
Learning Deep Representations for Ground-to-Aerial Geolocalization

Tsung-Yi Lin† Yin Cui† Serge Belongie† James Hays§

tl483@cornell.edu yc984@cornell.edu sjb344@cornell.edu hays@cs.brown.edu
†Cornell Tech §Brown University

Abstract

The recent availability of geo-tagged images and rich
geospatial data has inspired a number of algorithms for
image based geolocalization. Most approaches predict the
location of a query image by matching to ground-level im-
ages with known locations (e.g., street-view data). However,
most of the Earth does not have ground-level reference pho-
tos available. Fortunately, more complete coverage is pro-
vided by oblique aerial or “bird’s eye” imagery. In this
work, we localize a ground-level query image by matching
it to a reference database of aerial imagery. We use pub-
licly available data to build a dataset of 78K aligned cross-
view image pairs. The primary challenge for this task is
that traditional computer vision approaches cannot handle
the wide baseline and appearance variation of these cross-
view pairs. We use our dataset to learn a feature represen-
tation in which matching views are near one another and
mismatched views are far apart. Our proposed approach,
Where-CNN, is inspired by deep learning success in face
verification and achieves significant improvements over tra-
ditional hand-crafted features and existing deep features
learned from other large-scale databases. We show the ef-
fectiveness of Where-CNN in finding matches between street
view and aerial view imagery and demonstrate the ability of
our learned features to generalize to novel locations.

1. Introduction
Consider the photo on the left side of Fig. 1. How can we

estimate where it was taken? Most existing methods predict
image location via matching to other ground-level photos
with known locations, but what if that data isn’t available?
In this work, we present a method to match ground level
queries to aerial imagery. The right side of Fig. 1 shows one
such aerial image out of thousands in our database. Match-
ing across these disparate visual domains is difficult for two
main reasons. Geometrically, the wide baseline induces a
large amount of occlusion in each view (e.g., we only see
building roofs in aerial views, and occlusions by trees and
street parking are common in street-level views). Further-

Query&Image& Matching&Database&

Figure 1: Given a query street-view image, this paper aims
to find where it was taken by matching it to a city-scale
aerial view image database.

more, the photos may have been captured at different times
with different lighting, weather, and season. The main pur-
pose of this paper is to investigate the feasibility of ground
to aerial matching in light of these challenges.

In this paper, we frame photo geolocalization as an iden-
tity verification task where only one correct location exists
in a city-scale region. This is analogous to the well-studied
face verification [18] task in which algorithms must decide
whether a pair of input photos depict the same individual.
Recent methods achieved high performances by extracting
hand-crafted features at aligned fiducial points [5, 6, 8].
While these approaches are fairly specific to the face do-
main, DeepFace [25] instead achieved impressive accuracy
by learning a deep feature representation on aligned face
images with massive additional training data. Inspired by
the success of DeepFace, we first create a large-scale dataset
that contains cross-view images aligned by publicly avail-
able coarse depth estimates on ground images. Then, a
low dimensional feature representation is learned by a deep
“Siamese network” [10] with the objective that the cross-
view image pairs of the same location will be close while
pairs of different locations or views will be far away.

The contributions of this paper are three-fold: (1) our
method can localize a photo without using ground-level
reference imagery by matching to aerial imagery. (2) We
present a novel method to create a large-scale cross-view
training dataset from public data sources. (3) We examine
traditional computer vision features and several recent deep

1



learning strategies in novel cross-domain learning task.
Image Geolocalization Methods. IM2GPS [17] was

an early, influential approach to predict image location by
matching visual appearance. With the increasing num-
ber of geo-tagged images from photo sharing websites and
tremendous effort by Google to capture the world at street
level [1], many geolocalization techniques boil down to
fast nearest neighbor search over a large ground-level im-
age database [9, 21, 29]. Despite the impressive scale of
community geo-tagged photo collections and street-view
databases, most of the Earth still has no ground-level ref-
erence imagery. To address this, recent methods localize
query images by matching them to digital elevation maps of
mountainous terrain [2] or cities [3].

