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1 Summary 

1.1 Purpose, Scope, and Organization 
The objective of the effort performed was to support the DARPA XDATA program by 
developing computational techniques and software tools for analyzing large volumes of 
data, both semi-structured (e.g. tabular, relational, categorical, metadata) and 
unstructured (e.g. text, documents, message traffic). The scope included development, 
testing, and exercise support for technologies to advance the areas of scalable analytics 
and data processing technologies and visual user interface technologies. Focus was on 
being able to use an accessible language like Python, which domain experts can easily 
learn, for these technologies to enable large scale data science applications creation 
without requiring expert knowledge in the underlying technologies. 
 
The Continuum effort was primarily composed of three teams aligned to the underlying 
projects. 

• Blaze (later spawned Dask): Provide Python users with a familiar interface to 
query data living in a variety of other data storage systems. One Blaze query can 
work across data ranging from a CSV file to a distributed database.  

• Numba: JIT compiler for NumPy-specific and generic Python allowing Python 
code to run at near native speeds on CPUs and GPUs. 

• Bokeh (later spawned Datashader): Rich data-driven apps and plots in the web 
without requiring a user to know Javascript, CSS, or HTML. 

1.2 Problem Under Investigation 
The research performed under this program focused on the following problems facing 
researchers needing to access and process large amounts of data. 
 

• Easy expression of computation kernels and data transformations on large 
datasets in order to allow analysts and scientists to productively write robust and 
efficient code, without getting bogged down in the details of how to distribute 
computation, or worse, how to transport and convert data between databases, 
formats, proprietary data warehouses, and other silos.  

• A mechanism for referencing remote data sources, and seamlessly merge views 
of remote data with local data  

• Shift modern, large scale computing from service oriented architectures that pull 
data around into different computing and business object silos into a data 
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oriented architecture where data is described in formats where it lives and 
moving computation to the data. 

• Scaling Python up and out to support processing big data workloads so the many 
researches who know and use Python can easily take advantage of modern 
processors, GPUs, and cluster technologies. 

• A method to allow creating interactive web applications without requiring 
knowledge and expertise of web technologies. 

 

1.3 Principal Results and Conclusions 
Development of techniques and tools for using a higher level, accessible language like 
Python for large scale data science applications is a fruitful area of research. As the 
research and software created under this program show it is possible to create libraries 
and tools for reading, processing, and creating interactive visualizations of big data 
workloads without requiring domain experts to learn other lower level languages such 
as C or C++. Several technologies were developed during the course of the program: 
 

• Bokeh provides a means to create rich, interactive, data driven web applications 
without requiring the user to learn web-specific technologies such as javascript 
and CSS. 

• Numba allows Python users to effectively use the processing power on a given 
machine and to speed up Python to speeds approaching Fortran and C and to 
run the code on CPUs and GPUs, including remote, with speedups of 2x to 250x 
over native Python or NumPy code. 

• Blaze is an “interface” to data systems, somewhat like dplyr for R, for describing 
structured data, querying that data on various backends, moving data between 
formats, and remotely executing queries. 

• Dask parallelizes Python using a distributed scheduler. To make it easier to 
adopt, Dask extends NumPy, Pandas, and Scikit-Learn with parallel variants, 
which allows users of those libraries to use Dask without having to learn a new 
API. Additionally, Dask parallelizes generic code without requiring the code’s 
author to deal with the intricacies of multithreading their data processing pipeline. 

• Datashader is a companion package for Bokeh that renders arbitrarily large data 
into fixed-size images. Datashader provides the ability to interact with data in a 
visual manner for hundreds of millions of points on a laptop. 
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1.4 Recommendations 
The team sees a number of areas for future research and development that would 
support processing, analyzing, and making decisions on ever increasing amounts and 
types of data. For Bokeh and Datashader, further work on native graph support, easy to 
use integration for streaming data, support for tiling and partitioning large data, and 
support for GPU dataframes,would be valuable for an existing and growing user base. 
For Blaze, Dask, and Numba further work on supporting new hardware technologies, 
support for complex machine learning algorithms, support for disparate data, and an 
easy extension mechanism could produce promising advances.  
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2 Introduction 
Python is one of the most popular languages for scientific and data analysis, largely 
because of the existence of NumPy, SciPy, and the broad and diverse ecosystem of 
libraries and tools built on them. Not only has Python made large inroads into many 
traditional industries with heavy computational needs, such as Finance and Oil & Gas, it 
is also one of the most popular languages for web application development and system 
administration and monitoring. 
 
The goal of this XDATA project was to create an accessible, expressive language for 
analysts and visualization designers to create novel ways of looking at complex data. 
Additionally, the project sought to generalize and extend NumPy, Python's extremely 
popular array library, to handle out-of-core computations on large data that exceed the 
system memory capacity, as well as distributed and streaming datasets. 
 
This report covers the technology developed by Continuum Analytics under the XDATA 
program and is targeted toward managers and technical managers. Each of the key 
technologies will be covered divided by the areas and the current project name for each 
component. Introduction will touch on the high level technology and the Results and 
Discussion will provide more detail on the technology along with some of its uses to 
date. This report will end with some recommendations on areas that the team has 
identified as fruitful for further exploration and development. 

2.1 Visualization 
The principal innovation in Bokeh is the integration of scene-graph style construction 
with Grammar of Graphics style abstract specification.  Scene graph style construction 
is effective at direct configuration and constructing reusable components.  However, it is 
difficult to do more abstract manipulation, such as controlling coordinate spaces or 
presenting semantic transformations.  Grammar of Graphics style languages essentially 
trade these attributes.  They excel at high-level transformations, but are extremely 
awkward at detailed definitions and customization.  Properly blending the two brings the 
power of both together.  This enables abstract, high-level definitions (through GoG style 
declarations) with composition and customization that scene graphs provide. 
 
