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1. Introduction
Many applications in multifunctional materials require a stimulus-controlled re-
versible change within a material. Examples include photovoltaics,1 shape mem-
ory polymers,2 self-healing materials,3 and force responsive luminescent materi-
als.4 Optically adaptive materials (OAMs), which display an optical signature upon
structural change, possess this capability.5–10 Mechanisms available to control OAM
behavior include thermo-, chemo-, photo-, mechano-, and electrochromism.11–16

Optical response can thus be modulated as a function of changing environmental
factors like change in pH17 or application of low voltage bias.18 Generally, for this
class of materials, environmental changes result in a chemical rearrangement, which
can include isomerization, intramolecular hydrogen or group transfers, electrocyclic
reactions, and ring opening processes.19–21 As a result of this environmentally in-
duced structural modification, a significant shift in the absorbance of the material
from its original state can take place.

OAMs find application in a variety of fields. Optical switches,22 frequency filters,23

variable attenuators,24 sensors25–27 and optical displays28 are all examples of OAM
applications. More recently, smart window technology,29 anti-glare coating for au-
tomotive mirrors,30 and protective eyewear31 have also put OAMs in the spotlight.

Of particular interest is switching between stable states, such as for smart windows,
which adjust their opacity and color under an applied voltage but remain in the
switched state even when the field is discontinued. In recent work by Moser et al.,
single-walled carbon nanotubes have been used as an OAM with applications in
smart window technology.32 Another avenue using pthalocyanine-based polymers
was developed by Solis and coworkers. This material has the capability to switch
from a green to gray color in its reduced versus oxidized states. The technology has
been successfully implemented in a prototype electrochromic window device.33

Electrochromic polymer ink is another application relying on switched stable states.
Österholm et al.34 printed e-ink material which switches from a colored to a clear
state via ink jet technology, whereas Chen et al. have printed flexible films with
electrochromic ink in multiple color switching patterns.35

To exploit the full potential of electrochromic applications, a database of elec-
trochromophores with a wide variety of electrochromic responses and secondary
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properties is essential. Organic electrochromic species are particularly attractive due
to their low weight, high contrast, tunable absorption, wide viewing angle, flexible
processability, and potential for low power consumption.14,20,36–41 The combina-
tion of these positive characteristics may lead to new electrochromic materials with
properties that can be tuned for individual applications.

When considering the capabilities of an electrochromic material, the type of color
switching dictates the type of chemical system necessary to perform the task. In
general, colored-to-bleached transitions have shown great success as electrochromic
materials and examples of this type include tungsten trioxide (WO3) thin films, vi-
ologens, and Prussian blue based materials.42–45 In addition to colored-to-bleached
transitions, colored state-to-colored state transitions are prominent in electrochromics.
Often conducting polymers provide a viable framework for hosting this type of
change and Lv et al. provide a comprehensive review of polymeric electrochromic
materials, which showcases the many colored transitions possible with these ma-
terials.46 The donor-acceptor structure built into the polymeric materials, which is
also found in other optical applications such nonlinear optics,47,48 provides for ex-
ceptional color control between the oxidized and reduced states.49,50 Transparent-
to-colored state transitions are less common in electrochromic materials, but as of
late have seen some progress.51

However, to develop the next generation of electrochromic materials, the chemical
switching methodology, which controls many aspects of electrochromic behavior,
must be understood and controlled. A technique that has been used to control this
mechanism is to introduce a chemical switching group directly into an existing
molecular framework. Popular choices for switches include diaryethenes, azoben-
zenes, and donor-acceptor type frameworks.

Though there are many switching mechanisms, isomerization is a natural mecha-
nism due to the inherent reversibility and responsiveness to stimuli. For example,
cis trans isomerization in diarylethenes is well known to be photochromic in na-
ture.13,19 Keto-enol tautomerization can also be employed as a chemical switching
mechanism.52 The keto-enol tautomerization process is highly responsive to stim-
uli like changing the pH of the chemical environment as well as exposure to low
voltage current. The enol form can be accessed reversibly through deprotonation of
the ketone form of the molecule, thereby introducing a double bond and connect-
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ing 2 adjoint π-systems. The newly extended π-system is then responsible for the
observed optical response.

The approach in this work is based on manipulating the molecular structure of push-
pull chromophores. The structure of the chromophore consists of a π-conjugated
bridge flanked by an electron-donating group on one end and an electron-accepting
group on the other. These compounds tend to be highly colored because of the con-
jugation between the electron donating and accepting groups on each end of the
molecule. A recently reported key insight was the placement of a chemical switch
within the conjugated backbone that can turn on/off the conjugation between the
electron donating and accepting groups and thus the molecule can go between a
colorless and colored state.20,52 Compared to previous approaches to electrochromic
materials such as conjugated polymers or organometallic complexes, these materi-
als offer a better combination of color intensity and control along with fast response
times and good stability.

The primary goal of this work is to introduce and understand a highly flexible and
modular approach to tuning electrochromic response. The report is organized as
follows. In Section 2 the electrochromic chemical framework and computational
details are given, Section 3 gives results of the study of the OAM framework and
analysis on underlying factors associated with efficiency, and conclusions are given
in Section 4.