The three most similar methods to our paper are recent
“cross-view” techniques which also match ground-level
photos to overhead or aerial imagery. Lin et al. [22] match
ground-level queries to other ground-level reference photos
as in traditional geolocalization, but then use the overhead
appearance and land cover attributes of those ground-level
matches to build sliding-window classifiers in the aerial and
land cover domain. A limitation of this approach is that
there is no direct comparison across views and thus it cannot
latch onto particular discriminative elements of the query –
it can only build a classifier for the types of elements seen
in similar scenes.

Like our approach, Bansal et al. [4] investigate ultra-
wide baseline matching between street-view images and
45◦ aerial view images. They propose self-similarity de-
scriptors for large building facades which are distinctive
enough to be matched across the wide cross-view baseline.
They demonstrate cross-view matching for buildings in a
urban region. In this paper, we learn a more universal cross-
view representation and evaluate our system at the scale of
entire cities that includes both urban and suburban regions.

Shan et al. [24] propose ground-aerial image matching
that first builds 3D point cloud from ground images with
noisy geo-tags and performs depth-based warping to repro-
ject ground images to one aerial view based on the estimated
geometry. The warped ground images then match to aerial
imagery by sparse keypoints matching. To reduce search
space, the aerial imagery is cropped based on the rough
geolocation associated with ground images. The method
shows promising results on referencing landmark images to
aerial imagery with pixel-level accuracy. Both [24] and this
paper share the similar procedure to align ground and aerial
images as a preprocessing step. Moreover, we learn a novel
feature representation that is capable to search all possible
aerial matches in a city.

2. Dataset
For the experiments in this paper, we collect Google

street-view and 45◦ aerial view images from seven cities

45°$

0°$

Stre
et%v

iew
%Pro

jec-
on%o

n%

%dep
th%p

lane
%

Figure 2: This diagram shows the relationship between our
cross-view pairs sampled from aerial images and street-
view panoramas.

– San Francisco, San Diego, Chicago, and Charleston in the
United States as well as Tokyo, Rome, and Lyon to test how
well our method generalizes to novel locations. The data
includes both urban and suburban areas for each city.

Before we attempt cross-view matching, a major chal-
lenge is simply to establish ground-truth correspondences
between street-level and aerial views. This is challenging
due to unknown geolocation, scale, and surface orientation
in the raw images. For our study, we show that pairs of
coarsely aligned cross-view images can be generated with
the depth estimates and meta data of street-view images
provided by Google. First, we project 2D street-view im-
age to 3D world coordinates system by leveraging the head-
ing direction of street-view car and pixel-wise coarse depth
planes from Anguelov et al. [1]. Second, we assume an or-
thographic camera model for the aerial view with viewing
directions aligned with four cardinal directions (north, east,
south, and west) and tilted 45◦ downward. Finally, the scale
of street-view depth estimates and aerial view imagery is
calibrated so the street-view images can be reprojected onto
aerial view image plane through the street-view depth esti-
mates.

For our experiments, we generate cross-view image pairs
with area of 15 × 15 meters (256 × 256 pixels). Each
panorama image can at most contribute two cross-view
pairs, e.g., a panorama image captured by an east-facing
street-view car can generate north and south-facing cross-
view image pairs. Each cropped street-view image is cen-
tered at 0◦ tilt angle and aligned with a cardinal direction.
For simplicity, we project the street-view crop onto a single
depth plane at the center pixel of an image. Fig. 2 shows the
relationship of our cross-view pairs. In our experiments, we
only generate cross-view image pairs if a depth estimate ex-
ists at the center of street-view crop.

Fig. 3 shows examples of cross-view image pairs gen-
erated by our method. Although these pairs are roughly
aligned, the error in geolocation of ground and aerial im-
ages and depth estimates lead to differences in scale, shear,



Figure 3: Corresponding pairs of street-view (top) and
45◦ aerial view (bottom) images aligned using the publicly
available depth estimates.

translation, and projective distortion. The images are cap-
tured from different imaging devices at dramatically differ-
ent distances and thus exhibit different point spread func-
tions and color calibrations. Finally, occlusions add to the
appearance disparities (e.g., a roof can only be seen from
aerial view and a tree occludes different parts of building
from street-view).

