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Abstract 
The Berkeley Data Analysis System (BDAS): An Open Source 

Platform for Big Data Analytics 

Ion Stoica, Michael Franklin, Michael Jordan, Armando Fox, Anthony Joseph, 
Michael Mahoney, Randy Katz, David Patterson, Scott Shenker 

UC Berkeley 

While we are awash in a sea of Big Data, this data is only as valuable as the answers it provides. 
Our proposed effort will deliver a modular open-source software stack that can support a new 
generation of large-scale analytic tools that provide answers over arbitrarily large datasets within 
a user's cost, time, and quality constraints. The work will be carried out by Berkeley's AMPLab, a 
research lab consisting of eleven faculty members and over 30 students. AMPLab is currently 
supported by industry affiliates and an NSF Expeditions grant. The work proposed herein is 
distinct from but complementary to the work supported by NSF, and is organized around two main 
goals. 

The first goal is to make the software stack we are currently developing - the Berkeley Data 
Analytic System (BDAS) | more widely usable, so that it can serve as a platform for the broader 
community. As happened with BSD many years ago, and more recently with motes (for sensor-
nets), we believe the availability of a generally applicable and well- supported open-source data 
analytics platform can have a transformative effect on the Big Data research community, creating 
a new level of synergy (through the use of common tools) and participation (by lowering the 
barriers to entry for research groups). To make our current BDAS stack usable by the larger 
community, we need to: (1) re-implement significant portions of the codebases; (2) build a 
sophisticated large-scale debugger; (3) integrate BDAS with commonly used tools; and (4) make 
BDAS much easier to manage. Our current funding does not support these kinds of engineering 
tasks, yet they are exactly what is needed to make BDAS a community-wide platform.  

The second goal is to extend the functionality of BDAS in several key area. In particular, 
we will provide support for: streaming, because many data analysis tasks must process data as it 
arrives, rather than working from previously collected data; sampling, because as datasets grow 
ever larger, we can only process a subset within a given time limit; asynchronous algorithms, 
because they are more efficient to implement and converge faster; and a generalized form of query 
planning that will allow BDAS to make use of a heterogeneous infrastructure and make smart 
tradeoffs between cost, quality, and timeliness. All of these efforts go beyond what was envisioned 
in the NSF project. 
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1 EXECUTIVE SUMMARY 

In most military situations we now have at our disposal an unprecedented volume of data coming 
from ever-increasing variety of sources, ranging from sensors to satellites to social networking 
sites. However, our ability to collect data has far outstripped our ability to process that data into 
useful information. This represents a fundamental challenge because our current data analytic 
techniques simply cannot cope with data at this scale. Turning data into information is how we 
make sense of the world, and it is imperative that we discover how to make sense at scale. 

To meet this challenge, we propose to build the Berkeley Data Analytic System (BDAS). 
BDAS involves rethinking every aspect of the data analytic task with the challenges of Big Data 
in mind. Our preliminary experiences with components of BDAS suggest that such a redesign will 
increase the speed and scalability by an order of magnitude or more. BDAS will also allow flexible 
tradeoffs between time, quality, and cost. As such, BDAS will revolutionize the way data analytics 
is done. 

BDAS will be open-source, with the goal of nucleating a broader community effort in this 
area. BDAS's modular design will mitigate risk and maximize upside by allowing third-party 
components to supply missing functionality and leverage external innovations. We propose a 54-
month effort, with a total cost of $9 million. We expect to have a widely usable system within the 
first year that can serve as the platform for future innovations from other groups as well as our 
own effort. 

2 INTRODUCTION 

Extracting useful knowledge from data has long been one of the grand challenges of computer 
science. Indeed, entire subfields of our discipline, from machine learning to data mining to 
information retrieval to databases, are devoted to this task. While progress along these traditional 
lines of inquiry continues, the more general problem of data analysis is being transformed almost 
beyond recognition by four recent trends, which the popular press lumps together under the term 
Big Data.   

• Cloud computing: No longer do sophisticated data analytic computations require large budgets
and dedicated computational facilities. Instead, warehouse-scale computers (WSCs) provide 
staggering amounts of computational power that can be accessed over the Internet. Anyone with a 
modest budget can run large-scale data analytic computations. 

• Massive and diverse data: The volume of data being put online is staggering. Sensors record
environmental conditions and other quantities at unprecedented levels of detail, and the advent of 
participatory sensing promises to accelerate this trend. Simulations, scientific measurements, 
satellite images, and energy monitors are also providing increasingly detailed datasets. Social 
networks are a rich source of data, and streams of tweets, blogs, photos, and videos identify 
breaking events faster and in more detail than ever before. Companies are recording customer data 
at an increasingly fine granularity, creating both the opportunity and the need for recovering value 
from these large datasets. 

