the basis for generating configuration data for the OS and synthesis of “glue
code” that implements component interactions and access to kernel services.

68
Approved for Public Release; Distribution Unlimited.

AADL describes the architecture primarily in terms of components, which
are the hardware or software building blocks of the system, and connectors,
which describe how they are connected together. Each component has a com-
ponent type specification that defines its external interfaces and attributes. The
external interfaces are represented as features. Features are externally visible
characteristics that are used to define the exchange of control and data with
other components. Examples of features include ports, bus components, feature
groups, and parameter declarations. Properties are observable attributes that
are represented as typed name/value pairs.

Component interactions are defined through the use of connections, which
are AADL constructs that link two components and represent the exchange
of data and control. There are three types of connections: port connections,
parameter connections, and access connections. Port connections represent a
directional flow of information between the ports of two concurrently executing
components. Parameter connections represent the flow of data between param-
eters of a sequence of subprogram calls. Access connections designate access to
shared components by concurrently executing threads or by subprograms exe-
cuting within a thread. All of these connection types are supported by Trusted
Build and used in one or more of the deployed platforms. .

Port connections may be further classified according to the mechanism of
communication used. There are three port categories: event data ports, data
ports, and event ports. An event data port represents a message port in which
data can be sent and received, and the arrival of data may cause a thread
dispatch to occur. If the destination component is busy, the data may be placed
in a queue. A data port is essentially an event data port with a queue size of
one. By default, a data port does not trigger a thread dispatch. An event port
is an event data port with no message and is representative of a discrete event
(i.e. a button push).

7.2 Code Generation

The AADL model is the basis for generating operating system configuration
data and the C-language source code to be run on the target platform. An
overview of the generation process for the eChronos and CAmkES operating
systems are shown in Figures 34 and 35. In these figures, the white rounded
rectangles represent language and modeling artifacts and the dark blue boxes
represent the tools that process these artifacts. The light green boxes represent
the output of these processes that, when combined, result in the final system
image that is loaded onto the open source vehicle. Although this appears to
be a somewhat lengthy and complex process, we have the sequence down to a
single command that builds the entire system.

Figure 34 shows the build process for the eChronos operating system, used
in the flight control computer of the IRIS+ quadcopter. For this build, Ivory/-
Tower generates C code and the AADL model (not shown). The AADL model is
parsed by the trusted build plugin, producing an eChronos configuration file and
C-language “glue code” that integrates the Ivory-generated code with eChronos.

69
Approved for Public Release; Distribution Unlimited.

AADL Model eChronos
Config File

Tasking Glue
Code (in C)

eChronos
PRJ GEN

Trusted
Build

eChronos
Implementation

make

Directories containing C
code

00001101000100…
Image

C FileC Fie
C File

Figure 34: SMACCM Build Process for eChronos

assembly {
composition {
component dispatch_periodic

dispatch_periodic_inst;
…

CAmkES Assembly

CAmkES
make

00001101000100…
Image

CAmkES Component

component receiver {
include "smaccm_test4_impl_types.h";
control;
provides uint32_t_writer Input1;
…

CAmkES Config

void
Test_AADL__Thread_A_main(

bool signalCh) {
init_thread_A();
…

AADL C Glue Code

void
exec_sig_systick(void) {
systick_signal_write_chEmitter();
}
…

Component C Code

TARGETS := $(notdir ${SOURCE_DIR}).cdl
ADL := test1_impl_assembly.camkes
TEMPLATES := ../../projects/templates
../../projects/global-components/templates
…

CAmkES Makefile

AADL Model Trusted
Build

Directories containing C
code

C FileC Fie
C File

Figure 35: SMACCM Build Process for CAmkES/seL4

70
Approved for Public Release; Distribution Unlimited.

The eChronos configuration file is passed to the eChronos build system. After
eChronos is built, the glue code and the Ivory-generated code are combined to
build the final system image.

Figure 35 shows the build process for the CAmkES/seL4 operating system,
used in many of vehicles, including the quadcopter and Little Bird mission
computers. For this build, the AADL is created by hand and integrates C code
from a variety of sources, including Ivory/Tower. The AADL model is parsed
by the trusted build plug-in, producing CAmkES components for each thread.
CAmkES is a component description language for seL4 and is described in
Section 6.3. CAmkES requires make and configuration files for each component
as well as an assembly file that describes how the components are wired together.
CAmkES integrates into make to custom-build the OS and configuration for the
application.

To demonstrate the relationship between the model and the generated source,
consider the excerpt from the SMACCM AADL model shown in Figure 36.
This model contains portions of the definition of two threads (CAN framing
and CAN driver) as well as a process implementation (Mission Software.i). The
process implementation contains instances of the threads as subcomponents
(can framing, and can driver, respectively) and also defines connections between
the two.

AADL supports definitions of property sets, which allow definition of addi-
tional properties to the elements of the AADL model. To support system build,
we have added a property set called TB SYS that defines information about the
components used during build. As discussed in Section 7.1, threads communi-
cate through ports. Ultimately, the threads need to invoke API functions that
implement the read/write primitives for the port. Normally, the AADL specifi-
cation would define the names of these communication functions. However, the
Galois Ivory/Tower code needs to support both AADL and other middleware
products “out of the box.” To support this, we allow the user to specify the
names and location (in terms of a header file) of the communication primitive.
The TB SYS::CommPrim Source Header property defines the header file for the
thread’s functions and the SMACCM SYS::CommPrim Source Fn property defines
the name of the communication primitive that will be generated from the AADL
model. Finally, the TB SYS::Is External specifies that this thread will be “ex-
ternal”, meaning that it does not follow the standard thread dispatch process
for trusted build.

The basic model for AADL thread execution is shown in Figure 37, where
the code generated by the AADL middleware is shown in blue and the user
code is shown in orange gradient. The run() function is the thread entry point
generated from the AADL model. In a nutshell, this thread will run forever,
waiting for the next event on a dispatch semaphore, which is posted by other
threads. Once posted, the thread determines the reason for the post and runs
an appropriate dispatch handler that determines which actions should be per-
formed. The dispatch handler calls the user entry point, which can then call
the middleware communication functions to communicate with other threads.

An excerpt from the corresponding C-code generated from this AADL struc-

71
Approved for Public Release; Distribution Unlimited.

thread CAN_Framing
features

server2self: in event data port SMACCM_DATA::GIDL;
self2server: out event data port SMACCM_DATA::GIDL;
can2self_frame: in event data port SMACCM_DATA::CAN_Frame.i

{ Queue_Size => 10; };
can2self_status: in event data port Base_Types::Boolean;
self2can: out event data port SMACCM_DATA::CAN_Frame.i;

properties
Dispatch_Protocol => Periodic;
Priority => 150;
Stack_Size => 4 KByte;
Compute_Execution_Time => 10 us .. 100 us;
TB_SYS::Sends_Events_To => "{{1 self2can, 1 self2server}}";
Compute_Entrypoint_Source_Text => "component_entry";
Initialize_Entrypoint_Source_Text => "component_init";
Period => 1 ms;

end CAN_Framing;

thread CAN_Driver
features

framing2self: in event data port SMACCM_DATA::CAN_Frame.i;
self2framing_status: out event data port Base_Types::Boolean;
self2framing_frame: out event data port SMACCM_DATA::CAN_Frame.i;

properties
TB_SYS::Is_External => true;
Dispatch_Protocol => Sporadic;
Compute_Execution_Time => 10 us .. 100 us;
TB_SYS::Sends_Events_To => "{{self2framing_status,

self2framing_frame}}";
end CAN_Driver;

…

process implementation Mission_Software.i
subcomponents

uart_driver: thread UART_Driver;
decrypt: thread Decrypt;
encrypt: thread Encrypt;
server: thread Server;
can_framing: thread CAN_Framing;
can_driver: thread CAN_Driver;
virtual_machine: thread Virtual_Machine;

connections
uart2decrypt: port uart_driver.self2decrypt -> decrypt.uart2self;
encrypt2uart: port encrypt.self2uart -> uart_driver.encrypt2self;

 …
framing2can_request: port can_framing.self2can ->

can_driver.framing2self;
 can2framing_status: port can_driver.self2framing_status ->

can_framing.can2self_status;
…

end Mission_Software.i;

Figure 36: Excerpt from the SMACCMcopter Mission Software AADL model

72
Approved for Public Release; Distribution Unlimited.

Thread run()
function

4/25/2017 Mike Whalen: TARDEC HACMS demo

Event
dispatcher
function

User dispatcher
Callback (called
from other
thread)

Dispatch
Semaphore

Post()
TB Comm
Function

Call/signal to other thread

TB Comm
Function

…

Figure 37: AADL thread dispatch model

ture is presented in Figure 38. In the case of the CAN framing thread, the
only reason for dispatch is the periodic timer, but more complex interac-
tions of dispatchers including event dispatch (due to receipt of an event on
an event port) or interrupt service routine (ISR) dispatch (due to processing
of a 2nd-level ISR handler). An example of a callback function that “wakes
up” the thread is the periodic dispatcher write int64 t function. This
function is called by the periodic timer; when called, it posts to the dispatch
semaphore, which causes the thread to execute. An example comm function is
the tb CAN Framing write self2can function, which calls the native CAmkES
function to send data to another thread.

7.3 Code Generator Architecture

The trusted build tool is an Eclipse plug-in written in Java. It is designed
for extension in two dimensions: support of additional operating systems, and
support of multiple implementations of different AADL communications prim-
itives. The “baseline” implementation of port communication primitives (data
port, event data port, and event port) uses either local procedure calls with
mutexes or RPCs as a mechanism for transmitting data, depending on whether
or not the operating system offers memory protection.

Though RPCs work efficiently for communicating data between processes,
there is a significant potential security issue. The process acting as the “server”
can perform a denial of service on a client simply by preventing the RPC call
to complete. The generated middleware code will not allow this to occur, but a
malicious actor, once inside the server process boundary, could rewrite this code
to prevent return. In addition, if large amounts of data are to be transferred,
then RPCs induce a double-copy overhead.

Two alternate implementations of the communications primitives for the
seL4 operating system have been created to provide both higher performance
and better security.

73
Approved for Public Release; Distribution Unlimited.

/**
* periodic_dispatcher_write_int64_t
* Invoked from remote periodic dispatch thread.
*
* This function records the current time and triggers the active thread
* dispatch from a periodic event. …
**/

bool periodic_dispatcher_write_int64_t(const int64_t * arg) {
tb_occurred_periodic_dispatcher = true;
tb_time_periodic_dispatcher = *arg;
MUTEXOP(tb_dispatch_sem_post())
return true;

}
…
/**
* tb_CAN_Framing_write_self2can:
* Invoked from user code in the local thread. This is the function invoked
* by the local thread to make a call to write to a remote data port.
…
**/

bool tb_CAN_Framing_write_self2can
(const SMACCM_DATA__CAN_Frame_i * tb_self2can) {

bool tb_result = true ;
tb_result &= tb_self2can_enqueue(tb_self2can);
return tb_result;

}
…
/**
* int run(void)
* Main thread function.
**/

int run(void) {
// Port initialization routines
tb_entrypoint_CAN_Framing_CAN_Framing_initializer(&tb_dummy);

// Initial lock to await dispatch input.
MUTEXOP(tb_dispatch_sem_wait())
for(;;) {

MUTEXOP(tb_dispatch_sem_wait())

// Drain the queues
if (tb_occurred_periodic_dispatcher) {

tb_occurred_periodic_dispatcher = false;
tb_entrypoint_CAN_Framing_periodic_dispatcher(

&tb_time_periodic_dispatcher);
}

}
// Won't ever get here, but form must be followed
return 0;

}

Figure 38: C code generated from SMACCMcopter Mission Software AADL
model

74
Approved for Public Release; Distribution Unlimited.

A B’A’

BA M

Figure 39: Communicating AADL threads A, B and their implementation in
CAmkES

Mailboxes implementing data ports. Other HACMS researchers have im-
plemented a lock-free communication approach for dataports called mailboxes.
A client publishes data to a mailbox and notifies clients where the most recent
data is in a thread-safe way using atomic hardware primitives. The C imple-
mentation of mailboxes has been proved correct by Princeton University using
the Coq theorem prover. This implementation was used in HACMS ground
vehicle demonstrations, but not in the air vehicles.

Monitor components implementing event and data ports. Another
approach uses seL4 components as intermediaries between clients and servers
for both queued and non-queued communications. Both the client and server
RPC into the intermediary monitor component, so a malicious server cannot
capture a client.

Consider an AADL model with two threads, A′ and B′, that share an event
port or event data port with output at A′ and input at B′. In CAmkES, we will
create components A and B to represent A′ and B′, but also an intermediary
monitor component M . A diagrammatic representation of the original AADL
model and the generated CAmkES is shown in Figure 39.

We now walk through the interaction between threads through the monitor
in Figure 40. We assume that the priority of the CAmkES monitor M is higher
than either A and B (or priority inversion can occur). The diagram is fairly
self-explanatory, but a few points merit clarification. The dotted line is a seL4
asynchronous notification, so it is not possible for the client to block the monitor.
In addition, the enqueue and dequeue methods, used by the server and client,
respectively, are badged by the operating system so that only the server can
use enqueue and the client use dequeue. Finally, CAmkES creates a critical
section, so only one or the other method can be active simultaneously (similar
to synchronized methods in Java), so there is no possibility of race conditions.