2. Computational Methods and Frameworks
All geometry optimizations in this work were performed using density functional
theory (DFT) with the CAM-B3LYP functional53 and the 6-31+G(d) basis set54–56

as implemented in Gaussian09 rev. C.0157 using default convergence criteria. The
CAM-B3LYP functional was chosen because it is well known to treat computation
of spectra of chromophore molecules accurately.53,58 In addition, it has been shown
previously that range corrected functionals59,60 are ideal for computation of molec-
ular properties. For consistency, structures were also optimized at the PBE0/6-
31+G(d) level61 and were found to be in agreement with those found with CAM-
B3LYP. To determine that the structure is at a minimum, frequency analysis was
performed. Using the optimized ground state structure, the molecule’s polarizability
and first hyperpolarizability were computed in the time-dependent DFT framework.
In addition, the UV/visible (Vis) spectra of the molecules were computed within the

3
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framework of time-dependent DFT as implemented in Gaussian09.57

The general chemical framework studied in the present investigation is pictured
in Fig. 1. From this framework, 3 sets of molecules were considered. The first 2
sets substituted R1, R2, and R3 with NO2- or NMe2-moieties, where R1 6= R2.
These substitutions were chosen to incorporate both electron-donating and electron-
withdrawing groups on the π-system as well as enabling charge-transfer excitations
for potential absorption in the visible range. The second set additionally inserted an
acetylene bridge at X2 in Fig. 1. Graphs of the molecules of sets and 1 and 2 can be
found in Figs. 2 and 3, respectively.

R3

6
7

X3

5

4

X2

8

R2

9

3

X12
1

R1

Fig. 1 Electrochromic framework

Because the structure of the electrochromic materials within this study are expected
to be highly sensitive to cis-trans-isomerism, both cis and trans structures for each
group of substituents have been computed. Structures are labeled in Figs. 2 and 3 as
per their conformation and substitution pattern; structures without spacer are given
as “X-C” and “X-T”, denoting cis and trans, respectively. Structures with spacer
are denoted as “X-S-C” and “X-S-T,” denoting cis and trans as before and with “S”
indicating the acetylene spacer group.

The third set of molecules were selected based on insights from the first 2 sets.
These structures are given explicitly in Fig. 4. In structures 5 and 6, the donor and
acceptor moieties were chosen to increase absorption in the 400–700 nm range in
the protonated state. Structures 7 and 8 have the same donor-acceptor substitution
pattern as structures 5 and 6; however, acetylene spacer groups have been added
at each connecting point. This feature was included to reduce distortion of the π-
system due steric hindrance in the vicinity of the allylic bridge as well as extending
the π-system for an expected red-shift of the spectra.

Since deprotonation is commonly hypothesized electrochromic mechanism,20 both
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Fig. 2 Molecules in set 1

the protonated and deprotonated states of each molecule were considered. Deproto-
nation was assumed to occur at the methylene within the allylic bridge. In addition,
the effect of reprotonation or a 1-3-hydrogen shift process was assessed for each
substitution group combination where these structures are indicated in Figs. 2 and
3.
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Fig. 3 Molecules in set 2. Same as set 1 except including an acetylene bridge spacer.

3. Results
3.1 Energetics and Structure
The relative ground state energies for the first 2 molecule sets are presented in Table
1. For each set of isomers, the lowest energy is reported as 0.0 eV. The energetic
differences are very small, ranging only between 0.0 and 0.16 eV. The cis/trans
isomerization energy,

EC/T := Ecis − Etrans, (1)
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Fig. 4 Molecules in set 3

was computed to determine the thermodynamic stabilities. The isomerization ener-
gies for each cis/trans pair in molecule sets 1 and 2 are shown in Table 2. In all but
2 groups of isomers, the cis isomer was found to be more stable than the trans iso-
mer. This coincides with the C1-C2-C3-C4 dihedral angle being closer to the fully
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planar 180◦ than the trans isomers are to 0◦ . In the pairs 1-C/1-T and 3-C/3-T,
the 2 isomers differ below the chemical accuracy of approximately equal 0.03 eV.
In all cases, the isomerization energy is small. The addition of the acetylene spacer
group in set 2 causes a greater offset to the cis/trans isomerization energy compared
to structures in set 1. Table 3 indicates that the coplanarity of the phenyl-rings with
the allylic double bond increases for all compounds in the first 2 sets of molecules.
The effect is most dramatic for the dihedral angle between carbons labeled 9, 8,
4, and 3 in Fig. 1. Although the trans isomers in set 2 exhibit more planarity of
the π-system, the cis isomer is the more stable isomer. As in set 1, the C1-C2-C3-
C4 dihedral angle is closer to planarity; but compared to set 1, the planarity of the
C1-C2-C3-C4 dihedral angle increases more for the cis than the trans isomer. A
comparison of molecular orbitals (MOs) shows that there is constructive overlap
between the acetylene π-MOs perpendicular to the molecular plane and the phenyl
π-MOs on R1.