• Diverse and time-sensitive queries: The increasing heterogeneity of the data has led to a far
more diverse set of queries. Thus, data analytics systems cannot be optimized for a narrow set of 
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tasks, but instead must be far more general in nature. In addition, data analysis has become deeply 
entrenched in organizational decision-making, making the timeliness of queries increasingly 
important. 

The explosion of available data means that — in areas as disparate as medicine, business, statecraft, 
and homeland defense — there is an unprecedented opportunity to make data-driven decisions that 
can significantly improve our quality of life. However, the straightforward application of 
previously-existing data analytics technology would not enable users to obtain timely, cost-
effective answers of sufficient-quality.  

Meeting this challenge requires a new data analytics paradigm that involves three dimensions: 

• Algorithms: Improving the scale and efficiency of machine learning (ML) and data analytics
algorithms, while making confidence estimation (“error bars”) an integral part of all aspects of the 
data analytics process. 

• Machines: Creating a more flexible datacenter infrastructure that can apply the huge scale of
WSCs to a wide variety of computational problems while lowering the cost of using those 
resources. 

• People: Leveraging human activity and intelligence to deal with cases that are ML-hard (i.e.,
cases where automated data analysis on its own does not produce a high-confidence answer). 

Our research summarized in this report is part of a larger effort that we call the Algorithms, 
Machines and People (AMP) Project.  Rather than viewing these three research thrusts as 
independent and abstract, the AMP project will bring them together to develop a unified 
architecture.  The goals of this seedling project are: 1) to better understand the requirements of 
such a system, 2) to develop an initial proposal for such an architecture, and 3) to build and 
experiment with prototypes of some of the key components of the architecture.   

An important part of this project is an open-source software stack known the Berkeley Data 
Analytics System (BDAS), which we will briefly describe below.  

Before doing that, however, we should note that, while the popular coverage of Big Data has 
focused mostly on the size of the data, we see the requirements for a large scale analytics system 
such as BDAS as arising from four separate factors: the size of datasets, the rate of growth of those 
datasets, the heterogeneity and variable quality of data, and the resulting diversity of queries. 

• The size of datasets: WSCs will be necessary to handle the sheer volume of data, but WSCs scale
through the use of parallelism – using both multiple machines (on the order of tens of thousands) 
and multiple cores per machine (soon to reach dozens) – so data analysis algorithms must be 
rethought and rewritten to leverage extreme degrees of parallelism and powerful languages and 
tools must be provided to implement these algorithms.  

• The growth of datasets: For many datasets, the rate of growth far exceeds the cost-performance
improvements in computation and storage; while it is easy to tap additional data sources, it is hard 
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to know what data can be safely thrown away, so dataset growth is typically accelerating (i.e., the 
rate at which datasets grow is increasing). The important implication of this dataset acceleration is 
that no matter what the absolute size of an initial dataset, users are forced to devote an ever-
increasing share of their resources to storing and analyzing their data.  

• Heterogeneity and variable quality of data: A challenge that may be even more fundamental than
size and growth is the heterogeneous, incomplete, and often conflicting nature of data. Such “dirty” 
data will soon become the norm, not the exception, because data is now coming from a wide variety 
of sources, leading to significant duplication and overlap, as well as variations in schemas, quality, 
and provenance.  

• Diversity of queries and users: The factors outlined above mean that datasets will support a wide
variety of queries, and this poses two challenges. First, it is hard to provide reasonable error bounds 
over a broad class of queries, where testing many hypotheses is likely to turn up a false positive 
because by chance one hypothesis happens to show success on that particular dataset. Second, with 
data analytics being applied to many new problems across a range of scales and domains, a variety 
of computational methods must be used.  

WSC programming models prior to our project target relatively small classes of analytics tasks 
and users, and we must define more general datacenter programming abstractions in order to cope 
with the increasing diversity of tasks. For example, Pregel analyzes graphs, Map Reduce/Hadoop 
has rather limited flexibility, and more recent programming frameworks – such as Dryad and 
HaLoop – while more flexible than previously widely-used frameworks, still fall far short of what 
is needed.   

Thus, while the size of Big Data is a major concern, there are other important considerations: the 
growth of data makes the Big Data problem universal, the dirtiness of data challenges traditional 
notions of data integration, and the diversity of queries and users raises the need for a more flexible 
and powerful computational framework. All of these issues must be considered in the design and 
development of the BDAS system.  