Traditional matching methods based on local features ex-
tracted from sparse keypoints struggle to match such cross-
view image pairs. Fig. 4 shows an ground-aerial image pair
from our database, where the left side shows interest points
found by SIFT Detector [23] and the right side shows top 10
key points matching. We can see that key points on street
view image mainly focus on the bottom part of the building
and another tall building behind it which is not even visible
in the aerial view image. In our initial experiments, key-
point matching methods (even with RANSAC to filter out-
liers) do not work across these views, whereas the proposed
method can correctly match them (Fig. 8a).

3. Cross-view Image Matching
We frame our problem as an identity verification task

when designing and training our deep cross-view network.
However, unlike classic verification tasks such as face ver-
ification, we do not have category labels for each instance
(or, equivalently, every single location is a unique category).
At test time, we would ideally have a verification method
that reports ‘true’ for the correct location and ‘false’ for ev-
ery other locations. However, we would like an evaluation
metric that rewards near-misses (e.g. the correct match is
among the top scoring matches). Therefore we evaluate
our cross-view geolocalization as an image retrieval prob-
lem and report Average Precision for each algorithm.

Our goal is to find a good representation f(.) for cross-
view images. f(.) could be either hand-crafted or learned
from data. Then, when a novel query ground-view image x
comes in, we want to find the matched patch y from aerial
view imagery Y accurately and efficiently. The Euclidean
Distance is used as the distance metric to find the near-
est neighbor y ∈ Y in feature space as the matched patch

Figure 4: Key points matching fails on aerial-to-ground
view image pairs for our problem.

match(x) for x:

match(x) = argmin
y∈Y
‖f(x)− f(y)‖2 (1)

3.1. Feature Representations

There are no “standard” feature representations for the
ultra-wide baseline cross-view matching, because it is a
relatively unexplored task. There are promising repre-
sentations from other domains, though – traditional hand-
designed features which have been shown to work well in
object detection and recent breakthroughs in deep convo-
lutional networks. Specifically, we focus on three types
of feature representations: (1) hand-crafted features; (2)
generic deep feature representations; and (3) learned deep
feature representations for our data. We discuss each type
of feature in details in Sec. 4.3.

3.2. Network Architecture and Loss Function

Inspired by the early “Siamese Network” [10] approach
and the more recent DeepFace [25] and Deep Ranking [27]
methods, we use a pair-based network structure illustrated
in Fig. 5a to learn deep representations from data for distin-
guishing matched and unmatched cross-view image pairs.

During training, the input to the network is a pair of im-
ages x ∈ X and y ∈ Y , where X and Y are street-view
imagery and aerial view imagery in the training set, respec-
tively. The input pair x and y are fed into two deep con-
volutional neural networks (CNN) A and B , which have
same architecture. The goal of our convolutional network
is to learn a feature representation (non-linear embedding)
f(·) that embed raw input images x, y ∈ Rn from different
views to a lower dimensional space as fA(x), fB(y) ∈ Rd

where images from matched pairs are pulled closer whereas
images from unmatched pairs are pushed far way from each
other. Here, n is the number of pixels for input image x or y
and d� n is the dimension of feature representation fA(x)
or fB(y).

Note that two CNNs A and B could be either identical
with shared parameters or distinct. In the case of sharing
parameters, a general deep representation is learned across
between street view and aerial view. On the other hand,
in the case of different parameters, domain specific deep



A (CNN) B (CNN)

Data Pairs

x y

fA(x) fB(y)

Loss Layer

Labels

l

(a) Training

Trained A

Query Image

x

fA(x)

Aerial Images

Trained B

{y}

{fB(y)}

Fast KNN 
Matching

Offline

(b) Testing

Figure 5: Our network architecture for cross-view image
matching.

representations are learned by A and B, respectively. For
simplicity, we will abuse a single notation f(.) to represent
both fA(·) and fB(·).

In order to optimize the proposed network, we need to
use a loss function that fits our goal. More specifically, we
want to let matched pairs have small Euclidean Distance
close to 0 and let unmatched pairs have large Euclidean Dis-
tance larger than a margin m. Therefore, we used the Con-
trastive Loss Function proposed in [16] as our loss function,
which can be expressed as:

L(x, y, l) = 1

2
lD2 +

1

2
(1− l)max(0, (m−D2)) (2)

where l ∈ {0, 1} is the label indicating whether the input
pair x, y is a matched pair or not (l = 1 if matched, l = 0 if
unmatched), m > 0 is the margin for unmatched pairs and
D = ‖f(x) − f(y)‖2 is the Euclidean Distance between
f(x) and f(y) in feature space.

