
 

 

 
 
 

  ARL‐TR‐8145 ● SEP 2017 
 
 
 

  US Army Research Laboratory 

 
 
Incorporating Variational Local Analysis and 
Prediction System (vLAPS) Analyses with 
Nudging Data Assimilation: Methodology and 
Initial Results 
 
by Brian P Reen, Yuanfu Xie, Huaqing Cai, Steve Albers,  
Robert E Dumais Jr, and Hongli Jiang 

 
 
 
 
 
 

 
Approved for public release; distribution is unlimited. 



 

 

NOTICES 
 

Disclaimers 
 

The findings in this report are not to be construed as an official Department of the 
Army position unless so designated by other authorized documents. 
 
Citation of manufacturer’s or trade names does not constitute an official 
endorsement or approval of the use thereof. 
 
Destroy this report when it is no longer needed. Do not return it to the originator. 



 

 

 
 
 

  ARL‐TR‐8145 ● SEP 2017 

 
  US Army Research Laboratory 

 
 
Incorporating Variational Local Analysis and 
Prediction System (vLAPS) Analyses with 
Nudging Data Assimilation: Methodology and 
Initial Results 
 
by Brian P Reen, Huaqing Cai, and Robert E Dumais Jr 
Computational and Information Sciences Directorate, ARL 
 

Yuanfu Xie 
National Oceanic and Atmospheric Administration, Boulder, CO 
 

Steve Albers and Hongli Jiang 
National Oceanic and Atmospheric Administration, Boulder, CO 
Cooperative Institute for Research in the Atmosphere, Colorado State 
University, Boulder, CO 
 

 
Approved for public release; distribution is unlimited. 



 

ii 

REPORT DOCUMENTATION PAGE 
Form Approved 

OMB No. 0704-0188 
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the 
data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the 
burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. 
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently 
valid OMB control number. 
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 

1. REPORT DATE (DD‐MM‐YYYY) 

September 2017  

2. REPORT TYPE 

Technical Report 

3. DATES COVERED (From ‐ To) 

July 2014–February 2017 
4. TITLE AND SUBTITLE 

Incorporating Variational Local Analysis and Prediction System (vLAPS) 
Analyses with Nudging Data Assimilation: Methodology and Initial Results 

5a. CONTRACT NUMBER 

 
5b. GRANT NUMBER 

 

5c. PROGRAM ELEMENT NUMBER

 
6. AUTHOR(S) 

Brian P Reen, Yuanfu Xie, Huaqing Cai, Steve Albers, Robert E Dumais Jr, and 
Hongli Jiang 

5d. PROJECT NUMBER 

 

5e. TASK NUMBER 

 
5f. WORK UNIT NUMBER 

 
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

US Army Research Laboratory 
Computational and Information Sciences Directorate (ATTN: RDRL-CIE-M) 
2800 Powder Mill Road, Adelphi, MD 20783-1138 

8. PERFORMING ORGANIZATION REPORT NUMBER

 
ARL-TR-8145 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

 

10. SPONSOR/MONITOR'S ACRONYM(S)

 
11. SPONSOR/MONITOR'S REPORT NUMBER(S)

 
12. DISTRIBUTION/AVAILABILITY STATEMENT 

Approved for public release; distribution is unlimited. 

13. SUPPLEMENTARY NOTES 

 

14. ABSTRACT 

The potential value of combining 2 data assimilation methodologies to improve mesoscale meteorological model predictions 
is investigated using a case day with strong convection. The variational version of the Local Analysis and Prediction System 
(vLAPS) and both analysis and observation nudging data assimilation are applied both separately and together. The 
combination of methods is designed to combine the benefits of the gradual and persistent application of the effects of 
observations during a pre-forecast gained from nudging with the ability to assimilate a wide variety of observation types 
gained from vLAPS. Multiple cycles of 1-km horizontal grid spacing forecasts of the Advanced Research version of the 
Weather Research and Forecasting model were completed for 20 May 2013 over the southern Great Plains. The results 
suggest potential value in this combination data assimilation system, but further analysis of this case is required as well as 
application of the technique to additional case days. 

15. SUBJECT TERMS 

WRF, Weather Research and Forecasting, mesoscale modeling, data assimilation, nudging, variational 

16. SECURITY CLASSIFICATION OF: 
17. LIMITATION
       OF  
       ABSTRACT 

UU 

18. NUMBER
       OF  
       PAGES 

76 

19a. NAME OF RESPONSIBLE PERSON

Brian P Reen 
a. REPORT 

Unclassified 

b. ABSTRACT 

Unclassified 
c. THIS PAGE 

Unclassified

19b. TELEPHONE NUMBER (Include area code)

301-394-3072 
 Standard Form 298 (Rev. 8/98) 

 Prescribed by ANSI Std. Z39.18 



 

Approved for public release; distribution is unlimited.   

iii 

Contents 

List of Figures  v 

List of Tables  vii 

Acknowledgments  viii 

1.  Introduction  1 

2.  Model Description and Configuration  5 

2.1  WRF‐ARW  5 

2.2  Nudging Data Assimilation  7 

2.3  vLAPS Data Assimilation  11 

3.  Case Description  13 

4.  Methodology  24 

4.1  Observations for Use in Observation Nudging  24 

4.2  Obsgrid Analyses  24 

4.3  vLAPS Analyses  25 

4.4  Creating WRF Input Files  25 

5.  Experimental Design  29 

6.  Preliminary Results  32 

6.1  Experiment Comparison at Time of Newcastle‒Moore Tornado  32 

6.1.1  Comparison of Hybrid to Component Techniques  33 

6.1.2  Comparison between Varieties of Component Techniques  36 

6.1.3  Comparison of Different Cycles  40 

6.2  Ability of Hybrid to Simulate Strong Moist Convection  49 

7.  Summary, Discussion, and Conclusions  54 



 

Approved for public release; distribution is unlimited.   

iv 

8.  References  57 

List of Symbols, Abbreviations, and Acronyms  63 

Distribution List  64



 

Approved for public release; distribution is unlimited.   

v 

List of Figures 

Fig. 1  Area covered by the WRF 1-km domain .............................................. 6 

Fig. 2  Winds, heights, and temperature at 500 hPa on 20 May 2013 at 12 
UTC from the National Center for Environmental Prediction daily 
weather maps (http://www.wpc.ncep.noaa.gov/dailywxmap). Barbs are 
used to show wind (knots), solid lines show isoheights (dekameters 
above sea level), and dashed lines show isotherms (°C). ................... 14 

Fig. 3  Surface analyses of the continental United States from the Weather 
Prediction Center (http://www.wpc.ncep.noaa.gov/html/sfc2.shtml) for 
1200 UTC 20 May 2013 ..................................................................... 15 

Fig. 4  Surface analyses (a,c,e,g,i) of the southern Great Plains from the 
Weather Prediction Center 
(http://www.wpc.ncep.noaa.gov/html/sfc2.shtml) and composite base 
reflectivity (b,d,f,h,j) from Iowa Environmental Mesonet 
(http://mesonet.agron.iastate.edu/ GIS/apps/rview/warnings.phtml) for 
(a,b) 1200 UTC 20 May 2013, (c,d) 1500 UTC 20 May 2013, (e,f) 
1800 UTC 20 May 2013, (g,h) 2100 UTC 20 May 2013, and (i,j) 0000 
UTC 21 May 2013 .............................................................................. 16 

Fig. 5  Skew-T’s of radiosondes from Norman, Oklahoma, for a) 12 UTC 20 
May 2013, b) 18 UTC 20 May 2013, and c) 00 UTC 21 May 2013 
(obtained from http://weather.uwyo.edu /upperair/sounding.html). A 
full wind barb represents 10 kts and a half wind barb represents 5 kts.
............................................................................................................. 21 

Fig. 6  Flowchart illustrating creation of the WRF input files for this study. 
Colored portions of the chart indicate steps required to create WRF 
initial conditions and boundary conditions of a certain type (HRRR in 
orange, vLAPS in red, and Obsgrid in blue). The components are 
labeled with letters to facilitate discussion in the text. ....................... 26 

Fig. 7  Schematic showing experimental design. t0 indicates the end of the 
pre-forecast and the beginning of the forecast, and X will vary among 
model cycles, but all model cycles end at 00 UTC. ............................ 30 

Fig. 8  Composite base reflectivity at 2015 UTC. The black X inside the white 
square (near the end of the white arrow) indicates the location of the 
Newcastle–Moore tornado at 2015 UTC. Radar reflectivity obtained 
from Iowa Environmental Mesonet 
(http://mesonet.agron.iastate.edu/GIS/apps/rview/warnings.phtml) and 
cropped to the approximate extent of the WRF-ARW model domain.
............................................................................................................. 33 

Fig. 9  WRF-ARW lowest model level radar reflectivity at 2015 UTC on 20 
May 2013 for a) HRRR318, b) VLAPS018, c) OBSGRID3O18, and d) 
VLAPS3AO18. The location of the Newcastle–Moore tornado at 2015 
UTC is indicated by the black “X” within the white square (in the 
same location as marked by the arrow in Fig. 8). ............................... 34 



 

Approved for public release; distribution is unlimited.   

vi 

Fig. 10  WRF-ARW lowest model level radar reflectivity at 2015 UTC on 20 
May 2013 for a) HRRR318, b) HRRR018, and c) observed base 
reflectivity composite. The location of the Newcastle–Moore tornado 
at 2015 UTC is indicated by the black “X” within the white square. . 37 

Fig. 11  WRF-ARW lowest model level radar reflectivity at 2015 UTC on 20 
May 2013 for a) VLAPS018, b) VLAPS118, c) VLAPS318, and d) 
observed base reflectivity composite. The location of the Newcastle–
Moore tornado at 2015 UTC is indicated by the black “X” within the 
white square. ....................................................................................... 38 

Fig. 12  WRF-ARW lowest model level radar reflectivity at 2015 UTC on 20 
May 2013 for a) VLAPS3AO18, b) VLAPS3A18, c) VLAPS3O18, and 
d) observed base reflectivity composite. The location of the 
Newcastle–Moore tornado at 2015 UTC is indicated by the black “X” 
within the white square. ...................................................................... 40 

Fig. 13  WRF-ARW lowest model level radar reflectivity at 2015 UTC on 20 
May 2013 for a) HRRR318, b) HRRR319, c) HRRR320, and d) observed 
base reflectivity composite. The location of the Newcastle–Moore 
tornado at 2015 UTC is indicated by the black “X” within the white 
square. ................................................................................................. 42 

Fig. 14  WRF-ARW lowest model level radar reflectivity at 2015 UTC on 20 
May 2013 for a) VLAPS318, b) VLAPS319, c) VLAPS320, and d) 
observed base reflectivity composite. The location of the Newcastle–
Moore tornado at 2015 UTC is indicated by the black “X” within the 
white square. ....................................................................................... 43 

Fig. 15  WRF-ARW lowest model level radar reflectivity at 2015 UTC on 20 
May 2013 for a) VLAPS018, b) VLAPS019, c) VLAPS020, and d) 
observed base reflectivity composite. The location of the Newcastle–
Moore tornado at 2015 UTC is indicated by the black “X” within the 
white square. ....................................................................................... 45 

Fig. 16  WRF-ARW lowest model level radar reflectivity at 2015 UTC on 20 
May 2013 for a) OBSGRID3O18, b) OBSGRID3O19, c) 
OBSGRID3O20, and d) observed base reflectivity composite. The 
location of the Newcastle–Moore tornado at 2015 UTC is indicated by 
the black “X” within the white square. ............................................... 47 

Fig. 17  WRF-ARW lowest model level radar reflectivity at 2015 UTC on 20 
May 2013 for a) VLAPS3AO18, b) VLAPS3AO19, c) VLAPS3AO20, 
and d) observed base reflectivity composite. The location of the 
Newcastle–Moore tornado at 2015 UTC is indicated by the black “X” 
within the white square. ...................................................................... 48 

Fig. 18  WRF-ARW lowest model level radar reflectivity at 2015 UTC on 20 
May 2013 for VLAPS3AO18. The location of the Newcastle–Moore 
tornado at 2015 UTC is indicated by the black “X” within the small 
white square. The large white square indicates the area shown in Fig. 
19, and the white horizontal line indicates the location of the cross 
section shown in  Fig. 20. Each half barb is 2.5 ms-1 and each full barb 
is 5.0 ms–1............................................................................................ 50 



 

Approved for public release; distribution is unlimited.   

vii 

Fig. 19  WRF-ARW lowest model level radar reflectivity at 2015 UTC on 20 
May 2013 for VLAPS3AO18 zoomed into the area denoted by the 
white box in Fig. 18. Each half barb is  2.5 ms–1 and each full barb is 
5.0 ms–1. .............................................................................................. 51 

Fig. 20  Cross section of VLAPS3AO18 along the white horizontal line in Fig. 
18 showing winds in the plane (i.e., the model u- and w-component 
winds since this cross section is along the model x-dimension), model 
simulated radar reflectivity (shaded with a thick white line indicating 
the 0 dBZ isoline and a thin white line indicating the –25 dBZ isoline), 
and graupel mixing ratio (black contours every 3 g kg–1). The thick 
black line at the bottom of the plot indicates the portion of the cross 
section included in Figs. 21 and 22. Each half barb is 2.5 ms–1, each 
full barb is 5.0 ms–1, and each flag is 25.0 ms–1. ................................. 52 

Fig. 21  Cross section of VLAPS3AO18 along the portion of the cross section 
in Fig. 20 indicated by the thick black line along the bottom of that 
figure. This cross section shows winds in the plane (i.e., the model u- 
and w-component winds since this cross section is along the model x-
dimension), model-simulated radar reflectivity (shaded with a thick 
white line indicating the 0 dBZ isoline and a thin white line indicating 
the –25 dBZ isoline), and graupel mixing ratio (black contours every 3 
g kg–1). Each half barb is 2.5 ms–1, each full barb is 5.0 ms–1, and each 
flag is 25.0 ms–1. ................................................................................. 53 

Fig. 22  Cross section of VLAPS3AO18 along the portion of the cross section 
in Fig. 20 indicated by the thick black line along the bottom of that 
figure. This cross section shows model-simulated radar reflectivity 
(shaded with a thick white line indicating the 0 dBZ isoline and a thin 
white line indicating the –25 dBZ isoline), and vertical motion (black 
contours every 5 ms–1 with contours representing downward motion 
dashed). Vertical motion ranges from –16 to +38 ms–1 in this cross 
section. ................................................................................................ 54 

 

List of Tables 

Table 1  Experimental design............................................................................ 29 



 

Approved for public release; distribution is unlimited.   

viii 

Acknowledgments  

This study was made possible in part due to the data made available to the 
National Oceanic and Atmospheric Administration by various data providers for 
inclusion in the Meteorological Assimilation Data Ingest System (MADIS). The 
Real-Time Mesoscale Analysis use and reject lists provided by Steve Levine at 
the National Centers for Environmental Prediction’s Environmental Modeling 
Center greatly facilitated making full use of the MADIS observational data set.