3 METHODS, ASSUMPTIONS, AND PROCEDURES 

This project included both a basic research component as well as a full development and 
deployment component, including open source implementations of the basic research component. 
State-of-the-art methods were used that included: requirements analysis, component specification, 
rapid prototyping and measurement on cloud-based infrastructure such as Amazon Web Services 
and local clusters as well as crowdsourcing platforms such as Amazon Mechanical Turk, and a 
home-grown system we developed called CrowdDB.  Details are provided in the next section as 
appropriate under different results. 
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4 RESULTS AND DISCUSSIONS 

4.1 Software: A High-Level Architecture for BDAS 

The software stack developed is known as BDAS.  BDAS, the Berkeley Data Analytics Stack, is 
an open source software stack that integrates software components being built by the AMPLab to 
make sense of Big Data.  BDAS consists of the components shown below.   More details on many 
of these components are described in the following sections. 

In addition to BDAS, the AMPLab has released additional software components useful for 
processing data.  For example: 

• AMPCrowd: A RESTful web service for sending tasks to human workers on crowd
platforms like Amazon’s Mechanical Turk. Used by the SampleClean project for context-
heavy data cleaning tasks.

4.2 Community 

More generally, AMPLab has been engaged in aggressive outreach, training, and communication 
to develop a user community around our software products.  Examples of this include the 
following: 

• Software project Meetups – Help organize monthly developer meetups around BDAS
components. Check out the Spark/Shark meetup group, the Mesos meetup group, and the
Alluxio meetup group

http://amplab.github.io/ampcrowd
http://sampleclean.org/
http://www.meetup.com/spark-users/
http://www.meetup.com/Distributed-data-processing-with-Mesos/
http://www.meetup.com/alluxio/
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• AMP Camp “Big Data Bootcamp” – Two days packed full of software system intros,
demos and hands-on exercises. Aims to bring practitioners with no prior experience up to
speed and writing real code with real advanced algorithms.

• Support – Unlike many research software prototypes that never see production use, we
support BDAS software components by actively monitoring and responding on developer
and user mailing lists.

4.3 Alluxio (formerly Tachyon), a Memory Speed Virtual Distributed Storage System 

As datasets continue to grow, storage and networking pose the most challenging bottlenecks for 
many workloads. To address the bottleneck, we developed Alluxio (formerly known as Tachyon), 
a memory-centric, fault-tolerant virtual distributed storage system. With Alluxio, any application 
can access any data from anywhere. Any application can store any data to anywhere. 

Alluxio is memory centric — not just memory only — and its tiered storage feature means it can 
access any storage media. Because Alluxio provides a storage unification layer through an API, 
applications can access any underlying persistent storage and file systems. Alluxio supports any 
big data framework (Apache Spark, Apache MapReduce, Apache Flink, Impala, etc.) with any 
storage system or file system (Alibaba OSS, Amazon S3, EMC, NetApp, OpenStack Swift, Red 
Hat GlusterFS, and more), running on any storage media (SSD, HDV, DRAM, etc.). 

The Alluxio project is open source (Apache 2 license) and is already deployed in production clouds 
on Petabyte-scale workloads. The project is the storage layer of the Berkeley Data Analytics Stack 
(BDAS) and also part of the Fedora distribution. Collaborating with our industry partners, the lab 
is continuously enhancing the system and developing exciting things around it. 

For more information, please visit the Alluxio Website. The source code can be obtained from the 
project’s Github. We also host regular meetup at the Bay Area. The project is commercially backed 
by Alluxio, Inc. 

4.4 Cancer Tumor Genomics: Fighting the Big C with the Big D 

It may have been true once that expertise in computer science was needed only by computer 
scientists. But Big Data has shown us that’s no longer the case. The war against cancer is 
increasingly moving into cyberspace, and it is entirely possible that we have the skill sets needed 
now to fight cancer. 

The cost of turning pieces of DNA into digital information has dropped more than a hundredfold 
in the last three years.  Given such dramatic improvement, we could soon afford to sequence the 
genomes of the millions of cancer patients, which only billionaires could afford just a few years 
ago. To make personalized medicine affordable for everyone, we need to drive down the 
information processing costs. 

AMP technology could help. The war needs new algorithms to find those needles in haystacks that 
could help cancer patients find effective therapies based on their genetics. To process genome data 

http://ampcamp.berkeley.edu/
http://alluxio.org/
http://alluxio.org/
https://github.com/Alluxio/alluxio
http://www.meetup.com/Tachyon/
http://www.alluxio.com/
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faster and more cheaply, the war needs new infrastructure to use many machines in the cloud 
simultaneously. And it needs to be able to engage the wisdom of the crowd when the problems of 
cancer genome discovery and diagnosis are beyond our algorithms and machines. 