Table 1 Ground state energies in electronvolts of molecule sets 1 and 2 as well as deprotonation
energy ranges in electronvolts

Struc. E0/eV ∆ED/eV
1-C 0.02 14.75 – 14.89
1-T 0.00 14.78 – 14.91
2-C 0.07 14.71 – 14.85
2-T 0.11 14.66 – 14.80
3-C 0.00 15.10 – 15.20
3-T 0.02 15.09 – 15.18
4-C 0.01 15.09 – 15.19
4-T 0.07 15.04 – 15.13

1-S-C 0.00 14.90 – 14.96
1-S-T 0.08 14.82 – 14.88
2-S-C 0.08 14.82 – 14.88
2-S-T 0.16 14.74 – 14.80
3-S-C 0.00 15.22 – 15.28
3-S-T 0.09 15.13 – 15.19
4-S-C 0.04 15.18 – 15.24
4-S-T 0.13 15.09 – 15.15

The primary mechanism for color change in these molecules is assumed to be a
deprotonation of the allyl bridge. For the deprotonated states, 4 conformers with
R1 and R3 being either cis or trans on the allylic bridge with respect to R2 were
optimized. In general, the lowest energy structure was found to be that which had

8
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Table 2 Cis/trans isomerization energies for each cis/trans structural pair in the neutral state
of molecule sets 1 and 2

Structure Pair Number EC/T/meV
1 23.604
2 -47.126
3 -18.835
4 -56.404

1-S -75.539
2-S -80.180
3-S -90.175
4-S -90.677

Table 3 Selected dihedral angles for neutral structures 1 to 4. Labels correspond to the labeling
in Fig. 1.

Struc. 1-2-3-4 9-8-4-3 2-3-4-5 2-3-4-8 7-6-5-4 6-5-4-3
1-C −152.82 −122.90 −176.68 5.22 60.23 −115.97
1-T 37.31 −142.04 5.50 −177.12 25.86 −111.34
2-C −149.93 −115.29 −179.34 4.79 −63.12 113.79
2-T −54.41 141.49 −4.17 177.05 45.13 −99.85
3-C −159.39 −118.83 −177.13 4.97 68.61 −115.26
3-T 47.78 141.19 1.61 −179.80 132.35 124.36
4-C 152.55 123.87 177.02 −5.66 −72.28 113.99
4-T −47.55 −141.42 −1.73 −179.79 55.18 −123.00

1-S-C −166.31 −153.48 −179.41 3.13 −53.87 118.06
1-S-T 35.58 −170.15 3.69 −176.72 118.07 135.21
2-S-C 156.60 153.18 179.82 −2.02 64.78 −120.91
2-S-T −39.45 160.62 −2.97 179.04 68.93 −136.67
3-S-C −171.31 −155.90 −179.82 1.95 −48.90 118.37
3-S-T 39.41 −163.69 3.87 −176.88 117.34 132.41
4-S-C 162.80 160.89 179.61 −2.84 63.06 −118.63
4-S-T 34.12 179.28 3.20 −179.38 17.72 −103.43

the donor/acceptor pair in trans orientation and the opposing group in the cis orien-
tation. This configuration minimizes steric hindrance around the allyl moiety while
allowing full conjugation of the π-system to R2. The neutral trend of enhanced
coplanarity upon insertion of the acetylene spacer group does not apply as reliably
in the deprotonated states (Table 4), in part due to generally greater coplanarity in
the deprotonated species of compounds 1-C through 4-T. But as before the impact
of the spacer is greatest on the dihedral angle between carbons labeled 9, 8, 4, and
3 in Fig. 1.

9
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Table 4 Selected dihedral angles for the most stable deprotonated conformer/isomer

Struc. 1-2-3-4 9-8-4-3 2-3-4-5 2-3-4-8 7-6-5-4 6-5-4-3
1/2-X −153.94 −132.23 −173.33 14.12 9.08 20.59
3/4-X −23.11 130.57 −11.46 175.07 173.56 156.56
1/2-S-X 170.023 −179.08 164.44 −23.64 −19.55 −9.94
3/4-S-X −170.94 −177.83 −165.46 21.81 21.25 9.89

The deprotonation energy,

∆ED := Edeprot −−Eneutral, (2)

is used here as a proxy for estimating the relative ease and speed with which the
deprotonation will occur. The deprotonation energy in electronvolts is given as a
range for each cis/trans pair as shown in Table 1. Among each set of isomers, the
deprotonation energies were similar in their magnitude and, in the absence of a
biasing deprotonation mechanism, it is not possible to predict whether there will be
a main contributor to the final deprotonated state.

Molecules 1-C through 2-T and 1-S-C through 2-S-T have similar ∆ED between
14.66-14.96 eV. But, ∆ED for molecules 3-C through 4-C and 3-S-C through 4-S-
C was found to lie between 15.04 and 15.28 eV. This result is consistent with the
expectation that a larger number of electron donors in compounds 3 and 4 destabi-
lizes the anion leading to a higher deprotonation energy. Within the context of the
electrochromic molecules investigated experimentally in Zhang et al.52 and assum-
ing that the mechanism of deprotonation is similar, the deprotonation energies for
the present compounds are very similar to the reference molecule’s deprotonation
energy of 14.51 eV.