The loss function in Eqn. 2 penalizes matched pairs by
the squared Euclidean distances and mismatched pairs by
the squared differences of the distances to the margin m for
the distances that are smaller than m. Minimizing the loss
function in Eqn. 2 pulls matched pairs closer and pushes
mismatched pairs far away. After learning the parameters of
the deep network which produces our feature representation
f(·), we can pre-compute f(y) offline for all y ∈ Y , where
Y is our aerial imagery. Then, for a given query x during
test time, we can compute f(x) by only one forward pass
on the learned deep network A and find nearest-neighbors
from f(Y ) as expressed in Eqn. 1. The precomputation
of f(y) enables us to use fast algorithms such as Locality
Sensitive Hashing [15, 7] in finding K nearest-neighbors.
Thus our method can perform cross-view matching at city
scale in real-time. The test stage is illustrated in Fig. 5b.

3.3. Learning Feature Embedding

Our Siamese network is composed of two identical
CNNs modified from [20]. The last fully connected layer
fc8 is stripped off and the 4, 096 dimensions from the sec-
ond last fully connected layer fc7 are used as the feature
representation. We fine-tune a pre-trained model by set-
ting the learning rate 10−5 for fc7 and 10−7 for other lay-
ers. In Sec. 4.3, we discuss more details on the selection
of pre-trained models. On top of fc7, an additional mean-
variance normalization layer is added to normalize features
to zero mean and unit standard deviation. The normaliza-
tion layer prevents features from arbitrarily scaling during
training. Because the scale of feature is fixed, it is easy to
select the margin for Contrastive Loss. We set the margin
to be the average squared pair distance over training data.
The smaller the margin, the more that the learning is influ-
enced by “hard negatives”. In our case, only pairs of data
with distances smaller than the average are used to compute
gradients to update the network parameters.

4. Experiments
Our experiments compare the effectiveness of the fea-

ture representation learned from our database using a deep
convolutional network against traditional hand-crafted fea-
tures and deep features not optimized for our problem. In
addition, we measure how well a representation learned on
some cities generalizes to testing on an unseen city.

4.1. Experiments Setup

Training and Test Sets. As described in Sec. 2, we col-
lected 78k pairs of Google street-view images and their cor-
responding aerial images. Those image pairs are partitioned
into training set, which is used to train our deep neural net-
works, and test set, which is used to validate the effective-
ness of the learned features.

We divide our collected image pairs into training and
test sets based on the cardinal viewing direction (azimuth).
Specifically, we use image pairs that have viewing direc-
tions of 0◦, 90◦ and 270◦ as training data. Image pairs that
have viewing direction of 180◦ are used as test data. Under
this partition, all image pairs in the training set have viewing
directions either orthogonal or opposite to the image pairs
in our test set, which minimizes the overlapping of image
content across training and testing. To test the ability of
learned representations to generalize to a novel location, we
hold-out Tokyo, Rome, and Lyon for experiments in Sec. 5.

We end up with 37.5K matched pairs in training set and
12.5K matched pairs in test set and hold out images from
San Francisco, Chicago, San Diego, and Charleston. We
generate 20× as many unmatched pairs randomly for both
training and test. Together, the matched and unmatched
pairs total 0.8M in training set and 0.26M pairs in test



set. In both training and testing, 1/21 of image pairs are
matched pairs and 20/21 are unmatched pairs.

Deep Convolutional Networks. For the training of the
proposed deep convolutional network described in Sec. 3.2,
we used all 0.8M image pairs from our training set (the ra-
tio of matched and unmatched pairs is 1 : 20). Similar to the
case of Deep Face [25] and Deep Ranking [27], our goal is
to learn deep representations that capture the similarity be-
tween images. However, as argued in Sec. 1 and Sec. 2,
our database is more challenging than Deep Face and Deep
Ranking and it is hard to build a discriminative representa-
tion from scratch. Therefore, we use the parameters from
deep networks pre-trained on large-scale object and scene
databases [20, 30] as the initialization to train our model.