The Cancer Tumor Genome project has already had a breakthrough that creates full genomes by 
aligning reads from sequencing machines 10 to 100 times faster. 
This project is guided by the following observation: 

“Given that millions of people do have and will get cancer, if there is a chance that computer 
scientists may have the best skill set to fight cancer today, as moral people aren’t we obligated to 
try?” 

To learn more, see this essay from the New York Times. 

4.5 CoCoA: A Framework for Distributed Optimization 

A major challenge in many large-scale machine learning tasks is to solve an optimization objective 
involving data that is distributed across multiple machines. In this setting, optimization methods 
that work well on single machines must be re-designed to leverage parallel computation while 
reducing communication costs. This requires developing new distributed optimization methods 
with both competitive practical performance and strong theoretical convergence guarantees. 
CoCoA is a novel framework for distributed computation that meets these requirements, while 
allowing users to re-use arbitrary single machine solvers locally on each node. 

4.6 Concurrency Control for Machine Learning 

Many machine learning (ML) algorithms iteratively transform some global state (e.g., model 
parameters or variable assignment) giving the illusion of serial dependencies between each 
operation. However, due to sparsity, exchangeability, and other symmetries, it is often the case 
that many, but not all, of the state-transforming operations can be computed concurrently while 
still preserving serializability: the equivalence to some serial execution where individual 
operations have been reordered. 

This opportunity for serializable concurrency forms the foundation of distributed database 
systems. In this project, we implement updates in ML algorithms as concurrent transactions in a 
distributed database. As a result, we achieve high scalability while maintaining the semantics and 
theoretical properties of original serial algorithm. 

ML algorithms that have been implemented using concurrency control include non-parametric 
clustering, correlation clustering, submodular maximization, and sparse convex optimization. 

4.7 CrowdDB – Answering Queries with Crowdsourcing 

CrowdDB uses human input via crowdsourcing to process queries that neither database systems 
nor search engines can adequately answer. It uses SQL both as a language for posing complex 
queries and as a way to model data. While CrowdDB leverages many aspects of traditional 

http://amplab.cs.berkeley.edu/projects/snap/
http://www.nytimes.com/2011/12/06/science/david-patterson-enlist-computer-scientists-in-cancer-fight.html
http://www.nytimes.com/2011/12/06/science/david-patterson-enlist-computer-scientists-in-cancer-fight.html
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database systems, there are also important differences. Conceptually, a major change is that the 
traditional closed-world assumption for query processing does not hold for human input. From an 
implementation perspective, human-oriented query operators are needed to solicit, integrate and 
cleanse crowdsourced data. Furthermore, performance and cost depend on a number of new factors 
including worker affinity, training, fatigue, motivation and location. 

CrowdDB is being researched and built in collaboration with researchers at ETH Zurich.   An 
overview paper is available here.  CrowdDB wins the Best Demo award at VLDB 2011. 

4.8 DNA Processing Pipeline 

Another effort related to genomics underway at the AMP Lab involves developing a variant calling 
pipeline.  Variant calling is the process of translating the output of DNA sequencing machines, 
short reads, to a summary of the unique characteristics of the individual being sequenced, 
variants.  Variants are reported as differences between the individual and a reference genome. 

SNAP, another AMP Lab project, is the first step of this pipeline.  SNAP performs sequence 
alignment, whereby each short read is assigned a location of the reference genome which it closely 
matches.  The rest of the variant calling pipeline combines the information scattered through the 
aligned reads into a complete picture of the individual’s unique genome. 

A second is a new format for storing genomic in called ADAM. ADAM is a cluster friendly storage 
format for genetic information that embraces modern systems technology to accelerate other steps 
of the genomic processing software pipeline. For example, ADAM executes two of the most 
expensive steps 110 times faster using an 82-node cluster. 

Another expensive step in a genomics pipeline is identifying the differences between the standard 
human reference and each person, named variant calling. Alas, it is slow, taking hundreds of hours 
per genome. Papers proposing new variant callers typically use unique data sets and metrics, as 
genetics benchmarks do not exist. Hence, an important question for pipelines is performance; i.e., 
how accurate are the variants that they call? This is difficult to determine when it is applied to real 
data, since we don’t know the ground truth. Thus, we are developing a suite of benchmarks for 
evaluating variant calling pipelines called. SMaSH, which is a variant calling benchmark suite 
with appropriate evaluation metrics. As there is no real ground truth for genetics—the technology 
cannot yet specify 3B base pairs perfectly—it is trickier than in CS. Just as CS fields accelerate 
when benchmarks are embraced, we hope that SMaSH will accelerate variant calling. 

This pipeline is an important part of our effort regarding cancer genomics.  To analyze a tumor 
and identify important mutations that are relevant to choosing a treatment, the raw output of a 
DNA sequencing machine must be processed via this pipeline. 