Adding the acetylene spacer between the allyl bridge and R2 shifts the deprotona-
tion energy range toward higher values, which is consistent with the expectation
that steric crowding around the allylic bridge decreases with the spacer. The steric
crowding indeed is found to decrease with the spacer as evidenced by the dihedral
angles in Table 4 associated with the coplanarity of the π-system.
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3.2 Spectral Properties
To determine the color-change efficiency of the candidate chromophore molecules,
the UV/Vis spectra were computed for all species. The excitation wavelengths λmax
associated with the respective maximal oscillator strength for both neutral and de-
protonated molecules are given in Table 5. The difference between λmax of corre-
sponding states was also evaluated to determine spectral shift and is given in Table
5. λmax is defined as the peak that has the largest oscillator strength and thus the
largest intensity. The first excitation wavelength λ0 does not always coincide with
λmax. Table 6 explicitly lists oscillator strengths even when these are below 0.1; but
for purposes of comparing λ0 and λmax, such excitations are not considered signif-
icant in the following. Furthermore, isomers deprotonate to the same species. For
example, molecules 1-C and 1-T (R1 = N(CH3)2, R3 = NO2, R4 = NO2) depro-
tonate to the same set of isomers as 2-C and 2-T (R1 = NO2, R3 = NO2, R4 =
N(CH3)2). For molecules in sets 1 and 2, they were found to undergo a transparent
(or colorless) to colored transition upon deprotonation. Spectral data of the depro-
tonated species are only provided here for the lowest energy isomer, as the spectra
do not vary much.

Table 5 Excitation wavelength, λmax, and maximum oscillator strengths, f , for neutral and
deprotonated compounds 1-C – 4-S-C, as well as the induced shift upon deprotonation. Super-
scripts N and D denote the neutral and deprotonated values, respectively.

Struc. λN
max fN λD

max fD ∆λmax

1-C 269 0.52 481 1.02 211
1-T 341 0.80 " " 139
2-C 295 0.28 " " 182
2-T 293 0.73 " " 184
3-C 255 0.43 502 1.04 246
3-T 285 1.02 " " 216
4-C 341 0.32 " " 162
4-T 333 0.60 " " 169

1-S-C 378 0.61 509 0.93 130
1-S-T 358 1.32 " " 151
2-S-C 336 0.77 " " 173
2-S-T 333 1.38 " " 176
3-S-C 331 0.55 528 0.97 197
3-S-T 321 1.51 " " 207
4-S-C 370 0.64 " " 158
4-S-T 362 1.25 " " 166

11
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Table 6 Leading excitation wavelength λ0 and oscillator strengths f for neutral and deproto-
nated compounds 1-C – 4-S-C. Superscripts N and D denote the neutral and deprotonated
values, respectively.

Struc. λN
0 fN λD

0 fD

1-C 351 0.20 819 0.06
1-T 341 0.80 " "
2-C 318 0.12 " "
2-T 295 0.21 " "
3-C 286 0.30 502 1.04
3-T 333 0.03a " "
4-C 341 0.32 " "
4-T 333 0.60 " "

1-S-C 378 0.61 927 0.07
1-S-T 358 1.32 " "
2-S-C 355 0.07a " "
2-S-T 357 0.03a " "
3-S-C 350 0.39 528 0.97
3-S-T 352 0.18 " "
4-S-C 370 0.64 " "
4-S-T 362 1.25 " "

a not considered significant for pur-
poses of determining λ0

In the first set of molecules, the maximum oscillator strengths are always greater for
the neutral trans configurations with respect to their cis counterparts and λmax = λ0

for all neutral compounds in the trans configuration except 3-T, but λ0 for the cis
configurations is always greater, albeit not always by much (Table 7). The push-pull
compounds 1 and 4 exhibit markedly higher λ0 ranging between 333 and 351 nm
than 2 and 3 (285–318 nm), as might be expected despite the poor coplanarity of
the bridging π-system. Yet, all spectra remain well outside of the visible range.
Simulated spectra of neutral structures 3-C and 3-T are shown in Fig. 5. Notably,
spectra of the neutral states for both cis and trans geometries are very similar.

Upon deprotonation, λmax increases by 139 to 246 nm into the visible regime, rang-
ing between 481 and 502 nm. For compounds 1 and 2 with an electron acceptor at
R2, λ0 increases even more considerably into the IR spectrum, but the associated
oscillator strengths are very low. Figure 5 includes a simulated spectrum of deproto-
nated structure 3. Compared to the neutral structures, there is a significant red-shift
of the entire spectrum.

12
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Table 7 Effect of cis/trans isomerism on λmax and λ0 for neutral structures. Spectral shift is
given in nanometers. Equals sign (=) indicates that λmax is equivalent to λ0.

Struc. ∆λmax ∆λ0
1 −71 10.18
2 2 23.2
3a < 1 < 1
4 8 =

1-S 20 =
2-Sa 3 =
3-S 10 2
4-S 8 =

aoscillator strength of λ0
deemed insignificant.
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3-C-Neutral 3-T-Neutral 3-Deprotonated

Fig. 5 Spectra for structure 3, both neutral and deprotonated. Structure intensity has been
shifted by a chosen ∆ for clarity. For the deprotonated spectra (black) ∆ = 0, for the neutral
trans spectra ∆ = 2, and for the neutral cis structure ∆ = 4.