 

Approved for public release; distribution is unlimited.   

1 

1.  Introduction  

Data assimilation is used in numerical weather prediction (NWP) to incorporate 
observations into the NWP model to provide a more accurate estimate of the 
meteorological conditions. There are a wide variety of data assimilation 
techniques used in NWP, each with its own advantages and disadvantages. 
Recently, a multitude of combination techniques that aim to leverage the strengths 
of 2 techniques while minimizing the weaknesses of the individual techniques 
have emerged. In this study, we propose such a combination data assimilation 
technique and demonstrate initial results of applying the combination technique to 
a single case day. 

Data assimilation techniques used in NWP include 3-D variational (3DVAR; e.g., 
Hu et al. 2006; Xiao and Sun 2007), 4-D variational (4DVAR; e.g., Mahfouf et al. 
2005; Lopez 2011), Ensemble Kalman filter (EnKF; e.g., Snyder and Zhang 2003; 
Dowell et al. 2011), and Newtonian relaxation (nudging; e.g., Schroeder et al. 
2006; Reen and Stauffer 2010).  

In theory, 3DVAR could estimate an optimal analysis for the provided 
background field and observations. However, since creating an optimal analysis 
requires perfect knowledge of the background-error covariance and the 
observation-error covariance, the actual analysis will not be optimal in practice. 
Background-error covariance is often estimated by using previous NWP 
simulations or multiple concurrent NWP simulations, and thus 3DVAR is 
challenging to apply for on-demand forecasts where no previous NWP 
simulations necessarily exist for the desired domain and computational resources 
do not allow for multiple concurrent NWP simulations. Without the use of 
multiple concurrent NWP simulations to calculate the background error 
covariance, the background error covariance will lack flow dependence. 3DVAR 
also has the disadvantage that it is an intermittent technique, meaning that an 
analysis is created and applied at a discrete time. Direct insertion of the analysis at 
a single time can result in a solution with noise as the model attempts to adjust to 
a solution that is dynamically consistent with the model’s equations. One way to 
mitigate this is to apply the increment calculated using a 3DVAR analysis over a 
time period using Incremental Analysis Updating as in Brewster and Stratman 
(2016) or to analysis-nudge toward the analysis. A weakness of all intermittent 
data assimilation techniques regards the application of observations made at a 
time other than the time for which the data assimilation technique is creating an 
analysis. The effect of these observations cannot be dependent on the difference 
between the observations and the model state at the time of the observations. First 
guess at appropriate time (e.g., Lorenc and Rawlins 2005) attempts to mitigate 
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this by comparing observations to background fields closer in time to the 
observations, but this is only a rough approximation of a full continuous method 
since 1) the comparison is either against an analysis or output from a previous 
model integration and thus is not the current model integration’s solution at the 
observation time (which will be dependent on assimilation of earlier 
observations), 2) the comparison is limited to the temporally nearest analysis (or 
temporal interpolation between the nearest analyses), and 3) the effect of the 
observation is still applied at the analysis time rather than the time of the 
observation.  

4DVAR involves determining a linearized version of the NWP model (e.g., 
tangent linear model or perturbation forecast model; Lawless et al. 2003) as well 
as its adjoint and then using these models to allow for forward and backward 
integration to determine the initial condition analysis that should result in the best 
forecast over the time period 4DVAR is applied. 4DVAR is basically 3DVAR 
with a numerical forecast model as strong constraint and the temporal dimension 
added. Techniques that account for the temporal dimension (i.e., accounting for 
the temporal variation of observations in creating an analysis at a single time) but 
do not use the numerical forecast model as a strong constraint are sometimes 
referred to as 3.5DVAR (e.g., Zhao et al. 2008). While the addition of the 
temporal dimension in 4DVAR should allow the analysis to incorporate 
observation information more effectively over a time range than 3DVAR, one 
challenge involved in using 4DVAR is the very significant computational 
demands of the method. Also, while 4DVAR could theoretically be implemented 
by using the full nonlinear forecast model for forward integration and its adjoint 
(if it exists) for backward integration, because of the computational expense 
involved in running the full nonlinear forecast model and the difficulty in finding 
the adjoint, in practice this procedure is often modified. Instead, the full nonlinear 
forecast model is integrated forward, and this prediction is compared to 
observations. This prediction is used with a linearized version of the model 
(tangent linear model) for forward integration and the adjoint of the linearized 
model for backward integration in an iterative manner to find an updated version 
of the initial conditions. This iteration is referred to as the inner loop.  

In addition to being linearized, the forward model may be coarser and more 
simplified than the full nonlinear forecast model. The proposed initial conditions 
arising from the inner loop can then be used to create another solution using the 
full nonlinear forecast model, which then can have the inner loop applied to it. 
The repeated use of the full nonlinear forecast model is referred to as the outer 
loop and is expected to decrease errors resulting from the linearization in the inner 
loop. However, computational requirements limit the number of integrations of 
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the outer loop, and thus the linearization and simplification applied in the inner 
loop can hinder the capability of 4DVAR to fully reach its potential.  

EnKF relies on an ensemble of NWP model runs to diagnose the background-
error covariance. This allows observations to be assimilated using flow-dependent 
background-error covariances. EnKF is expensive computationally since by 
definition multiple NWP simulations must be carried out. Additionally, since a 
very large number of ensemble members is needed to accurately specify the 
background-error covariances, techniques (such as localization) must be used to 
account for the limited number of ensemble members that can be used in practice.  

Newtonian relaxation (also known as nudging) involves adding nonphysical terms 
to the model’s tendency terms to gradually nudge the model toward observations 
or an analysis. Nudging has the advantages that it is a continuous data 
assimilation method and is not computationally intensive. Additionally, since the 
parameters used to control the strength of nudging and the spatiotemporal 
influence of observations are generally set based on past studies, it does not 
require additional NWP model integrations to specify how the effect of 
observations are spread for a specific domain or case. However, if resources 
allow, experiments to improve these parameters could be beneficial. Nudging has 
the disadvantages that it cannot directly assimilate variables that are not 
prognostic variables and that it does not fully account for case-specific 
background-error covariances. A more detailed description of nudging is provided 
in Section 2.2. 

The variational version of the Local Analysis and Prediction System (vLAPS; 
Jiang et al. 2015) uses a 4-D, multiscale variational scheme (3DVAR) without an 
actual model constraint for pressure, temperature, wind, and humidity, and uses a 
modified Barnes scheme with some 1-D variational analysis components (Albers 
et al. 1996) for other variables. Prior to the introduction of vLAPS, traditional 
LAPS used the latter approach for all variables. Compared to other variational 
techniques, vLAPS advantages include the multiscale nature of the technique (in 
space and time) and its computational efficiency. The multiscale nature of the 
technique improves the analysis, especially in cases where the background error 
covariance is not well specified; this is important because it is difficult to 
accurately determine the background-error covariance (Xie et al. 2011). A more 
detailed description of vLAPS is provided in Section 2.3. 

Various combinations of data assimilation techniques have been implemented. 
One example is the operational Weather Research and Forecasting (WRF) model-
based 9-km Rapid Refresh model, which uses a technique referred to as hybrid 
ensemble-variational (Benjamin et al. 2016). The method uses 3DVAR but 
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specifies the background-error covariance as a combination of static background-
error covariance and background-error covariance determined from an  
80-member ensemble of a coarser global model. 

There have been several combination data assimilation techniques that include 
nudging as one of the techniques. Lei et al. (2012a, 2012b, 2012c) developed a 
hybrid nudging–ensemble Kalman filter (HNEnKF) first in simplified models and 
then applied it to the Applied Research version of the WRF (Skamarock et al. 
2008). This method used an ensemble of WRF simulations to determine both the 
strength with which observation nudging was applied and the horizontal and 
spatial spreading of the nudging for each observation. In addition, information 
from the ensemble was used to allow innovations in one variable to affect another 
variable (e.g., an error in the u-wind component could result in nudging of the v-
wind component). This was applied in a series of 3-h forecasts to produce 
analyses to force atmospheric transport and dispersion modeling for a single case. 
The 3-h HNEnKF forecasts improved over EnKF in terms of wind direction and 
over observation nudging in terms of temperature and relative humidity while the 
performance in the other fields is less conclusive. Lei et al. (2012c) also show that 
the noise levels in the HNEnKF and 4-D data assimilation approaches are much 
lower than in the EnKF simulation. 

The National Center for Atmospheric Research (NCAR) developed a hybrid 
nudging–ensemble system they refer to as 4D Relaxation Ensemble Kalman Filter 
(Liu et al. 2015). It uses an ensemble to determine the nudging coefficients used 
in observation nudging.  

Shaw et al. (2008) used 3DVAR to create an analysis to start WRF and then 
performed observation nudging during the next 3 h. They briefly showed results 
from a single case suggesting the combination of 3DVAR and nudging performed 
better than either method separately. 

Lei and Hacker (2015) investigated observation nudging, EnKF, and HNEnKF in 
a Lorenz model. Lorenz models involve a much simpler set of equations than 
NWP models, such as WRF, but include some behaviors reminiscent of the 
atmosphere; they can be used to test assimilation techniques before application to 
the much more complex environment of a NWP model. They find that nudging 
performs better with increasing model error, but the increased model error 
degrades the covariances used in the hybrid scheme. They conclude that in the 
Lorenz model they investigated, the hybrid scheme cannot result in errors that are 
simultaneously lower than both EnKF and observation nudging. In other words, in 
the Lorenz model for any individual case the hybrid scheme cannot outperform 
using EnKF alone while also outperforming using observation nudging alone. 
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However, it is not clear if this conclusion holds for much more complicated 
models such as WRF. Additionally, even if that hybrid method (HNEnKF) never 
performs better than both component data assimilation methodologies, the 
methodology can still be valuable if the hybrid method normally performs better 
than one of the components and which component performs best varies by case; 
this can allow the hybrid method to avoid the worst performances of both 
methods, which might be exactly the cases where it is most important that 
forecasts be improved. Additionally, this result was specifically for an EnKF 
observation nudging hybrid and thus is not directly applicable to the combination 
assimilation methodologies investigated in this study. 

This study demonstrates the combination of the vLAPS and nudging data 
assimilation techniques for a single case day with strong convection. Section 2 
describes the Advanced Research version of the WRF model (WRF-ARW) and its 
configuration here, as well as describing the vLAPS and nudging data 
assimilation techniques. A description of the case is given in Section 3, Section 4 
details the methodology used to carry out the hybrid data assimilation, and 
Section 5 describes the experimental design. Section 6 describes preliminary 
results, and Section 7 contains summary and a discussion of the future work. 

2.  Model Description and Configuration 

2.1  WRF‐ARW 

The Advanced Research version of the Weather Research and Forecasting model 
(WRF-ARW) V3.6.1 (Skamarock et al. 2008) is applied with 56 vertical layers 
for an 801 × 801 1-km horizontal grid spacing domain centered over Oklahoma 
(Fig. 1). 
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Fig. 1 Area covered by the WRF 1-km domain 

WRF-ARW is configured here to use the Mellor-Yamada-Janjić (MYJ) scheme 
(Janjić 2001) to parameterize the atmospheric boundary layer (ABL). It predicts 
turbulent kinetic energy (TKE) and is a Mellor-Yamada Level 2.5 turbulence 
closure model. As in Lee et al. (2012) and Reen et al. (2014), the background 
TKE is decreased to better simulate conditions with low TKE, and the ABL depth 
diagnosis is altered. 