4.9 DNA Sequence Alignment with SNAP 

As the cost of DNA sequencing continues to drop faster than Moore’s Law, there is a growing 
need for tools that can efficiently analyze larger bodies of sequence data. By mid-2013, sequencing 
a human genome is expected to cost $1000, at which point this technology enters the realm of 

http://www.cs.berkeley.edu/%7Efranklin/Papers/CrowdDBSigmod11.pdf
http://en.wikipedia.org/wiki/Reference_genome
http://amplab.cs.berkeley.edu/projects/snap
http://bdgenomics.org/
http://smash.cs.berkeley.edu/
http://amplab.cs.berkeley.edu/projects/cancer-genomics
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routine clinical practice. For example, it is expected that each cancer patient will have their genome 
and their cancer’s genome sequenced. Assembling and interpreting the short read data produced 
by sequencers in a timely fashion, however, is a significant challenge, with current pipelines taking 
thousands of CPU-hours per genome. 

Here, we address the first and most expensive step of this process: aligning reads to a reference 
genome. We present the Scalable Nucleotide Alignment Program (SNAP), a new aligner that is 
10-100x faster and simultaneously more accurate than existing tools like BWA, Bowtie2 and 
SOAP2. Unlike recent aligners that use graphical processing units (GPUs), SNAP runs on 
commodity processors. Furthermore, whereas existing fast aligners limit the number and types of 
differences from the reference genome they allow per read, SNAP supports a rich error model and 
can cheaply match reads with more differences. This gives it up to 2x lower error rates than current 
tools and lets it match classes of mutations, such as longer indels, that these tools miss. 

SNAP is open source on the SNAP homepage. A technical report on the algorithm is also 
available.  SNAP is a joint project with Microsoft Research and UC San Francisco. 

4.10 GraphX: Large-Scale Graph Analytics 

Increasingly, data-science applications require the creation, manipulation, and analysis of large 
graphs ranging from social networks to language models.  While existing graph systems (e.g., 
GraphBuilder, Titan, and Giraph)  address specific stages of a typical graph-analytics pipeline 
(e.g., graph construction, querying, or computation), they do not address the entire pipeline, 
forcing the user to deal with multiple systems, complex and brittle file interfaces, and inefficient 
data-movement and duplication. 

The GraphX project unifies graphs and tables enabling users to express an entire graph analytics 
pipeline within a single system.  The GraphX interactive API makes it easy to build, query, and 
compute on large distributed graphs.  In addition, GraphX includes a growing repository of graph 
algorithms for a range of analytics tasks.  By casting recent advances in graph processing systems 
as distributed join optimizations, GraphX is able to achieve performance comparable to specialized 
graph processing systems while exposing a more flexible API.   By building on top of recent 
advances in data-parallel systems, GraphX is able to achieve fault-tolerance while retaining in-
memory performance and without the need for explicit checkpoint recovery. 

GraphX is available as part of the Spark Apache Incubator project as of version 0.9.0, and the 
active research version of GraphX can be obtained from the GitHub project page. 

4.11 KeystoneML 

KeystoneML is a research project exploring techniques to simplify the construction of large scale, 
end-to-end, and machine learning pipelines. 

KeystoneML is designed around the principles of composability and modularity, and presents a 
rich set of operators including featurizers for images, text, and speech, as well as general purpose 
statistical and signal processing tools including large scale linear solvers. The software also 

http://snap.cs.berkeley.edu/
http://snap.cs.berkeley.edu/
http://arxiv.org/abs/1111.5572
https://amplab.cs.berkeley.edu/projects/graphx/
https://spark.incubator.apache.org/
http://amplab.github.io/graphx/
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provides several example pipelines that reproduce state-of-the-art academic results on public data 
sets. 

KeystoneML is open source software built on Apache Spark. You can find more information and 
examples on the project webpage, and contribute to the code on Github. 

4.12 MDCC: Multi-Data Center Consistency 

MDCC (Multi-Data Center Consistency) is a project to efficiently achieve stronger consistency 
for databases deployed across several different data centers. MDCC has two main components: A 
new Service-level-objective aware programming model which empowers the developer with more 
information about the transaction, and a new latency-aware commit protocol which commits most 
transactions with a single round trip message delay.  Visit the MDCC webpage for more details! 

4.13 Mesos – Dynamic Resource Sharing for Clusters 

Mesos is a cluster manager that provides efficient resource isolation and sharing across distributed 
applications, or frameworks. It can run Hadoop, MPI, Hypertable, Spark (a new framework for 
low-latency interactive and iterative jobs), and other applications. Mesos is open source in 
the Apache Incubator. 