Bokeh's render information feedback loop is a significant innovation. Providing rich 
information about the rendering status back to the analysis system will enable many 
interesting visualization tools.  Bokeh is designed with extension and integration derived 
from the lessons learned around Stencil, D3, and Protovis. One significant lesson 
learned from these earlier projects is how to treat different types of data structures.  In 
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conjunction with the Blaze project, Bokeh includes integration with the specific 
characteristics of multiple underlying data structures. 
 
The Datashader pipeline is another significant innovation, providing a way to build 
accurate visualizations and deliver them interactively without causing issues with local 
clients or narrowband remote connections.  The result will allow web browsers to 
visualize data many orders of magnitude larger than would otherwise be possible, while 
still allowing detailed interactive control. 

2.2 Out-of-core, and Beyond 

Blaze extends NumPy's successful model of array-oriented programming to out-of-core 
and distributed data.  It provides a generic n-dimensional array/table object, a very-
general data-type descriptor for all kinds of data but especially semi-structured, sparse, 
and columnar data, and a generalized calculation engine that can iterate over the array 
and dispatch to low-level kernels selected via the dynamic data typing mechanism.  This 
allows analysts and scientists to productively write robust and efficient code, without 
getting bogged down in the details of how to distribute computation, or worse, how to 
transport and convert data between databases, formats, proprietary data warehouses, 
and other silos. 
 
All of the core functions in Blaze and its support system of numerical libraries 
manipulate this multidimensional array and build expression graphs behind the scenes 
as the user is writing familiar Python code.  At evaluation time, these expression graphs 
are dynamically assembled to vectorized and optimized machine code via the Low 
Level Virtual Machine (LLVM) library via Numba.  Such robust dynamic compilation 
(especially with auto-parallelization) is only possible because the Blaze array object is a 
sufficiently rich description of the data layout that allows fast, a priori reasoning about 
code dispatch and memory and disk access. 
 
Additionally, and more importantly, Blaze provides a mechanism for referencing remote 
data sources, and seamlessly merging views of remote data with local data. Its compute 
graphs and dynamic scheduler and compiler will be able to reason about what 
computations to distribute to remote data, and what reductions can be used to minimize 
data movement.  This ability to richly reference remote data in a generic way is 
analogous to how the URI scheme for HTML allowed the creation of unified hypertext 
documents that incorporated a broad set of hypermedia of any form.  Likewise, Blaze 
arrays and tables can be composed of data compiled from disparate, remote sources.  
This mechanism forms the basis of a true "data web". 
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As data has become so large, moving the data to compute resources has become a 
very expensive operation. A goal of this work is to shift modern, large scale computing 
from service oriented architectures that pull data around into different computing and 
business object silos into a data oriented architecture where data is described in 
formats where it lives, and code is brought to the data.  Dask parallelizes Python using 
a distributed scheduler and, along with Numba, provides a high-level interface for users 
which allows domain experts to execute their code at hardware accelerated speeds 
across multiple machines. This allows them to be productive in producing solutions 
without feeling like they are giving up performance.  

3 Methods, Assumptions, and Procedures 
An open source development model was used for the research. All work was performed 
in open repositories with frequent builds. Following the open source development model 
team members presented and participated in some of the key conferences focused on 
Python and data science, including SciPy, PyCon, PyData, and Strata. Feedback from 
these conferences, as well as from users of the software, were used for real world 
feedback on direction. The usage by these open source consumers made it possible to 
use the technologies on very disparate workloads which helped uncover key features 
and performance bottlenecks to address. Additionally, participation in XDATA 
“hackathons” and “challenges” provided additional large scale problems that were used 
to identify additional features that would be beneficial to support. All work was tracked 
as issues in the respective GitHub repositories, all of which are public repositories.  
 

● Blaze GitHub repository: https://github.com/blaze/blaze 
● Numba GitHub repository: https://github.com/numba/numba 
● Dask Github repository: https://github.com/dask/dask 
● Bokeh Github repository: https://github.com/bokeh/bokeh 
● Datashader Github Repository: https://github.com/bokeh/datashader  

https://github.com/blaze/blaze
https://github.com/numba/numba
https://github.com/dask/dask
https://github.com/bokeh/bokeh
https://github.com/bokeh/datashader
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4 Results and Discussion 

4.1 Bokeh 

 
Figure 1 - Some Bokeh Graphs 

 
Bokeh is a platform for creating visualizations and data applications that targets modern 
browsers for presentation. It provides a means to create rich, data driven web 
applications without requiring the user to learn web-specific technologies such as 
javascript and CSS. With Bokeh users can create interactive visualizations for their 
data, like Shiny does for R users, but now able to exploit the rich ecosystem of data-
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processing tools only available for Python. Higher level portions of Bokeh allow easy 
creation of plots and visualizations that can be customized. For truly unique 
visualizations, users can use lower level building blocks to create whatever they can 
envision. Bokeh supports streaming data and can easily create interactive, responsive 
plots with 100,000 points. Interactive Bokeh plots can be displayed with any modern 
browser and can be run with or without the Bokeh Server component. Bokeh Server 
works with Bokeh widgets to allow the user to perform actions, written in Python, based 
upon user input in the browser, such as selecting values from a dropdown that change 
the data being displayed or applying a different algorithm to the data. Some of the 
features and capabilities that Bokeh supports are: 
 

● Interactive visualization, widgets, and tools 

● Versatile and high-level graphics 

● Streaming, dynamic, large data 

● For the browser, with or without a server 

● Across multiple languages (Python, R) 