Set 2 follows the same trends as set 1 except that λ0 = λmax in all neutral cases
but 3-S. Since λ0 of all neutral species in set 2 are shifted to the red by 17–64 nm,
λmax of the neutral cis species is significantly red-shifted (Table 8). As an example,
spectra for structures 1-C and 1-S-C are overlaid in Fig. 6. Despite the red-shifts
introduced by the acetylene spacer, none of these compounds is predicted to absorb
in the visible range, although 1-S-C with 378 nm comes close. In all cases, the
oscillator strengths increased for λmax. λmax of the deprotonated compounds also
exhibited a red-shift compared to set 1 by 20–28 nm without leaving the visible
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Table 8 Change in λ0 and λmax as a function of acetylene spacer connecting R2 to the allyl
bridge. (C) denotes cis conformation and (T) denotes trans conformation. ∆λ = λspacer −
−λnon−spacer. Equals sign (=) indicates that ∆λmax and ∆λ0 are equivalent. Deprotonated
spectral data compared for lowest energy conformer. SuperscriptsN andD denote the neutral
and deprotonated values, respectively.

Struc. ∆λNmax ∆λN0 ∆λDmax ∆λD0
1 (C) 109 27 27 107
1 (T) 17 = () ()
2 (C) 40 18a () ()
2 (T) 40 38a 30 98
3 (C) 76 64 27 =
3 (T) 35 67a () ()
4 (C) 30 = () ()
4 (T) 29 = 28 =

aoscillator strength of λ0 deemed insignifi-
cant.
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Fig. 6 Spectral overlay of structure 1-C and 1-S-C showcasing the effect of the spacer group

range. Figure 7 shows a comparison of representative spectra of sets 1 and 2.
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Fig. 7 Spectra for the top 4 performing candidate structures in both non-spacer and spacer
groups. Neutral and deprotonated states are given. Spectra are shifted for ease of viewing. The
top performing neutral structures are structure 1-T (∆ = 0,λmax = 341 nm, fN = 0.8) and
1-S-C (∆ = 2, λmax = 378 nm, fN = 0.6113). The top performing deprotonated structures are
structure 3 (∆ = 4, λmax = 502 nm, fD = 1.04) and structure 4-S (∆ = 6, λmax = 529 nm, fD
= 0.98).

3.3 Molecular Orbital Analysis
The highest occupied molecular orbital (HOMO)→lowest unoccupied molecular
orbital (LUMO) transition is the predominant contribution to λ0 for all structures
in sets 1 and 2 with the exception of compound 4-C. For neutral compounds, the
HOMOs concentrate on the donor moieties, while the LUMOs are concentrated
around the acceptor moieties, so that this HOMO→LUMO transition indicates a
charge transfer process across the donor/acceptor system.

The lack of coplanarity in the extended π-system between R1 and R2 for molecules
of set 1 manifests itself clearly in the orientations of the phenyl rings adjacent to
R1 and R2, which are close to perpendicular and whose associated π-MOs are con-
torted. Figs. 8 and 9 show the typical quality of such HOMOs and LUMOs. Since
λmax differs from λ0 for neutral 3-T and the neutral cis isomers of set 1 except for 4-
C, but is the same for the other structures, no uniform trend was discovered for λmax.
Compounds 1-C and 2-C possess 2 possibilities for a donor-to-acceptor charge
transfer excitation. One of these transitions corresponds to the HOMO→LUMO
transition, whereas λmax corresponds to another. Structure 3-C has only one accep-
tor, which is separated from the larger π-system by the methylene moiety. Instead
of a charge-transfer excitation, λmax is dominated by a π → π∗ transition (HOMO-
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5→LUMO) internal to the phenyl moiety attached to R3. In contrast, the HOMO
is a π-orbital spanning R1, the allyl bridge, and R2. MOs for 3-C are given in Fig.
9. Although the HOMO→LUMO transition does not dominate λ0 = λmax for com-
pound 4-C, the dominating HOMO-1→LUMO transition of λ0 indicates a strong
charge-transfer excitation with considerable contribution from the donor at R2 (as
shown in Fig. 10).

(a) (b)

Fig. 8 HOMO (a) and LUMO (b) for 4-T molecule. In this case λmax = λ0.

(a) (b) (c)

Fig. 9 HOMO-5 (a), HOMO (b), and LUMO (c) for 3-C molecule. λmax is dominated by a
HOMO-5→LUMO transition, whereas λ0 is dominated by HOMO→LUMO.

In deprotonated structures with the acceptor group in site R2 (compounds 1 and 2),
there are 2 distinct MO transitions that contribute predominantly to λmax and λ0.
The λ0 peak is dominated by the HOMO→LUMO transition. The HOMO in these
cases has significant allyl anion character, while the LUMO does not, which leads
to a charge transfer excitation along the π-system from donor and allyl bridge to the
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(a) (b) (c)

Fig. 10 Molecular orbitals for molecule 4-C, neutral. HOMO is given in (a), LUMO in (b), and
HOMO-1 in (c).

acceptor at R2. The λmax peak is dominated by the HOMO→LUMO+1 transition,
which does not include significant contributions from the donor at R2. Contrary
to the HOMO→LUMO transition, the HOMO→LUMO+1 indicates that λmax is a
result of a π → π∗ excitation internal to the allyl bridge. Visualization of the MOs
are given in Figs. 11 and 12.