More information and downloads can be found on the Mesos homepage. 

4.14 MLbase: Distributed Machine Learning Made Easy 

Implementing and consuming Machine Learning techniques at scale are difficult tasks for ML 
Developers and End Users. MLbase is a platform addressing the issues of both groups, and consists 
of three components: MLlib, MLI, and ML Optimizer. 

For more details, please visit http://mlbase.org. 

4.15 PIQL – Scale Independent Query Processing 

PIQL is a SQL like language that uses a new scale independent optimization strategy to execute 
relational queries while maintaining the performance predictability and scalability provided by 
distributed key/value stores.  Scale independent optimization guarantees that all queries will 
perform a bounded number of storage operations independent of the size of the underlying 
database.  PIQL employs language extensions, query compilation technology, automatic 
materialized view selection and response-time estimation to provide scale independence.   

More details can be found in our VLDB2012 paper. 

4.16 Real Life Datacenter Workloads 

How do we ensure that AMP Lab works on important and immediate problems? One of many 
ways is to look at real life workloads from our industry partners and their customers. 

http://spark.apache.org/
http://keystone-ml.org/
http://github.com/amplab/keystone
http://mdcc.cs.berkeley.edu/
http://mdcc.cs.berkeley.edu/
http://hadoop.apache.org/
http://www.mcs.anl.gov/research/projects/mpich2
http://hypertable.org/
http://www.spark-project.org/
http://incubator.apache.org/
http://www.mesosproject.org/research.html
http://mlbase.org/
http://www.eecs.berkeley.edu/%7Emarmbrus/papers/piql.vldb12.pdf
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AMP Lab is fortunate to have under our analysis the activity logs of real life, front line systems of 
up to 1000s of nodes servicing 100s of PB of data. As of early 2012, these logs include Hadoop, 
Dryad, enterprise network storage, and other similar systems, from Cloudera, Facebook, Google, 
Microsoft, Netapp, and Twitter. 
 
We view it as a part of our academic contribution to 

• Scientifically understand these workloads, 
• Improve large scale systems according to empirical behavior, 
• Share our insights with the research community, 
• Help our industry partners innovate on design and performance, and ultimately 
• Train ourselves to be knowledgeable on using big data to improve the society at large. 

 
Selected publications heavily influenced by real-life workloads (in reverse publication order): 

• Interactive Analytical Processing in Big Data Systems: A Cross Industry Study of 
MapReduce Workloads (in press) 

• Understanding TCP Incast and Its Implications for Big Data Workloads 
• PACMan: Coordinated Memory Caching for Parallel Jobs 
• Energy Efficiency for Large-Scale MapReduce Workloads with Significant Interactive 

Analysis 
• Design Implications for Enterprise Storage Systems via Multi-Dimensional Trace Analysis 
• The Case for Evaluating MapReduce Performance Using Workload Suites 
• Disk-Locality in Datacenter Computing Considered Irrelevant 
• Design and Evaluation of a Real-Time URL Spam Filtering Service 
• Scarlett: Coping with Skewed Popularity Content in MapReduce Clusters 
• Mesos: A Platform for Fine-Grained Resource Sharing in the Data Center 
• Dominant Resource Fairness: Fair Allocation of Multiple Resources Types 
• Reining in the Outliers in MapReduce Clusters using Mantri 
• Privacy Settings in Context: A Case Study using Google Buzz 

 
4.17 SampleClean: Fast and Accurate Query Processing on Dirty Data 

 
In emerging Big Data scenarios, obtaining timely, high-quality answers to aggregate queries is 
difficult due to the challenges of processing and cleaning large, dirty data sets. To increase the 
speed of query processing, there has been a resurgence of interest in sampling-based approximate 
query processing (SAQP). In its usual formulation, however, SAQP does not address data cleaning 
at all, and in fact, exacerbates answer quality problems by introducing by sampling error. We 
explore the use of sampling to actually improve answer quality. We introduce the Sample-and-
Clean framework, which applies data cleaning to a relatively small subset of the data and uses the 
results of the cleaning process to lessen the impact of dirty data on aggregate query answers. 
 
More details and downloads can be found on the SampleClean homepage. 
 