In terms of deadlock, there is only one mutex (the sychronizer) and there
is no circular wait condition between the monitor and either client, since the
notification is asynchronous. What remains to show is that the monitor can-
not perform a denial of service on either the client or server. We address this
problem by automatically generating a formal proof of correctness for each mon-

75
Approved for Public Release; Distribution Unlimited.

BA M

BA M

BA M

BA M

BA M

BA M

A wishes to send to B

A makes an RPC call to M

M wakes up

M sends a notification
(not RPC) to B

B wakes up

B makes RPC call to M to
extract message

Figure 40: Flow of interaction between A, B, and monitor M

itor instance. The formal proof relies on the Isabelle/HOL Interactive Theorem
Prover and the AutoCorres Isabelle/HOL package.

The proofs rely on an abstraction from the monitor queue from the Auto-
Corres model of memory to a more traditional list abstract data structure. The
reasoning strategy then becomes one of showing enqueue or dequeue on queue
abstractions lifted from initial memory result in, after invoking enqueue and
dequeue on memory, identical queue abstractions lifted from the modified mem-
ory. There are four primary theorems proved within these formal proofs. The
simpler of these two pertain to correct behavior of the enqueue and dequeue
functions when the monitor queue is full or empty respectively. Specifically, we
prove that when the monitor queue is full or empty then enqueue or dequeue
invocations, respectively, terminate with a return result indicating failure and
alter only memory scoped within the invocations. The more complicated of the
two theorems proves that invoking enqueue or dequeue when the monitor is not
full or not empty, respectively, terminate with a return result indicating success
and extends or shortens the monitor queue, respectively.

76
Approved for Public Release; Distribution Unlimited.

8 SMACCMcopter Demonstration

The SMACCMcopter was developed as an open experimentation platform that
would be available for use by all researchers in the HACMS program (and even
outside of the program). It is based on commercially available hardware com-
ponents and open source software. It mimicks the architecture and features of
the Boeing ULB in a number of ways, and has been a practical way to develop,
refine, and test new technologies in the HACMS program.

Like the ULB, the SMACCMcopter includes a flight control computer, a mis-
sion computer, an internal data bus, encrypted radio links to a ground control
station for command and telemetry, and an onboard camera that can trans-
mit live video data to the ground station. The SMACCMcopter is shown in
Figure 41.

8.1 Hardware Architecture

The airframe for the SMACCMcopter is the IRIS+ quadcopter produced by
3D Robotics. The IRIS+ comes with a Pixhawk flight control computer which
runs the hard real-time control software and includes integrated sensors for ve-
hicle acceleration and attitude. A separate mission computer has been mounted
on top of the IRIS+ body (see Figure 41). The mission computer is composed
of a TK1-SOM from Colorado Engineering and a custom I/O daughter-board
developed by Data61. It hosts functions for encryption/decryption, ground com-
munication, and the onboard camera. The camera is a PixyCam (CMUcam5)
and is mounted on the underside of the IRIS+ body, along with a single-point
LIDAR to improve altitude measurement. The mission computer is connected

Figure 41: SMACCMcopter during final flight demonstration

77
Approved for Public Release; Distribution Unlimited.

Figure 42: SMACCMcopter computing hardware: Pixhawk flight control com-
puter (left) and TK1-SOM mission computer (right)

to a USB Wi-Fi adapter which is used to stream camera video to the ground
station. The camera is also connected to the mission computer via USB. The
two computers communicate over a standard CAN bus. The Pixhawk and TK1-
SOM (without daughter-board) are shown in Figure 42.

The ground control station software runs on a standard Linux-based laptop
computer and communicates command and telemetry data with the SMACCM-
copter using a 3DR radio connected via USB. A standard Wi-Fi connection is
used for video data. A separate hobby radio controller communicates directly
with the flight control computer and provides an independent control mechanism
for safety during demonstration flights.

8.2 Software Architecture

All of the SMACCMcopter software was written (or rewritten) from scratch
using HACMS technologies.

The software architecture for the flight control computer is shown in Fig-
ure 43. The main function of the flight computer is captured by the sensor
fusion, stabilization, and motor mixing components. The other components are
primarily drivers used to communicate with hardware for the sensors, radio,
and CAN bus. Most of the functionality of the original IRIS+ software (which
is based on the open source ArduPilot project) was reimplemented in the Ivory
and Tower languages, along with an AADL software architecture model. In
addition, all of the flight control software runs on the eChronos verified RTOS.

The AADL software architecture model for the mission computer is shown
in Figure 44. On the left of the figure, a UART driver receives and sends data
over a 915 MHz radio channel to communicate with the ground control station.
Separate encryption and decryption components are connected to the UART
driver. These components then connect to a central server component which

78
Approved for Public Release; Distribution Unlimited.

Figure 43: Software architecture for SMACCMcopter flight computer

Figure 44: Software architecture for SMACCMcopter mission computer

manages requests from the ground station and responses from the vehicle. The
virtual machine component hosts a guest Linux OS and communicates only with
the server. The server additionally communicates with the flight computer over
the CAN bus using the CAN framing and CAN driver components.

The Linux VM runs the camera software. It receives video data from the
camera, detects and computes bounding boxes for objects of a specified color,
and sends video data to the ground station over Wi-Fi. The bounding boxes
are the only data that are permitted to pass from the Linux VM to the rest of
the system.

The central components of the mission computer (Encrypt, Decrypt, Server,
CAN framing) are synthesized from Ivory. The other components (UART driver,
Virtual machine, CAN driver) are handwritten C code that often communicate
directly with underlying hardware.

8.3 Build Process

The build process for both the flight and mission computers is driven by an
AADL architecture using the Trusted Build tool. There are variations between
the two computers based on how the code for them was developed.

The code and architecture for the flight computer are completely specified

79
Approved for Public Release; Distribution Unlimited.

Figure 45: Software architecture of the secure SMACCMcopter, illustrating the
attack

in Ivory and Tower. The build process generates an AADL architecture specifi-
cation from the Tower description of the architecture. We then use the Trusted
Build tool to synthesize configuration files and related glue code for realizing this
architecture on top of eChronos. We insert the synthesized Ivory components
into this structure, and then build the system image using the eChronos build
process. The resulting image can be directly loaded onto the flight computer.

The software architecture for the mission computer is completely specified
in handwritten AADL. We use the Trusted Build tool to synthesize a suit-
able CAmkES configuration with additional glue code for implementing AADL
features on top of CAmkES. We insert our synthesized and handwritten com-
ponents into this structure, and then build the system image using the standard
CAmkES build process. This compiles all of our code together with the seL4
kernel and related libraries. The resulting image can be directly loaded onto
the mission computer.

8.4 Demonstration

The secure Ivory software components, secure seL4 operating system, and ver-
ified AADL software architecture result in a quadcopter design in which most
common security vulnerabilities have been eliminated. A simplified diagram of
the architecture is shown in Figure 45. The secure components and operating
system software are shown in green, while the untrusted camera software shown
in orange is isolated in a separate Linux virtual machine (VM).

We showcased the security of the SMACCMcopter in a live demonstration at
the Rockwell Collins facility in Sterling, VA in April 2017. The demonstration
consisted of two scenarios to shown the difference between an unsecure, unveri-

80
Approved for Public Release; Distribution Unlimited.

Figure 46: Failed cyber-attack showing ground control station (left) and attacker
laptop (right)

fied version of the SMACCMcopter software (that happens to include a security
vulnerability) and the secure, verified version of the software. In each scenario,
the SMACCMcopter is flown and commanded by the ground control station
while a separate team of “attackers” launches a cyber-attack on the vehicle, at-
tempting to take over its telemetry and flight control. In the first scenario, the
cyber-attack is shown to be successful, while in the second the SMACCMcopter
is shown to resist the same attack and an additional further attack.

In both scenarios, the SMACCMcopter takes off from “friendly territory”
and flies over a simulated mission area, streaming back surveillance video via
its unsecure Wi-Fi connection. The camera software is hosted in a Linux virtual
machine to which the attacker is able to gain access via the Wi-Fi link. From
here, the attacker then tries to escalate the attack into a full system compromise.

8.4.1 Successful Attack on Unsecure Vehicle

The first scenario illustrates the possible security consequences of a system with
a security vulnerability related to the Linux VM. Exploiting this vulnerability,
the attacker is able to access memory outside of the virtual machine address
space and find and modify the cryptography keys used for secure communica-
tion with the ground station. The attacker overwrites these keys with his own
version, causing the legitimate ground station to lose contact with the vehicle,
and allowing the attacker to take control of the vehicle. Furthermore, the at-
tacker captures the streaming video while sending a skull image to the legitimate
ground station. Finally, the attacker uses the hacked datalink to command the
vehicle to leave the mission area and land in “hostile territory.”

8.4.2 Failed Attack on Secure Vehicle

The second scenario illustrates the cyber-resilience of the SMACCMcopter run-
ning its secure software. Here the attacker is unable to access the cryptography
keys from within the Linux VM. Instead, access is denied and only blank mem-
ory regions are visible (Figure 46). The attacker then tries to overwhelm the

81
Approved for Public Release; Distribution Unlimited.

processing capabilities of the system by spawning a forkbomb attack. A fork-
bomb is a program which continuously replicates itself, thus making it very hard
to kill off all instances of the forkbomb. This causes the Linux VM to crash,
cutting off attacker access but also crashing the camera software. However, all
other aspects of the SMACCMcopter, including telemetry and ground station
command, continue to function as usual. The effects of the attack are com-
pletely confined to the virtual machine. Moreover, the operator is able to issue
a VM reboot command through the secure datalink which restores the Linux
VM and the camera software within a matter of seconds. The SMACCMcopter
then lands safely in friendly territory.

82
Approved for Public Release; Distribution Unlimited.

9 ULB Demonstration

The role of the Military Vehicle Expert in HACMS is to use HACMS technologies
to produce a high-assurance version of a defense vehicle. This supports three
goals: showing that the technologies can be used on military relevant systems,
showing that the technologies can be used by people other than their inventors,
and providing an initial assessment of the transitionability of the technologies.
Boeing played this role on the SMACCM team. The military vehicle used
was the Boeing UH-6 Unmanned Little Bird (Figure 47). The remainder of
this section provides additional background on the Unmanned Little Bird, and
other activities of the HACMS Military Vehicle Expert, how the SMACCM
technologies were applied to the ULB, two flight demonstrations that validated
the application of the HACMS technologies to the ULB, and the results of formal
analysis of security properties of the HACMS ULB. This section concludes with
lessons learned and suggestions for future evolution of the HACMS technologies.

9.1 Background

9.1.1 Challenge Problems

As part of its role as military vehicle experts, Boeing provided multiple re-
leases of sets of challenge problems that were intended to represent particular
situations, contexts, or areas where HACMS technologies could be employed

Figure 47: The Boeing Unmanned Little Bird

83
Approved for Public Release; Distribution Unlimited.

to improve the process of developing secure embedded vehicle systems. These
benefits can include improving the assurance of security of the resulting system
and improving the effectiveness of the process of developing secure systems.
The challenge problems were intended to both guide HACMS research based
on the needs of militarily relevant embedded vehicle systems, and to provide a
mechanism for demonstrating the resulting technologies.

The challenge problems provided basic information about the ULB, includ-
ing a shareable system level AADL model, and pseudo code for determining
the authorization of ground stations to issue commands to the aircraft based
on their designated Level of Interoperability. With this information, generic
and ULB specific challenge problems were defined. Generic challenge problems
were applicable not just to the ULB or military air vehicles, but to military
vehicle systems in general. Generic challenge problems included ensuring that
only authorized commands are executed by a vehicle, or that maintenance is
performed securely. ULB specific challenge problems included enforcing ground
station LOI restrictions, and ground station authentication.

9.1.2 Unmanned Little Bird

The ULB is an optionally manned rotary UAV, based on the H-6, a 32 foot long,
4700 pound rotorcraft. The ULB adds an autonomous capability to the basic
H-6. This is provided by a Vehicle Management System (VMS) containing a
Flight Control Computer and a Vehicle Specific Module. Though the ULB is
capable of fully autonomous flight, it is generally flown with a safety pilot, who
can disable and override the ULB VMS. The presence of the safety pilot and the
ability of the safety pilot to override the VSM ensures safety of flight regardless
of VSM changes, and permits the ULB to fly under FAA Optionally Piloted
Experimental Aircraft rules, rather than under Unmanned Air Vehicle rules.
These two factors make the ULB an attractive research vehicle for programs like
HACMS. As a result, the ULB program has supported many UAV technology
development programs since its first flight in September 2004. The ULB system
is comprised of three basic subsystems, the Ground Control Station (GCS), the
data link, and the air vehicle (Figure 48).

The GCS is comprised of three main components interconnected via Eth-
ernet. The primary piece is the Common Unmanned Control System. The
CUCS is a STANAG 4586 compliant system for control of multiple dissimi-
lar UAVs. The CUCS used by the ULB is Boeing’s COMC2 ground control
station. COMC2 communicates to the aircraft using User Datagram Protocol
(UDP) Multicast via the data link. A security gateway router is used when the
GCS needs to connect to external systems.

The second subsystem is the data link. The ULB data link is the L-3 Com
Mini-TCDL, a Ku-Band, encryptable, wireless Ethernet data link. The Ground
Data Terminal (GDT) is the ground portion of the data link. The GDT consists
of a Mini-TCDL data modem, radio frequency equipment (RFE), and 2-Axis
directional antenna. The Airborne Data Terminal (ADT) also consists of a data
modem and RFE, but uses an omni-directional antenna.