The Thompson microphysics parameterization (Thompson et al. 2008) is used, 
but no cumulus parameterization is employed because of the high-resolution 
nature of the single domain. For radiation, the Rapid Radiative Transfer Model 
(Mlawer et al. 1997) is used for longwave and the Dudhia scheme (Dudhia 1989) 
for shortwave. Land surface processes are represented by the Noah land surface 
model (Chen and Dudhia 2001). 
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2.2  Nudging Data Assimilation 

Nudging (e.g., Stauffer and Seaman 1990; Stauffer et al. 1991), also known as 
Newtonian relaxation, involves nudging the model toward observations 
(observation nudging) or analyses (analysis nudging) by adding a term to the 
tendency equations whose magnitude depends on the magnitude of the difference 
between the model and either the observation or the analysis. WRF has the ability 
to nudge toward potential temperature, water vapor mixing ratio, and winds. 

Observation nudging (e.g., Stauffer and Seaman 1994; Reen 2016) calculates the 
difference between an observation and the current model solution at that point 
(the difference is called the innovation) and then uses the innovation to calculate 
an additional term for the tendency equation. Observation nudging can be 
described by the following equation and its description taken directly from Reen 
(2016): 
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where q is the quantity being nudged (e.g., water vapor mixing ratio), µ is the dry 
hydrostatic pressure, Fq represents the physical tendency terms of q (for water 
vapor this includes advection, diffusion, conversion from water vapor to cloud 
water, etc.), Gq is the nudging strength for q, N is the total number of 
observations, i is the index to the current observation, Wq is the spatiotemporal 
weighting function based on the temporal and spatial separation between the 
observation and the current model location, qo is the observed value of q, and 
qm(xi,yi,zi,t) is the model value of q interpolated to the observation location. The 
quantity qo−qm is the innovation; the innovation associated with a given 
observation evolves with time (both before and after the time of the observation) 
as the model value (qm) evolves. Thus, as the model value approaches the 
observed value, the nudging tendency term decreases. 

To apply observation nudging effectively, the observation must be at least 
somewhat representative of scales represented by the size of the grid cells of the 
model integration it is being applied to. This should not be problematic in this 
study because observation nudging has been successfully applied in past studies 
to horizontal grid spacings much coarser than the 1-km horizontal grid spacing 
used here. The strength of the observation nudging used here (Gq) is 6 × 10–4 s–1, 
which means that the e-folding time for the error is approximately 28 min. Thus, 
assuming that the only nonzero tendency term for the observed value is the 
observation nudging term, the difference between the model and the observation 
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after approximately 28 min would be the previous difference divided by e  
(i.e., ≈37% of the previous difference). 

The innovation for an observation is not applied at a single time but rather over a 
time period since the errors at the observation location are correlated with errors 
nearby in time (the time weighting is included in Wq in Eq. 1). This also allows 
the model physical tendency terms to dominate, and thus the observations can be 
assimilated while maintaining a physically consistent solution with a minimum of 
“noise”. Here, full weighting of above-surface observations is applied for a 1.5-h 
time period centered on the observation time, and the weighting decreases to zero 
in the 0.75-h time period on either side of this time period. For surface 
observations the temporal window is two-thirds as large (full strength for 1.0 h 
and decreasing to zero in the 0.5 h on either side of this time period) to account 
for the more rapid atmospheric changes near the surface. The innovation is 
recalculated frequently throughout the time period over which the innovation is 
applied so that nudging does not “overshoot” and start nudging the model away 
from the observation (here it is recalculated every 6 s, which is every other time 
step).  

The innovation is also applied over a horizontal spatial extent since the errors at 
the observation location are correlated with errors nearby spatially (the spatial 
weighting is included in Wq in Eq. 1). In general, the innovations are spread 
horizontally with isotropic weighting functions, with weight decreasing with 
distance from the observations. Here, a 30-km radius of influence is used at the 
surface, 60 km just above the surface, and the radius of influence increases with 
decreasing pressure up to a maximum of 120 km at 500 hPa. Innovations from 
surface observations are spread along the surface, but the strength at which the 
innovation is applied is decreased for areas whose model terrain height differs 
from that at the location of the observation. This is used to limit the spreading of 
surface observations in a valley to a mountaintop and vice versa.  

The vertical spreading of innovations depends on the observation type (the 
vertical spreading is also included in Wq in Eq. 1). For multilevel observations 
(e.g., radiosondes), the innovation profile at the location of the observation is 
interpolated vertically to the model vertical levels at the horizontal location that 
the innovation is being applied. For single-level above-surface observations (e.g., 
aircraft observations), the innovation is applied between 50 hPa below and 50 hPa 
above the observation with the strength at which it is applied decreasing linearly 
with pressure difference between the observation and the vertical location at 
which the innovation is being applied. Additionally, the innovations calculated 
above the top of the model-diagnosed ABL are not applied below the top of the 
model-diagnosed ABL, and vice versa. For surface observations, in convective 
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conditions the innovation is applied with full weight throughout the ABL and then 
ramps down to zero in the next 50 m. In stable conditions the innovation is 
applied with full weight in the lowest 50 m and then ramps down to zero in the 
next 50 m. 

There are some additional details regarding the observation nudging 
configuration. The modification of observation nudging of water vapor by Reen et 
al. (2016) is applied here to prevent excessive drying. At the end of the 
observation nudging period, we use a 1-h ramp-down period to gradually reduce 
the observation nudging tendency term to minimize any noise that might be 
created if the observation nudging tendency terms were suddenly removed. 
During this ramp-down period, 2 things differ from observation nudging prior to 
this ramp-down period. First, no new observations (i.e., observations taken during 
the ramp-down period) are assimilated, thus nudging is toward observations taken 
prior to the ramp-down period that are not yet too old to be outside the temporal 
window of that observation. Second, a linear ramp-down weighting factor is 
multiplied by the other weighting factors to gradually ramp down the observation 
nudging during this period. An unexpectedly large computational expense was 
associated with observation nudging in these experiments. Further investigation is 
needed to determine the causes of this expense. It may be that the large number of 
model grid cells in the domain (~640,000 per level), compared to most 
applications of observation nudging, exposed an area where improvements are 
needed in the implementation of observation nudging in WRF to allow it to better 
scale to larger domains. 

Analysis nudging (e.g., Stauffer and Seaman 1994; Gilliam et al. 2012) calculates 
the difference between an analysis and the model and then uses that difference 
(innovation) to construct an additional term for the tendency equations to nudge 
the model toward the analysis. To apply analysis nudging effectively, the analysis 
must be representative of the scales resolved by the model domain being nudged 
toward. If the analysis only resolves scales much coarser than the model domain, 
then analysis nudging will work to remove the finer-scale structures the model 
simulates; there is an alternative form of analysis nudging known as spectral 
nudging that nudges only the large-scale structures (e.g., Vincent and Hahmann 
2015). Analysis nudging is usually applied to relatively coarse domains (e.g., 
Stauffer and Seaman 1994; Rogers et al. 2013; Expósito et al. 2015) since 
analyses do not normally have sufficient coverage of high-resolution observations 
to make the analysis representative of finer domains. However, in this study the 
use of high-resolution data sources in the creation of analyses (as is described 
later) allow analysis nudging to be applied on the 1-km WRF domain. The 
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strength of the analysis nudging used here is 3 × 10–4 s–1, which means that the e-
folding time for the error is approximately 56 min. 

Since analysis nudging is toward an analysis with values at each model grid point 
at specific time intervals, the temporal and spatial spreading applied differs from 
that used in observation nudging. The tendency terms added due to analysis 
nudging are applied at all model time steps during the data assimilation period. 
Analyses are temporally interpolated to the current time to determine the analysis 
against which the innovation will be calculated. The analysis nudging innovation 
is calculated here at each time step. Spatially, each model grid point is generally 
nudged based on the coincident analysis grid point, although this differs near the 
surface. WRF analysis nudging also has the capability to limit the strength of 
analysis nudging in locations where limited nearby observations were included in 
the analysis; in this study, because of the nature of the analyses, they were 
assumed to be equally valid at all model grid points. 

Here, we nudge both toward surface analyses (surface analysis nudging) and 
analyses above the surface (3-D analysis nudging). When both surface and 3-D 
analysis nudging are activated, 1) the surface analyses innovations are applied 
with full strength throughout the ABL and with 90% of full weight in the layer 
immediately above the ABL and 2) the above-surface analyses are applied at full 
strength at all levels above the top of the ABL except at 10% of full weight in the 
layer immediately above the ABL.  

While surface analysis nudging of potential temperature is straightforward, 
additional details are involved with wind and moisture. For potential temperature, 
the model’s lowest prognostic level temperature is compared to the analysis, and 
the resulting innovation applied throughout the ABL. Similarity theory is used to 
adjust the 10-m wind analysis to the lowest model layer (e.g., Stauffer et al. 1991) 
if the top of the ABL is above the lowest model layer and the lowest model layer 
where wind is predicted is above 10-m AGL. The adjusted surface wind u and v 
components are then compared to the model’s lowest prognostic level values of u 
and v, and the resulting innovations applied throughout the ABL. The surface 
water vapor observation is compared to the model water vapor at each model 
prognostic layer in the ABL (and one layer above), and the resultant innovation 
applied to that same level. 

At the end of the analysis nudging period, we use a 15-min time period to ramp 
down the influence of the analysis nudging. During this time period, the model is 
nudged toward the analysis valid at the beginning of this time period, and the 
weighting decreases linearly with time to zero. Although the standard version of 
WRF V3.6.1 does not nudge toward the analysis valid at the beginning of the 



 

Approved for public release; distribution is unlimited.   

11 

ramp-down time period because of a bug, the bug was fixed in the version of 
WRF V3.6.1 used for this study (the bug fix was also submitted to the WRF 
developers and included in the public release version of WRF starting in WRF 
V3.8). 

2.3  vLAPS Data Assimilation 

LAPS was developed by the National Oceanic and Atmospheric Administration 
(McGinley et al. 1991) and traditionally used a modified Barnes analysis 
(Hiemstra et al. 2006) with some 1-D variational components (Albers et al. 1996). 
The vLAPS retains the traditional techniques for some variables but moves to a 3-
D, multiscale variational scheme (3DVAR) for pressure, temperature, winds, and 
humidity (Jiang et al. 2015). Some of the vLAPS description in this section is 
from Jiang et al. (2015).  

The 3DVAR scheme used in vLAPS is based on the Space and Time Multiscale 
Analysis System (Xie et al. 2011). Even though it does not have a forecast model 
as a constraint like a 4DVAR, it indeed considers temporal information with a 
half-hour analysis time window. The multiscale approach pioneered in 
computational mathematics applications (see Briggs 1987) was adopted by Xie et 
al. (2011) for meteorological and oceanographic data assimilation and improves 
accuracy and computational efficiency compared to nonmultiscale variational 
techniques. vLAPS applies the multiscale technique spatially and temporally.  

Spatially, vLAPS completes a 3DVAR analysis on a coarse grid, and the output of 
that analysis is used as the background for a 3DVAR analysis at a finer scale; this 
process continues until the analysis is at an adequate resolution. For each grid, a 
Laplacian function of the difference between analysis and background is added to 
the cost function to mimic the background term of a 3DVAR, which determines 
the spreading of the influence of an observation. The coefficients multiplying the 
Laplacian terms control the influence radius of observations. The use of a 
Laplacian rather than a recursive filter has the benefit of better retaining the 
gradients of the background to fit the observations. Since vLAPS reduces the 
coefficients of the Laplacian terms in the cost function when moving from a 
coarser grid to a finer one, the effective radius of influence of an observation 
decreases as the horizontal grid spacing of the analysis decreases. Performing the 
analysis at multiple spatial scales allows the influence of observations in data-
sparse areas to spread broadly in coarser grids while keeping the fine-scale 
features resolvable in data-rich areas in finer grids. This also makes the technique 
less dependent on accurate background error covariance. Here, the coarsest grid 
used for the analysis has 16-km horizontal grid spacing and 50-hPa vertical grid 
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spacing; each subsequent analysis decreases the horizontal and vertical grid 
spacing in half until this division is stopped if the grid space exceeds the smallest 
spacing specified by the user. For this case, we set 25 hPa for the vertical. This, 
the finest analysis grid, uses 2 km horizontal grid spacing and 25 vertical grid 
spacing. Five analyses were completed, including the coarsest and finest 
resolution analyses. 

The surface analysis is completed separately from the analysis for layers above 
the surface, and the surface analysis lacks a vertical component.  

Temporally, vLAPS uses multiple time frames to create the analysis at an 
individual analysis time; this allows extraction of information from frequent 
observations (e.g., from radars) related to rapid changes. A time filter is used to 
weigh the contributions of observations nearer to the analysis time more strongly 
than observations farther in the past or future. The time filter used is a Laplacian 
filter. As with the spatial dimension, the analysis is repeated multiple times with 
increasingly short temporal windows in which observations can affect the 
analysis. In this case, this results in the longest temporal window being 30 min, 
and the shortest being 15 min, both centered on the analysis time. Note that the 
spatial and temporal refinement of the analyses are taking place simultaneously 
(i.e., the first analysis is coarse spatially and temporally, the next analysis is finer 
spatially and temporally). For observations that are not taken at the time of one of 
the first-guess analyses, the first-guess analyses are temporally interpolated to the 
observation to determine the difference between the observation and the analyses. 