(a) (b) (c)

Fig. 11 HOMO (a), LUMO (b), and LUMO+1 (c) MO diagrams for the lowest energy isomer
of deprotonated structures 1 and 2. A HOMO→LUMO transition dominates λ0 and λmax has
the strongest contribution from a HOMO→LUMO+1 transition.

In contrast, compounds 3 and 4 feature a donor group at R2 instead of an accep-
tor. Here, too, λmax = λ0 is predominantly a HOMO→LUMO transition, but the
character is comparable to the HOMO→LUMO+1 λmax transition seen in 1 and 2.

The main difference between molecules in set 1 and their counterparts in set 2 can
be found in the increased coplanarity of π-system adjoining R1 and R2. This is
particularly reflected in the push-pull systems 1-S and 4-S. Their HOMOs show in-
creased contributions from R2 and diminished contributions from R3. The LUMOs
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(a) (b)

Fig. 12 HOMO (a) and LUMO (b) MO diagrams for lowest-energy structure of deprotonated
3 and 4. λmax = λ0 is dominated by a HOMO→LUMO transition.

of 1-S also show diminished contributions of the second electron-withdrawing nitro-
group at R3. Molecules 4-S lack a secondary electron-acceptor and don’t show any
significant qualitative difference in their LUMOs compared to their counterparts in
set 1. Molecules 2-S and 3-S only show increased planarity of their HOMOs and
LUMOs, but no qualitative difference of contributions from the various compo-
nents.

3.4 Dipole Moments and Polarizabilities
The polarizability plays both a role in transparency as well as any propensity for
solvatochromic shifts.20 Furthermore, the extent of dipole moments dictates the ori-
entability of the electrochromophore in a medium. Table 9 shows the polarizability
(α) and dipole moment (‖µ|‖) of sets 1 and 2 at the optimized geometries, including
both neutral and deprotonated molecular forms. The table also includes hyperpolar-
izabilities in the dipole direction (βµ) for the neutral states. Compounds 1 and 4
are an inversion of each other with respect to the donor/acceptor patterns, as are 2
and 3. In general, the dipole moment decreases for each correspondence with the
number of electron donors. The opposite is true of the polarizabilities (e.g., 1-T has
a lower polarizability than 4-T).

Going from cis to trans increases the dipole moment for the push-pull isomers 1 and
4, while the converse is true of 2 and 3. The hyperpolarizability follows this same
trend. But, the polarizability is always greater for the trans isomer.
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Table 9 Polarizability α and dipole moment ‖µ‖ for neutral and deprotonated states of com-
pounds 1-C – 4-S-T and 5 – 8, as well as hyperpolarizabilities βµ in the dipole direction for
neutral states. Deprotonated values are given for lowest energy conformer. Superscripts N and
D denote neutral and deprotonated compounds, respectively.

Struc. ‖µN‖/D αN/a.u. βN
µ /10−30cm5esu−1 ‖µD‖/D αD/a.u.

1-C 9.59 322.60 5.78 15.70 460.57
1-T 11.16 340.97 13.24 () ()
2-C 9.91 322.01 4.88 () ()
2-T 3.96 326.36 2.48 () ()
3-C 7.66 340.90 4.34 15.22 472.11
3-T 6.24 348.65 2.02 () ()
4-C 8.53 341.97 6.53 () ()
4-T 9.82 349.91 11.32 () ()

1-S-C 10.63 378.76 13.24 15.78 541.29
1-S-T 13.54 395.48 23.64 () ()
2-S-C 8.63 367.93 7.07 () ()
2-S-T 3.29 381.23 2.68 () ()
3-S-C 7.91 397.36 6.30 14.83 533.47
3-S-T 6.29 408.42 1.76 () ()
4-S-C 8.91 397.04 13.21 () ()
4-S-T 10.56 416.86 25.07 () ()

5 12.877 612.800 39.920 1.152 1544.180
6 19.812 665.740 96.286 12.928 1619.990
7 10.404 714.900 45.441 5.913 1388.140
8 19.735 767.790 122.151 12.426 1375.810

The overall largest dipole moment in set 1 was then found for structure 1-T at
11.16 D, conversely, the smallest dipole moment was 3.96 D for structure 2-T. The
largest and smallest hyperpolarizability were 13.24 and 2.02x10−30cm5esu−1 for
compounds 1-T and 4-C, respectively. In general, hyperpolarizabilities were very
small, as might be expected given the non-planarity of the π-system between donors
and acceptors.

Introducing the acetylene bridge at R2 for set 2 leaves the trends found in set
1 intact. The dipole moment increases for all compounds except 2-S, and only
marginally for the 3-S, which just as 2-S does not have push-pull character. The
polarizabilities increase in all cases by more than 40 a.u. as may be expected consid-
ering the increased coplanarity of the π-system. Similarly, the hyperpolarizability
also increases for all molecules except 3-S-T, but the increases are modest.

In the deprotonated states, the dipole moments are considerably increased, as are
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the polarizabilities.