84
Approved for Public Release; Distribution Unlimited.

Figure 48: The Unmanned Little Bird Unmanned Aircraft System

85
Approved for Public Release; Distribution Unlimited.

The air vehicle subsystem includes a single chassis VMS which contains
two main processing units: the VSM and the FCC. The VSM is designed to
implement the STANAG 4586 [58] UAV control standard. The VSM essentially
acts as a translator converting STANAG messages into the appropriate internal
ULB proprietary messages. The VSM has the secondary task of managing
mission sensors such as the Wescam MX-15 EO/IR sensor. The FCC manages
the flight control system for the aircraft and all of the flight critical aircraft
sensors such as the Enhanced GPS and Inertial (EGI) navigation system, Radar
Altimeter, and Air Data Computer. The VSM communicates with the GCS
via UDP multicast; to the Wescam via UDP; and to the FCC via UDP. The
FCC communicates to the flight control actuators and aircraft sensors using a
variety of interfaces including digital and analog I/O, RS-232, ARINC-429, and
MIL-STD-1553B. The FCC communicates with VSM via Mil-STD-1553B in the
original ULB configuration. During the HACMS program, the ULB program
replaced this with a dedicated Ethernet connection. A small helper application
on the VSM processor board acts as a 1553 to Ethernet bridge.

The ULB implements the STANAG 4586 protocol for communication be-
tween ground stations and UAVs. The protocol was designed to permit any
compliant ground station to control any compliant UAV. Though developed
by NATO, the third edition of the protocol has been publicly released. The
protocol defines roles for the command station and the aircraft vehicle specific
module. Though the protocol allows for the VSM to be on the ground with
communication to the aircraft via an aircraft specific protocol, the ULB VSM
is actually on the aircraft, so that the air-ground link uses the STANAG 4586
protocol. In addition to defining messages for waypoint navigation and payload
control, the STANAG 4586 protocol defines 5 Levels of Interoperability, which
specify the types of relationships between a ground station and an aircraft.

• LOI 1:Indirect receipt of payload data.

• LOI 2: Direct receipt of UAV related data.

• LOI 3: Control and monitoring of the UAV payloads

• LOI 4: Navigational control and monitoring of the aircraft less launch and
recovery

• LOI 5: Navigational control and monitoring of the aircraft including
launch and recovery.

For a given UAV and payload, there can be any number of ground stations with
LOI 1 or 2, at most one with LOI 3, and there should be exactly one with LOI
4 and LOI 5 combined. During the baseline assessment it was noted that the
number of ground stations at LOI 2 needs to be bounded, otherwise a denial of
service attack could occur, with all UAV bandwidth devoted to publishing data
to an arbitrarily large number of ground stations.

The ULB offers four autonomous navigation modes. In waypoint mode, the
aircraft follows routes defined by waypoints, which include altitude and velocity.

86
Approved for Public Release; Distribution Unlimited.

In loiter mode the ULB orbits a designated loiter point. In slave to sensor mode,
the ULB loiters around a waypoint defined by the stare point of the onboard
camera. Finally, there is an autopilot mode where the ground station directly
supplies heading, airspeed, and altitude.

The original ULB VSM is implemented in C++ in a component/library style.
It consists of approximately 87 KSLOC of source code, with an executable size
of approximately 80 MB. It runs on Gentoo Linux on the aircraft, and is built
and tested on Kubuntu Linux. It is hosted on an x86 platform. The baseline
aircraft used a Dynatem Pentium-M Processor, but during the course of the
HACMS program this was replaced by an AiTech, 1.33 GHz, C162 processor
board with an Intel Core i7 processor, since the original processor did not have
the virtualization extensions required by seL4.

The original ULB FCC was written in C using a monolithic cyclic executive
running on a board support package at 50 Hz. It consisted of approximately 20
KSLOC of source code, with an executable size of approximately 2 MB. During
the HACMS program the Boeing ULB program ported the FCC software to
VxWorks, which increased the size to approximately 40 KSLOC. The baseline
aircraft used a DY 4 DMV-181-2828 Power PC Processor Module, but due to
parts obsolescence issues, this was replaced by a Curtiss-Wright DMV-194.

9.2 Applying HACMS Technologies to the ULB

Over the course of the three phases of the HACMS program, HACMS tech-
nologies were progressively applied to the ULB to create a high-assurance cyber
military system. This section will describe how the different HACMS technolo-
gies were applied to the ULB. In HACMS Phase 1 and 2, SMACCM technologies
were applied to the ULB VSM, while in Phase 3, HACMS technologies were ap-
plied to the FCC as well. Figure 49 shows the baseline ULB architecture at
the start of the HACMS program. In HACMS Phase 1, the system architecture
was modeled in AADL, and seL4 was used as a hypervisor to host the baseline
VMS on its baseline Linux operating system as a guest operating system (Fig-
ure 50). In the figure red represents non-secured components, purple represents
partial application of SMACCM technology, and blue represents full application
of SMACCM technology.

During Phase 2 AADL was used to represent the VSM software architecture
sufficient to enable use of the SMACCM AADL2RTOS tool to generate glue
code for the VSM, Ivory was used to implement a subset of the VSM, and the
authentication and LOI components. The remaining elements of the VSM were
left as legacy components executing in Linux virtual machines. All of the VSM
software then ran on top of seL4 (Figure 51). The resulting system was used in a
flight demonstration on 24 July 2015 to show that improving security does not
preclude satisfying the Cyber-Physical Systems (CPS) requirements of flying
systems.

While the VSM is an embedded system and has some real-time requirements,
it is the FCC and the flight control algorithms implemented there that have
the most stringent hard real-time CPS requirements. In Phase 3, the FCC

87
Approved for Public Release; Distribution Unlimited.

Figure 49: ULB Baseline Architecture

software architecture was modeled using AADL, and the outer loop control and
input/output elements of the FCC were implemented in Ivory. In this case the
existing VxWorks RTOS was retained as the operating system. The resulting
final ULB HACMS architecture is shown in Figure 52.

9.2.1 Architecture

The ULB system and software architecture was modeled using AADL. The
AADL model served three roles. First, the AADL model was used to cap-
ture the overall design of the system, and track the evolution of the system as
HACMS technologies were applied to the system. Second, the AADL model
was the basis for specification and verification of security properties (see Sec-
tion 4.1.1). SMACCM adopted an architectural approach to reasoning about
system security. This is appropriate since security is a system level property.
Finally, the system AADL model was used for code generation. Component
interfaces and interconnections were defined in the AADL model, and then glue
code implementing those interfaces and interconnections was generated from the
model.

An initial open system level model was developed during phase 1 that cap-
tured the hardware aspects of the ULB avionics, with a simple software model.
Then, over the course of the program as the VSM and later FCC were reimple-

88
Approved for Public Release; Distribution Unlimited.

Figure 50: ULB HACMS Phase 1 Architecture

89
Approved for Public Release; Distribution Unlimited.

Figure 51: ULB HACMS Phase 2 Architecture

90
Approved for Public Release; Distribution Unlimited.

Figure 52: ULB HACMS Final Architecture

91
Approved for Public Release; Distribution Unlimited.

mented using HACMS technologies, more detailed software architecture models
were developed.

In the case of the VSM, four major changes were made to the baseline VSM
architecture. First, the original single VSM was split into a ”flight” VSM and
a ”camera” VSM. The flight VSM managed control of the aircraft, including
waypoint processing and communication with the FCC. The camera VSM con-
trolled the Wescam sensor. Ground station commands associated with waypoint
navigation and aircraft state would be routed to the flight VSM. The flight VSM
is therefore regarded as more critical and it was completely reimplemented using
HACMS technology. The camera VSM is less critical, and both for pedagogical
reasons and due to resource constraints, was retained largely as legacy code run-
ning in a Linux partition with seL4 serving as hypervisor. The data recorder
function was likewise retained as legacy code in a separate Linux partition.
These Linux partitions could then serve as ”jumping off points” for Red Team
attacks.

The second change, in part a result of the baseline Red Team assessment, was
the introduction of an authentication component to authenticate communica-
tion with the ground station, and ensure only commands from an authenticated
ground station would be acted upon. The same Galois Counter Mode authen-
tication algorithm was used on both the ULB and the research air vehicle. For
the ULB ground station, an authentication shim was added between the ground
station and the ground side radio (to avoid modifying the ground station soft-
ware). The third change was the introduction of an LOI Manager component
between the authentication component and the two VSMs. The LOI manager
enforces the STANAG protocol rules on which commands can be performed by
a ground station with a particular LOI level.

The fourth change to the VSM was the addition of a geo-fence capability.
With the proliferation of COTS UAVS, geo-fencing has been seen as a way
of preventing (inadvertent) “rogue drones.” A geo-fence defines a particular
region as being prohibited for the UAV. In addition to these civil applications,
geo-fences also have military application where they represent operational area
boundaries, no fly zones, threat regions, and pop-up threats. For the ULB,
the geo-fence capability is limited to a simple two dimensional rectangle, and
is enforced both at the route level, and dynamically. At the route level, when
a waypoint route is uploaded to the VSM, it is checked against the geo-fence,
and a route which would violate the geo-fence is rejected. Dynamically, as the
aircraft is flying, its current position and velocity is checked against the geo-
fence, and if a violation is imminent, the ULB is instead automatically directed
to loiter within the geo-fence. This dynamic check is necessary because of the
presence of autopilot and slave-to-sensor navigation modes. Figure 53 shows
dynamic geo-fence enforcement.

The FCC architecture was essentially unchanged. In both the baseline and
final HACMS ULB FCC, there was essentially a single component with three
threads, the real-time control thread, a background thread, and a logging thread.

Detailed software AADL models were developed for both the VSM and the
FCC. An AADL model defines a system in terms of the hardware and software

92
Approved for Public Release; Distribution Unlimited.

Figure 53: Dynamic Geo-Fence Enforcement

components, and the connections between them. An architecture model has
an architectural style which, generally speaking, defines the types of interfaces
provided by components, and the semantics of the connections between them.
In the case of the HACMS ULB, there were two distinct architectural styles,
one for the FCC and one for the VSM.

The FCC used an AADL architectural style compatible with VxWorks, in
particular there was really only a single component hosting the three threads,
so the semantics of component communication were unaddressed. The AADL
architectural style for the VSM is influenced by, but is not identical to, the
component semantics provided by CAmkES, the component model associated
with seL4. Threads could be active or passive, and communication is via shared
data or by event data ports, corresponding to seL4 communication primitives.
There were two special cases for the VSM model. First, the VSM model in-
cluded provisions for components representing virtual machines running in a
partition, with specialized connections across the virtual machine boundary.
Second, some seL4 platform functionality, such as the UDP stack, was provided
by assemblies of CAmkES components. These are CAmkES components not
AADL components, and so have slightly different semantics. These are repre-
sented in the HACMS VSM AADL architectural style through the introduction
of external components. These are AADL components that essentially encap-
sulate the native CAmkES assembly and bridge the gap between architectural
styles.

Once the AADL model is defined, it can be used for verification and for
code generation. Verification is addressed in section 4.1.1. Code generation
was implemented in the University of Minnesota AADL2RTOS tool. The archi-
tectural style is specified by setting the system OS type in the AADL model,

93
Approved for Public Release; Distribution Unlimited.

and the tool generates the appropriate glue code. In the case of VxWorks, the
glue code is the appropriate VxWorks configuration information. In the case of
seL4 and CAmkES, the AADL2RTOS tool generates CAmkES ADL and IDL
files, and then CAmkES generates component skeletons from the ADL and IDL
files. The AADL2RTOS tool also generates code that connects the CAmkES
skeletons with the component implementations that are specified in the AADL
model.

9.2.2 Components

Two HACMS component implementation technologies were used on the ULB.
Most of the HACMS components were implemented using Ivory, the EDSL de-
veloped by Galois (Section 5.1). Using Ivory guaranteed that those components
were free from a variety of implementation defects, in particular, various mem-
ory issues (null pointers, buffer overflows, array index errors), since the design
of the language does not allow developers to write code with these defects.
The second component technology used was Spiral/Hybrid Control Operator
Language (HCOL), which uses formally verified transformations to generate
correct by construction component implementations from high level algorithm
descriptions. Spiral/HCOL were developed by Carnegie Mellon University and
SpiralGen. Spiral/HCOL were used to implement an air/ground state deter-
mination algorithm (”weight on wheels”) during HACMS Phase 3, as shown in
Figure 52.

Ivory Ivory was designed for writing cyber-physical system software. As an
EDSL embedded in the Haskell functional language, the standard Ivory syntax
is Haskell-like. Ivory also provides a ”concrete syntax” that is more C-like.
Code written in Ivory is compiled into C, which is then compiled using an
off the shelf C compiler. The Ivory compiler, written in Haskell, enforces the
formal properties of the Ivory language, so that though the executing code is C,
the generated C is guaranteed to be free from the defects Ivory is designed to
prevent.

Ivory builds code as modules. Each module specifies the dependencies on
other modules or external resources, and is the bridge between Ivory and Haskell,
including all the various Ivory language EDSL definitions. The Haskell compiler
is then used to compile the module, which produces an executable that includes
the Ivory compiler as well as the code for the module. Executing the module
then executes the Ivory compiler, which generates C code implementing the
application code of the module. This generated C code is then compiled for the
target system and included as part of the final executable system.

For the ULB, the generated C code provides the implementations of the
software components in the ULB AADL model, since the AADL model is the
basis for the system design. For the AADL Ivory components, the generated C
code is associated with the appropriate AADL components using AADL prop-
erties. The properties are used by the University of Minnesota’s AADL2RTOS

94
Approved for Public Release; Distribution Unlimited.

void LOIComponent::AckAdd(int idx, unsigned int msg)

for (int jj = 0; jj < 4; jj++)

if (MCucsAcks[idx][msg%37][jj] == 0)

MCucsAcks[idx][msg%37][jj] = msg;

return;

Figure 54: Original C++ Code

tool to invoke the component implementations from the generated component
skeletons.