Our model was trained using the publicly available Caffe
implementation [19] on a Nvidia Grid K520 GPU. It took
about 4 days to finish 250, 000 iterations of training, which
is approximately 50 epochs of the training set.

4.2. Performance Evaluation Metric

As we mentioned in Sec. 3, we evaluate our problem as
image retrieval problem. There are many ways to evalu-
ate the performance of retrieval, such as top K hits, Aver-
age Precision at K, Receiver Operator Characteristic (ROC)
curve or Precision-Recall (PR) curve. Among them, we
present PR curves because they often shows a more infor-
mative picture of a retrieval method’s performance com-
pared with other evaluation metrics [12]. We also report
Average Precision (AP), the area under PR curve, as the
quantitative evaluation metric.

4.3. Feature Representations and Learning

We compare the performance of the following feature
representations:

HOG 2x2. The histogram of oriented gradients (HOG)
descriptor is widely used for object detection and scene
classification [11, 14, 28]. We extract HOG features in
an 8 × 8 grid and then concatenate 2x2 neighboring HOG
blocks after normalization to build 52 dimensional local de-
scriptors without spatial pyramid. These local features are
quantized into a bag-of-words representation with 300 vi-
sual words learned from k-means clustering on the training
set.

ImageNet-CNN feature and Places-CNN features. We
extract features from deep convolutional networks pre-
trained for classification on large-scale object and scene
databases [20, 30]. Specifically, ImageNet-CNN is the
AlexNet [20] trained on ImageNet database and Places-
CNN is the AlexNet trained on Places database. Since it has
been shown that deep convolutional networks learned from
large-scale databases can extract generic feature represen-
tations that generalize well on other databases [13, 30], we
directly extracted 4, 096 dimensional output from the fc7

0.0 0.2 0.4 0.6 0.8 1.0
recall

0.0

0.2

0.4

0.6

0.8

1.0

pr
ec

is
io

n

Where-CNN-DS (43.6)
Where-CNN (41.9)
Place-CNN (10.2)
ImageNet-CNN (11.3)
HOG2x2 BoW (7.9)

Figure 6: PR curves and corresponding APs for different
feature representations.

layer of the ImageNet-CNN and Places-CNN as the feature
for cross-view matching.

Where-CNN(-DS) feature. We extract features from
the deep convolutional network illustrated in Fig. 5 trained
on our database. Where-CNN is domain-independent fea-
ture extractor trained with shared parameters between A and
B, and Where-CNN-DS is domain-specific feature extrac-
tor trained without sharing parameters. We train our deep
network using publicly available Caffe implementation [19]
on our training set. We initialize the parameters for Where-
CNN in the training stage with the learned parameters
from both pre-trained ImageNet-CNN and Places-CNN.
The comparison between different initialization strategies
is shown in Sec. 4.4. After training on the cross-view image
pairs, we learn a 4, 096 dimension common feature embed-
ding from fc7 layer of network A and B.

4.4. Quantitative Results and Analysis

In this section, we aim to verify the effectiveness of
the deep feature learned by Where-CNN. Fig. 6 plots the
PR curves and corresponding APs for the three classes
of feature representations examined. From this we make
the following observations: (1) Features extracted from
the proposed Where-CNN and Where-CNN-DS achieve the
best performance by a significant margin compared with
hand-crafted features and ImageNet-CNN and Places-CNN
features. The architecture of Where-CNN lets us learn
a good representation which makes cross-view matched
pairs closer than unmatched pairs. (2) Features extracted
from Places-CNN and ImageNet-CNN achieve similar per-
formance but both outperform hand-crafted feature by a
large margin. (3) The domain-specific model (Where-CNN-
DS) performs slightly better than domain-indepedent model
(Where-CNN).

We also compare the effect of different initialization
strategies in Table 1. The Where-CNN trained with param-



Table 1: Comparison between different initialization.

Where-CNN ImageNet init. Places init.
AP 41.9% 41.4%

40 60 80 100 120 140
distance of cross-view pair

0

2

4

6

8

10

12

nu
m

be
r o

f p
ai

rs
 (l

og
)

(a) ImageNet-CNN feature.