The multiscale approach of vLAPS is related to other data assimilation 
approaches. For example, it is similar to a 4DVAR approach, but instead of using 
the full NWP model as a constraint, vLAPS uses a time filter and other simplified 
constraints. The simplified constraints vLAPS used include geostrophic and 
hydrostatic balances as weak constraints and incompressibility as a strong 
constraint. It is also similar to ensemble-variational data assimilation (4DEnVar), 
wherein ensemble covariances are used for temporal constraints (Liu et al. 2008). 

The vLAPS variational assimilation differs significantly from the 3DVAR in the 
widely used Gridpoint Statistical Interpolation (GSI) package. In addition to the 
multigrid technique, for control variables vLAPS uses the u- and v-wind 
components (Xie and MacDonald 2011), whereas GSI uses stream function and 
velocity potential. Xie et al. (2002 and 2011) demonstrate that the use of the latter 
2 for control variables is undesirable; this is especially true for convective-scale 
resolutions. There are several other advantages of vLAPS, such as better use of 
physical balances, hot-start, more efficient storage of the background covariances, 
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nonlinear minimization compared to GSI’s linearized minimization, and better 
representation of observation errors. 

The cloud analysis technique applied here was first described in Albers et al. 
(1996). Geostationary Operational Environmental Satellite (GOES) data (infrared 
+ visible), radar, surface observations (METARs), and model first-guess fields are 
combined in the so-called “traditional” or sequential cloud analysis. A 
preliminary analysis is constructed of cloud fraction using model first-guess 
humidity and METAR reports that are spread horizontally. Next, infrared satellite 
data are added in a series of cloud-clearing and cloud-building steps, with similar 
steps for visible satellite data. Finally, radar data are added to complete the 3-D 
cloud fraction analysis. This cloud field is postprocessed into 3-D hydrometeor 
fields and associated vertical velocity to feed back into the dynamical fields 
(namely, the 3-D wind). A variational cloud analysis is under development for 
future use. 

3.  Case Description  

To demonstrate the potential utility of the combined data assimilation technique 
proposed here, we investigate a single case day (20 May 2013) with strong 
convection in the southern Great Plains region. At 12 Coordinated Universal Time 
(UTC) at 500 hPa (Fig. 2), an upper-level low was centered over the northern 
Great Plains with the axis of the trough to the southwest. This resulted in 
approximately 50-kt (≈26 ms-1) flow from the west–southwest over Oklahoma 
and eastern Kansas at 500 hPa.  
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Fig. 2 Winds, heights, and temperature at 500 hPa on 20 May 2013 at 12 UTC from the 
National Center for Environmental Prediction daily weather maps 
(http://www.wpc.ncep.noaa.gov/dailywxmap). Barbs are used to show wind (knots), solid 
lines show isoheights (dekameters above sea level), and dashed lines show isotherms (°C).  

At the surface, at 12 UTC (Fig. 3) a cold front extended south from the northern 
Great Plains but transitioned to a stationary front over Kansas and Oklahoma and 
curved more westerly, with a dry line extending south from the front over west 
Texas. Observations (Fig. 4a) indicate a strong moisture contrast near the front in 
southern Oklahoma and northern Texas at 12 UTC, with much drier conditions on 
the northwest side of the front. Precipitation at 12 UTC (Fig. 4b) is limited to a 
broken swath oriented west–southwest to east–northeast from far northern Texas 
through northern Oklahoma and southern Kansas. As diurnal heating progresses, 
the frontal position and moisture gradient remain similar through 15 UTC  
(Fig. 4c) and 18 UTC (Fig. 4e) with the weak line of precipitation becoming more 
continuous and oriented southwest to northeast mostly over Kansas (Fig. 4e–f). 

By 2100 UTC a dry line is analyzed south from near the front in central 
Oklahoma (Fig. 4g) with a line of strong convection in place through central 
Oklahoma and southeastern Kansas (Fig. 4h). At 0000 UTC the surface analysis 
(Fig. 4i) indicates frontal placement is similar, but now analyzed as a cold front, 
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and a squall line is analyzed across southeastern Oklahoma, which is consistent 
with the radar observation at this time (Fig. 4j). 

 

Fig. 3 Surface analyses of the continental United States from the Weather Prediction 
Center (http://www.wpc.ncep.noaa.gov/html/sfc2.shtml) for 1200 UTC 20 May 2013  
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a) 

 

b) 

 

Fig. 4 Surface analyses (a,c,e,g,i) of the southern Great Plains from the Weather 
Prediction Center (http://www.wpc.ncep.noaa.gov/html/sfc2.shtml) and composite base 
reflectivity (b,d,f,h,j) from Iowa Environmental Mesonet (http://mesonet.agron.iastate.edu/ 
GIS/apps/rview/warnings.phtml) for (a,b) 1200 UTC 20 May 2013, (c,d) 1500 UTC 20 May 
2013, (e,f) 1800 UTC 20 May 2013, (g,h) 2100 UTC 20 May 2013, and (i,j) 0000 UTC 21 May 
2013 
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c) 

 

d) 

 

Fig. 4 Surface analyses (a,c,e,g,i) of the southern Great Plains from the Weather 
Prediction Center (http://www.wpc.ncep.noaa.gov/html/sfc2.shtml) and composite base 
reflectivity (b,d,f,h,j) from Iowa Environmental Mesonet (http://mesonet.agron.iastate.edu/ 
GIS/apps /rview/warnings.phtml) for (a,b) 1200 UTC 20 May 2013, (c,d) 1500 UTC 20 May 
2013, (e,f) 1800 UTC 20 May 2013, (g,h) 2100 UTC 20 May 2013, and (i,j) 0000 UTC 21 May 
2013 (continued) 
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e) 

 

f) 

 
 

Fig. 4 Surface analyses (a,c,e,g,i) of the southern Great Plains from the Weather 
Prediction Center (http://www.wpc.ncep.noaa.gov/html/sfc2.shtml) and composite base 
reflectivity (b,d,f,h,j) from Iowa Environmental Mesonet (http://mesonet.agron.iastate.edu/ 
GIS/apps /rview/warnings.phtml) for (a,b) 1200 UTC 20 May 2013, (c,d) 1500 UTC 20 May 
2013, (e,f) 1800 UTC 20 May 2013, (g,h) 2100 UTC 20 May 2013, and (i,j) 0000 UTC 21 May 
2013 (continued) 
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g) 

 

h) 

 
 

Fig. 4 Surface analyses (a,c,e,g,i) of the southern Great Plains from the Weather 
Prediction Center (http://www.wpc.ncep.noaa.gov/html/sfc2.shtml) and composite base 
reflectivity (b,d,f,h,j) from Iowa Environmental Mesonet (http://mesonet.agron.iastate.edu/ 
GIS/apps /rview/warnings.phtml) for (a,b) 1200 UTC 20 May 2013, (c,d) 1500 UTC 20 May 
2013, (e,f) 1800 UTC 20 May 2013, (g,h) 2100 UTC 20 May 2013, and (i,j) 0000 UTC 21 May 
2013 (continued) 
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i) 

 

j) 

 
 

Fig. 4 Surface analyses (a,c,e,g,i) of the southern Great Plains from the Weather 
Prediction Center (http://www.wpc.ncep.noaa.gov/html/sfc2.shtml) and composite base 
reflectivity (b,d,f,h,j) from Iowa Environmental Mesonet (http://mesonet.agron.iastate.edu/ 
GIS/apps /rview/warnings.phtml) for (a,b) 1200 UTC 20 May 2013, (c,d) 1500 UTC 20 May 
2013, (e,f) 1800 UTC 20 May 2013, (g,h) 2100 UTC 20 May 2013, and (i,j) 0000 UTC 21 May 
2013 (continued) 
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The 1200 UTC radiosonde at Norman, Oklahoma (Fig. 5a), indicates a thin 
saturated layer at approximately 900 hPa at the base of a strong capping inversion 
and then a deep elevated mixed layer. At 1800 UTC (Fig. 5b), daytime heating 
along with the formation of a convective boundary layer and a weakened capping 
inversion are present; the convective available potential energy at this time is 
3135 J kg-1. By 0000 UTC, the main line of convection is southeast of Norman, 
but an isolated cell is at least in the vicinity of Norman (Fig. 4j), and there is a 
shallow isothermal layer at the surface topped by an inversion (Fig. 5c). Also, 
note the backing in the near-surface wind between 1800 and 0000 UTC (compare 
Fig. 5c to Fig. 5b), and the speed shear present in the 1800 and 0000 UTC 
radiosondes. 

A total of 42 tornadoes were reported in the United States on 20 May 2013, 
including 18 in Oklahoma, 11 in Missouri, 5 in Texas, 3 in Kansas, and 3 in 
Arkansas (NCEI 2016). An EF5 touched down at 1956 UTC in Newcastle, 
Oklahoma, and traveled through Moore, Oklahoma, before dissipating 
approximately 2035 UTC (Atkins et al. 2014; Burgess et al. 2014; Kurdzo et al. 
2015).  

a) 

 
 

Fig. 5 Skew-T’s of radiosondes from Norman, Oklahoma, for a) 12 UTC 20 May 2013, b) 
18 UTC 20 May 2013, and c) 00 UTC 21 May 2013 (obtained from http://weather.uwyo.edu 
/upperair/sounding.html). A full wind barb represents 10 kts and a half wind barb 
represents 5 kts. 
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b) 

 

c) 

 
 

Fig. 5 Skew-T’s of radiosondes from Norman, Oklahoma, for a) 12 UTC 20 May 2013, b) 
18 UTC 20 May 2013, and c) 00 UTC 21 May 2013 (obtained from http://weather.uwyo.edu/ 
upperair/sounding.html). A full wind barb represents 10 kts and a half wind barb represents 
5 kts (continued). 
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Hanley et al. (2016) employed the United Kingdom Met Office’s Unified Model 
with 4.4/2.2/0.5/0.2/0.1-km horizontal grid spacing nests to investigate the 20 
May 2013 Moore tornado. They used no data assimilation (data assimilation was 
applied to the global model driving the outermost nest). Their 2.2-km grid 
initiates convection at about the correct time in the Oklahoma City area and 
simulates supercells, but convection persists too long in this area. Their 200- and 
100-m grids simulate tornado-like vortices, but do so approximately 2.5 h later 
than the observed Moore tornado. 

Zhang et al. (2015, 2016) examined predictability of the convection on 20 May 
2013 using WRF-ARW. Zhang et al. (2015) used nested 27-, 9-, 3-, and 1-km 
horizontal grid spacing domains to investigate the impact on the simulation of 
convection from temporal variations in initial conditions and from horizontally 
shifting the underlying terrain. They find that temporal shifting of initial 
conditions generally temporally shifts convection as expected but in some cases 
does not affect convective timing because the lateral boundary conditions are 
controlling convective initiation. The temporal shifting impacts the paths of some 
supercells (diagnosed via updraft helicity) much more than others, suggesting that 
the predictability of some supercells is larger than other supercells. Terrain 
shifting changed the timing of convective initiation, as well as how the storms 
developed. Zhang et al. (2016) also use nested 27-, 9-, 3-, and 1-km horizontal 
grid spacing domains, but add a 250-m nest to create perturbations to create a  
60-member, 1-km ensemble to investigate predictability. The magnitude of these 
perturbations is unobservable with current observing platforms, thus the ensemble 
represents the effects of currently unavoidable observational uncertainty. Zhang et 
al. (2016) find that while a line of storms is produced in all of the ensemble 
members, the details of individual storms in that line differ among the ensemble 
members; this suggests that the line of storms is predictable but details along that 
line of storms may not be predictable at this time. 

Snook et al. (2016) produced 500-m horizontal grid spacing Advanced Regional 
Prediction System (ARPS) simulations to investigate numerical weather 
prediction forecasts of hail for this case. They applied EnKF using 40 ensemble 
members with radar reflectivity, radar radial velocity, and surface observations 
assimilated every 5 min between 1830 and 1930 UTC, followed by a 90-min 
forecast (1930–2100 UTC). Their results indicated that for this case the model 
had skill at predicting hail. 
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4.  Methodology  

This study investigates 3 methods to produce initial conditions as well as the 
application of analysis and observation nudging. This section describes the 
methodology used to create the initial conditions as well as the analyses and 
observations that are nudged toward. 

4.1  Observations for Use in Observation Nudging  

The observations used for observation nudging data assimilation were obtained 
from the Meteorological Assimilation Data Ingest System (MADIS; 
https://madis.noaa.gov/). The specific MADIS data sources applied here are 
standard surface, mesonet surface, profiler, radiosonde, and Aircraft 
Communications Addressing and Reporting System (ACARS) observations. After 
simulations were complete, we discovered that a software error resulted in profiler 
and ACARS observations not being included at 13, 19, and 21 UTC.  