● No JavaScript 

4.1.1 Concentrate on Your Work 
The main practical problem that Bokeh aims to solve for scientists, data scientists, and 
analysts is one of productivity. How to enable these groups to concentrate on the actual 
problems in front of them (instead of extraneous “web tech”) and stay productive with 
the tools and workflows they already have. In short, it aims to stay out of the way. 
Bokeh allows both standalone documents and server applications to be created and 
shared easily: 
 

● Completely written in Python, no HTML or CSS or “webapp” coding  

● Simple python scripts, no special classes of frameworks 

● Useful for exploratory analysis or sharing and publishing 

● Automatically mirrors and synchronizes Python and browser state 

● Connect the full PyData stack to interactive web apps 

In the case of standalone documents (i.e. without a Bokeh server) simple python scripts 
can be used to generate plots easily. Even though these plots are “standalone’ or ‘static’ 
in the sense that they have no need for Python once generated, they can still have 
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many interactive elements: tools for panning, zooming, hover tooltips for detail, and 
linked interactions. A small example is shown below: 
 

 

 
Figure 2 - Bokeh Interactive Visualization 

 
Bokeh also provides an optional server that can be used to develop rich and interactive 
data applications inside modern browsers using a live Python process. These 
applications can have all the usual tools available to standalone documents, but can 
additionally connect UI and tool events to real Python code. In this way the full 
ecosystem of Python data analytics packages (e.g. Pandas, scikit-learn, etc.) is 
available to drive and inform these applications in the browser. A small gallery of such 
apps can be seen at http://demo.bokehplots.com 
 

 
Figure 3 - http://demo.bokehplots.com 

 

http://demo.bokehplots.com/
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Writing such apps does not require creating or learning any special classes or 
framework, and can often be accomplished in a few dozen lines of code. The full source 
code for the “sliders” demo is shown below: 
 

import numpy as np 
from bokeh.io import curdoc 
from bokeh.layouts import row, widgetbox 
from bokeh.models import ColumnDataSource, Slider, TextInput 
from bokeh.plotting import figure 
 
x = np.linspace(0, 4*np.pi, 200) 
y = np.sin(x) 
source = ColumnDataSource(data=dict(x=x, y=y)) 
 
plot = figure(title="my sine wave", tools="pan,reset,save,wheel_zoom", 
              x_range=[0, 4*np.pi], y_range=[-2.5, 2.5]) 
 
plot.line('x', 'y', source=source, line_width=3, line_alpha=0.6) 
 
def update_title(attrname, old, new): 
    plot.title.text = text.value 
 
text = TextInput(title="title", value='my sine wave') 
text.on_change('value', update_title) 
 
def update_data(attrname, old, new): 
    a = amplitude.value 
    b = offset.value 
    w = phase.value 
    k = freq.value 
 
    x = np.linspace(0, 4*np.pi, 200) 
    y = a*np.sin(k*x + w) + b 
 
    source.data = dict(x=x, y=y) 
 
offset = Slider(title="offset", value=0.0, start=-5.0, end=5.0, step=0.1) 
amplitude = Slider(title="amplitude", value=1.0, start=-5.0, end=5.0) 
phase = Slider(title="phase", value=0.0, start=0.0, end=2*np.pi) 
freq = Slider(title="frequency", value=1.0, start=0.1, end=5.1) 
for w in [offset, amplitude, phase, freq]: 
    w.on_change('value', update_data) 
 
inputs = widgetbox(text, offset, amplitude, phase, freq) 
 
curdoc().add_root(row(inputs, plot, width=800)) 
 

Bokeh apps often follow this simple pattern: set up data and plots, add widget and 
callbacks, finally place things inside a layout for display.  
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4.1.2 Implementation 
At a high level, Bokeh consists of a sophisticated Javascript library (named "BokehJS"), 
whose data models are designed to be reflected by parallel libraries in data analysis 
languages.  These user-facing libraries, for instance Bokeh.py and rbokeh, are able to 
generate declarative JSON models of the data visualization, which then drives the 
BokehJS runtime to materialize the actual graphic in the HTML DOM of the web page. 
The Document class is a container for Bokeh Models to be reflected to the client side 
BokehJS library. This contains all the necessary information to render layouts and plots. 
 
 

 
Figure 4 – Simplified Bokeh Document Representation 

 
The optional Bokeh Server allows plots to be updated "live" from Python or R code, with 
changes reflected in the client-side web page. The Bokeh server automatically sends 
changes to the Document to the client browser to be rendered. 
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Figure 5 - Bokeh Server - Client Sync 

 
When there are multiple clients connected, each client is given a unique Document 
instance. This prevents actions being performed by one client impacting the other 
clients. 
 

 
Figure 6 - Bokeh Server with Multiple Browsers 
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4.1.3 Lessons Learned 
 
Over the course of developing Bokeh, three main lessons were realized: 

4.1.3.1 Always Send Explicit Models 
 
As mentioned above, Bokeh documents consist of collections of models that represent 
elements of a plot or application. There is a 1-1 correspondence between Python model 
objects and BokehJS model objects, expressed by a JSON representation that both 
sides can understand. Early in Bokeh development, there were instances where some 
BokehJS models did not have full Python counterparts. Instead, some ad-hoc collection 
of property values was mapped internally to a set of BokehJS objects. In every instance, 
this practice eventually proved problematic and limiting in some way. Now, the project 
maintains full 1-1 parity for all models.   

4.1.3.2 Splitting Datashader 
 
The original project vision for Bokeh included handling large datasets directly. This 
functionality was briefly and partially implemented in a sub-component called Abstract 
Rendering, whose code was coupled very tightly to the rest of the BokehJS codebase. 
This proved difficult to manage, as well as difficult to develop and test. Eventually this 
functionality was split off into the Datashader project (described separately). Separating 
things into two projects allowed for independent, de-coupled development with defined 
interfaces for integration. This has proved beneficial for both projects, leading to a 
simpler codebase for Bokeh and close integration between Datashader and the 
separate HoloViews projects, which allows Datashader to be used easily in both Bokeh 
and Matplotlib.  