30 40 50 60 70 80 90 100 110
distance of cross-view pair

0

2

4

6

8

10

nu
m

be
r o

f p
ai

rs
 (l

og
)

(b) Where-CNN feature.

Figure 7: Histogram of pairwise distances of features from
(a) ImageNet-CNN and (b) Where-CNN on test set.

eters initialized from ImageNet-CNN achieves similar per-
formance as when initialized from Places-CNN, which indi-
cates our model is robust with different initialization param-
eters as long as the parameters come from a model trained
on large-scale databases that can provide generic represen-
tations.

To demonstrate what has been learned by Where-CNN,
we compute the histogram of pairwise Euclidean distances
of ImageNet-CNN and Where-CNN on the test set in
Fig. 7. The green bars represent pairwise distances of
matched pairs and red bars represent pairwise distances
of unmatched pairs. The pair distance distribution of
ImageNet-CNN shows the initial distance distribution of
Where-CNN without learning. Obviously, the training pro-
cess of Where-CNN on the cross-view image pairs effec-
tively pulls matched pairs together and pushes unmatched
pairs away.

For additional qualitative evaluation we show easy posi-
tives and hard negatives encountered by Where-CNN on our
test set in Fig. 8. Easy positives are examples from top 100
true positives (correctly matched pairs with top 100 small-
est distances) returned on test set by using Where-CNN fea-
ture. Similarly, hard negatives are examples from top 100
false positives (mismatched pairs with top 100 smallest dis-
tances). We can see Where-CNN is able to find correct
matches from different views even they have small shared
regions. For the hard negatives, although they are all mis-
matched pairs, they look similar to each other and often
share structural patterns.

4.5. Feature Visualization

In this section, we try to shed light on why deep fea-
tures are more capable for cross-view matching by visual-
izating the feature embedding and showing images that acti-
vate particular units at the output feature layer. In Fig. 9, we
show an image grid that represents a 2 dimensional embed-
ding of Where-CNN features for street-view images. The

(a) Easy positive pairs.

(b) Hard negative pairs.

Figure 8: (a) The most similar true positive matches and (b)
the most similar false positive matches. For each, the first
row shows street-view images and the second row shows
corresponding aerial images.

Figure 9: Two dimensional feature embedding. The image
are grouped by architecture type and orientation.

embedding is computed by t-SNE [26]. The visualization
reveals two influential factors in the feature: (1) architecture
type; (2) orientation. For examples, the images at the bot-
tom right show buildings with repetitive windows that look
like office buildings and the top right shows two-story res-
idential buildings. The top left part of embedding captures
the orientation of images. It is not surprising that orienta-
tion is a strong visual cue to learn; however, it is not desired
since the orientation of image encodes its relative direction
to cardinal direction which might not be known at the test
time. Fortunately, we find that given the same orientation,
the images with different architecture types are still grouped
at different locations in the embedding. This means the un-
known orientation at the test time will be one dimension we
need to sweep through from -45◦ to 45◦ to match the aerial
view database.

In addition to looking at the entire feature embedding
space, we also examine single unit activation at the output



Figure 10: Images that produce strong activations of particular units at the output feature layer.

Bi
rd
’s
'E
ye
'

St
re
et
'V
ie
w
'

San'Francisco' San'Diego' Charleston' Chicago' Tokyo'

Figure 11: Samples of corresponding cross-view pairs in 5
sampled city.

feature layer. Fig. 10 shows the average images and top 9
images that activate a certain unit most strongly at the out-
put feature layer. Given a unit, ideally it will fire for images
with similar structural patterns in street-view or aerial view
domain. From Fig. 10, we can identify units for “office
building with repetitive windows”, “house with triangular
roof” or “building with arch doors” that are activated by
the corresponding architecture types in street-view or aerial
view domains.

5. Geolocalization
In this section, we demonstrate the performance of

Where-CNN-DS on a geolocalization task in which one
street-view query image is localized by matching against
∼10, 000 aerial images in each city. For simplicity, we as-
sume the orientation and depth of street view query images
are known. In a real world scenario, our method requires ei-
ther depth estimation from machine or human and a sweep
through possible surface normal from -45◦ to 45◦.