Quality control is applied using 3 resources. First, the quality control flags 
attached to the MADIS data set are used to remove observations marked as 
problematic. Second, use/reject lists that were designed for the Real-Time 
Mesoscale Analysis (De Pondeca et al. 2011) are applied only to the surface 
mesonet observations; these lists are designed to deal with the data quality issues 
that can be more prevalent in the mesonet observations (e.g., poor siting) than in 
standard surface observations. Third, the Obsgrid program (NCAR 2016) is used 
to apply quality control based on evaluating observations against a first-guess 
field and against nearby observations (buddy check). The first-guess fields we use 
are from the 15 UTC cycle of the 3-km High-Resolution Rapid Refresh model 
(HRRR; Alexander et al. 2013; http://rapidrefresh.noaa.gov/hrrr) on 20 May 
2013. Obsgrid performs quality control of temperature, wind, relative humidity, 
sea-level pressure, and surface pressure (NCAR 2016; Reen 2015). In this study, 
the first-guess field (HRRR) is vertically interpolated to additional pressure levels 
to facilitate quality control of single-level above-surface observations (ACARS 
data) and allow for additional vertical structure to be retained in multilevel 
observations (e.g., radiosonde) data. 

4.2  Obsgrid Analyses 

Obsgrid produced an objective analysis used as initial conditions for some 
simulations. The analysis combines the observations in Section 4.1 with 3-km 
HRRR fields from the 15 UTC cycle on 20 May 2013. Obsgrid was configured here 
to perform multiscan Cressman analyses of temperature, wind, relative humidity, 
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and surface pressure. The surface pressure analysis is used to determine how the 
surface analyses of the other fields are applied in the WRF initial conditions based 
on the difference between the WRF surface pressure and the surface pressure of the 
Obsgrid analyses. The Cressman analyses for wind and relative humidity are flow 
dependent. Five scans are applied using the default Obsgrid technique of 
determining radius of influence based on assuming an average of 325 km between 
upper air observations. This results in radii of influence of 520, 354, 255, 179, and 
126 km for above-surface observations. Surface observations are assumed to have a 
40% smaller radii of influence, given the greater degree of spatial heterogeneity at 
the surface; however, Obsgrid limits the radii of influence for surface observations 
specified as a percentage of the radius of influence of the upper-air observations to 
be between 4.5 and 100.0 model grid cells. The resulting surface radii of influence 
for the 5 scans are 100, 70, 49, 34, and 24 km. 

4.3  vLAPS Analyses 

For this case 15-min vLAPS analyses were created using the 3-km HRRR fields 
from the 15 UTC cycle on 20 May 2013. One source of observations used in the 
analysis was the MADIS data set. The observation types obtained from the 
MADIS data set included standard surface, mesonet surface, profiler, radiosonde, 
and ACARS. Pilot observations were obtained from the Federal Aviation 
Administration reporting sky cover, turbulence, wind direction, and icing. In 
addition to using the MADIS quality control flag, vLAPS also checks 
observations against the background field to determine if the difference is large 
enough that the observation should be omitted from the analysis. Radial velocity 
from 26 radars (WSR-88D and Terminal Doppler Weather Radar) were ingested 
using the variational data assimilation, but the reflectivity was ingested using the 
earlier nonvariational LAPS. The LAPS cloud analysis uses GOES imagery data 
to remove clouds where GOES indicates that clouds are not present. The LAPS 
cloud analysis also uses radar, surface observations (METARs), and model first-
guess fields and uses these to provide 3-D hydrometeor content; the results of the 
cloud analysis also are used to adjust the 3-D wind field. Among the fields 
analyzed by LAPS are temperature, water vapor, winds, and hydrometeors. 

4.4  Creating WRF Input Files 

The process of creating the WRF-ARW input files for the various experiments 
described in Section 5 is somewhat involved (Fig. 6). In the following description, 
a letter in brackets is used to signify the component labeled with that letter in the 
figure. Most of the components are standard WRF Preprocessing System (WPS) 
software, or altered versions of the standard preprocessors.  
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Fig. 6 Flowchart illustrating creation of the WRF input files for this study. Colored portions of the chart indicate steps required to create WRF 
initial conditions and boundary conditions of a certain type (HRRR in orange, vLAPS in red, and Obsgrid in blue). The components are labeled with 
letters to facilitate discussion in the text. 
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In the first step, static geographical data (e.g., terrain height, soil type) are 
ingested by Geogrid [A] to create static geographical data for the current domain 
(geo_em*). The hourly 3-km HRRR data from the 15 UTC cycle on 20 May 2013 
is then converted from Gridded Binary (GRIB) format into WRF intermediate-
format files by both the standard version of Ungrib [E] and a “high-resolution” 
version of Ungrib [B]. The standard version of Ungrib [E] retains data on all of 
the pressure levels present in the original GRIB file and does not add data on 
additional pressure levels. The high-resolution version of Ungrib [B] differs from 
the standard version in that it vertically interpolates the HRRR data to additional 
pressure levels to allow for improved quality control of single-level above-surface 
observations and to better retain vertical resolution of multilevel observations. 
When observations are quality controlled (at a later step), single-level above-
surface observations (e.g., aircraft data) are quality controlled against the nearest 
pressure level. By interpolating the HRRR data to additional pressure levels, the 
quality control of these observations can use HRRR-derived data closer to the 
pressure level of the observation. When multilevel observations (e.g., 
radiosondes) are quality controlled (at a later step), they are vertically interpolated 
to the pressure levels of the HRRR-derived data to allow quality control of the 
observations against the HRRR data. By interpolating the HRRR data to 
additional pressure levels, a more detailed vertical structure can be retained in 
multilevel observations. The intermediate files created by both versions of Ungrib 
([B] and [E]) are ingested by Metgrid ([C] and [F], respectively) to create HRRR 
data gridded to the WRF domain’s horizontal grid (met_em* files). 

The met_em* files originating from the Metgrid [C] run using output from the 
high-resolution version of Ungrib [B] are ingested by Obsgrid [D] along with 
MADIS observations. These met_em* files contain the pressure levels in the 
original HRRR data, but also include additional pressure levels onto which the 
HRRR data are interpolated. Obsgrid performs quality control of the MADIS 
observations by comparing each MADIS observation to nearby observations and 
to the HRRR data in the met_em* files with the additional pressure levels. The 
quality controlled observations are output in WRF observation nudging format as 
OBS_DOMAIN* files ready for WRF [Q] to ingest for observation nudging. 

The met_em* files originating from the Metgrid [F] run using output from the 
non-high-resolution version of Ungrib [E] are used for creating initial conditions 
and boundary conditions. These met_em* files retain the pressure levels in the 
original HRRR data. The subsequent processing of these met_em* files differs 
depending on which type of initial conditions are being generated. 

To create Obsgrid-based initial conditions the met_em* files from Metgrid [F] are 
used as the first guess for an objective analysis created by Obsgrid [H] by 
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combining the HRRR-based met_em* files with the MADIS observations. The 
resultant objective analyses (metoa_em*) then have snow-cover-related fields 
removed to avoid potential discrepancies with vLAPS-based initial conditions that 
do not have snow cover as a field. (Snow cover here refers to a yes/no flag 
indicating snow cover and is separate from snow depth. Snow cover is not 
processed in the standard WPS/WRF software but was added in the US Army 
Research Laboratory [ARL] implementation to allow snow cover fields to be 
ingested and thus improve snow characterization in WRF simulations.) The 
objective analyses file for the initial time (meteo_em* from [I]) and the HRRR-
based met_em* with snow cover removed (met_em* from [G]) are then processed 
by the WRF component Real to create initial condition (wrfinput*) and boundary 
condition (wrfbdy*) files for WRF that are on the WRF vertical levels.  

The simplest of the initial conditions to create are those that are based solely on 
the HRRR output and thus use no observations. To create HRRR-based initial 
conditions, Real [K] creates initial condition (wrfinput*) and boundary condition 
(wrfbdy*) files on the WRF vertical levels using the met_em* files from Metgrid 
[F] with snow cover removed [G]. 

To create the vLAPS-based WRF initial conditions, the vLAPS analyses are 
ingested by Metgrid [N] to create vLAPS-based met_em* files. Real [O] is then 
used to create initial condition files (wrfinput*), which are renamed 
wrfvar_output* for input into da_update_bc [L]. The WRF input and boundary 
condition files created by Real [K] from the HRRR-based met_em* files are also 
input to da_update_bc [L]. This program [L] updates the boundary conditions in 
wrfbdy* based on the differences between the initial conditions from which these 
boundary conditions were created (wrfinput*) and the initial conditions that will 
actually be used (wrfvar_output*). This prevents a mismatch near the boundary 
between the boundary condition and initial condition file. The boundary condition 
updating program (da_update_bc [L]) creates an updated boundary condition file 
(wrfbdy*) ready for ingestion by WRF [Q], as well as an initial condition file 
wrfvar_output* that we rename wrfinput*. This vLAPS-based initial condition 
file does not contain the HRRR soil moisture and soil temperature fields, nor the 
netCDF file “global attributes”. Therefore, we use the tool NetCDF Operators  
(http://nco.sourceforge.net/) component ncks [M] to take the soil moisture, soil 
temperature, and global attributes from the HRRR-based initial conditions (the 
wrfinput* created by Real [K]) and place them in the vLAPS-based initial 
conditions (wrfinput*, which is the wrfvar_output* files output by da_update_bc 
[L]). The resultant initial condition file is the vLAPS wrfinput* file used by WRF 
[Q]. 
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In addition to the observation nudging file (OBS_DOMAIN*) and the initial and 
boundary conditions (wrfinput* and wrfbdy*), we must also produce surface and 
3-D analysis nudging files. These are created from the vLAPS-based met_em* 
files created by Metgrid [N]. Applying Real [O] to these files creates the 3-D 
analysis nudging files (wrffdda*). Using Obsgrid [P] on these met_em* files 
without providing observations to Obsgrid [P] creates vLAPS-based surface 
analysis nudging files (wrfsfdda*) ready for ingestion by WRF [Q]. 

5.  Experimental Design 

A series of experiments (Table 1; Fig. 7) were carried out to investigate the 
potential value of combining the vLAPS and nudging data assimilation 
techniques. The experiments differed in their initial conditions (HRRR, vLAPS, 
or Obsgrid), the length of pre-forecast applied (0, 1, or 3 h), and whether 
observation or analysis nudging was applied. The pre-forecast is used to refer to a 
period at the beginning of the model integration during which 1) observations are 
assimilated or 2) the model is assumed to be spinning up. Assimilation of 
observations taken during the pre-forecast may extend into the beginning of the 
free forecast, but no observations valid during the free forecast should be 
assimilated. However, the analyses being analysis nudged toward here include 
observations valid during the beginning of the forecast period (first 30 min for 
Obsgrid analyses and 15 min for vLAPS analyses). The experiments’ names start 
with text indicating the initial condition source (“HRRR”, “VLAPS”, or 
“OBSGRID”), then the length of the pre-forecast in hours (single integer), 
followed by “O” if observation nudging is applied, and “A” if analysis nudging is 
applied. 

Table 1 Experimental design 

Assimilation Name 
Initial 

Condition 
Source 

Pre-
forecast 

Length (h) 

Nudging 

Analysis Obs 

None HRRR0 HRRR 0 N N 
None HRRR3 HRRR 3 N N 

vLAPS VLAPS0 VLAPS 0 N N 
vLAPS VLAPS1 VLAPS 1 N N 
vLAPS VLAPS3 VLAPS 3 N N 

Obsgrid/Nudging OBSGRID3O OBSGRID 3 N Y 
Partial hybrid VLAPS3O VLAPS 3 N Y 
Partial hybrid VLAPS3A VLAPS 3 Y N 

Full hybrid VLAPS3AO VLAPS 3 Y Y 
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Fig. 7 Schematic showing experimental design. t0 indicates the end of the pre-forecast and 
the beginning of the forecast, and X will vary among model cycles, but all model cycles end 
at 00 UTC. 

The first experiment (HRRR0) serves as a control experiment. It uses HRRR to 
determine initial and boundary conditions and uses neither a pre-forecast nor 
nudging. HRRR3 is similar but includes a 3-h model spin-up time period to 
investigate the potential benefit of a 3-h pre-forecast even if no data assimilation 
is applied. This will also facilitate evaluation of other experiments and whether 
differences between experiments are due to a 3-h data assimilation period or 
simply due to starting the model integration 3 h earlier. 
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The second set of experiments (VLAPS0, VLAPS1, and VLAPS3) uses the 
vLAPS analysis as the initial condition and uses either no pre-forecast spin-up 
period (VLAPS0), a 1-h pre-forecast spin-up period (VLAPS1), or a 3-h pre-
forecast spin-up period (VLAPS3). The VLAPS0 experiment most closely 
matches applications of the vLAPS technique in past studies, but the other 2 
experiments are added here to determine the potential benefit and preferred length 
of a spin-up period; VLAPS3 also facilitates comparison with nudging 
experiments wherein nudging is applied over 3 h.  

OBSGRID3O uses an objective analysis created by Obsgrid (see Section 4.2) as 
initial conditions for WRF and then applies observation nudging also created via 
Obsgrid (see Section 4.1) over the first 3 h. OBSGRID3O matches the data 
assimilation methodology commonly used at ARL. 

The final 3 experiments combine vLAPS analysis with nudging. VLAPS3O uses 
vLAPS to specify the initial conditions and then applies observation nudging over 
the first 3 h. VLAPS3A also uses vLAPS to specify the initial conditions, but also 
analysis nudges toward 15-min vLAPS analyses during the first 3 h (it does not 
apply any observation nudging). VLAPS3AO is the full hybrid experiment 
wherein vLAPS analysis are used to specify the initial conditions and are nudged 
toward during the first 3 h, but the model solution is also observation nudged 
toward observations during these same first 3 h. 