4.1.3.3 Migrating Server to Tornado 
 
The original Bokeh server was implemented using Flask, and stored JSON 
representations of Bokeh documents in a Redis database. This architecture proved to 
be problematic in a number of ways. It did not scale well, as it required explicit 
replication to Redis. It was difficult to support across platforms, as Redis is not 
supported or easily available for Windows. Finally it did not perform well. The REST 
approach did not offer any real path towards streaming protocols, and the constant 
marshalling and unmarshalling to and from Redis added a great deal of overhead.  
 
For Bokeh 0.11 a new second-generation Bokeh server was introduced. It was based 
on Tornado, which uses a pure websocket protocol. Documents for active sessions are 
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simply stored in memory (as opposed to memory and a backing store) which makes the 
system much more horizontally scalable. Additionally the websocket protocol was more 
performant and also provided avenues for even further optimizations such as efficient 
binary encodings and streaming protocols. 

4.1.4 Future Direction 
 
Many of the original large-scale goals of the project have been attained, and we are 
looking forward to a 1.0 release in 2017. There is still a great deal of polish and bug-
fixing yet to to do, but the list of larger tasks that are “must have” for a 1.0 release is 
now short: 
 

● Migrate BokehJS to TypeScript 
 
BokehJS was originally written in CoffeeScript, which facilitated rapid 
development, especially by the initial core developers who largely had mostly 
Python experience. However, for long term stability and maintenance, TypeScript 
offers advantages that are especially useful in a cross-language, cross-runtime 
project, where accurate exchange of type information is crucial.  
 

● Increase WebGL coverage 
 
 Bokeh currently has limited WebGL support for a subset of glyphs. Extending this 

to include patches would allow Bokeh to be more useful for larger geographical 
and map type plots. 

 
● Support for scripted animations and visual transitions 

 
 Bokeh supports animation through server updates to data sources, including an 

efficient streaming protocol. However there are cases where users would like 
lighter weight solutions purely in the browser, or solutions that offer very smooth 
intermediate transitions between visual states. 

 
● Static image (PNG) generation  

 
A long-requested feature, necessary for anyone wanting to include static images 
of Bokeh plots in presentations or spreadsheets or anywhere JavaScript 
execution is not an option. This work is currently funded and ongoing, based on 
Selenium, PhantomJS, and eventually Chrome Headless. It is scheduled for 
inclusion in a mid-2017 release.  

https://www.typescriptlang.org/
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● Network/Graph capabilities 

 
 Another long-requested feature. This work is also funded and ongoing. The 

support will be split between Bokeh (for small graphs) and Datashader (for large 
graphs). The Bokeh component will see the addition of a new data source and 
renderer specific to network and graph data, with layout either supplied up front 
from the Python API, or computed in the browser dynamically. 

 

4.2 Numba 
Numba is a function-at-a-time, Just-in-Time (JIT) compiler for the standard Python 
interpreter (AKA “CPython”).  Numba was spun out of the Blaze project into a separate 
effort in order to specifically tackle the difficult problem of compiling complex 
expressions and user-defined functions operating on NumPy arrays to efficient machine 
code.  Frequently, developers would need to switch to other languages, such as C or 
FORTRAN, to achieve high performance on numerical algorithms.  Numba enables 
nearly the same level of performance, and in many cases even higher performance, to 
be achieved with standard Python functions that have been explicitly designated for 
compilation.  At runtime, Numba will compile the desired functions when they are first 
called, specializing the machine code for the specific data types used in the call.  If the 
function is called again with a different set of input data types (as is quite common in a 
dynamically typed language like Python), Numba will compile another machine code 
implementation, and dispatch to the correct version on subsequent calls. 
 
Numba is implemented as a library that can be loaded by programs running in the 
CPython interpreter and does not replace the interpreter itself.  Its current focus is to 
target a Python subset that makes heavy use of NumPy arrays and numeric scalars in 
loops.  Numba uses the type and memory layout information stored in the NumPy array 
header to generate specialized machine code for each operation.  As Numba continues 
to develop, the supported subset of the Python language and standard library data 
types is expanding.  Numba currently has support for the following Python language 
features: 

● int, float, bool, complex, tuple, and enum types 
● Support for lists and sets of a single element type 
● Standard operators and control flow constructs 
● Raising exceptions and asserts 
● Generators 
● Recursion (in most cases) 
● Calling ctypes-wrapped C functions 
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● Random number generation 
 
Numba was initially developed to optimize the inefficient use-cases of NumPy.  This 
includes iterative functions that need to access individual array elements, which Numba 
can typically speed up by a factor of 100x or more.  However, Numba can also translate 
a regular Python function into a special kind of function called a “universal function” in 
NumPy.  Universal functions define an operation on scalar elements (or smaller 
dimensional arrays) that are implicitly broadcast over all elements of input arrays using 
standard rules.  This allows the same function to be used with scalar inputs, input arrays 
of the same shape, or even input arrays of dimensionality in some cases.  Most of the 
math functions in NumPy are in fact universal functions.  Before Numba, the only way to 
create a fast universal function was to write it in some compiled language, like C.  Due 
to the explicitly parallel nature of universal functions, Numba can also automatically 
generate multi-threaded or GPU-accelerated implementations of universal functions 
with very little user intervention. 
 