Since the ULB is a legacy system, the approach taken to develop the Ivory
implementation of ULB components was to essentially adapt the existing soft-
ware to Ivory rather than to try and develop a new VSM from first principles.
For the VSM, the first step in the adaptation was the refactoring described
above into separate flight and camera VSMs, and separate authentication and
LOI manager components. The Authentication and LOI components were im-
plemented by Boeing in collaboration with Galois.

The remaining VSM Ivory components, and the FCC Ivory components,
were implemented by Boeing. The second step in implementing the VSM was
to modify the remaining legacy code to make it more Ivory-like. The existing
ULB implementation is an object oriented C++ application that makes use of a
generic avionics component framework, while the Ivory programming model is
more like that of statically allocated imperative C. These modifications included
de-objectifying the existing software, for example by replacing polymorphism
with explicit message types in the message handling library. They also included
transitioning from dynamic memory allocation and dynamic data structures to
static sized data structures. The FCC software was already essentially in this
form. At that point, the various components could more or less naturally be
rewritten using the Ivory concrete (C-like) syntax.

Figures 54-56 provide a comparison between C++ and Ivory implementa-
tions of a simple function, and the C code generated from Ivory.

The ULB FCC consists of three tasks: foreground, background, and logging.
The foreground task itself contains three functions: I/O processing, outer loop
control, and inner loop control. Two of these functions were implemented using
Ivory: the outer loop waypoint control, and the input/output interface code.
These elements of the code are both separable from the inner control loop, and
represent the threat surface of the FCC software (since the inner loop can only
be reached through the outer loop or the device interfaces), and so represent an
ideal FCC subset for the application of SMACCM technology. The inner loop

95
Approved for Public Release; Distribution Unlimited.

void loiAckAdd(CucsIdx idx, uint32_t msg)

let ackhash = (&MCucsAcks)@idx;

let bucket = ackhash@toIx(twosCompCast(msg));

map jj

if (*bucket@jj == 0)

store bucket@jj as msg;

return;

else

Figure 55: Ivory Concrete Syntax

void loiAckAdd(int32_t n_var0, uint32_t n_var1)

uint32_t(* n_let0)[4U] = MCucsAcks[n_var0];

uint32_t* n_let1 = n_let0[(int32_t)

((bool) ((uint32_t) (n_var1 >> (uint32_t) 31U) == (uint32_t) 1U) ?

(int32_t) ((int32_t) -(int32_t) (uint32_t) ~n_var1 - (int32_t) 1)

: (int32_t) n_var1) % 37];

for (int32_t n_ix2 = (int32_t) 0; n_ix2 <= (int32_t) 3; n_ix2++)

uint32_t n_deref3 = n_let1[n_ix2];

if ((bool) (n_deref3 == 0))

*&n_let1[n_ix2] = n_var1;

return;

Figure 56: Generated C Code

96
Approved for Public Release; Distribution Unlimited.

control was retained as legacy C code that was invoked by the Ivory code.
Implementing the outer loop control in Ivory was comparable to implement-

ing the Ivory VSM components. The I/O processing code however presented
some unique aspects. The legacy ULB I/O code uses non-volatile random ac-
cess memory (NVRAM). Legacy NVRAM code is written so that all access to
NVRAM happens as 32 bit words on 32 bit boundaries, but there was still a
need to store non-word data such as strings. Using only the concrete syntax, we
would have had to convert the default static string into 32 bit words at runtime
before writing to NVRAM. Using the Ivory Haskell syntax, Haskell can do such
conversions at compile time and only generate code that writes the converted
data. The other issue with the NVRAM data is that it is memory mapped to
a specific location in memory. Ivory doesn’t provide a way to set a pointer to
globally allocated data to a specific address. In this case, we used the Ivory
extern interface to define the pointer location in a static C file and imported
that definition into the Ivory code.

Another issue arose in interacting with the aircraft hardware. We were able
to use the Ivory serialization library to do the necessary byte operations in
a type checked manner without using extraneous runtime casting operations.
However, VxWorks hardware interfaces required use of more complex interfaces
with external libraries than the simple message passing and remote procedure
calls (RPC) of seL4. These C interfaces require more extensive importing of
functions into the Ivory domain. This process is a source of potential error. For
example, most of the C interfaces use a NULL pointer to represent arguments
without a valid value. Ivory intentionally does not allow NULL pointer values
(to prevent memory errors) so this required a work-around. Instead of using
NULL, we specified the arguments as unsigned 32-bit values. Passing 0 provides
an effective NULL to the underlying C code. The same approach was used for
returning pointer values to the OS (i.e. stdio file operations).

SpiralGen HCOL and Spiral were developed by Carnegie Mellon and Spiral-
Gen for generating high assurance control code. HCOL is a high level language
used to specify control algorithms, and uses mathematical concepts used by
control engineers. Spiral is a multi-stage re-writing system for performing cor-
rect code synthesis from HCOL algorithms ([59]). We used HCOL and Spiral to
implement an air/ground state estimation algorithm (more commonly known as
weight on wheels, or in the case of the ULB, weight on skids). This is a safety
critical function, especially for an unmanned vehicle. If the aircraft is in the air
and the software believes it is on the ground, it may result in loss of aircraft.
If the ULB is on the ground and the software believes it is in the air, dynamic
rollover can occur, which can also result in loss of the vehicle.

In collaboration with Carnegie Mellon and SpiralGen, we used HCOL and
Spiral to develop a high assurance weight on skids component. We began with a
simplified algorithm and proceeded to a more sophisticated one. The resulting
software was integrated as a library within the FCC. Due to safety of flight
concerns (since demonstrating a compromised algorithm near the ground was

97
Approved for Public Release; Distribution Unlimited.

judged to pose unnecessary risk even with the safety pilot on board to override
the VMS), the weight on skids software was not included in the HACMS FCC
software flown on the aircraft. Instead, the high assurance weight on skids
component was demonstrated in simulation.

We have demonstrated the impact of a compromised weight on skids algo-
rithm using the Boeing ULB simulator. If an adversary is able to cause the
weight on skids algorithm to produce the wrong result, simulated aircraft can
lose control when it is airborne, but mistakenly believes it’s on the ground.
In the scenario we tested, this occurs because the stability/control gains on
the ground are lower than they are in the air. This is a conventional design
approach; lower gains on the ground are required to ensure stability on the
ground, and higher gains in the air are required to maintain stability during
maneuvering. When the helicopter is airborne, but incorrectly thinks it’s on
the ground, the lower gains are unable to maintain the stability of the aircraft
in flight. Note that we posited a successful exploitation of a vulnerability in
the algorithm, and did not attempt to create an exploit that would produce the
incorrect output. We were able to show that the HCOL/Spiral version of the
weight on wheels algorithm correctly handled a simulated attack that induced
a floating point error.

9.2.3 Kernel

The formally verified seL4 microkernel was used on the ULB VSM as the foun-
dation for the security enhancements provided by HACMS. seL4 provides a
number of security benefits. First, since the correctness of the kernel has been
formally verified, the OS kernel is no longer part of the attack surface of the
aircraft, at least with respect to software defects (so for example attacks that
exploit hardware defects or similar vulnerabilities, such as Rowhammer or a
cold boot attack, are not included). Second, seL4 provides guaranteed mem-
ory and time isolation between memory spaces. The memory isolation requires
hardware support. On x86 architectures, this includes VT-x instructions and
EPT virtualization extensions. The original ULB VSM hardware (a relatively
old Pentium-M) did not provide the required hardware support, so was replaced
for HACMS with a Core i7 processor.

For the most part, ULB use of seL4 was indirectly through AADL and
CAmkES. CAmkES, the Component Model for microkernel-based Embedded
Systems, is the seL4 component model. CAmkES includes both an Interface
Definition Language for specifying the interfaces of CAmkES components, and
an Architecture Definition Language for specifying how the components are
connected. CAmkES is comparable to the CORBA component model. This
component model is what is targeted by AADL2RTOS.

AADL2RTOS does so by adapting the HACMS AADL component com-
putation model to the seL4 CAmkES computation model. As an example,
AADL2RTOS generates glue code that adapts the AADL threading model to
the CAmkES threading model by implementing monitors for the AADL com-
ponents, and generates seL4 synchronization primitives to implement AADL

98
Approved for Public Release; Distribution Unlimited.

synchronization mechanisms. As discussed earlier, AADL external components
are used to represent native CAmkES assemblies, such as those used to imple-
ment services such as UDP.

In addition to building systems using CAmkES components, seL4 can also
serve as a hypervisor hosting guest operating systems For the ULB, the guest op-
erating system was Linux. Communication across the virtual machine boundary
was provided using an adaptation of the vchan library developed for communi-
cation between different VMs on the same Xen host. For the ULB, there is one
channel between the AADL components and the camera VSM VM, between
the AADL components and the data logger VM, and one channel between the
camera VSM VM and the data logger VM. In the case of the AADL compo-
nent side, this will take the form of an external vchan adapter component. The
AADL components that communicate with either the data logger or the cam-
era VSM will exchange messages (remote procedure calls or events) with the
adapter component. Elements inside the VMs, either the data logger or the
camera VSM, communicate using seL4 supplied libraries providing the Linux
side of the vchan protocol interface.

9.2.4 Build Process

The build process (Figure 57) for the ULB VSM for seL4 involves five tool
families. Ivory tools are used to transform Ivory source code for component
implementation into C source code. The AADL2RTOS tool transforms the
AADL model into glue code and CAmkES artifacts. The CAmkES tool chain is
used to generate seL4 component implementations and glue code from CAmkES
ADL and IDL files. Other tools are used to build VM images from the source
files for the camera VSM and the data logger. Finally, the seL4 build tools
are used to combine the various application source files, the VM images, and
seL4 source files into the final executable seL4 image for loading onto the VSM
computing hardware. The build process for the FCC is comparable (with the
absence of the VMs).

There are three sets of user created source files for the VSM application. The
first are the source files for the VM applications. These are the modified legacy
source files for the camera VSM and the data logger. The second set of source
files are those that make up the AADL model of the system. The AADL model
includes 6 files for the detailed VSM software model, and an additional AADL
file for the simpler FCC software model. There are two types of Ivory files,
concrete syntax files and Haskell syntax files. The Ivory tool chain compiles
those source files into an executable that then is used to generated C source
files. The generated C source files interface with the AADL2RTOS generated
glue code.

9.3 Demonstrations

Two flight demonstrations of the ULB were carried out during the HACMS
program. A risk reduction flight of the Phase 2 configuration (Figure 51) on

99
Approved for Public Release; Distribution Unlimited.

Figure 57: ULB VSM Build Process

24 July 2015, and the final demonstration of the Phase 3 configuration (Figure
52) on 9 February 2017. Both flights originated at the Boeing Mesa facility
with the ULB flying as an optionally manned aircraft with onboard safety pilot
under an FAA experimental aircraft license. All testing was conducted using
the Unmanned Little Bird aircraft, N206HX.

9.3.1 Initial Demonstration

The HACMS ULB demonstration flights required approval from AFRL. In order
to reduce risks associated with both the HACMS technologies and the flight
demonstration approval process, we performed a risk reduction demonstration
flight of the ULB at the end of Phase 2. The demonstration involved two ULB
flights, a check flight on 21 July 2015, and the live demonstration flight on
24 July. These flights demonstrated that the ULB was still functional using
the Phase 2 Architecture, where the original VSM software was replaced by
components implemented in Ivory running on seL4, integrated via glue code
generated using AADL2RTOS. These flights were conducted from the Boeing
Mesa facility, the ULB’s home field.

The risk reduction demonstration flight was coordinated with Boeing Test
and Evaluation and AFRL. We began coordination with AFRL in November
of 2014, working with them to identify the appropriate process and the infor-
mation necessary to receive approval for the flight demonstration. We provided
information about the usual ULB flight procedures and sample documentation
from previous ULB demonstrations, and reviewed them with the AFRL team.

A Boeing flight demonstration package typically includes an Engineering
Test Request, identifying the requirements and objectives for the test, a Safety
Plan, a Test Hazard Analysis, Test Plan, Test Cards, and a Safety of Flight
Review. The Boeing documentation included substantially all the information

100
Approved for Public Release; Distribution Unlimited.

that was required for AFRL approval. With that confirmation, we created the
Boeing documentation required for the July 25 flight demonstration.

The AFRL process for flight test is defined by AFRL MANUAL 99-103,
AFRL Flight Test and Evaluation. The AFRL team led compliance with the
approval process, and Boeing provided the information as it was generated or
requested. This included completing AFRL form AFI 91-202 AFRLSUP1, the
Flight Activity Information Worksheet, which contains the high level informa-
tion about a flight demonstration. AFRL used the information provided by
Boeing to prepare for and brief an AFRL Technical Review Board (TRB) on
26 June, which approved the demonstration, once some additional information
was provided, including planned flight times and data to be collected. Since the
ULB is a Boeing owned asset, the demonstration flight was not being conducted
on a USAF range, and was being conducted under the existing ULB FAA li-
cense, a determination was made that no formal AFRL Safety Review Board
(SRB) was required. Final approval for the flight demonstration was received
from AFRL on 20 July.