Multiple cycles were completed for each experiment. The 0-h forecast (i.e., the 
beginning of the forecast period) for the first cycle in each experiment is 18 UTC. 
However, the model start time of the first cycle is either 15, 17, or 18 UTC 
depending on the pre-forecast length for that experiment (Table 1). Each cycle of 
each experiment ends at 00 UTC, which means that each experiment has a 6-h 
forecast for the first cycle.  

The beginning of the forecast for the next cycle of each experiment is at 19 UTC, 
and the ending of the forecast is at 00 UTC; thus, each experiment has a 5-h 
forecast. Each cycle used only HRRR output from HRRR integration that begins 
at 15 UTC. The cycles are independent, thus no data from the WRF integration in 
the first cycle are used in the WRF integration in the second cycle. The cycles 
continue until the 23 UTC cycle, which produces a 1-h forecast.  

Each cycle is referred to by the beginning of the forecast period of the cycle (t0 in 
Fig. 7). For example, the VLAPS3 cycle that starts at 16 UTC is referred to as 
VLAPS319 since the first 3 h are pre-forecast (Table 1) and thus the forecast starts 
at 19 UTC. 
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6.  Preliminary Results 

Currently, only a preliminary analysis of the results of these experiments has been 
completed. This technical report is intended primarily to describe the methods 
employed in this study and provide some preliminary results, with a subsequent 
technical report providing a more detailed analysis of the results. 

6.1  Experiment Comparison at Time of Newcastle‒Moore 
Tornado 

At 2015 UTC, the Newcastle‒Moore tornado was at or near its peak strength. As 
part of the preliminary analysis of the experiment results, we investigated 
differences between the experiments at this time. The observed radar composite 
base reflectivity at 2015 UTC (Fig. 8) shows a broken southwest–northeast 
oriented line of strong convection passing through central Oklahoma and 
southeastern Kansas. The Newcastle‒Moore tornado (black “X” in the white 
square) is near the rear of this line. A weak, similarly oriented line of precipitation 
is located over southcentral Kansas. There is also scattered precipitation in 
western Kansas and Oklahoma, and in the portion of southeastern Colorado in the 
domain. 
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Fig. 8 Composite base reflectivity at 2015 UTC. The black X inside the white square 
(near the end of the white arrow) indicates the location of the Newcastle–Moore tornado at 
2015 UTC. Radar reflectivity obtained from Iowa Environmental Mesonet 
(http://mesonet.agron.iastate.edu/GIS/apps/rview/warnings.phtml) and cropped to the 
approximate extent of the WRF-ARW model domain. 

6.1.1  Comparison of Hybrid to Component Techniques 

The first 4 experiments examined represent a control experiment, the 2 components 
of the hybrid, and the full hybrid experiment. Namely, HRRR3 is chosen as the 
control since it contains no data assimilation but has a 3-h pre-forecast to allow 
convection to spin up. VLAPS0 represents the vLAPS component of the hybrid, 
since it represents how vLAPS is usually applied (i.e., with no pre-forecast spin-
up). OBSGRID3O represents the nudging component, with the initial conditions 
enhanced using an objective analysis created by Obsgrid and 3 h of observation 
nudging applied. VLAPS3AO is the full hybrid experiment, incorporating vLAPS 
as the initial conditions, analysis nudging to 15-min vLAPS analyses, and 
observation nudging. We first examine the results from the experiments whose 0-h 
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forecast is at 18 UTC (i.e., HRRR318, VLAPS018, OBSGRID3O18, and 
VLAPS3AO18). 

The model-simulated lowest model level radar reflectivity of all 4 experiments at 
2015 UTC (Fig. 9) generally reproduces the overall structures in the observed 
composite base reflectivity (Fig. 8). In particular, all 4 experiments show the main 
line of convection along the proper alignment, scattered precipitation in the 
northwestern corner of the domain, and some precipitation in the northcentral 
portion of the domain. However, there are significant differences in the details of 
predicted precipitation. 

  

Fig. 9 WRF-ARW lowest model level radar reflectivity at 2015 UTC on 20 May 2013 for 
a) HRRR318, b) VLAPS018, c) OBSGRID3O18, and d) VLAPS3AO18. The location of the 
Newcastle–Moore tornado at 2015 UTC is indicated by the black “X” within the white 
square (in the same location as marked by the arrow in Fig. 8). 
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There is considerable variation among the experiments in the prediction of the 
area of light precipitation observed over southcentral Kansas (Fig. 8; top center of 
plot). HRRR318 (Fig. 9a) and even more so OBSGRID3O18 (Fig. 9c) underpredict 
the coverage of this feature. VLAPS018 (Fig. 9b) predicts 2 roughly parallel lines 
of convection, with the leading line much stronger than the observed structure, 
and the trailing line more scattered than observed. While VLAPS3AO18 (Fig. 9d) 
predicts higher reflectivity than observed and with less coverage than observed, it 
appears to best predict the coverage of this precipitation.  

The portion of the main convective line over southeastern Kansas (Fig. 8) shows 
substantial differences between the experiments. HRRR318 (Fig. 9a) and 
VLAPS018 (Fig. 9b) predict convection that is much more scattered than the 
continuous line observed, although VLAPS018 appears to perform better than 
HRRR318 as it indicates greater coverage than HRRR318. OBSGRID3O18  
(Fig. 9c) predicts stronger convection with much more coverage than HRRR18 and 
VLAPS018 but does not simulate the linear nature of the convection as well as 
VLAPS3AO18 (Fig. 9d).  

Over Oklahoma, the predictions of the main convective line also differ among the 
experiments. Convection extends too far into the northeastern corner of Oklahoma 
in OBSGRID3O18 (compare Fig. 9c to Fig. 8) and VLAPS3AO18 (Fig. 9d). 
HRRR318 (Fig. 9a) and VLAPS018 (Fig. 9b) do not seem to have this issue. Also, 
VLAPS3AO18 also appears to better represent the discrete nature of the 
convection in the main convective line than the other experiment. 

All 4 experiments indicate moist convective elements on the western edge of 
Oklahoma, but radar indicates that this area was free of precipitation at this time 
(Fig. 8). In this case, OBSGRID3O18 (Fig. 9c) predicts weaker convection and 
with less coverage than any of the other experiments, while VLAPS3AO18  
(Fig. 9d) appears to predict less coverage of stronger convection (>30 dBZ) than 
the other 2 experiments (HRRR318 and VLAPS018). 

While all 4 experiments predict a relatively small area of convection in the far 
south of the central portion of the domain (Fig. 9) consistent with observations 
(Fig. 8), some predict convection a couple counties north of this location, which is 
inconsistent with observed radar. VLAPS3AO18 (Fig. 9d) predicts this convection 
to be the most widespread while OBSGRID3O18 (Fig. 9c) also predicts this area 
of convection but forecast that it would not be as strong as indicated by 
VLAPS3AO18. 

These 4 experiments vary in the predictions near the observed location of the 
Newcastle–Moore tornado at 2015 UTC. OBSGRID3O18 (Fig. 9c) shows 
convection just northwest of this location while HRRR318 (Fig. 9a) and 
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VLAPS3AO18 (Fig. 9d) show convection north of this location. VLAPS018  
(Fig. 9b) indicate convection north of this location. VLAPS018 (Fig. 9b) is the 
only experiment that predicts convection at the location of the Newcastle‒Moore 
tornado at this time. 

6.1.2  Comparison between Varieties of Component Techniques 

While the previous section explored the difference between the full hybrid versus 
its components, here we investigate differences between varieties of the 
component techniques that differ in the length of the pre-forecast or on what types 
of nudging are applied. In this section, we again solely examine the cycle with an 
18 UTC 0-h forecast. First, we compare HRRR018 versus HRRR318, then 
VLAPS018 versus VLAPS118 and VLAPS318, and finally VLAPS3AO18 versus 
VLAPS3A18 and VLAPS3O18. 

Comparing the 2 experiments that use neither vLAPS analyses nor nudging 
(HRRR018 and HRRR318) reveals the potential benefit of a 3-h period for the 
model spin-up. The experiments only differ in that HRRR018 starts at 18 UTC, 
whereas HRRR318 starts at 15 UTC and thus contains 3 h (15–18 UTC) during 
which model spin-up can occur. The lowest model level model-simulated 
reflectivity in HRRR018 (Fig. 10b) is very similar to HRRR318 (Fig. 10a) at 2015 
UTC. Without the 3-h spin-up, HRRR018 still reproduces the same overall 
structure of precipitation as HRRR318. However, for the time under evaluation 
(2015 UTC), even though HRRR018 does not have the 15–18 UTC time for spin-
up, it has had just over 2 h to spin up the convection. HRRR018 increases the 
coverage of the precipitation halfway across the northern edge of the domain that 
HRRR318 underpredicted but shows the precipitation as more intense than radar 
indicated (Fig. 10c) and does not extend the convection nearly far enough to the 
southwest. Contrary to observations and HRRR318, HRRR018 produces scattered 
convection between this element (the precipitation halfway across the northern 
edge of the domain) and the widespread scattered convection in the northwest 
corner of the domain. Both experiments fail to reproduce the line of convection 
across southeastern Kansas. In the area of the Newcastle–Moore tornado, moist 
convection is somewhat farther away to the north but much closer to the south in 
HRRR018 as compared to HRRR318. Overall, it is not clear whether HRRR018 or 
HRRR318 performs better at this time. The similarities between HRRR018 and 
HRRR318 are not entirely unexpected since both are initialized using output from 
the same 3-km HRRR simulation and since both experiments are using physics 
options very similar to those used in the HRRR simulation. 
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Fig. 10 WRF-ARW lowest model level radar reflectivity at 2015 UTC on 20 May 2013 for 
a) HRRR318, b) HRRR018, and c) observed base reflectivity composite. The location of the 
Newcastle–Moore tornado at 2015 UTC is indicated by the black “X” within the white 
square. 

The experiments VLAPS018, VLAPS118, and VLAPS318 assist in evaluating 
whether using a more recent vLAPS analysis for initial conditions overwhelms 
whatever benefits are accrued via additional model spin-up time. At the 2015 
UTC time shown, experiments VLAPS018, VLAPS118, and VLAPS318 have 
integrated 2.25, 3.25, and 5.25 h, respectively, after accounting for the varying 
pre-forecast times assigned (0, 1, and 3 h) and the 2.25 h between the 1800 UTC 
start of this cycle and the 2015 UTC time being discussed. The weak line of 
precipitation in central Kansas (extending toward the southwest from the north-
central edge of the observed radar; Fig. 11d) was overpredicted in VLAPS018 
(Fig. 11a), while adding an hour pre-forecast (VLAPS118; Fig. 11b) significantly 
weakened this precipitation, an additional 2 h of pre-forecast (VLAPS318;  

Fig. 11c) results in a structure that better resembles that observed. The line of 
convection in southeastern Kansas becomes better organized with increased pre-
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forecast time and more closely matches the line observed. The southern end of the 
main line of convection varies among the experiments, but it is difficult to 
determine which performs best. The spatial extent of the spurious convection in 
the northwestern portion of Oklahoma appears to be minimized with a 3-h pre-
forecast, although a 0-h pre-forecast outperforms a 1-h pre-forecast. Overall, it 
appears that the 3-h pre-forecast experiment performs best in terms of simulated 
reflectivity at 2015 UTC for the 18 UTC cycle. This suggests the potential 
importance of allowing at least some additional model spin-up time following a 
vLAPS “hot start” analysis. 

 

Fig. 11 WRF-ARW lowest model level radar reflectivity at 2015 UTC on 20 May 2013 for 
a) VLAPS018, b) VLAPS118, c) VLAPS318, and d) observed base reflectivity composite. The 
location of the Newcastle–Moore tornado at 2015 UTC is indicated by the black “X” within 
the white square.  

The next comparison evaluates the relative contributions of the analysis nudging 
versus the observation nudging in the hybrid data assimilation using 3 
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experiments that all are initialized with the vLAPS analysis and include a 3-h pre-
forecast time period with data assimilation. In addition to being initialized with 
the vLAPS analysis, VLAPS3A18 also analysis nudges toward 15-min vLAPS 
analyses during the 3-h pre-forecast. VLAPS3O18 does not perform analysis 
nudging but includes 3 h of observation nudging, while the full hybrid experiment 
VLAPS3AO18 performs both. The full hybrid experiment (VLAPS3AO18;  
Fig. 12a) seems to best reproduce the northern portion of the main line of 
convection (north of Oklahoma), while it and the other analysis-nudging 
experiment (VLAPS3A18; Fig. 12b) both seem to best reproduce the linear 
structure across central Kansas (top-center of plots) compared to the nonanalysis-
nudging experiment (VLAPS3O18; Fig. 12c). However, the nonanalysis nudging 
experiment (VLAPS3O18; Fig. 12c) best minimizes the erroneously predicted 
precipitation in the western edge of Oklahoma. Just south of the southern end of 
the main convective line, VLAPS3AO18 produces a convective element not 
observed (Fig. 12d). While VLAPS3A18 (Fig. 12b) and VLAPS3O18 (Fig. 12c) do 
not predict an area of convection as large as that predicted by VLAPS3AO18, they 
both appear to produce smaller convective cells that appear to be erroneous.  
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Fig. 12 WRF-ARW lowest model level radar reflectivity at 2015 UTC on 20 May 2013 for 
a) VLAPS3AO18, b) VLAPS3A18, c) VLAPS3O18, and d) observed base reflectivity 
composite. The location of the Newcastle–Moore tornado at 2015 UTC is indicated by the 
black “X” within the white square.  