One novel feature of Numba is its support for targeting different hardware.  It currently 
provides an NVIDIA GPU back-end, and there is a experimental support for AMD GPUs 
as well.  Rather than attempt to create a portable execution model supported by all 
targets, Numba directly exposes the execution model of each GPGPU architecture to 
Python.  Users who wish to use the GPU (aside from the universal function support 
noted above) need to tailor their code to the specific features and performance 
characteristics of each GPU architecture.  Numba also provides access to platform 
specific operations, such as thread barriers and atomic operations on GPGPU targets.  
This allows GPU-accelerated algorithms to be developed very rapidly within a Python 
application, while still achieving high performance in the generated GPU machine code. 

4.2.1 Implementation 
Unlike most JIT compilers for interpreted languages, Numba does not perform tracing 
nor replace the interpreter.  Instead, it relies on the user actively transforming the 
Python functions that need compiling at runtime.  In Python, this is done by applying a 
decorator to the function: 
 

@jit 
def example(a, b): 
    acc = 0.0 
    for a_i, b_i in zip(a, b): 
        if a_i > b_i: 
            acc += a_i 
    return a_i 
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The decorator replaces the original Python function with a special object that just-in-time 
compiles the function when it is first called with a new type signature.  To relieve user 
from the burden of explicit type annotation, Numba inspects the types of the arguments 
and performs local type inference on the function.  As a result, the compiler can have 
accurate type information for each value in the function without tracing the execution. 
 
The full compiler pipeline is shown below: 

 
Figure 7 - Numba Compiler Pipeline 

 
The bytecode of the input Python function is analyzed and translated to a Numba-
specific internal representation (“Numba IR”) which undergoes type inference.  After 
type inference, certain language constructs, such as array expressions, are rewritten to 
simplify later compilation stages.  After rewriting, the Numba IR is translated through a 
process called “lowering” to a low-level machine code form that is specialized for the 
actual data types present in the function. 
 
The lowered form of the function is represented using the LLVM intermediate 
representation language (“LLVM IR”).  LLVM is a very popular open source compiler 
framework with broad industry support, including Intel, AMD, IBM, NVIDIA, Apple, and 
many other companies.  As a result, LLVM can generate machine code for a wide range 
of CPU and GPU architectures, which allows Numba to support many platforms.  The 
Numba-generated LLVM IR is just-in-time translated to machine code, cached, and 
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executed.  The complexity of the compilation process means that the first execution of a 
function is fairly slow, but subsequent execution are extremely fast.  Users can mitigate 
the compilation time using some of the caching or ahead-of-time compilation features in 
Numba. 
 
Numba’s support for targeting both CPU and GPU hardware is novel among Python 
compilation projects.  Numba currently provides a NVIDIA CUDA GPU back-end using 
the NVVM library, and an AMD GPU backend using the ROCm libraries. Both NVVM 
and ROCm provide vendor-specific versions of LLVM with additional support for their 
hardware. 
 

4.2.2 Lessons Learned 
Python is a challenging language to compile due to its dynamic nature.  The data type 
associated with a variable can change during execution, functions can freely operate on 
any data type, and functions and types themselves can even be modified during 
execution.  This flexibility is what makes Python a very productive language, but in 
practice most code within an application does not take advantage of all the dynamic 
properties of Python.  For example, a given function could operate on any data type, but 
in a particular application might only operate on 1 dimensional floating point arrays.  
This is the situation where type-specializing compilation, as provided by Numba, can be 
hugely beneficial.  In addition, these core algorithms tend to be the sections of a 
program where most execution time is spent, and therefore compilation will improve the 
application’s runtime the most if applied there. 
 
As a result of these observations, Numba’s current design is very conservative, 
compared to other projects.  Numba compilation is opt-in; the user must indicate which 
functions should be compiled, and users are encouraged to only target functions which 
constitute the bulk of the runtime.  Numba also will only generate efficient type-
specialized code if the entire function can be compiled this way.  For greater 
predictability, the current Numba releases will not flip between unoptimized and 
optimized code within the same function, as previous versions of Numba did.  Switching 
in and out of the optimized code generation mode within a function made the compiler 
very complex, and resulted in some cases with code that ran slower than the original, 
uncompiled version.  For scientific use cases, it was decided that it was much better for 
Numba to have a narrower scope of supported Python language features but to be able 
to always generate efficient code for functions that fell within that scope.  Future 
versions of Numba may allow greater mixing of optimized and unoptimized code paths, 
but for now the more limited scope has helped users achieve predictable results. 
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In addition, by limiting Numba’s scope to primarily numerical algorithms and basic 
language constructs, Numba was able to be ported to both CPU and GPU targets much 
more easily.  It is very difficult to port a compiler based on tracing, as is done in many 
Javascript runtimes, as well as the PyPy JIT compiler for Python, to support compilation 
for coprocessor-type hardware like a GPU. 
 

4.3 Blaze 
The Blaze project is an ecosystem of packages that help users describe, transform, and 
query data.  Python has become an extremely popular language for data science due to 
its ease with which a user can combine different software packages into an analysis.  
Blaze strives to improve that capability, but for combining different data sources.  
External constraints (and performance requirements) seldom allow all data in an 
organization to be centralized into single data store with a single computational API.  
Instead, data scientists will frequently have to move between systems, local and 
remote, SQL and non-SQL based.  Blaze introduces interfaces for data types and 
expressions on data that simplify moving between data stores.  In addition, Blaze 
includes an array server that serves up data from any of the data store backends Blaze 
understands to clients using a single JSON-based web API. 
 
Blaze began with the goal of making NumPy & Pandas more scalable.  Tackling this 
problem requires a multipronged approach, with a strong need for separation of 
concerns.  In many ways, Blaze has been successful as an incubator and inspiration for 
a wide range of spinoff projects: 

● Numba (for compilation of Python expressions) 
● Dask (for distributed and out-of-core computing) 
● Datashape (for portable description of data) 
● Odo (for easy translation between data formats) 

Numba and Dask are described in other sections of this document, so this section will 
focus on Datashape, Blaze and Odo. 