3.5 Set 3
Although sets 1 and 2 showed potential for an electrochromic transition from clear
to a colored state, the range is limited to small deviations around 500 nm for the
deprotonated state. We hypothesized that introducing a stronger electron acceptor
would produce a red-shift for both states. Since the isomerization energies for sets
1 and 2 are so low, only the trans isomer was considered. Hence, NO2 was replaced
by the tricyanofurane (TCF) acceptor while one donor was replaced by pyrrolidine
and the other by hydrogen, to give molecules 5 and 6 in Fig. 4.

Furthermore, the introduction of the acetylene bridge in set 2 precipitated a signifi-
cant red-shift in the spectra of both the neutral and deprotonated states. Taking this
into account, we hypothesized that adding additional spacer groups to the frame-
work will increase the planarity of the π-system and modify the neutral spectra in
a manner that brings the λmax peak beyond 400 nm. This second modification leads
to molecules 7 and 8.

As Table 10 shows, substitution with TCF alone has no significant impact on the
coplanarity of the π-system compared to the trans isomers in set 2, as indicated
by the high dihedral angle between C1-C2-C3-C4. The added acetylene bridges
in 7 and 8 show the expected effect of flattening out the molecule to considerable
coplanarity of the π-system. The deprotonated structures of 5 and 6 flatten also, but
no further flattening of the π-system between R1 and R2 is observed (Table 11).

Table 10 Selected dihedral angles for neutral structures 5 to 8. Labels correspond to the label-
ing in Fig. 1

Struc. 1-2-3-4 9-8-4-3 2-3-4-5 2-3-4-8 7-6-5-4 6-5-4-3
5 39.08 −160.29 2.92 −179.13 107.62 138.10
6 −33.79 169.91 −3.71 177.32 64.84 −137.90
7 0.93 −167.51 −0.95 178.30 88.76 160.81
8 4.64 177.63 1.42 −179.35 49.00 −118.87

Energetically (Table 12), the increased coplanarity coincides with a considerable
stabilization (1.74 eV) of the push-pull molecule 8 over 7, whereas isomers 5 and
6 follow the trend of sets 1 and 2, where isomers have comparable energies. Con-
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Table 11 Selected dihedral angles for the most stable deprotonated conformer/isomer.

Struc. 1-2-3-4 9-8-4-3 2-3-4-5 2-3-4-8 7-6-5-4 6-5-4-3
5 −104.33 −154.70 7.51 −177.23 −168.65 −170.72
6 −14.19 156.29 −8.13 168.39 0.24 −50.16
7 6.39 174.67 15.26 −165.41 5.85 13.50
8 2.90 −179.51 0.34 −179.56 −179.76 179.78

sequently, the deprotonation energies are virtually identical for 5 and 6. On the
other hand, 7 enjoys a much lower deprotonation energy (13.14 eV) than 8 or any
other molecules investigated in this work. Despite the stronger electron acceptor,
the deprotonation energies for 5 and 6 counterintuitively exceed the deprotonation
energies observed in sets 1 and 2.

Table 12 Computed ground state energy for neutral and deprotonated states given in Hartrees.
Deprotonation energy is computed following the expression given in Eq. 2 and given in elec-
tronvolts.

Struc. EN/eV ∆ED/eV
5 0.0 15.48
6 0.5 15.53
7 1.74 13.14
8 0.0 14.88

As Table 13 shows, there is a marked difference between λmax found in sets 1 and
2 and those found in set 3. All molecules in set 3 in the neutral state exhibit λmax
between 411-451 nm, with an oscillator strength of 1.8 and greater. Except for 5,
this was also the leading nonnegligible excitation. Both peak location and intensity
are significantly increased compared to structures in sets 1 and 2, despite replacing
one donor group by hydrogen. Structure 8 has the highest λmax at 451 nm closely
followed by 6 (446 nm). Both are conjugated push-pull compounds, which are ex-
pected to have high absorption wavelengths and intensities.

In general, the deprotonated absorbance peaks are well separated from the neutral
state. Deprotonation was assumed not to change bonding from trans to cis. In each
case, a significant red shift was observed from neutral to deprotonated state, reach-
ing a shift of 194 nm at the highest point. The spectra for set 3 can be found in Fig.
13. For each molecule, the overlap between the neutral state absorption spectrum
and deprotonated state absorption spectrum is small. The addition of further acety-
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Table 13 λmax in nanometers as computed for neutral and deprotonated molecules of set 3, os-
cillator strengths (f) are given for each state. Deprotonation is assumed not to change bonding
from trans to cis. Shift between neutral and deprotonated states is given in nanometers. "="
indicates λmax = λ0. Superscript N and D denote neutral and deprotonated species, respec-
tively.

Struc. λN
max fN λN

0 fN

5 411 1.80 429 0.18
6 446 2.06 = =
7 433 2.10 493 0.00a

8 451 2.46 = =
Struc. λD

max fD λD
0 fD ∆λmax

5 587 0.97 9528 0.02a 175
6 586 1.16 8510 0.02a 173
7 602 1.10 8424 0.00a 194
8 595 1.44 7610 0.01a 143

adeemed insignificant

lene bridges produces a modest red-shift, but a respectable increase in oscillator
strength.