The first demonstration flight was performed on 21 July. The formal demon-
stration flight occurred on the morning of 24 July, 2015 (Figure 58). This flight
demonstrated that the ULB with HACMS VSM software still flew as expected,
and showed that increasing the cyber security of military vehicle systems could
be done without compromising (soft) real-time performance.

9.3.2 Final Demonstration

The objective of this demonstration was to verify that the FCC and VSM
software re-architected using HACMS technology is functionally the same as
the pre-HACMS software, yet is more secure, and provably more secure. The
demonstration was planned to include two sorties. The first sortie showed the
non-HACMS ULB software vulnerable to a targeted software attack. In this
scenario a virus was intentionally introduced which would assume control of
the aircraft’s EO/IR sensor. For the second sortie the aircraft flew configured
with HACMS software. The first half of the second sortie would demonstrate
that HACMS software component partitioning has rendered the virus ineffec-
tive. The second half of the sortie would then show how the HACMS geo-fencing
component can be used to keep the aircraft from violating airspace restrictions
when a simulated supply chain attack originates from the EO/IR sensor itself.
The continued real-time performance of the HACMS configured aircraft, and its
success in resisting the two attacks, shows that cyber security does not have to
come at the expense of CPS performance.

The first attack was representative of a compromised maintenance device as
an attack vector. A compromised maintenance device was connected to the USB
socket on the VSM that normally hosts the USB drive used by the data logger.
The device then injected a virus which pivots from the data logger to the VSM,
and causes the Wescam sensor to be stowed. This attack is successful on the
baseline aircraft which has no internal protections between components. The
attack was unsuccessful on the HACMS configured ULB since seL4 memory

101
Approved for Public Release; Distribution Unlimited.

Figure 58: ULB Risk Reduction Flight Demonstration 24 July 2015

Figure 59: ULB Final Demonstration 9 February 2017

102
Approved for Public Release; Distribution Unlimited.

protections confine the virus to the data logger partition, where it could not
affect the camera (or other aircraft flight functions).

The compromised maintenance device and virus were created by the HACMS
Red Team. The compromised maintenance device was a Raspberry Pi Zero. The
virus was a variant of the DuckberryPi with a payload configured for the ULB.
DuckberryPi is a Raspberry Pi distribution which causes a Raspberry Pi to act
like a USB based keyboard emulator and automator. When inserted into the
USB port of a computer, the Duckberry Pi masquerades as a USB keyboard
and sends the keystrokes in its payload as keyboard inputs to the computer.
The payload for the ULB malware repeatedly sends a Stow command to the
Wescam, resulting in mission failure.

The simulated supply chain attack on the aircraft (foiled by the geo-fence)
was implemented by Boeing and involved modifying the Boeing Wescam VSM
code to use fixed coordinates outside of the geo-fence for the stare point when-
ever the slave to sensor mode was engaged. This emulates compromise of the
COTS camera software, which could have been achieved by supply chain com-
promise.

There are two strands to the geo-fence attack. First the GCS operator will
attempt to upload a route that violates the pre-programmed geo-fence. The
VSM will reject the route. The aircraft will then be placed into slave to sensor
mode. In this mode, the aircraft loiters about the stare point of the EO/IR
sensor. When the aircraft enters slave to sensor mode, the VSM software will
begin generating a fictitious sensor stare point to emulate a supply chain based
attack on the aircraft. The malicious stare point will be centered on Sawick
Mountain just outside of the geo-fence boundary. The continuous real-time
checking of the aircraft state by the geo-fencing component will command the
aircraft to enter a stationary loiter before the aircraft violates the geo-fence. At
this point the GCS operator will command the aircraft to return to base and
the demonstration will be complete.

The approval process for the final demonstration echoed that of the Phase 2
demonstration. An AFRL TRB was held on 14 November 2016, which approved
the demonstration, once some additional information was provided, including
planned flight times and data to be collected. Since the ULB is a Boeing owned
asset, the demonstration flight was not being conducted on a USAF range, and
was being conducted under the existing ULB FAA license (renewed 14 Decem-
ber 2016), a determination was made that an informal AFRL Safety Review
Board was sufficient. The SRB was held on 20 January 2017. Final approval for
the flight demonstration was received from AFRL on 24 January 2017. Verifi-
cation, practice, and demonstration flights were conducted 25 January through
9 February (Figure 59).

103
Approved for Public Release; Distribution Unlimited.

10 Results and Discussion

This section presents some lessons learned over the course of the HACMS pro-
gram, as well as several recommendations for future work.

10.1 Type-Checking for Embedded Programming

Build times are non-trivial for large software systems. At the time of writing, a
fresh build of SMACCMpilot and associated test programs is over seven minutes
of real time (and 12 minutes of CPU time since we have a multi-threaded build
system). One reason the build time is so large is that it requires Cabal (the
Haskell package manager) to discover library dependencies and install packages,
compile the Haskell sources, and then compile the C sources. As well, some
sources are compiled multiple times for different targets on multiple operating
systems.

Then, to execute the software on the embedded device, we have to write
the software to the device’s memory via a Joint Test Action Group (JTAG)
programmer or a serial boot loader, which takes on the order of ten seconds.

All this is to say that the end-to-end debug cycle might mean testing a small
number of changes to Ivory or Tower per hour. Clearly, the debug cycle in
embedded development particularly motivates us to make fewer bugs and to
discover them early.

During development, it became apparent how useful Haskell type-checking
is for embedded programming. As described in Section 5.1, we have embed-
ded Ivory’s type system in Haskell’s. Thus, domain-specific type-errors are
caught during Haskell type-checking. Type-checking, and other static warnings
reported by GHC, are nearly instantaneous since it can be done on a module-
by-module basis. The type system tracks the global or stack frame provenance
of references, as well as structure accessors and array indices, to ensure all
well-typed Ivory programs generate memory-safe C. The upshot is that Ivory
programs that would generate unsafe C programs are caught immediately.

In addition, we have found it useful to detect potential bugs even if the C
compiler might also detect them. To take one example, consider unused variable
declarations. While a C compiler can detect this, perhaps late in the compilation
phase, we discover these warnings nearly instantaneously during type checking.
Moreover, the more preprocessing we can do in Haskell, the more potential
errors we may find, and with a better relation to the EDSL source.

However, not every property of interest in embedded programming can be
conveniently embedded in the Haskell type system with GHC extensions. For
example, integer overflows checks are not practical to embed.

Moreover, GHC’s type error reporting can be unwieldy. Ivory users would
benefit from domain-specific error reporting which could, for example, describe
type errors in the vocabulary of Ivory, rather than burden the user to interpret
the way the Ivory language types are embedded into Haskell types. For example,
passing the wrong number of arguments to an Ivory function in a procedure
call is reported as a type error when using functional dependencies, whereas

104
Approved for Public Release; Distribution Unlimited.

a mismatch between the type of a procedure and the number of arguments
provided in its declaration is reported as a kind error. The errors reported are
of the particular type-level implementation given for Ivory types. Haskell does
not yet have good facilities for type-level programming abstraction.

10.2 Type-Safe System Plumbing

Adding many new features to SMACCMpilot is easy. In fact, the most tedious
part is writing the business logic in Tower, where we define a new task, and then
plumb values representing communication channels through the code. There is
nothing conceptually difficult in doing so—it is similar to any monadic interface
for specifying a graph. When changes cross Haskell function boundaries, we
must modify the arguments to the Haskell function that generates the Tower
task (or modifying the fields of a data-type if channels have been grouped to-
gether). Channels are typed, so type-checking detects most plausible inter-task
communication errors.

Stepping back, the idea that plumbing arguments to Haskell functions is
the hardest part of embedded development is amazing. We are not dealing with
bugs in low-level OS interfaces, we are not making timing or resource contention
errors in communication, we are not dealing with type-errors like you might find
in raw C (where data might be cast to void* or char[]).

Because plumbing is so easy, it encourages us to improve modularity in the
system. Defining a new RTOS task is easy, so we might as well modularize
functionality to improve isolation and security. For example, in the ground
station communication subsystem, encryption and decryption are each executed
in isolated tasks, simplifying the architectural analysis of the system.

10.3 Faking a Module System

In Ivory and Tower, top-level functions and structures are packaged into a
Haskell data structure to provide to the Ivory compiler. The onus is on the
programmer to package up all the necessary components.

On one hand, the approach provides the programmer control over how to
modularize the generated C code, deciding which definitions to put in a C source
or header file. On the other hand, we have found it to be verbose, tedious, and
error-prone. Generally, we want the C files to have similar structure to the
Haskell modules in which Ivory programs are written. From that respect, the
Ivory module system simply duplicates the Haskell module system.

Worse is when the programmer forgets to package a definition. The error
only becomes apparent at C link time, near the end of a long build process.
Missing definitions have plagued our builds.

We could move symbol resolution up the build cycle to the C-code generation
phase. Ideally, we would move it up the build cycle even further. We are
currently exploring the use of Template Haskell to generate Ivory modules at
compile-time to assist the programmer.

105
Approved for Public Release; Distribution Unlimited.

10.4 Control Your Compiler

If we were writing our application in a typical compiled language, even a high-
level one, and found a compiler bug, we would perhaps file a bug report with
the developers... and wait. If we had access to the sources, we might try making
a change, but doing so risks introducing new bugs or at the least, forking the
compiler. Most likely, the compiler would not change, and we would either make
some ad-hoc work-around or introduce regression tests to make sure that the
specific bug found is not hit again. Such a situation is notorious in embedded
cross-compilers that usually have a small support team and are themselves many
revisions behind the main compiler tool-chain.

But with an EDSL the situation is different. With a small code-base imple-
menting the compiler, it is easy to write new passes or inspect passes for errors.
Rebuilding the compiler takes seconds.

More generally, we have a different mindset programming in an EDSL: if
a class of bug occurs a few times—whether caused in the compiler or not—we
change the language/compiler to eliminate it (or at least to automatically insert
assertions to check for it). Instead of a growing test-suite, we have a growing
set of checks in the compiler, to help eliminate both our bugs and the bugs in
all future Ivory programs.

We claim that Ivory code compiles to memory-safe C code. However, a
formal proof of these claims, or more generally, a proof that the semantics of
Ivory programs are implemented by the generated C code, is work-in-progress.
However, a small number of primitives and simple compiler facilitates inspection
and testing. In all, this is less assurance than is given by fully verified toolchains,
such as CompCert [60]. Other approaches more specific to bringing assurance
to EDSL compilers could be borrowed as well [61].

10.5 Everything is a Library

With an EDSL, and particularly a Turing-complete macro language, everything
is a library. The distinction between language developers and users becomes
ambiguous. As an extreme example, one can think of Tower as “just” a library
for Ivory. A small example is defining a conditional operator in terms of Ivory’s
if-then-else primitive as shown in Figure 60. All types above were introduced
in Section 5.1. With the cond operator, we can replace nested if-then-else
statements as shown in the figure with more convenient conditionals, without
modifying the language.

Because macros are so easy to define and natural in EDSL development, our
biggest challenge has been ensuring developers on our team put useful ones in
a standard library, to be shared.

10.6 Semantics

To take advantage of legacy cross-compilers, we are forced to generate C code
from our EDSL. A large focus in designing Ivory is to allow expressive but

106
Approved for Public Release; Distribution Unlimited.

data Cond eff a =

Cond IBool (Ivory eff a)

(==>) :: IBool -> Ivory eff a

-> Cond eff a

(==>) = Cond

cond_ :: [Cond eff ()]

-> Ivory eff ()

cond_ [] = return ()

cond_ ((Cond b f):cs) =

ifte_ b f (cond_ cs)

cond_

[x >? 100 ==> ret 10

, x >? 50 ==> ret 5

, true ==> ret 0]

ifte_ (x >? 100)

(ret 10)

(ifte_ (x >? 50)

(ret 5)

(ret 0))

Figure 60: Conditional Ivory macro.

well-defined programs. We believe Ivory cannot produce memory-unsafe C pro-
grams. However, undefined C programs can be generated from Ivory; for exam-
ple, signed integer overflow and division-by-zero are undefined. Guaranteeing
programs are free from these behaviors is decidable (the arithmetic is on fixed-
width integer types), but intractable to prove automatically.

To assist the programmer, the Ivory compiler automatically inserts predi-
cates into the generated code to check for overflow, division-by-zero, etc. The
user defines the behavior of the program if a check fails. For example, dur-
ing testing, we define the checks to insert a breakpoint for use with a debug-
ger. Another option may be to do nothing and rely on the semantics pro-
vided by the C compiler. Still another option might be to trap to a user-
defined exception-handler. Currently, SMACCMpilot contains approximately
2500 compiler-inserted non-trivial checks that cannot be constant-folded away.
In the future, we hope to prove these checks never fail.

Early in the development process, we used the C Bounded Model Checker
(CBMC) model checker [62] to partially verify the assertions in the generated
C code. However, as our application grew, we ran into three problems. First, a
naive application of whole program model checking did not scale to our applica-
tion size. Second, many assertions depend on user-provided preconditions (e.g.
on inputs from hardware devices). Third, some assertions were undecidable (e.g.
non-linear arithmetic).

There are two other semantics categories to consider: defined behavior and
implementation-defined behavior. In Ivory, we attempt to eliminate almost all
implementation-defined behaviors. For example, only fixed-width size types, like
uint8 t or int32 t, can be generated. Implementation-defined sizes, like int or
char are not used. We have found these to be dangerous: programmers might
assume properties about the size of a type that do not hold in a non-standard
architecture (e.g., that an int is at least 32 bits or that char is unsigned;

107
Approved for Public Release; Distribution Unlimited.

both are implementation-defined). Such assumptions are particularly dangerous
when porting code between different embedded platforms. Indeed, when we
ported portions of ArduPilot, initially built for an 8-bit AVR architecture to a
32-bit ARM, we found these sorts of implicit assumptions.