 
 

https://amplab.cs.berkeley.edu/projects/publication/the-case-for-evaluating-mapreduce-performance-using-workload-suites/
http://amplab.cs.berkeley.edu/publication/disk-locality-in-datacenter-computing-considered-irrelevant/
https://amplab.cs.berkeley.edu/projects/publication/design-and-evaluation-of-a-real-time-url-spam-filtering-service/
http://amplab.cs.berkeley.edu/publication/scarlett-coping-with-skewed-popularity-content-in-mapreduce-clusters/
https://amplab.cs.berkeley.edu/projects/publication/mesos-a-platform-for-fine-grained-resource-sharing-in-the-data-center/
https://amplab.cs.berkeley.edu/projects/publication/dominant-resource-fairness-fair-allocation-of-multiple-resources-types/
https://amplab.cs.berkeley.edu/projects/publication/privacy-settings-in-context-a-case-study-using-google-buzz/
http://sampleclean.org/
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4.18 Spark – Lightning-Fast Cluster Computing 
 
Spark is an open source cluster computing system that aims to make data analytics fast — both 
fast to run and fast to write.  To run programs faster, Spark provides primitives for in-memory 
cluster computing: your job can load data into memory and query it repeatedly much quicker than 
with disk-based systems like Hadoop MapReduce.  To make programming faster, Spark integrates 
into the Scala programming language, letting you manipulate distributed datasets like local 
collections. You can also use Spark interactively to query big data from the Scala interpreter. 
 
More details and downloads can be found on the Spark homepage. 
 

4.19 Sparrow: Low Latency Scheduling for Interactive Cluster Services 
 
The Sparrow project introduces a distributed cluster scheduling architecture which supports ultra-
high throughput, low latency task scheduling. By supporting very low-latency tasks (and their 
associated high rate of task turnover), Sparrow enables a new class of cluster applications which 
analyze data at unprecedented volume and speed. The Sparrow project is under active 
development and maintained in our public GitHub repository. 
 

4.20 Splash: Efficient Stochastic Learning on Clusters 
 
Splash is a general framework for parallelizing stochastic learning algorithms (SGD, Gibbs 
sampling, etc.) on multi-node clusters. It consists of a programming interface and an execution 
engine. You can develop any sequential stochastic algorithm using the programming interface 
without considering the underlying distributed computing environment. The only requirement is 
that the base algorithm must be capable of processing weighted samples. The parallelization is 
taken care of by the execution engine and is communication efficient. Splash is built on Apache 
Spark and is closely integrated with the Spark ecosystem. 
 
On large-scale datasets, Splash can be substantially faster than existing data analytics packages 
built on Apache Spark. For example, to fit a 10-class logistic regression model on the mnist8m 
dataset, stochastic gradient descent (SGD) implemented with Splash is 25x faster than MLlib’s L-
BFGS and 75x faster than MLlib’s mini-batch SGD for achieving the same accuracy. All 
algorithms run on a 64-core cluster. To learn more about Splash, visit the Splash website or read 
our paper. 
 

4.21 Succinct: Enabling Queries on Compressed Data 
 
Web applications and services today collect, store and analyze an immense amount of data. As 
data sizes continue to grow, the bottlenecks in systems for big data analytics have undergone a 
fundamental change. In particular, with memory bandwidth and CPU performance growing at a 
rate much faster than the bandwidth between CPU and slower storage devices (SSD, disk, etc.), 
existing big data systems are increasingly bottlenecked by I/O. These I/O bottlenecks are (and will 
continue to be) getting worse! 
 

http://www.scala-lang.org/
http://www.spark-project.org/research.html
https://github.com/radlab/sparrow
https://spark.apache.org/
https://spark.apache.org/
http://www.csie.ntu.edu.tw/%7Ecjlin/libsvmtools/datasets/multiclass.html#mnist8m
http://www.csie.ntu.edu.tw/%7Ecjlin/libsvmtools/datasets/multiclass.html#mnist8m
https://spark.apache.org/docs/latest/mllib-optimization.html#l-bfgs
https://spark.apache.org/docs/latest/mllib-optimization.html#l-bfgs
https://spark.apache.org/docs/latest/mllib-optimization.html#gradient-descent-and-stochastic-gradient-descent
http://zhangyuc.github.io/splash/
http://arxiv.org/abs/1506.07552
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A fundamental approach to alleviating the I/O bottlenecks is to use data compression. Traditional 
compression techniques have led to significant gains in terms of storage costs, energy costs, 
and performance for a wide variety of batch processing jobs. These techniques have also been used 
for reducing I/O bottlenecks in columnar stores with significant performance improvements for 
OLAP workloads that typically require scanning the entire dataset. 

However, the aforementioned compression and query execution techniques are unsuitable for a 
wide variety of workloads that do not necessarily require data scans (e.g., point queries). One 
example is search, a fundamental primitive supported by many web applications and services. 
Examples include Facebook search, Twitter search, LinkedIn search, airline and hotel search, and 
services that are specifically built around search (Google, Bing, Yelp, to name a few). Another 
example is random access as typically performed via get interface in key-value stores, NoSQL 
stores, document stores, etc. Queries in such workloads are often short-lived (ideally sub-
millisecond), and data scans and/or decompression are not useful for such short-lived queries. 
Given the large number of applications that run such workloads, we at AMPLab decided to take a 
stab at this problem and asked the following fundamental question: 

Is it possible to execute point queries (e.g., search and random access) directly on compressed data 
without performing data scans? 