We test Where-CNN-DS on 7 cities: San Francisco, San
Diego, Chicago, Charleston, Rome, Lyon, and Tokyo. The
images in Rome, Lyon, and Tokyo are completely held-out
from training data so we can see if Where-CNN-DS can
generalize to unseen cities. Fig. 11 shows a snapshot of cor-
responding pairs of street-view and aerial images randomly
drawn for 5 sampled city. It’s in particularly challenging for
Chicago and Tokyo where tall, crowded buildings severely

Figure 12: Geolocalization accuracy in various cities. The
x-axis is the number of k nearest neighbors considered and
the y-axis is the number of queries for which a successful
match is within the top k.

occlude each other in aerial view.
Fig. 12 shows the fraction of queries correctly localized

as a function of the number of candidates considered. As
in Lin et al. [22], we focus on the frequency of test cases
for which the correct location was among the top 1% of re-
trieved candidates (or equivalently, the geolocation estimate
has been correctly narrowed to 1% of the search area). Un-
der this criteria, we correctly localize over 22% of queries
in Charleston, San Francisco, and San Diego. The accuracy
in Chicago and Tokyo are much lower at 8.6% and 7.3%,
respectively. Note that our task is much finer scale (15× 15
meters) than [22] (180× 180 meters).

To gain more insight, Fig. 13 shows examples of query
images, the top 12 matched aerial images, and the heat map
that indicates possible locations. The probability goes from
low to high as the color changes from blue to green to yel-
low to red. The top two rows show examples where the
aerial image with the lowest distance is correctly matched.



Street%view)Query) Bird’s)Eye)Matches) Heat)Map)
Ch

ic
ag
o)

Ch
ar
le
st
on

)
Sa
n)
Di
eg
o)

To
ky
o)

Figure 13: Geolocalization examples. For each query on the left, the top 12 matching aerial view crops are shown. The heat
map on the right is colored as a function of the matching distance between the street-view query and the aerial crop at that
location.

While the query image in the third and fourth row don’t
match the aerial views, the top retrievals look similar to the
query image and the heat map activates in the city region
that with most similar buildings. Note that for the query
in Tokyo, it finds semantically similar buildings located at
road intersections. The result suggests that Where-CNN-DS
can generalize to unseen data reasonably well.

6. Conclusion and Discussion
We have presented the first general technique for the

challenging problem of matching street-level and aerial
view images and evaluated it for the task of image geolocal-
izaiton. While standard keypoint matching or bag-of-words
approaches barely outperform chance, our learned represen-
tations show promise.

While we train and test on cross-view pairs that have
been roughly aligned according to aerial and street-view

metadata, a limitation of the current approach is the need to
estimate scale and dominant depth at test time for ground-
level queries with no metadata. This is plausible either
through manual intervention or automatic estimation. An-
other limitation is that the absolute orientation of a ground-
level query could be unknown (and difficult to estimate) and
would require a sweep over orientations at test time.

Acknowledgments. Supported by the Intelligence Ad-
vanced Research Projects Activity (IARPA) via Air Force
Research Laboratory, contract FA8650-12-C-7212. The
U.S. Government is authorized to reproduce and distribute
reprints for Governmental purposes notwithstanding any
copyright annotation thereon. Disclaimer: The views and
conclusions contained herein are those of the authors and
should not be interpreted as necessarily representing the of-
ficial policies or endorsements, either expressed or implied,
of IARPA, AFRL, or the U.S. Government.



References
[1] D. Anguelov, C. Dulong, D. Filip, C. Frueh, S. Lafon,

R. Lyon, A. Ogale, L. Vincent, and J. Weaver. Google street
view: Capturing the world at street level. Computer, 2010. 2

[2] G. Baatz, O. Saurer, K. Köser, and M. Pollefeys. Large scale
visual geo-localization of images in mountainous terrain. In
ECCV, 2012. 2

[3] M. Bansal and K. Daniilidis. Geometric urban geo-
localization. In CVPR, 2014. 2

[4] M. Bansal, K. Daniilidis, and H. S. Sawhney. Ultra-wide
baseline facade matching for geo-localization. In ECCV
Workshops, 2012. 2

[5] T. Berg and P. N. Belhumeur. Tom-vs-Pete classifiers
and identity-preserving alignment for face verification. In
BMVC, 2012. 1