In the region near Moore, VLAPS3AO18 (Fig. 12a) and VLAPS3A18 (Fig. 12b) 
indicate strong convection to the southeast (stronger in VLAPS3AO18), but only 
weaker returns in the immediate vicinity of Moore (also stronger in 
VLAPS3AO18). VLAPS3O18 differs in that it indicates convection either over or 
very close to Moore. Although there are differences between the vLAPS 
experiments with nudging, it is not clear which experiment performs best overall 
at 2015 UTC. 

6.1.3  Comparison of Different Cycles 

Generally, one might expect that forecasts initialized closer in time to an event 
would perform better than forecasts initialized farther in the past, with the caveat 
that sufficient time must be available between the model start and the event for the 
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model to spin-up. This is because the longer the model integrates without the 
benefit of observations to constrain the solution to reality, the longer errors 
introduced by the initial conditions have to grow, and the longer conditions 
influenced by the lateral boundary conditions have to advect to the area of interest. 
Therefore, more precisely, assuming sufficient model spin-up time has already 
occurred, one would expect that over short-term forecasts the longer the model 
integrates without being constrained by observations, the larger the errors in the 
solution. 

The 2015 UTC model-simulated radar reflectivity from 3 HRRR3 cycles are 
compared to the observed radar reflectivity in Fig. 13. Figure 13a shows 
HRRR318 after 3-h of model spin-up (15–18 UTC) and 2.25 h of subsequent 
model integration, Fig. 13b shows HRRR319 after 3 h of model spin-up (16–19 
UTC) and 1.25 h of subsequent model integration, and Fig. 12c shows HRRR320 
after 3 h of model spin-up (17–20 UTC) and 0.25 h of subsequent model 
integration. For HRRR3 these 3 cycles generally show fairly similar solutions at 
2015 UTC. All 3 simulations show the main line of observed convection  
(Fig. 13d), although much too weak in Kansas, scattered convection in the 
northwestern corner of the domain, a too-weak short line in the northcentral 
portion of the domain, and all inaccurately place convection in western 
Oklahoma. None of the cycles place strong convection over Moore at this time. It 
is important to note that HRRR3 does not do any assimilation and that all of the 
cycles of HRRR3 are driven by output from the same HRRR model forecast. 
Therefore, the HRRR3 cycle that integrates the shortest before the 2015 UTC 
time examined here (HRRR320) does not include any newer observations than the 
HRRR3 cycle that integrates longest before 2015 UTC (HRRR318). Thus, it is not 
surprising that more recent cycles do not appear to improve the forecast at  
2015 UTC. HRRR3 does serve an important purpose in the comparison here in 
that it provides context for evaluating other experiments since HRRR3 indicates 
that change in the solution at 2015 UTC is caused solely by initializing using 
HRRR at different times. 
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Fig. 13 WRF-ARW lowest model level radar reflectivity at 2015 UTC on 20 May 2013 for 
a) HRRR318, b) HRRR319, c) HRRR320, and d) observed base reflectivity composite. The 
location of the Newcastle–Moore tornado at 2015 UTC is indicated by the black “X” within 
the white square. 

Unlike the HRRR3 simulations, in VLAPS3 later cycles include newer 
observations and thus hopefully provide better forecasts. The 2015 UTC forecast 
in Fig. 14a for VLAPS318 is based on a WRF simulation started at 15 UTC with a 
vLAPS analysis, integrated 3 h (15–18 UTC) to allow the model solution to spin 
up, and then integrated another 2.25 h to 2015 UTC. VLAPS319 (Fig. 14b) starts  
1 h later, thus the initial conditions include observations that are 1 h more recent 
than VLAPS318, and similarly VLAPS320 (Fig. 14c) includes observations 2 h 
more recent than VLAPS318.  
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Fig. 14 WRF-ARW lowest model level radar reflectivity at 2015 UTC on 20 May 2013 for 
a) VLAPS318, b) VLAPS319, c) VLAPS320, and d) observed base reflectivity composite. The 
location of the Newcastle–Moore tornado at 2015 UTC is indicated by the black “X” within 
the white square.  

Clear variations are seen among the 3 cycles of VLAPS3 discussed here. The 
location of the weak line of precipitation in the northcentral portion of the domain 
(central Kansas) is predicted well in VLAPS318 (Fig. 14a), while the coverage is 
lacking and the intensity is larger than observed (Fig. 14d). However, starting 
with 1-h newer vLAPS analyses (16 UTC analysis in VLAPS319; Fig. 14b) nearly 
removes this line and results in scattered precipitation just west of this, both 
contrary to observations. Moving forward to using the 17 UTC vLAPS analysis 
(VLAPS320; Fig. 14c) allows this line to be re-established but results in a series of 
parallel lines of precipitation. In terms of this line of precipitation initializing 
WRF with an earlier vLAPS analysis (15 UTC) and allowing WRF a longer spin-
up time results in the forecast that best matches the observed nature of this 
precipitation. The northeastern portion of the main line of convection least 
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resembles the continuous line of precipitation observed in the experiment using 
the newest vLAPS analysis (VLAPS320; Fig. 14c). The erroneous area of 
precipitation in westernmost Oklahoma appears to be strongest in the cycle using 
the newest vLAPS analysis (VLAPS320; Fig. 14c). In terms of the location of the 
Newcastle–Moore tornado, all 3 experiments indicate this location is on the 
backside of the line of convection, which is also indicated by radar. VLAPS318 
indicates precipitation at this location, while VLAPS319 and VLAPS320 show a 
line of convection stretching southwest from the main line of convection to just 
north of this location (closer to Newcastle–Moore in VLAPS320 than in 
VLAPS319). Radar (Fig. 14d) indicates a convective element aligned generally 
west-east, with the Newcastle–Moore tornado near the western edge of this 
element. Thus, there are some similarities between the VLAPS3 and radar-
observed representations of the convection in the region of the Newcastle–Moore 
tornado. 

Both VLAPS0 and VLAPS3 are initialized with vLAPS analyses, but VLAPS0 
assigns the 0-h forecast time to the model start time, while VLAPS3 assigns the  
0-h forecast time 3 h after the model start time to allow time for model spin-up. 
Thus, the VLAPS320 forecast at 2015 UTC (Fig. 14c) is initialized with a vLAPS 
analysis at 17 UTC and integrated 3.25 h, while the VLAPS018 forecast at  
2015 UTC (Fig. 15a) is initialized with a vLAPS analysis at 18 UTC and 
integrated 2.25 h. Therefore, Figs. 14 and 15 provide the 2015 UTC forecast by 
WRF simulations initialized with vLAPS analysis at 15 (Fig. 14a), 16 (Fig. 14b), 
17 (Fig. 14c), 18 (Fig. 15a), 19 (Fig. 15b), and 20 UTC (Fig. 15c).  

Encouragingly, the VLAPS020 2015 UTC forecast (Fig. 15c) relatively closely 
matches the radar’s observation at this time (Fig. 15d). Since the vLAPS analyses 
used to initialize the VLAPS0 experiments incorporate radar observations, one 
would expect the very short-term model forecast to closely resemble the radar 
observations if the vLAPS analysis is sufficiently in balance with the model’s 
dynamics and physics. If the vLAPS analysis were substantially out of balance 
with the WRF model’s dynamics and physics, the WRF model solution might 
quickly diverge from observations as large adjustments occur to bring the solution 
in balance with the model’s equations. Thus, the similarity here between model 
and radar suggests that the vLAPS analyses may be in fairly good balance with 
WRF physics and dynamics. However, significant further analysis would be 
necessary to fully address this issue.  
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Fig. 15 WRF-ARW lowest model level radar reflectivity at 2015 UTC on 20 May 2013 for 
a) VLAPS018, b) VLAPS019, c) VLAPS020, and d) observed base reflectivity composite. The 
location of the Newcastle–Moore tornado at 2015 UTC is indicated by the black “X” within 
the white square.  

As the analysis time approaches the forecast time, the secondary line of 
convection, the one in the northcentral portion of the domain, is better predicted. 
However, it appears to be overpredicted even in VLAPS020 (Fig. 15c). The 
northeast portion of the main line of convection is not well simulated in either 
VLAPS018 (Fig. 15a) or VLAPS019 (Fig. 15b), but VLAPS020 does much better. 
The west-to-east oriented convection that spawned the Newcastle–Moore tornado 
is not well-simulated in any of the cycles, even in VLAPS020. The erroneous area 
of convection in far western Oklahoma is predicted in both VLAPS018 and 
VLAPS19, but is omitted in VLAPS20; however, it may be that VLAPS20 has not 
had sufficient time to spin up this convection and thus will predict this convection 
delayed from the other simulations. Contrary to the improvement seen with 
decreasing lead time in most convective elements, the southernmost observed 
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convective element is predicted by VLAPS018, but not by VLAPS019 or 
VLAPS020. Overall, the experiment with the most recent vLAPS analysis appears 
to perform best (VLAPS020), but since the model has only had 15 min of 
integration, it is unclear whether this benefit persists past the beginning of the 
model forecast. 

Because of differences in the data assimilation techniques used by OBSGRID3O 
and VLAPS3/VLAPS0, care must be taken in interpreting comparisons between 
OBSGRID3O and VLAPS3/VLAPS0. OBSGRID3O has the advantage over 
VLAPS3 in that in addition to incorporating observations into its initial conditions 
(via the objective analysis produced by Obsgrid) it also assimilates observations 
through the first 3 h of the model integration. Thus, the newest observations 
assimilated into OBSGRID3O18 are at 18 UTC while the newest observations 
assimilated into VLsAPS318 are at 15 UTC. While VLAPS018 is more comparable 
to OBSGRID3O18 in that both may be using 18 UTC observations, 
OBSGRID3O18 has the advantage of 3 h of model spin-up and application of 
observations to the model solution over 3 h rather than at only the initial time. 
Because of these reasons, one must be careful not to conclude that Obsgrid 
analyses are better than vLAPS analysis solely due to comparisons between 
Obsgrid-initialized and vLAPS-initialized experiments that started at the same 
time (e.g., OBSGRID3O18 and VLAPS318). Ultimately, it is the combination of 
vLAPS analyses and the nudging technique that we hypothesize will create the 
best forecast. 

The OBSGRID3O solution varies among the model start times shown in Fig. 16 
(15 UTC in Fig. 16a, 16 UTC in Fig. 16b, and 17 UTC in Fig. 16c). The modeled 
convection in southeastern Kansas evolves closer to the observed linear structure 
(Fig. 16d) at later forecast start times, while the modeled convection just south in 
northeastern Oklahoma strengthens contrary to the observed gap in the line here. 
Encouragingly, the convection just north of Moore strengthens considerably with 
shorter lead times, so that in OBSGRID3O20, greater than 70 dBZ is simulated 
north of Moore (Fig. 16c). Although the strongest modeled convection is 
somewhat north of the observed storm, this solution is much closer to the 
observed radar reflectivity than earlier cycles. By the OBSGRID3O20 cycle  
(Fig. 16c), a broken line of precipitation in central Kansas forms near the axis of 
the observed line in this region (Fig. 16d), but the modeled line is not as 
continuous and not as wide as the observations. In addition, behind this line 
OBSGRID3O20 erroneously shows a strong line of convection stretching into far 
northern Texas. OBSGRID3O19 and OBSGRID3O20 also show stronger 
convection in the southern quarter of the domain than observed. Also, the 
erroneous area of convection in western Oklahoma simulated in many of the 
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experiments becomes much more prominent with shorter lead time. In general, 
OBSGRID3O appears to simulate overly strong convection at cycles with shorter 
lead times (e.g., OBSGRID3O20) but better simulates the convection in 
southeastern Kansas and in the Moore, Oklahoma, region. 

 

Fig. 16 WRF-ARW lowest model level radar reflectivity at 2015 UTC on 20 May 2013 for 
a) OBSGRID3O18, b) OBSGRID3O19, c) OBSGRID3O20, and d) observed base reflectivity 
composite. The location of the Newcastle–Moore tornado at 2015 UTC is indicated by the 
black “X” within the white square. 

The full hybrid experiment (VLAPS3AO) includes both the vLAPS analysis in 
initial conditions as used by VLAPS3, the observation nudging used in 
OBSGRID3O and VLAPS3O, and the analysis nudging toward vLAPS analyses 
during the first 3 h used in VLAPS3A. VLAPS3AO simulates the northeastern 
part of the main line of convection (in southeastern Kansas) for VLAPS3AO18 
(Fig. 17a), VLAPS3AO19 (Fig. 17b), and VLAPS3AO20 (Fig. 17c), albeit with 
more scattered convection along the axis of the line than observed. VLAPS3AO19 
and VLAPS3AO20 forecast less convection in the portion of the main convective 
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line in far northern Oklahoma than VLAPS3AO18 and more consistent with the 
gap seen in the line in the 2015 UTC radar reflectivity. Overprediction of 
convection in the southern quarter of the domain in VLAPS3AO18 and 
VLAPS3AO19 is improved in VLAPS3AO20. Overall, the VLAPS3AO19 cycle in 
particular overpredicts the coverage of convection. While VLAPS3AO18 predicts 
west-to-east convection just north of the Newcastle–Moore tornado, 
VLAPS3AO19 and VLAPS3AO20 both predict strong convection (~70 dBZ) just 
north of the tornado as part of a southwest-northeast oriented element. These 
cycles in the experiment using vLAPS analysis for initial conditions without any 
nudging (VLAPS319, Fig. 14b; VLAPS320, Fig. 14c) did not produce convection 
close to the Newcastle–Moore tornado as strong as that in VLAPS3AO. 