Exploring the above question led to the Succinct project! At a high-level, Succinct enables a wide 
range of queries including search, range and wildcard queries over arbitrary strings as well 
as random access into the input data directly on a compressed representation of the input. What 
differentiates Succinct from previous systems that support point queries is that Succinct supports 
these queries without storing any indexes, without data scans and without data decompression — 
all the required information is embedded within the compressed representation and queries are 
executed directly on the compressed representation. 

On real-world and benchmark datasets, Succinct can execute sub-millisecond search queries while 
keeping as much as an order of magnitude more input data in faster storage compared to state-of-
the-art systems that provide similar functionality using indexes. For example, on a server with 
128GB RAM, Succinct can push as much as 163 — 250GB of raw data, depending on the dataset, 
while executing search queries within a millisecond. Thus, Succinct executes more queries in 
faster storage, leading to lower query latency than existing systems for a much larger range of 
input sizes. 

For more information on Succinct — techniques, tradeoffs and benchmark results— see the 
Succinct webpage. A good place to start experimenting with Succinct is Succinct on Apache Spark, 
an Apache Spark package that enables queries directly on compressed RDDs. There are a large 
number of interesting follow up projects in AMPLab on Succinct exploring the fundamental limits 
to querying on compressed data, adding new applications on top of Succinct, and improving the 
performance for existing applications. We will write a lot more about these very exciting projects 
on Succinct webpage. 

http://rainstor.com/compression-tames-big-data-on-hadoop/
http://conferences.sigcomm.org/sigcomm/2010/papers/green/p23.pdf
http://blog.cloudera.com/blog/2009/12/7-tips-for-improving-mapreduce-performance/
http://search.fb.com/
https://twitter.com/search-advanced?lang=en
https://amplab.cs.berkeley.edu/projects/succinct-enabling-queries-on-compressed-data/www.linkedin.com/search
http://succinct.cs.berkeley.edu/
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4.22 Velox: Models in Action 
 
To support complex data-intensive applications such as personalized recommendations, targeted 
advertising, and intelligent services, the data management community has focused heavily on the 
design of systems to support training complex models on large datasets. Unfortunately, the design 
of these systems largely ignores a critical component of the overall analytics process: the 
deployment and serving of models at scale. We present Velox, a new component of the Berkeley 
Data Analytics Stack. Velox is a data management system for facilitating the next steps in real-
world, large-scale analytics pipelines: online model management, maintenance, and prediction 
serving. Velox provides end-user applications and services with a low-latency, intuitive interface 
to models, transforming the raw statistical models currently trained using existing offline large-
scale compute frameworks into full-blown, end-to-end data products. To provide up-to-date results 
for these complex models, Velox also facilitates lightweight online model maintenance and 
selection (i.e., dynamic weighting). Velox has the ability to span online and offline systems, to 
adaptively adjust model materialization strategies, and to exploit inherent statistical properties 
such as model error tolerance, all while operating at “Big Data” scale. 
 
Check out the code on Github or our paper in CIDR 2015. 
 
5 CONCLUSIONS  
 
At the AMPLab, we have developed methods to help turn data into knowledge, thereby making 
sense of the world around us.  Computer science is now on the verge of a new era in data analysis 
because of several recent developments, including: the rise of the warehouse-scale computer 
(WSC), the massive explosion in online data; the increasing diversity and time-sensitivity of 
queries; the advent of crowdsourcing; and so on.  Together these and other trends — often referred 
to collectively as Big Data — have the potential for ushering in a new era in data analysis; but to 
realize this opportunity requires us to confront several significant scientific challenges.  These 
challenges include that: the programming environments developed for these WSCs are only 
effective on a narrow range of tasks; massive data typically come from diverse sources with no 
common schema and are of variable quality; we need far more flexible, scalable, and tunable 
analysis algorithms so that, over a wide range of queries, explicit tradeoffs can be made between 
delay, cost, and quality-of-answer.  Meeting these and other challenges require an entirely new 
approach that transcends and reshapes disciplinary boundaries.   The AMPLab was a five-year 
collaborative effort at UC Berkeley, involving students, researchers and faculty from a wide swath 
of computer science and data-intensive application domains to address the Big Data analytics 
problem.  We have made major advances that have been widely adopted.    
  

https://github.com/amplab/velox-modelserver
http://arxiv.org/abs/1409.3809
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