4.3.1 Datashape 
Datashape is a grammar for describing array-like data in-situ, without requiring data to 
be translated into a single canonical form.  Ideally, any data source should be able to 
describe its contents using datashape, which enables the rest of the Blaze ecosystem to 
understand the field names, field types, nested structures, array dimensions and array 
shapes of a data set.  The grammar is designed to be human readable, though in most 
cases it is machine-generated.   
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An example datashape describing the records for 100 people would look like: 
 
100 * { 
    name: string, 
    birthday: date, 
    address: { 
        street: string, 
        city: string, 
        postalcode: string, 
        country: string 
    } 
} 
 
This demonstrates how datashape can represent nested structures, such as 
address.street within arrays.  Multidimensional arrays are represented by separating 
multiple shapes with the asterisk symbol, such as in: 
 
5 * 10 * 20 * int 

 
which describes a 3 dimensional integer array (5 by 10 by 20).  Datashape can express 
all of the following type concepts: 

● Scalar types: fixed size signed and unsigned integers, floats, complex numbers 
and booleans 

● Unicode and byte strings, dates, times 
● Optional types (value could be null or None) 
● Records (collections of named fields) 
● Multidimensional arrays of fixed shape, or ragged arrays 

4.3.2 Blaze Core 
The Blaze package provides a data() constructor that takes a URI description of a data 
source (such as a filename, like iris.csv, or a URI for a remote service, like 
postgresql://username:password@hostname:port), and returns a Blaze data 
object.  Blaze has support for a wide variety of backends including CSV, SQL 
databases, AWS S3, AWS Redshift, JSON, Redshift, HDF5, Hadoop, Hive, Spark, 
MongoDB, and SAS. 
 
This object can then be used in Blaze expressions, which will filter, group, and 
transform the data to a result in memory when executed.  Blaze expressions are lazy, 
which means they do not evaluate until the entire computation has been described.  
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This allows the Blaze backends to move the computation to execute on the data source 
(as in the case of a SQL database), which is typically much more efficient than bringing 
all the data to the client and performing the operations locally.  Blaze Expressions can 
include operations like: 

● Projection: extract a subset of columns 
● Selection: extract a subset of rows 
● Arithmetic: math operations on values 
● Split-apply-combine: similar to group-by operations in databases 
● Join: combine two datasets using common columns 

4.3.3 Blaze Server 
The Blaze Server is a lightweight web application that exposes Blaze data objects to 
clients using a JSON-based protocol.  This allows an administrator to create a data 
catalog out of a possibly heterogeneous collection of data sources.   For example, a 
single Blaze server could serve up a mixture of CSV files, SQL databases, and 
MongoDB databases using a common interface.  In addition, any client computation 
done on Blaze data sources without built-in compute capabilities (such as plain data 
files) will be performed on the server, rather than on the client.  This reduces the 
compute requirements of the client dramatically. 

4.3.4 Odo 
Odo is a subproject of Blaze allows data to be easily transformed from one format to 
another, or one data storage server to another.  Internally, odo takes a set of known 
conversion operations (such as CSV->Pandas Dataframe) and builds a conversion 
graph: 
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Figure 8 - ODO Format Conversion Graph 

Then Odo can transform any format to any other format by finding the least expensive 
path through the conversion graph connecting the two formats together, even if no 
direct conversion method is known. 
 

4.4 Dask 
Dask grew out of Blaze development.  When developing a unified front-end for array 
computing it became clear that out-of-core and distributed multi-dimensional array 
backends were lacking.  Dask started as an out-of-core multi-dimensional NumPy 
library.  Multi-dimensional array algorithms were more complex than traditional 
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MapReduce-style algorithms and so we had to build a more general purpose task 
scheduler.  It quickly became apparent that this task scheduler was useful for more 
applications than just arrays, so parallel dataframes and generic APIs for parallel 
computing quickly followed. 
 
Experiences with Blaze encouraged us to keep the scope of Dask small and to remove 
barriers to adoption like a new user API, exotic dependencies, and new type systems.  
From a user’s perspective, Dask introduces very few new concepts and so is easy to 
integrate into existing workloads without significant proselytizing on our part.  It copies 
existing APIs from NumPy, Pandas, Scikit-learn, concurrent.futures, etc. and uses 
existing data structures.  This allowed a user community to come online within a short 
time and start valuable feedback cycles which improved the design and led to 
unforeseen advantages. 
 
Dask enables parallel computing for Python libraries.  It has been used both to provide 
parallel variants of popular libraries like NumPy and Pandas and to build completely 
new parallelized libraries and solutions.  It is in wide use today within the PyData open 
source ecosystem, empowering data scientists from a number of disciplines. 
 
Dask is composed of two components: 

1. At its core, Dask is a dynamic task scheduler optimized for computational 
workloads. Dask runs small tasks / functions on data on parallel hardware.  It 
tracks dependencies between these tasks and moves data around as necessary.  
Dask schedulers exist for single multi-core workstation machines as well as 
moderately large distributed clusters. 

2. Algorithms for Big Data collections like parallel arrays and dataframes that 
extend common interfaces like NumPy and Pandas to larger-than-memory or 
distributed environments. These parallel collections run on top of the dynamic 
task schedulers. 