Finally, even defined behavior is not necessarily intuitive behavior. For ex-
ample, in C, the defined behavior for arithmetic on values that have a size-type
smaller than int is to implicitly promote them to ints before performing the
arithmetic.

For example, given

uint8_t a = 10;

uint8_t b = 250;

bool x = a-b > 0;

bool y = (uint8_t)(a-b) > 0;

x evaluates to 0 and y to 1, provided that

sizeof(uint8_t) < sizeof(int)

This behavior is worrisome to the embedded programmer because, across various
embedded processors and C compilers, integer sizes are often defined differently.

In Ivory, arithmetic is at the size of the operands, which we believe is more in-
tuitive. We force the generated C to respect this semantics by inserting casts into
expressions. So the Ivory expression a-b results in the C expression (uint8 t)

(a-b).

10.7 Integration Problems

There were several issues outside of the architecture description model that
caused problems during build and integration, cumulatively requiring both sev-
eral calendar months and person months to fix. These issues suggest that al-
though the guarantees provided by a trusted OS, build integration support
through an architecture description language, and a type-safe programming
language, there are still integration issues that are problematic and need to be
addressed to create a high-assurance system build. These issues involve integra-
tion between multiple build systems, legacy and auto-generated code, support
for multiple platforms, and issues when using C in a high-integrity build process.

10.7.1 Drivers

The area that was the single most significant in terms of debugging time, sched-
ule slippage, and risk involved the driver software on the various deployment
platforms. Although the seL4 kernel is guaranteed to be correct by virtue of its
proof, similar guarantees cannot be provided of drivers, because they depend
on hardware vendors to provide accurate formal models of the behavior of the
device, which usually does not occur. In fact, even the informal spec sheets of-
ten contain errors for the hobbyist microcontrollers that we were using to create
the software.

108
Approved for Public Release; Distribution Unlimited.

The most significant issue involving drivers occurred in the second phase of
the project, when a high-priority communication driver thread did not properly
clear its interrupt, which in certain cases caused repeated raising of the same
interrupt leading to schedule slippage and eventual failure of the SMACCM-
copter. This issue only manifest when a certain level of load was placed upon
the system, so did not show up until we loaded the full Phase 2 software into
the hardware. This issue was not diagnosed and fixed until two weeks before
the Phase 2 demo, and required at least 1 person month to diagnose and fix.

There were several other driver issues involving, for example, misconfigured
timing: in one case the seL4 driver ran 33% slower than clock time, and in
another case it ran just under 10% slower than clock time, leading to incorrect
performance of several algorithms within the system. There were also a handful
of issues related to deadlocks and race conditions in drivers.

10.7.2 Legacy/Untrustworthy Code Support

The open-source platform involves both C code autogenerated from Ivory and
legacy code. This is by necessity; it was not reasonable for Galois to rewrite
the entire Arducopter platform into Ivory in 18 months, though a consider-
able amount was converted. This legacy code caused several problems for our
architecture-driven approach; it is arguably a root cause of many of the prob-
lems we experienced. First, the legacy code was not well structured and did not
conform to the communication approaches supported in AADL, so it was not
straightforward to introspect the structure of it. To support these in AADL, we
added support for external threads in AADL, which did not follow the standard
AADL dispatch structure, as well as named external semaphores and mutexes.
However, the communication structure involving these threads was not repre-
sented in the AADL model, leading to fidelity issues between the implementation
and architectural model.

In addition, the legacy code was originally designed for the FreeRTOS oper-
ating system and expects the API for this platform. The NICTA team built a
“shim” to mimic the FreeRTOS OS API for the legacy code, but the underlying
principles of the OSes are quite different. The most notable difference is that
eChronos is statically configured: all tasks, mutexes, and semaphores have to be
pre-declared in a configuration file; FreeRTOS is dynamically configured; these
constructs are created after the program starts. To support the FreeRTOS API,
NICTA created a scheme where mutex and semaphore ids following a specific
naming convention would be parceled out by the FreeRTOS shim. Unfortu-
nately, the initial version did not work correctly in some cases, so situations
could occur in which multiple logical semaphores were bound to the same OS
semaphore, causing the system to occasionally deadlock, when the tasks using
the logical semaphores would interact.

In subsequent phases, we worked much harder to modularize dependencies to
legacy code. First, Galois was able to replace the blob in Phase 2 with an entire
Ivory-based flight controller. However, there was still substantial interaction
with untrusted code involving the camera and tracking software. For this, we

109
Approved for Public Release; Distribution Unlimited.

used a virtual machine with mediated access to the rest of the system, which
worked very well. In fact, as described in the SMACCMpilot description, we
were able to allow a malicious attacker to start a forkbomb inside the VM
without disrupting flight operations.

10.7.3 Make Issues

The SMACCM project inherited a complex make system that had been built
to work with a FreeRTOS version of the SMACCMcopter. Our original plan
was to generate the final makefile from the AADL model, but this turned out
to be impractical. The most significant issue had to do with the dependencies
in the make process. The basic outline is shown in Figure 34: the Ivory/Tower
code generates a portion of the AADL model, as well as C code. The AADL
model generated the eChronos OS using a configuration file, and both the Ivory-
generated and legacy C code are dependent on the generated eChronos headers.
The legacy code has a complex make system of its own. Our plan was to start
final build from AADL, importing the legacy code as a library, but because
eChronos was built from the AADL model and the legacy code was dependent
on the eChronos headers, it was not straightforward to do this.

We experimented with adding various make-related properties to the AADL
file in order to perform the legacy build steps from within AADL but ultimately
discarded this plan; it was complex and seemed to add little value to the AADL
model. Instead, we modified the manually created makefile to include the AADL
build step to construct the eChronos OS. However, because the makefile is not
derived from the architectural description, there are many C files that are pulled
into the build that are not visible in the model. A principled solution remains
the subject of future work.

10.7.4 Exceeding Static Memory when Generating System Image

After an update of the Ivory components to add additional flight modes, our
binary started immediately crashing upon start on the target platform. After
debugging, we realized that we were exceeding the available SRAM. The ARM
Cortex-M4-based ArduCopter has 192KB of SRAM that is divided into three
segments of 112KB (S1), 16KB (S2), and 64KB (S3). The gcc/gdb toolchain
does not signal an error if the available memory is exceeded, and our expectation
was that we were not close to the memory ceiling. In addition, only segments
S1 and S2 are continuous, so we effectively had 128KB, rather than 192KB in
which to fit the data for the system binary. After examining the binary, we
realized that the makefile was including both statically allocated memory for
communication primitives used by the Tower-FreeRTOS build as well as mem-
ory for the AADL-generated communication primitives, effectively doubling the
required SRAM for communications. After removing this file, we had no further
issues.

Once we discovered the issue, it was straightforward to determine whether
available memory had been exceeded by examining the binary image on the

110
Approved for Public Release; Distribution Unlimited.

microcontroller. A better systematic approach would be to force the loader to
abort if the static data size exceeded the available memory.

10.7.5 C Linker and Typing

One aspect that was difficult to debug involved an inconsistency between two
autogenerated handlers that led to a function invocation with the wrong argu-
ment type. As previously mentioned, the Ivory code generates its own headers
for communications primitives and user-level dispatch functions. Our AADL
glue-code generator also generates headers for these functions. For periodic dis-
patch functions, there was an inconsistency in the type expected by the Ivory-
generated code and the AADL prototype: the Ivory code expected the current
time as an uint32 t * parameter, while the AADL code generated a uint 32

parameter. Because each C file was using its own header, this was not detected
at compile time, and, additionally, the C linker does not check argument types,
so it was not detected at link time. The incorrect time values would cause the
system to sporadically deadlock.

Another related issue involved time. We had three different programming
systems: CAmkES, Trusted Build, and Ivory/Tower, that each have a built-in
notion of time. In each case, times are ultimately compiled to C code, where
time is represented as a 64-bit quantity. Unfortunately, the three environments
did not initially agree on the granularity of time and its initial value, so calls
between the different layers led to inconsistent and incorrect behaviors that were
not compile-time checkable by the C language.

It is unfortunate and somewhat embarrassing that well-known problems in
an antiquated linker technology can still cause substantial error. There are any
number of simple fixes to these issues (e.g., embedding type information to allow
discovery during link and adding unit types). However, such solutions do not
have wide traction.

10.7.6 System Image Loading and Debugging

The PX4 board supports multiple methods to load and debug software onto it
using the GNU debugger (gdb). Specifically, the Black Magic Probe can con-
nect to the target microprocessor either via a JTAG interface or via a serial wire
debugging port. The system software must be configured differently depending
upon the debug interface. For example, the JTAG interface requires the ini-
tialization of a boot loader in memory. A mismatch between the configuration
and the system load approach will cause segmentation faults. Unfortunately
(and unexpectedly) different team members were using different mechanisms to
connect to the PX4, so a binary built by one team would not work correctly for
the other teams if they were using the other connection.

111
Approved for Public Release; Distribution Unlimited.

10.8 Modeling Concerns with AADL

When trying to generate and analyze system images, we identified several as-
pects of the system that were difficult to naturally model in AADL. These issues
relate to the representation of interrupt requests, the representation of the target
operating system, and the thread model in the context of a low-power processor
with no protected memory. In addition, we present issues that we experienced in
relation to the scheduling and communication mechanisms of the AADL. This
section briefly examines each of the areas of difficulty.

10.8.1 IRQ/ISR Representation

Interrupt requests are asynchronous hardware-level signals that are raised when
a device needs attention. They are serviced by interrupt service routines that
act upon the processor interrupt. In most operating systems, ISRs are split
into first-level interrupt handlers (FLIH) and second-level interrupt handlers
(SLIH), where the job of the FLIH is to immediately dispatch on the interrupt
and quickly record critical information that can be further processed by the
SLIH, which is separately scheduled. In the eChronos RTOS, the FLIH is not
a separate task, but executes in the context of the running thread. Further,
the expectation is that the FLIH can perform only minimal processing and all
aspects of the eChronos API are unsafe to use other than a special type of IRQ
signal for the SLIH. In addition, some of the SMACCMcopter interrupts, such
as the interrupt handler for the i2c bus are time-sensitive and must run entirely
in the FLIH, so we cannot easily bind the FLIH to a property within the SLIH
thread.

Since FLIHs are not threads, it does not make sense to represent them as
threads in AADL. On the other hand, they are not devices, which are defined
as “dedicated hardware within the system” [27]; they are dispatched by the
processor. Similarly, ISRs are not really features of the processor; they are
software features. There is little guidance in the AADL documentation for
representation of interrupt handlers.

For the time being, we are representing FLIHs as specialized devices that
contain a custom dispatch function property. We add the FLIHs to the OS con-
figuration file (as described in Section 7.2), and treat the SLIHs as “standard”
tasks. This is, however, unsatisfying. Guidance on how to represent ISRs and
IRQs (or a generalization of the device concept as it is currently presented in
AADL) is necessary to correctly model this aspect of the system.

Recommendations Good support for IRQs and ISRs is necessary for cor-
rectly modeling low-level system behaviors as we find in the SMACCMpilot
control software. There is very little guidance on this topic, however: the
AADL standard [27] and textbook by Feiler et. al [5] do not describe how
to correctly represent ISRs. Our use of AADL devices to represent ISRs allows
us to generate code successfully, but seems inelegant and does not conform to
the informal description of devices. An appropriate abstraction for ISRs (or, at

112
Approved for Public Release; Distribution Unlimited.

least, an agreed upon convention for their representation) could ensure that our
modeling style is compatible with the expectation of existing AADL tools.

10.8.2 Thread/Process Semantics

AADL supports a very rich specification of times in which to “freeze” inputs
relative to thread dispatch. The default behavior is to freeze inputs at the time
of dispatch, but this is 1.) expensive in terms of memory (since all data ports
must be double buffered) and 2.) ambiguous as to the implementation with
queued event-data ports. It is unclear as to whether this means that the entire
queue is copied locally (to support “frozen” iteration over the queue), and how
this relates to the designation of a full queue: is the queue ‘full’ for writers until
the thread has completed its dispatch? Several additional supported input freeze
behaviors are more exotic and seem quite difficult to implement in middleware.
A clear accounting of the expectations on implementations for these different
input freeze conditions is necessary to ensure they are implemented correctly.
In addition, for resource-constrained processors, the user code can support an
input-compute-output paradigm by coding style rather than having it enforced
by the AADL-generated middleware, saving a significant amount of memory
and time.

Additionally, for small embedded systems, a bare-bones RTOS such as
eChronos and FreeRTOS do not have separate notions of thread and process;
instead they just have tasks. There is no support for memory protection on these
operating systems. In our system build tool, process boundaries are therefore
meaningless; they only serve as a grouping mechanism for tasks.

Recommendations The first recommendation is a plea for a more rigorous
description of input “freezing” in the AADL specification, and an affordance for
it to be implemented by convention on the dispatchers rather than a requirement
of AADL middleware; this would better support resource constrained hardware.
Also, for hardware without memory protection, guidance for AADL modelers on
appropriate notations for these kinds of systems (which are still architecturally
interesting) is important.