Polarizabilities, hyperpolarizabilities, and dipole moments for set 3 can be found
in Table 9. Compared to 1-S-T and 4-S-T, dipole moments (≈ 20 D) and polar-
izabilities (600–800 a.u.) of 6 and 8 are larger by almost a factor of 2. Although
polarizabilities for 5 and 7 remain high, their respective dipole moments remain
low (≈ 10 D). The dipole moments are insensitive to the acetylene bridges, but the
polarizabilities experience another boost of roughly 100 a.u. upon addition of the
acetylene bridges. Similar to the linear polarizabilities, the hyperpolarizabilities are
higher, especially in the case of structures 6 and 8.

In the deprotonated states, the polarizabilities are even larger by almost a factor of 2,
but dipole moments diminish. The polarizabilities of the deprotonated species also
show an inverted sensitivity to addition of the acetylene bridges; 8 and 7 exhibit
lower polarizabilities than either 6 and 5.

As in sets 1 and 2, the MOs and their contributions to λmax were evaluated. As a
characteristic example for set 3, MOs for structure 8 are shown in Fig. 14. Only the
contribution from the HOMO and HOMO-1 orbitals are pictured as the LUMO for
both neutral and deprotonated states are nearly identical in nature.
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Fig. 13 Computed spectra for chromophores 5 (a), 6 (c), 7 (b), and 8 (d). Both neutral and
deprotonated states are shown. Deprotonation is assumed not to change bonding from trans
to cis.

The major contribution to the strong λmax transition in 8 is the result of a direct
HOMO→LUMO transition. This transition shows charge-transfer character with
the HOMO occupying mostly the donor and the LUMO residing predominantly on
the acceptor.

Similar to what has been shown in sets 1 and 2, the deprotonated states possess 2
important transitions: HOMO→LUMO and HOMO-1→LUMO. Both HOMO and
HOMO-1 are spread out predominantly over the π-system between the R1 and R3

sites. While the HOMO-1 is concentrated on the donor, the HOMO is dominated
by the allylic bridge. Thus, charge transfer takes place when transitioning to the
LUMO in either case. But as Table 13 indicates, the HOMO→LUMO transition
shows a negligible oscillator strength, whereas the HOMO-1→LUMO transition
leads to the maximal oscillator strength.
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(a) (b)

(c) (d)

Fig. 14 MOs for structure 8. (a) HOMO-neutral, (b) LUMO-neutral, (c) HOMO deprotonated,
and (d) HOMO-1 deprotonated. The LUMO for the deprotonated structure has very similar
character in both neutral and deprotonated states.

4. Conclusions
Despite major contortions of the π-system, set 1 remains a viable class for elec-
trochromic interactions showing a transparent-to-colored transition. The contor-
tions may be attributed to the steric interference adjacent to the allyl bridge. This
same interference leads to a preference for the cis configurations, which avoids
steric clashes between theR1 andR3 branches on the allyl bridge. Adding the acety-
lene bridge to produce set 2 reduces the steric hindrance only between R1 and R2,
but not between R1 and R3, which increases the stability of the cis isomer over
the trans isomer even more. Surprisingly, the push-pull isomers in the trans con-
figuration on the allylic double bond are not energetically the most favored. This
can be rationalized by reduced steric hindrance in set 1, but for set 2 the observed
constructive overlap in MOs between the acetylene π-bonds and the phenyl ring
attached to R3 may contribute as well. Set 3 further supports this explanation as the
R3 branch also shows a preferred proximity to the acetylene bridge attached to R2.
The importance of steric hindrance in sets 1 and 2 is highlighted particularly by 7
and 8, for which the trans-configured push-pull compound 8 is far more stable than
the other isomers.

Relieving the steric hindrance by going to set 2 provides an avenue for positioning
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the color of the deprotonated state at the cost of increasing the deprotonation energy,
since the acetylene bridge relieves more steric hindrance for the neutral than the
deprotonated species. But, the deprotonation energies still remain in the vicinity of
deprotonation energies associated with keto-enol species. Going to set 3 lowers the
deprotonation energy again for 7 and 8 as well as providing a system for a colored-
to-colored transition.

The polarizabilities of all sets were large on the whole and indicate another vari-
able for finetuning the electrochromic response through inclusion in polar media.
Although dipoles were considerable, hyperpolarizabilities were relatively small ex-
cept for 7. With the right modifications, these may be amplified.

The lack of importance of the donor on the spectrum of the deprotonated species
can be explained by the fact that the allyl anion takes on the role of the electron
donor as indicated by MOs in the deprotonated states. This implies that the neutral
spectrum can be effectively designed by the choice of donor independently because
the allyl anion effectively supersedes the donor in the deprotonated state.

In conclusion, we have explored several novel chromophore molecules that show
promising characteristics for performance as electrochromic optically adaptable
materials. The framework provides many opportunities for further tuning and op-
timizing62 of spectra as well as deprotonation energies and even other applications
such as nonlinear optics.
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DFT density functional theory

ECM electrochromic material

HOMO highest occupied molecular orbital

LUMO lowest unoccupied molecular orbital

MO molecular orbital

OAM optically adaptive material

TCF tricyanofurane
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