4.4.1 Dask Collections 

4.4.1.1 Arrays 
Dask Array implements a subset 
of the NumPy ndarray interface 
using blocked algorithms, cutting 
up the large array into many small 
arrays. This lets us compute on 
arrays larger than memory using 
all of our cores.  Dask arrays Figure 9 - Dask Array 
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coordinate many NumPy arrays arranged into a grid. These NumPy arrays may live on 
disk or on other machines. 
Today Dask array is commonly used in the sort of gridded data analysis that arises in 
weather, climate modeling, or oceanography, especially when data sizes become 
inconveniently large. Dask array complements large on-disk array stores like HDF5, 
NetCDF, and BColz. Additionally Dask array is commonly used to speed up expensive 
in-memory computations using multiple cores, such as you might find in image analysis 
or statistical and machine learning applications. 
 

4.4.1.2 DataFrames 
Dask Dataframe implements a subset of the Pandas 
Dataframe interface using blocked algorithms, cutting 
up the large DataFrame into many small Pandas 
DataFrames. This lets us compute on dataframes that 
are larger than memory using all of our cores or on 
many dataframes spread across a cluster. One 
operation on a dask.dataframe triggers many 
operations on the constituent Pandas dataframes. 
Dask dataframes coordinate many Pandas 
DataFrames/Series arranged along the index. 
Dask.dataframe is partitioned row-wise, grouping 
rows by index value for efficiency. These Pandas 
objects may live on disk or on other machines. 
 

4.4.2 Dask Task Schedulers 
The Dask collections (arrays, dataframes, etc.) encode task graphs.  These are 
collections of functions linked with dependencies that may be executed in parallel.  The 
outputs of some functions may be used as the inputs to others.  It is the job of a task 
scheduler to take such a task graph and some parallel hardware, either a multi-core 
machine or a multi-machine cluster, and run that task graph efficiently on that hardware, 
taking into account dependencies, data locality, communication costs, expected 
runtimes, failed computers, failed tasks, etc. 
 

4.4.2.1 Single-machine 
Dask’s original task scheduler was optimized for single machines, either personal 
laptops or large workstations.  This scheduler focuses on running the computation in a 
small memory footprint, so that we run tasks that allow us to quickly release 

Figure 10 - Dask Data Frame 
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intermediate results.  This proved to be most valuable to the communities that were 
using Dask at the time (climate science, geospatial, data science, etc.) because it let 
them analyze 100+GB datasets comfortably from their personal laptop.  Additionally the 
single machine scheduler was used to accelerate computations on large workstations 
with a large number of cores.  Speedups of 10x were common on computationally 
bound Pandas computations running on larger workstations. 

4.4.2.2 Distributed 
Dask.distributed is a centrally managed, distributed, dynamic task scheduler. The 
central dask-scheduler process coordinates the actions of several dask-worker 
processes spread across multiple machines and the concurrent requests of several 
clients.  The scheduler is asynchronous and event driven, simultaneously responding to 
requests for computation from multiple clients and tracking the progress of multiple 
workers. The event-driven and asynchronous nature makes it flexible to concurrently 
handle a variety of workloads coming from multiple users at the same time while also 
handling a fluid worker population with failures and additions. Workers communicate 
amongst each other for bulk data transfer over TCP. Internally the scheduler tracks all 
work as a constantly changing directed acyclic graph of tasks. A task is a Python 
function operating on Python objects, which can be the results of other tasks. This 
graph of tasks grows as users submit more computations, fills out as workers complete 
tasks, and shrinks as users leave or become disinterested in previous results. 
 
This scheduler has about a 10ms latency and a 200 microsecond task overhead.  This 
makes it less powerful than MPI for high performance computing, such as is common 
for simulation codes, but a very easy-to-use and flexible system for data analysis.  The 
flexible task scheduling APIs of Dask make it a very approachable way for non-expert 
Python programmers to use their institution’s cluster. 

4.4.3 Applications 
Dask has had broad impact throughout the PyData ecosystem and further (other 
languages like Julia have copied the model).  It has also had specific impact within a 
few particular domains: 

● Gridded geospatial analysis:  Atmospheric, oceanographic, and land analysis 
frameworks like XArray and Iris are now built on top of Dask and provide 
researchers within these communities with interfaces that are both intuitive and 
scale up to modern data sizes. 

● Time series analysis:  The broader Pandas community has taken on 
development work and use of the dask.dataframe project, bringing it near parity 
with the original Pandas codebase for most common workflows. 
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● Machine learning:  A number of researchers have chosen to implement their 
algorithms in Dask.  This is both because it provides a scalable multi-dimensional 
array construct and because it allows for arbitrary task scheduling, which enables 
cutting edge researchers to implement newer algorithms easily. 

● Bespoke pipelines: Research groups and companies have built their own 
systems on top of the Dask schedulers, taking the engine that powers large 
arrays and dataframes and repurposing it for entirely new applications within their 
domain. This support of custom applications is by far the fastest growing use of 
Dask.  

4.4.4 Ongoing and Future work 
Dask has integrated itself into the software of a variety of user communities and 
scientific domains.  Its ability to provide lightweight parallelism without requiring a 
significant paradigm shift has made it attractive to existing software projects.  We 
continue to work with these communities in outreach activities to empower them to 
operate on larger datasets and on larger clusters. Existing communities include 
geospatial analysis, time series analysis, machine learning, real-time analysis systems, 
and more.  Many other communities and domains may also benefit, such as genomics 
and medical imaging. 
 