 

Fig. 17 WRF-ARW lowest model level radar reflectivity at 2015 UTC on 20 May 2013 for 
a) VLAPS3AO18, b) VLAPS3AO19, c) VLAPS3AO20, and d) observed base reflectivity 
composite. The location of the Newcastle–Moore tornado at 2015 UTC is indicated by the 
black “X” within the white square.  
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6.2  Ability of Hybrid to Simulate Strong Moist Convection 

While the previous section focused on comparing different experiments and 
cycles, here we demonstrate the capability of the full hybrid experiment 
(VLAPS3AO) to simulate strong convection. The goal here is not to demonstrate 
that VLAPS3AO simulates the supercell that spawned the Newcastle‒Moore 
tornado consistently with observations, but rather to show that while using the full 
hybrid data assimilation technique, the model can simulate a strong storm with 
features consistent with those expected in strong moist convection. 

The model-simulated radar reflectivity at the lowest model level is shown for 
VLAPS3AO18 at 2015 UTC in Fig. 18 along with the model-simulated wind at the 
lowest prognostic level (≈13 m AGL). Ahead of the main line of convection, 
winds are from the south while behind the line, there is a lot of variation in the 
wind directions. In order for the wind barbs to be legible, only winds from a small 
portion of the model grid points are plotted (the model has 800 grid points in each 
direction). We focus on a storm southeast of the actual location of the Newcastle–
Moore tornado (small white square with black X)—namely, looking at the area 
covered by the white box with horizontal plots and at the west–east line (or 
portions thereof) with cross sections. The zoomed-in view of the lowest model 
level reflectivity and winds (Fig. 19) shows a core of approximately 70 dBZ 
reflectivity within a much larger area of 40+ dBZ reflectivity. A much more 
detailed view of the surface winds is available in this zoomed-in image (Fig. 19) 
compared to the whole domain view (Fig. 18). Here, south winds are seen at the 
surface outside of the storm (southeast corner), with winds flowing strongly away 
from the area with highest reflectivity except on its western side (the wind barbs 
indicate winds of 25+ ms-1 on the east side of this area). An area with slightly 
lower model-simulated reflectivities (peaking in the mid-60s dBZ) is predicted 
just west of the area with maximum reflectivities. 
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Fig. 18 WRF-ARW lowest model level radar reflectivity at 2015 UTC on 20 May 2013 for 
VLAPS3AO18. The location of the Newcastle–Moore tornado at 2015 UTC is indicated by the 
black “X” within the small white square. The large white square indicates the area shown in 
Fig. 19, and the white horizontal line indicates the location of the cross section shown in  
Fig. 20. Each half barb is 2.5 ms-1 and each full barb is 5.0 ms–1. 
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Fig. 19 WRF-ARW lowest model level radar reflectivity at 2015 UTC on 20 May 2013 for 
VLAPS3AO18 zoomed into the area denoted by the white box in Fig. 18. Each half barb is  
2.5 ms–1 and each full barb is 5.0 ms–1. 

A vertical cross section of the storm (Fig. 20) shows 2 narrow cores of high 
reflectivity (~70 dBZ) and some graupel. The stronger and farther eastern core has 
strong vertical motion just east of it; the area of graupel includes the area above 
this updraft. An anvil is also predicted stretching well east of the horizontal extent 
of the storm at ground level. It is difficult to see the full model structure of the 
main storm in this cross section since for clarity wind is plotted at many fewer 
grid points than are present in the model (horizontally wind vectors are plotted 
every ≈5 grid points). 
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Fig. 20 Cross section of VLAPS3AO18 along the white horizontal line in Fig. 18 showing 
winds in the plane (i.e., the model u- and w-component winds since this cross section is along 
the model x-dimension), model simulated radar reflectivity (shaded with a thick white line 
indicating the 0 dBZ isoline and a thin white line indicating the –25 dBZ isoline), and 
graupel mixing ratio (black contours every 3 g kg–1). The thick black line at the bottom of 
the plot indicates the portion of the cross section included in Figs. 21 and 22. Each half barb 
is 2.5 ms–1, each full barb is 5.0 ms–1, and each flag is 25.0 ms–1. 

The model-predicted structure of this storm is seen more clearly in the zoomed-in 
cross section in Fig. 21. Near the surface, just east of the highest reflectivity 
values (i.e., approximately model grid cell 32 in terms of the x-axis label), the 
model predicts strong west winds (≈28 ms–1), consistent with an outflow. About 
10 km farther east (e.g., model grid cell 42), the flow in the transect just above the 
surface reverses from west to east, with the east wind serving as the inflow to a 
strong updraft between model grid cells 38–42. The updraft includes a region with 
weaker echoes than found to the west and to the east, but the magnitude of the 
echoes is still notable. By 7,000 m AGL in the updraft, the reflectivity increases 
to approximately 65 dBZ with an area of graupel and graupel mixing ratios 
exceeding 6 g kg–1 around 8,000 m AGL. Just to the west of the column 
containing the strong updraft with graupel in its upper portion is a column with 
strong reflectivity reaching down to the surface. For grid cells 28–32, 
approximately 70 dBZ reflectivities reach the surface and 3g kg–1 graupel mixing 
ratios reach as low as 2,250 m AGL (graupel mixing ratios of ≥9 g kg-1 are 
forecasted around 7,000 m AGL near grid cell 32) . Reflectivities greater than or 
equivalent to 60 dBZ cover most of the column between 0 and 7,000 m AGL for 
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grid cells 26–32. The main updraft in the storm is strong (Fig. 22), peaking at 
greater than 35 ms–1 around 6,700 m AGL around grid cell 41. There are also 
strong updrafts predicted at the top of the main column with high reflectivities; 
updrafts peak at greater than 35 ms–1 around 9,000 m AGL around grid cell 34.  

 

Fig. 21 Cross section of VLAPS3AO18 along the portion of the cross section in Fig. 20 
indicated by the thick black line along the bottom of that figure. This cross section shows 
winds in the plane (i.e., the model u- and w-component winds since this cross section is along 
the model x-dimension), model-simulated radar reflectivity (shaded with a thick white line 
indicating the 0 dBZ isoline and a thin white line indicating the –25 dBZ isoline), and 
graupel mixing ratio (black contours every 3 g kg–1). Each half barb is 2.5 ms–1, each full 
barb is 5.0 ms–1, and each flag is 25.0 ms–1. 



 

Approved for public release; distribution is unlimited.   

54 

 

Fig. 22 Cross section of VLAPS3AO18 along the portion of the cross section in Fig. 20 
indicated by the thick black line along the bottom of that figure. This cross section shows 
model-simulated radar reflectivity (shaded with a thick white line indicating the 0 dBZ 
isoline and a thin white line indicating the –25 dBZ isoline), and vertical motion (black 
contours every 5 ms–1 with contours representing downward motion dashed). Vertical 
motion ranges from –16 to +38 ms–1 in this cross section.  

VLAPS3AO18 is able to forecast strong moist convection, with elements consistent 
with those expected to be present in strong convection. The reflectivities, horizontal 
wind speed, updrafts, and graupel predicted by the model are consistent elements 
expected in a strong thunderstorm. This example demonstrates the capability of this 
WRF configuration to simulate strong moist convection. 

7.  Summary, Discussion, and Conclusions 

A preliminary analysis of WRF simulations using vLAPS analysis in combination 
with observation and analysis nudging data assimilation suggests potential value 
to this new combination data assimilation method when evaluated for a single 
case. The vLAPS nudging methodology combines 2 data assimilation techniques 
both with limited computational requirements. The methodology leverages the 
ability of vLAPS to create analyses containing in situ and remotely sensed data 
with the ability of nudging to assimilate continuously and gradually. While 
observation nudging can assimilate observations of fields that are prognostic 
fields within the model, it cannot directly assimilate observations of fields such as 
radar reflectivity that are not model prognostic variables; vLAPS can assimilate 
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fields whether or not they are model prognostic variables. Although vLAPS 
accounts for temporal variability among the observations, the resultant analyses 
are normally directly inserted as the model initial conditions; analysis nudging 
allows these analyses to gradually affect the model solution as well as allowing 
the assimilation of a series of vLAPS analyses in a single model integration. The 
gradual assimilation of a series of vLAPS analyses should allow the model initial 
conditions at the end of the assimilation to be more consistent with the model 
dynamics and physics and thus more likely to be retained by the model. 

In this study, the model experiments differed in the source of the initial 
conditions, whether analysis nudging, observation nudging, or neither were 
applied, and the amount of model integration time before the time designated as 
the 0-h forecast (i.e., the length of the model spin-up). For the initial conditions, a 
single cycle of the 3-km HRRR was either used directly, or used as the first-guess 
field for either a vLAPS analysis (variational for some fields) or an analysis 
performed by Obsgrid (modified multiscan Cressman analysis). Experiments 
using analysis nudging nudged toward vLAPS analyses, where experiments using 
observation nudging nudged toward various MADIS observation types. 
Additionally, multiple cycles of each experiment were performed, with a 1-h 
cycle interval and each cycle having no influence on the subsequent cycle. Given 
the 9 experiments and the 6 cycles per experiment, there are a large number of 
model integrations to evaluate, even accounting for the model simulations that 
served as one cycle in one experiment and as another cycle in another experiment. 
The large amount of model output to evaluate requires an objective methodology, 
but here we performed a preliminary subjective analysis by focusing on 
comparing model-predicted reflectivity to observed reflectivity at 2015 UTC. The 
primary goal is to evaluate whether a hybrid data assimilation approach 
combining analysis nudging toward vLAPS analysis and observation nudging 
performs better than either vLAPS or nudging alone. 

The full hybrid experiment (VLAPS3AO) showed promise in its radar reflectivity 
predictions as compared to other experiments. There were indications that 
providing a longer time period for the model to spin up can be beneficial. Overall, 
it was difficult to determine from this limited subjective comparison which 
experiments performed best. It should also be noted that by looking at a single 
output time, we did not consider the potential that experiments might be 
producing convection that appears to be a poor forecast at the time evaluated 
(here 2015 UTC) due to the model forecasting a convective element too early or 
too late. The general consistency among the experiments in the overall forecast 
for moist convection (e.g., the strong south–west to north–east line of 
convection), combined with the significant variations among the forecasts on the 
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details of the convection, appears consistent with the work of Zhang et al. (2015, 
2016) examining predictability for this case. A more quantitative and thorough 
analysis of our WRF simulations is needed to determine the potential value of the 
different assimilation techniques, in light of the limits of predictability suggested 
by Zhang et al. (2015, 2016). 

We also demonstrated the capability of VLAPS3AO to simulate strong moist 
convection. A storm predicted by VLAPS3AO was discussed that included 
various elements associated with strong moist convection. WRF predicted  
70+ dBZ reflectivities, 35+ ms-1 updrafts, and 25+ ms-1 outflow winds at the 
surface, along with predicting graupel in the storm. 

A more objective and complete analysis is required to better characterize the 
relative value of the different assimilation techniques being evaluated in this 
study. Evaluating all cycles of all experiments at all forecast times objectively 
will allow for more definite conclusions to be drawn. Even then, it must be 
remembered that this is a single case, and future work should choose those 
experiments showing the best potential and evaluate them for further cases, 
including cases lacking the strong convection that characterized this case. Also, 
the evaluation of reflectivity fields is particularly difficult, given the strong 
gradients in the field, especially in convective precipitation. Object-based 
methods can provide improved insight during the evaluation of radar-reflectivity 
forecasts but can be challenging and time consuming to apply well. 

In addition to evaluating additional case days, other areas of future research 
would also be beneficial. The analysis nudging toward vLAPS analyses is 
currently limited to the fields WRF has the capability to nudge toward (potential 
temperature, water vapor mixing ratio, and winds). Future work could explore 
analysis nudging toward other fields in the vLAPS analyses (e.g., cloud water 
mixing ratio) to more fully utilize the vLAPS analyses. Other sources of analyses 
to nudge toward could also be explored.  

This report describes the combination of nudging and vLAPS data assimilation 
techniques and provides preliminary results from the application of this technique 
to a single case day. The combination technique shows promise in that it can 
assimilate observations of both prognostic WRF fields (e.g., water vapor, 
potential temperature, and winds) and other fields (e.g., radar reflectivity) and can 
do so in a framework that gradually applies the effects of these observations to the 
model solution which, it is hoped, will allow the model to better retain the 
analyses than if they were inserted into the model at a single time step. Further 
analysis of this case is needed to better understand the value of the combination, 
and further case studies are needed to confirm results from the current study. 
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