10.8.3 Events and Schedulability

Another issue involves output event ports and schedulability. Currently, it is not
possible to perform schedulability analysis in our flight model, in part because
the properties governing the rate of dispatch for output event and event data
ports are too coarse. AADL allows specification of an output rate property with
the following type and defaults:

Rate_Spec : type record (

Value_Range : range of aadlreal ;

Rate_Unit : enumeration (PerSecond, PerDispatch);

Rate_Distribution : Supported_Distributions;

);

113
Approved for Public Release; Distribution Unlimited.

This property allows some amount of analysis; unfortunately, for some threads
in our models, there are several dispatchers for different event in-ports. Each of
those dispatchers can trigger one from a subset of the output event ports; such
relationships cannot be represented using the built-in property. This kind of
relationship happens regularly in SMACCMpilot when performing input com-
mand processing. In this case, a decrypted ground station message may be one
of several types; an input processing task determines the type and generates a
single output event data message to the appropriate processing task.

One goal when choosing AADL as a system modeling language was to sup-
port analytic analysis of system schedulability; timing attacks are a known
vector used by attackers to disrupt critical systems. However, the scheduling
analysis tools we have found for AADL are either research prototypes or pri-
marily support rate monotonic scheduling only. In a system involving a large
number of sporadic events, such as the SMACCMpilot, we have been unable to
find tools in which we feel we can trust the analysis.

Recommendations This problem is at the intersection of the structure of
the architecture of SMACCMpilot and the capabilities of analysis tools. We have
discussed this issue with the OSATE team at the Software Engineering Insti-
tute, where they are currently pursuing more robust and general schedulability
analysis tools. We hope to collaborate with them on future analysis capabil-
ities. We are also discussing ways to restructure the current SMACCMpilot
architecture to make it more schedulability-analysis friendly.

10.9 Lessons Learned from ULB Application

Using research technologies such as those developed in the HACMS program is
not without challenges, and this section addresses a number of lessons learned in
applying the technologies to the ULB, and areas that if addressed could enhance
the transitionability of the technologies to the defense industry. Note that we
learned more lessons for some technologies than for others, but that should not
be taken as any sort of indication of technology quality or value.

10.9.1 Ivory

From a CPS developer’s perspective, the Ivory language presents as a subset
of the C language. Some of the missing features, like malleable pointers, are
removed for safety reasons. The rationale for other missing features, such as a
complete for loop control (init, test and increment operations), is not as clear.
Some of these missing features can make coding (especially porting of existing
C code) more cumbersome and open to logic errors by the developer.

As with almost any language, interfacing with system libraries requires ad-
ditional work. As Ivory generates C, the interfacing does not require any heavy
lifting or interface complexities. However, it does require that you create Ivory
definitions for anything that is actually used, so that type checking can complete

114
Approved for Public Release; Distribution Unlimited.

and so appropriate code can be generated. In this case, the developer is respon-
sible for correct translation and maintenance of the interface definitions. This
could be less of a burden on the developer if Ivory could generate the required
types from the existing C header files. One complication is that some concepts
from C, like NULL or malleable pointers, are not valid in Ivory. Likewise, the
creative use of the C preprocessor in some libraries makes determining the cor-
rect type for the final build difficult. A particular use case is in the definition
of constants shared between Ivory and C. Ivory uses Haskell values which get
turned into constant values in the generated C, as opposed to symbolic con-
stants in header files, which limits their availability for use by the C code that
uses the shared constants.

One way Ivory eliminates memory problems is to perform array indexing
using modular arithmetic. Though this ensures that array bounds are never
exceeded, it can lead to subtle and hard to find logic errors if this is not kept in
mind. One way this is done is to define index types specific to each array size.
This leads to a proliferation of types and can lead to copy/paste development
with the potential for inconsistencies.

10.9.2 HCOL and Spiral

Since the component we were implementing was fairly straightforward and used
only simple arithmetic and Boolean logic, we did not take advantage of the more
advanced features of the technology. Likewise, by starting with HCOL, we did
not take advantage of starting at a higher level of abstraction and reasoning
about the algorithm at that level. Most of what was used on the ULB weight
on skids component were the capabilities in Spiral for dealing with floating point
instabilities and errors.

10.9.3 AADL and Trusted Build

One of the challenges with AADL is determining which parts of the specification
to use. AADL is a fairly large and sophisticated specification, and for HACMS,
we primarily used the software modeling elements at the level of process, ports,
and threads, along with properties. HACMS, for example, did not use AADL
flows. Some connections that were represented in AADL were not reflected in
the glue code generated by AADL2RTOS. In particular, the network connection
between the VSM and the FCC, and between the VSM and the ground station,
were present in the AADL model. However on the VSM side, the network
stack was implemented as an external component, while on the FCC side the
VxWorks network stack was used, and it was invoked by ”business logic” inside
the component. This means that correctness of these connections is entirely up
to the user, when the information to have these connections implemented in
generated glue code is (or could be) present in the AADL model.

115
Approved for Public Release; Distribution Unlimited.

10.9.4 Tool Integration

There are a number of places where a lack of complete tool integration caused
problems. The most significant of these is the lack of integration between Ivory
and the AADL2RTOS translation in Trusted Build. To generate glue code,
AADL2RTOS needs to know the entry points for the “business logic” of appli-
cation components. Since the actual executed code for components implemented
in Ivory is the compiled generated C code, the required entry points are the entry
points of the generated C code. Unfortunately, these entry points are generated
by the Ivory compiler. This results in an iterative process where the developer
designs the system architecture, implements the components in Ivory, generates
the C code from the Ivory implementations, extracts the entry points from the
generated code, and then updates the model with the new entry points.

There is also the potential for problems when both the Ivory compiler and
AADL2RTOS generate header files for the same entry points. In one case,
this resulted in a buffer overflow. Ivory maintains array length values during
compilation but these get erased when converting to a C char *. It is assumed
that all of the code (headers and source) are generated by the Ivory compilation
system which provides sanity checks. The Ivory generated function believed that
a char* buffer in a struct was 300 bytes long and when clearing the array with
a zeroing operation, writes 300 zeros to the buffer. In this case, AADL2RTOS
also generated the header with the structure definition which believed that the
buffer in the struct was 67 bytes long. This struct was allocated on the stack in
one Ivory generated function and passed to the other Ivory generated function
above. The allocated structure had a 67 byte array. The called function zeroed
an extra 237 bytes, overwriting the stack including the return pointer value. In
this case, the result was a segmentation fault. One potential solution would
be for AADL2RTOS (or some other AADL-focused tool) to generate the Ivory
definition files from the AADL model in a way that would ensure consistency
and make sure that names and definitions matched.

10.9.5 Build Times

In some cases, build times for the current tools grew to the point where they
had a significant impact. We found that with Ivory, a linear increase in code
size turned into a seemingly exponential increase in compilation time. This was
never noticed in Phase 2 as the VSM contained a smaller amount of code and
was divided into small discrete components. During Phase 3, we converted the
FCC which contained some large sections of code. Depending on what file was
modified, a recompile could take upwards of 10 minutes.

In CAmkES, memory access is divided into 4k blocks. These blocks are
declared separately in both the intermediate output and for the capdl tool.
When a component has a large chuck of statically defined memory, such as the
VSM component that stores all possible incoming STANAG waypoint data, this
slows the CAmkES compilation process down.

Putting the two together, the recompilation time of the whole system be-

116
Approved for Public Release; Distribution Unlimited.

came burdensome (upwards of 20 minutes in some cases), particularly on slower
machines.

10.9.6 Debugging

Debugging using the HACMS technologies is challenging in several ways. Much
of the executing code is autogenerated (AADL2RTOS glue code, CAmkES glue
code, seL4 code, C generated from Ivory code), and this causes problems both in
terms of understanding the generated code, and then moving from the generated
code back to the original source, and then diagnosing the problem in the original
source based on symptoms in the generated code. This is not a problem unique
to HACMS, but it is exacerbated by the multiple scales and sources of code
generation involved.

Another challenge is that some of the security features of HACMS technology
can complicate debugging (for example memory separation can cause problems,
and the use of authentication can make it difficult to restart part of the system).

10.9.7 Development Ecosystem

To move from a research environment to a production environment, there are a
number of ecosystem considerations that would need to be addressed for some
of these technologies to transition. This includes the usual concerns about
documentation, training, process integration, and integration with other tools,
such as quality management systems and life-cycle management systems. For
cyber-physical/cyber military systems, there is usually a qualification/certifica-
tion/accreditation requirement, and for DOD systems, there is the requirement
for compliance with CNSSI-1253.

In a more particular sense, many of the HACMS technologies would benefit
from enhancements to their own ecosystem. For example as a research language,
Ivory has a limited set of libraries. With the inclusion array sizes in the type
of an array, some sort of approach to standard libraries and/or polymorphism,
would be beneficial. So for example, more extensive Ivory string libraries that
doesn’t require a new function for every string length. For seL4, it would be
support for additional hardware, and hardware architectures. For example, the
fact that the ULB flight control computer uses a PPC processor precludes the
use of seL4.

117
Approved for Public Release; Distribution Unlimited.

11 Conclusion

Over the course of the HACMS program, a number of HACMS technologies
were successfully applied, first to the SMACCMcopter research vehicle, and
then to the Boeing Unmanned Little Bird. These technologies were successfully
demonstrated on both aircraft in flight, including the successful defeat of attacks
using a variety of common attack vectors. The SMACCMcopter was attacked
via a remote data link, while the ULB was attack via a compromised USB
maintenance device and a compromised supply chain. Additionally, a Red Team
evaluation of the final HACMS aircraft, though still underway, has not found
any significant exploitable vulnerability in the HACMS protected portions of
the system.

The HACMS technologies were applied to the ULB by Boeing engineers
(with the unstinting support of the technology researchers), including engineers
from Boeing Defense Systems, not just those from Boeing Research and Technol-
ogy. Together, this represents non-trivial evidence that these technologies are
effective in improving system cybersecurity, can do so for cyber-physical sys-
tems without compromising the required real-time performance, and are usable
by the developers of military systems.

118
Approved for Public Release; Distribution Unlimited.

12 References

[1] 20th USENIX Security Symposium, San Francisco, CA, USA, August 8-12,
2011, Proceedings. USENIX Association, 2011.

[2] Andy Greenberg. Hackers remotely kill a jeep on the highway — with me
in it, 2015. https://www.wired.com/2015/07/hackers-remotely-kill-jeep-
highway/ (accessed 4-28-2017).

[3] Hugo Teso. Aircraft hacking: Practical aero series, 2013.
https://conference.hitb.org/hitbsecconf2013ams/hugo-teso/ (accessed
4-28-2017).

[4] Kim Zetter. Feds say that banned researcher commandeered a
plane, 2015. https://www.wired.com/2015/05/feds-say-banned-researcher-
commandeered-plane/ (accessed 4-28-2017).

[5] Peter H. Feiler and David P. Gluch. Model-Based Engineering with AADL:
An Introduction to the SAE Architecture Analysis & Design Language.
Addison-Wesley Professional, 1st edition, 2012.

[6] Jing Liu, John D. Backes, Darren D. Cofer, and Andrew Gacek. From
design contracts to component requirements verification. In NASA Formal
Methods - 8th International Symposium, NFM 2016, Minneapolis, MN,
USA, June 7-9, 2016, Proceedings, pages 373–387, 2016.

[7] José Meseguer and Peter Csaba Ölveczky. Formalization and correctness
of the pals architectural pattern for distributed real-time systems. Theor.
Comput. Sci., 451:1–37, September 2012.

[8] The Software Engineering Institute. OSATE: Plug-ins for front-end pro-
cessing of AADL models, 2013.

[9] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David
Cock, Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski,
Michael Norrish, Thomas Sewell, Harvey Tuch, and Simon Winwood. seL4:
Formal verification of an OS kernel. In Proceedings of the ACM SIGOPS
22nd Symposium on Operating Systems Principles, SOSP ’09, pages 207–
220, New York, NY, USA, 2009. ACM.

[10] NASA. Certware. http://nasa.github.io/CertWare/.

[11] Stephen Checkoway, Damon McCoy, Brian Kantor, Danny Anderson, Ho-
vav Shacham, Stefan Savage, Karl Koscher, Alexei Czeskis, Franziska Roes-
ner, and Tadayoshi Kohno. Comprehensive experimental analyses of auto-
motive attack surfaces. In USENIX Security, 2011.

[12] Heartbleed. http://heartbleed.com/, February 2015.

119
Approved for Public Release; Distribution Unlimited.

[13] Trevor Jim, J. Greg Morrisett, Dan Grossman, Michael W. Hicks, James
Cheney, and Yanling Wang. Cyclone: A safe dialect of C. In USENIX
Conference, Berkeley, CA, USA, 2002. USENIX.

[14] Nicholas D. Matsakis and Felix S. Klock, II. The Rust language. Proceedings
of the 2014 ACM SIGAda Annual Conference on High Integrity Language
Technology, 34(3):103–104, October 2014.

[15] Tom Hawkins. Controlling hybrid vehicles with Haskell. Presentation.
Commercial Users of Functional Programming (CUFP), 2008. Available
at http://cufp.galois.com/2008/schedule.html.

[16] Lee Pike, Alwyn Goodloe, Robin Morisset, and Sebastian Niller. Copilot:
A hard real-time runtime monitor. In Runtime Verification (RV), volume
6418, pages 345–359. Springer, 2010.

[17] Emil Axelsson, Koen Claessen, Mary Sheeran, Josef Svenningsson, David
Engdal, and Anders Persson. The design and implementation of Feldspar -
an embedded language for digital signal processing. In Implementation and
Application of Functional Languages, volume 6647 of LNCS, pages 121–136.
Springer, 2011.