[6] T. Berg and P. N. Belhumeur. POOF: Part-Based One-vs-
One Features for fine-grained categorization, face verifica-
tion, and attribute estimation. In CVPR, 2013. 1

[7] M. S. Charikar. Similarity estimation techniques from round-
ing algorithms. In STOC, 2002. 4

[8] D. Chen, X. Cao, F. Wen, and J. Sun. Blessing of dimension-
ality: High-dimensional feature and its efficient compression
for face verification. In CVPR, 2013. 1

[9] D. M. Chen, G. Baatz, K. Köser, S. S. Tsai, R. Vedantham,
T. Pylvänäinen, K. Roimela, X. Chen, J. Bach, M. Pollefeys,
B. Girod, and R. Grzeszczuk. City-scale landmark identifi-
cation on mobile devices. In CVPR, 2011. 2

[10] S. Chopra, R. Hadsell, and Y. LeCun. Learning a similarity
metric discriminatively, with application to face verification.
In CVPR, 2005. 1, 3

[11] N. Dalal and B. Triggs. Histograms of oriented gradients for
human detection. In CVPR, 2005. 5

[12] J. Davis and M. Goadrich. The relationship between
precision-recall and roc curves. In ICML, 2006. 5

[13] J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang,
E. Tzeng, and T. Darrell. Decaf: A deep convolutional acti-
vation feature for generic visual recognition. arXiv preprint
arXiv:1310.1531, 2013. 5

[14] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ra-
manan. Object detection with discriminatively trained part-
based models. PAMI, 2010. 5

[15] A. Gionis, P. Indyk, R. Motwani, et al. Similarity search in
high dimensions via hashing. In Proceedings of the interna-
tional conference on very large data bases, 1999. 4

[16] R. Hadsell, S. Chopra, and Y. LeCun. Dimensionality re-
duction by learning an invariant mapping. In CVPR, 2006.
4

[17] J. Hays and A. A. Efros. im2gps: estimating geographic
information from a single image. In CVPR, 2008. 2

[18] G. B. Huang, M. Ramesh, T. Berg, and E. Learned-Miller.
Labeled faces in the wild: A database for studying face
recognition in unconstrained environments. Technical report,
University of Massachusetts, Amherst, 2007. 1

[19] Y. Jia. Caffe: An open source convolutional architecture
for fast feature embedding. h ttp://caffe. berkeleyvision. org,
2013. 5

[20] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet
classification with deep convolutional neural networks. In
NIPS, 2012. 4, 5

[21] Y. Li, N. Snavely, and D. P. Huttenlocher. Location recog-
nition using prioritized feature matching. In ECCV, 2010.
2

[22] T.-Y. Lin, S. Belongie, and J. Hays. Cross-view image ge-
olocalization. In CVPR, 2013. 2, 7

[23] D. G. Lowe. Distinctive image features from scale-invariant
keypoints. IJCV, 2004. 3

[24] Q. Shan, C. Wu, Y. F. Brian Curless, C. Hernandez, and S. M.
Seitz. Accurate geo-registration by ground-to-aerial image
matching. 3DV, 2014. 2

[25] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf. Deepface:
Closing the gap to human-level performance in face verifica-
tion. In CVPR, 2014. 1, 3, 5

[26] L. van der Maaten and G. Hinton. Visualizing high-
dimensional data using t-sne. In JMLR, 2008. 6

[27] J. Wang, T. Leung, C. Rosenberg, J. Wang, J. Philbin,
B. Chen, Y. Wu, et al. Learning fine-grained image simi-
larity with deep ranking. arXiv preprint arXiv:1404.4661,
2014. 3, 5

[28] J. Xiao, J. Hays, K. A. Ehinger, A. Oliva, and A. Torralba.
Sun database: Large-scale scene recognition from abbey to
zoo. In CVPR, 2010. 5

[29] A. R. Zamir and M. Shah. Accurate image localization based
on google maps street view. In ECCV, 2010. 2

[30] B. Zhou, A. Lapedriza, J. Xiao, A. Torralba, and A. Oliva.
Learning deep features for scene recognition using places
database. In NIPS, 2014. 5