[18] Iavor S. Diatchki and Mark P. Jones. Strongly typed memory areas pro-
gramming systems-level data structures in a functional language. In Pro-
ceedings of the ACM SIGPLAN Workshop on Haskell, pages 72–83. ACM,
2006.

[19] Iavor S. Diatchki, Mark P. Jones, and Rebekah Leslie. High-level views on
low-level representations. In Intl. Conference on Functional Programming,
pages 168–179. ACM, 2005.

[20] Sam Lindley and Conor McBride. Hasochism: The pleasure and pain of
dependently typed haskell programming. In Symposium on Haskell, pages
81–92. ACM, 2013.

[21] Brent A. Yorgey, Stephanie Weirich, Julien Cretin, Simon Peyton Jones,
Dimitrios Vytiniotis, and José Pedro Magalhães. Giving haskell a promo-
tion. In Workshop on Types in Language Design and Implementation, pages
53–66. ACM, 2012.

[22] Tom Schrijvers, Simon Peyton Jones, Manuel Chakravarty, and Martin
Sulzmann. Type checking with open type functions. Intl. Conference on
Functional Programming, pages 51–62, September 2008.

[23] John Launchbury and Simon L. Peyton Jones. Lazy functional state
threads. pages 24–35, June 1994.

[24] Tim Sheard and Simon Peyton Jones. Template meta-programming for
haskell. SIGPLAN Notices, 37(12):60–75, December 2002.

120
Approved for Public Release; Distribution Unlimited.

[25] FreeRTOS. Website http://freertos.org/. Retrieved Feb. 2014.

[26] eChronos. Website http://ssrg.nicta.com.au/projects/TS/echronos.
Retrieved Feb. 2014.

[27] SAE-AS5506. Architecture Analysis and Design Language. SAE, Nov 2004.

[28] Tobias Nipkow, Lawrence Paulson, and Markus Wenzel. Isabelle/HOL —
A Proof Assistant for Higher-Order Logic, volume 2283 of LNCS. Springer,
2002.

[29] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David
Cock, Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolan-
ski, Michael Norrish, Thomas Sewell, Harvey Tuch, and Simon Winwood.
seL4: Formal verification of an OS kernel. In ACM Symposium on Operat-
ing Systems Principles, pages 207–220, Big Sky, MT, USA, October 2009.
ACM.

[30] Thomas Sewell, Simon Winwood, Peter Gammie, Toby Murray, June An-
dronick, and Gerwin Klein. seL4 enforces integrity. In Marko van Eekelen,
Herman Geuvers, Julien Schmaltz, and Freek Wiedijk, editor, International
Conference on Interactive Theorem Proving, pages 325–340, Nijmegen, The
Netherlands, August 2011. Springer.

[31] Sidney Amani, June Andronick, Maksym Bortin, Corey Lewis, Rizkallah
Christine, and Joseph Tuong. Complx: A verification framework for con-
current imperative programs. In International Conference on Certified Pro-
grams and Proofs, pages 138–150, Paris, France, December 2016.

[32] David Greenaway, Japheth Lim, June Andronick, and Gerwin Klein. Don’t
sweat the small stuff: Formal verification of C code without the pain. In
ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation, pages 429–439, Edinburgh, UK, June 2014. ACM.

[33] Daniel Matichuk, Makarius Wenzel, and Toby Murray. An Isabelle proof
method language. In Gerwin Klein and Ruben Gamboa, editor, Interna-
tional Conference on Interactive Theorem Proving, pages 390–405, Vienna,
Austria, July 2014. Springer.

[34] Bernard Blackham, Yao Shi, Sudipta Chattopadhyay, Abhik Roychoud-
hury, and Gernot Heiser. Timing analysis of a protected operating system
kernel. In IEEE Real-Time Systems Symposium, pages 339–348, Vienna,
Austria, November 2011.

[35] Bernard Blackham, Yao Shi, and Gernot Heiser. Improving interrupt re-
sponse time in a verifiable protected microkernel. In EuroSys Conference,
pages 323–336, Bern, Switzerland, April 2012.

121
Approved for Public Release; Distribution Unlimited.

[36] Bernard Blackham and Gernot Heiser. Sequoll: a framework for model
checking binaries. In Eduardo Tovar, editor, IEEE Real-Time and Em-
bedded Technology and Applications Symposium (RTAS), pages 97–106,
Philadelphia, USA, April 2013.

[37] Bernard Blackham, Mark Liffiton, and Gernot Heiser. Trickle: automated
infeasible path detection using all minimal unsatisfiable subsets. In Richard
West, editor, IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS), pages 169–178, Berlin, Germany, April 2014.

[38] Thomas Sewell, Felix Kam, and Gernot Heiser. High-assurance timing
analysis for a high-assurance real-time OS. Real-Time Systems, 2017. To
appear.

[39] Thomas Sewell, Magnus Myreen, and Gerwin Klein. Translation validation
for a verified OS kernel. In ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 471–481, Seattle, Washington,
USA, June 2013. ACM.

[40] Ihor Kuz, Yan Liu, Ian Gorton, and Gernot Heiser. CAmkES: A component
model for secure microkernel-based embedded systems. Journal of Systems
and Software Special Edition on Component-Based Software Engineering
of Trustworthy Embedded Systems, 80(5):687–699, May 2007.

[41] Matthew Fernandez, June Andronick, Gerwin Klein, and Ihor Kuz. Au-
tomated verification of RPC stub code. In International Symposium on
Formal Methods, pages 273–290, Oslo, Norway, June 2015.

[42] June Andronick, Corey Lewis, and Carroll Morgan. Controlled owicki-
gries concurrency: Reasoning about the preemptible eChronos embedded
operating system. In Workshop on Models for Formal Analysis of Real
Systems (MARS 2015), pages 10–24, Suva, Fiji, November 2015.

[43] June Andronick, Corey Lewis, Daniel Matichuk, Carroll Morgan, and
Christine Rizkallah. Proof of OS scheduling behavior in the presence of
interrupt-induced concurrency. In International Conference on Interactive
Theorem Proving, Nancy, France, August 2016.

[44] Leonid Ryzhyk, Peter Chubb, Ihor Kuz, Etienne Le Sueur, and Gernot
Heiser. Automatic device driver synthesis with Termite. In ACM Sym-
posium on Operating Systems Principles, pages 73–86, Big Sky, MT, US,
October 2009.

[45] Sidney Amani, Alex Hixon, Zilin Chen, Christine Rizkallah, Peter Chubb,
Liam O’Connor, Joel Beeren, Yutaka Nagashima, Japheth Lim, Thomas
Sewell, Joseph Tuong, Gabriele Keller, Toby Murray, Gerwin Klein, and
Gernot Heiser. Cogent: Verifying high-assurance file system implementa-
tions. In International Conference on Architectural Support for Program-
ming Languages and Operating Systems, pages 175–188, Atlanta, GA, USA,
April 2016.

122
Approved for Public Release; Distribution Unlimited.

[46] Christine Rizkallah, Japheth Lim, Yutaka Nagashima, Thomas Sewell, Zilin
Chen, Liam O’Connor, Toby Murray, Gabriele Keller, and Gerwin Klein. A
framework for the automatic formal verification of refinement from Cogent
to C. In International Conference on Interactive Theorem Proving, Nancy,
France, August 2016.

[47] Philip Wadler. Linear types can change the world! In Programming Con-
cepts and Methods, 1990.

[48] Liam O’Connor, Zilin Chen, Christine Rizkallah, Sidney Amani, Japheth
Lim, Toby Murray, Yutaka Nagashima, Thomas Sewell, and Gerwin Klein.
Refinement through restraint: Bringing down the cost of verification. In In-
ternational Conference on Functional Programming, Nara, Japan, Septem-
ber 2016.

[49] Sidney Amani and Toby Murray. Specifying a realistic file system. In
Workshop on Models for Formal Analysis of Real Systems, pages 1–9, Suva,
Fiji, November 2015.

[50] T. Bourke, R.J. van Glabbeek, and P. Höfner. Mechanizing a process
algebra for network protocols. Journal of Automated Reasoning, 56(3):309–
341, 2016.

[51] J. A. Bergstra and J. W. Klop. Algebra of communicating processes with
abstraction. Theoretical Computer Science, 37(1):77–121, 1985.

[52] T. Bolognesi and E. Brinksma. Introduction to the ISO specification lan-
guage LOTOS. Computer Networks, 14:25–59, 1987.

[53] C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall, En-
glewood Cliffs, 1985.

[54] R. Milner. Communication and Concurrency. Prentice Hall, 1989.

[55] A. Fehnker, R. J. van Glabbeek, P. Höfner, A. McIver, M. Portmann, and
W. L. Tan. A process algebra for wireless mesh networks used for modelling,
verifying and analysing AODV. Technical Report 5513, NICTA, 2013.

[56] A. Fehnker, R. J. van Glabbeek, P. Höfner, A. K. McIver, M. Portmann,
and W. L. Tan. A process algebra for wireless mesh networks. In H. Seidl,
editor, European Symposium on Programming (ESOP ’12), volume 7211 of
LNCS, pages 295–315. Springer, 2012.

[57] David Hardin, Konrad Slind, Michael Whalen, and Tuan-Hung Pham. The
Guardol language and verification system. In Proceedings of the 18th In-
ternational Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS), volume 7214 of Lecture Notes in Computer
Science, pages 18–32, Tallinn, Estonia, March 2012.

123
Approved for Public Release; Distribution Unlimited.

[58] Standard interfaces of uav control system (ucs) for nato uav interopera-
blity. Technical Report STANAG 4586, NATO Standardization Agency,
November 2012.

[59] Franz Franchetti, Aliaksei Sandryhaila, and Jeremy R Johnson. High as-
surance spiral. In SPIE Defense+ Security, pages 90911O–90911O. Inter-
national Society for Optics and Photonics, June 2014.

[60] Xavier Leroy. Formal verification of a realistic compiler. Communications
of the ACM, 52(7):107–115, 2009.

[61] Lee Pike, Nis Wegmann, Sebastian Niller, and Alwyn Goodloe. Experience
report: a do-it-yourself high-assurance compiler. In Proceedings of the Intl.
Conference on Functional Programming (ICFP). ACM, September 2012.

[62] Edmund Clarke, Daniel Kroening, and Flavio Lerda. A tool for check-
ing ANSI-C programs. In Tools and Algorithms for the Construction and
Analysis of Systems (TACAS), LNCS, pages 168–176. Springer, 2004.

124
Approved for Public Release; Distribution Unlimited.

13 List of Acronyms

AADL Architecture Analysis and Design Language
ADL Architecture Description Language
ADT Airborne Data Terminal
AES Advanced Encryption Standard
AFRL Air Force Research Laboratory
AGREE Assume Guarantee Reasoning Environment
API Application Program Interface
AST Abstract Syntax Tree
AWN Algebra for Wireless Networks
CAmkES Component Architecture for Microkernel-based Embedded Systems
CAN Controller Area Network
CBMC C Bounded Model Checker
CFG Control-Flow Graph
CORBA Common Object Request Broker Architecture
COTS Commercial of the Shelf
CPS Cyber-Physical Systems
CPU Central Processing Unit
CTL Computation Tree Logic
CUCS Common Unmanned Control System
DARPA Defense Advanced Research Projects Agency
DFA Deterministic Finite Automata
DMA Direct Memory Access
DSL Domain Specific Language
EDSL Embedded Domain Specific Language
EGI Enhanced GPS and Inertial
FAA Federal Aviation Administration
FCC Flight Control Computer
FLIH First-Level Interrupt Handlers
GCM Galois/Counter Mode
GCS Ground Control Station
GDT Ground Data Terminal
GHC Glasgow Haskell Compiler
GPIO General Purpose Input Output
HACMS High-Assurance Cyber Military Systems
HET Heavy Equipment Transporter
HCOL Hybrid Control Operator Language
HOL Higher-Order Logic
I2C Inter-Integrated Circuit
IDE Integrated Development Environment
IDL Interface Definition Language
IOMMU Input Output Memory Management Unit
ISO International Organization for Standardization
ISR Interrupt Service Routine

125
Approved for Public Release; Distribution Unlimited.

IRQ Interrupt Request
ISR Interrupt Service Routine
JTAG Joint Test Action Group
LED Light Emitting Diode
LOI Level of Interoperability
MAC Message Authentication Code
MBD Model Based Development
MMU Memory Management Unit
NVRAM Non-Volatile Random Access Memory
OMG Object Management Group
OS Operating System
OSATE Open Source AADL Tool Environment
OSI Open Systems Interconnection
PALS Physically Asynchronous Logically Synchronous
PWM Pulse Width Modulation
RFE Radio Frequency Equipment
RPC Remote Procedure Call
RT Real Time
RTOS Real Time Operating System
SMACCM Secure Mathematically-Assured Composition of Control Models
SMT Satisfiability Modulo Theories
SLIH Second-Level Interrupt Handlers
SPI Serial Peripheral Interface bus
SRB Safety Review Board
STANAG Standard Agreement
TCB Thread Control Block
TLB Translation Lookaside Buffer
TRB Technical Review Board
UART Universal Asynchronous Receiver/Transmitter
UAV Unmanned Air Vehicle
UDP User Datagram Protocol
USAF United States Air Force
ULB Unmanned Little Bird
WCET Worst Case Execution Time
VCPU Virtual Central Processing Unit
VM Virtual Machine
VMM Virtual Machine Monitor
VMS Vehicle Management System
VSM Vehicle Specific Module

126
Approved for Public Release; Distribution Unlimited.