As Dask is used in more communities we find ways to improve the internal schedulers 
to become smarter about more novel situations.  As we run on more hardware, such as 
traditional HPC systems, we find ways in which we can improve our communication 
stack.  As we run at more institutions we find ways to improve the launching and cluster 
management process to lower barriers to entry for an increasingly broad population of 
scientists. 
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4.5 Datashader 
Datashader provides a highly optimized computational pipeline that accurately 
transforms data into an image that can be plotted: 
 

 

Figure 11 - Datashader Pipeline 

Here, a columnar Data set is mapped in some way onto a 2D plane to create a Scene, 
which is then aggregated into a regular grid, with the Aggregate potentially transformed 
in some way to select or modify grid cells of interest, and then rendered as an Image.  
In this way, arbitrarily large datasets can be rendered into a fixed-sized image that can 
be delivered to a remote or local client.  For interactive use, the client can then generate 
requests for other images covering different regions of the Scene space, allowing 
exploration within an interactive Bokeh Plot or dashboard while avoiding the need to 
ever send the full Data to the local browser.  

4.5.1 Details of the pipeline 

In this pipeline, the Data can currently be either a Pandas or a Dask dataframe.  The 
Dask dataframe allows out of core execution (for datasets larger than memory), 
multithreaded execution (to make use of multiple cores on a single machine), and 
distributed processing (to make use of multiple compute nodes). By delegating the 
responsibility for such parallelization to Dask, the Datashader code becomes much 
simpler and can benefit from improvements to Dask supported by other projects. 

The Projection is a symbolic or logical step rather than a computation, consisting of the 
user’s declaration that they wish to see certain columns of this dataset mapped onto the 
x axis, y axis, or a categorical axis, along with a specification for the ranges of the data 
to be considered and the corresponding height and width of the aggregate array to be 
created in the next step. The actual computation of this projection is performed in a 
single step during aggregation (next). 

The Aggregation step is the only computationally expensive stage, because it requires 
an entire pass through the dataset.  Here, Numba-optimized code is used to calculate 
the number, average, or other reduction of all the datapoints falling into each bin of the 
aggregate array.  The array itself is an xarray datatype, which allows storing multi-
dimensional data (indexed by x, y, and category, with arbitrarily many associated value 
dimensions) efficiently and conveniently. 
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After aggregation, the originally arbitrarily large dataset has been reduced down to a 
fixed-size array containing counts per pixel, means per pixel, and so on. The value in 
each cell in that array can then be mapped into a color, from which an image can be 
generated and displayed. 
 

4.5.2 Examples 
 
As an example, here is an image created by Datashader in 3 seconds on a Macbook 
Pro laptop from a 300-million-point dataset, one point for each person in the US 2010 
Census, approximately located at that person’s residence: 

 
Figure 12 - Datashader US Census Image (300 Million Points) 

 
To make this image, Datashader iterated over a three-column Dask dataframe 
collecting counts (number of people) per pixel in the final image into each cell of the 
aggregate array, and then scaled that value into a brightness value for the pixel in that 
image.   
 
The Colormapping stage in Datashader is designed to construct such images in a way 
that maximizes the bandwidth of the output device and of the human visual system.  If 
there are 255 colors available in a given display device, a naive approach would be to 
map a count of 0 to black, and the highest observed count per pixel to 255, but 
unfortunately this approach gives a nearly unusable plot that looks black with only a few 
white points, even though it is a plot of 300 million points: 
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Figure 13 - US Census Data with Normal Linear Alpha 

 
Instead, Datashader uses a nonlinear mapping by default (as in the first census image 
above) that equalizes the number of pixels that are assigned to each of the available 
colors, providing a rank-order mapping that maximizes information about the distribution 
of the original dataset (unlike the mostly redundant information provided by a linear 
transformation, for data that is highly nonlinearly distributed).  Using this histogram-
equalization approach, a highly informative image can be created without any user-
adjusted parameters, by simply automatically finding the minimum and maximum values 
(which map to the minimum and maximum values in the color range) and nonlinearly 
mapping the intermediate values according to the histogram. 
 
Crucially, each of the steps in the pipeline is available to the Datashader user.  For 
instance, for the following dataset of New York City Taxi trips, a Datashader user can 
easily aggregate over all dropoffs and all pickups separately, then select only those 
pixels where pickups are more common than dropoffs to plot in red, and those where 
dropoffs are more common than pickups to plot in blue.  The result very cleanly 
distinguishes arterial thoroughfares from residential side streets, which would be a 
calculation very difficult to express or measure on the non-aggregated data:  
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Figure 14 - NYC Taxi Pickup vs Dropoffs 

 
The resulting images can then easily be embedded into Bokeh plots or Bokeh apps and 
combined with data from other sources, such as maps: 

 
Figure 15 - Datashader in Bokeh 

 
The above plots are all for point data (people or taxi locations), but similar techniques 
work for trajectories, such as this Opensky data on flight paths in Europe (with the left 
plot indicating overall frequency of travel, and the others showing ascending flights in 
blue and descending (and often circling) flights in red: 
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Figure 16 - Datashader European Flight Paths 

 
Similar techniques can be used for graph data (here showing 100,000 UK research 
collaborations) or time series data (here showing millions of points, plotted to show the 
true density of overlap in every location, avoiding overplotting): 

 

 
Figure 17 - Datashader Graph and Time Series Data 

 
Constructing these plots takes remarkably little code, and typically no user intervention, 
because of the automated processing at each stage. For instance, using the new high-
level HoloViews interface to Bokeh and datashader, changing a Bokeh plot of 1000 
points (Figure 18 - Code for Display Small Number of Points and Paths) to a 
datashader-based plot of one million points requires adding only the single word 
“datashade” (Figure 19 - Code to Display Millions of Points and Paths). In this way, 
researchers and analysts can now work with even very large datasets interactively and 
conveniently in the web browser, making it much simpler to discover the properties of 
their datasets and convey them to others. 
 



Approved for Public Release; Distribution Unlimited  
32 

 

 
Figure 18 - Code for Display Small Number of Points and Paths 

 

 
Figure 19 - Code to Display Millions of Points and Paths 

 

5 Conclusions 
There continues to be great interest in being able to use an accessible language like 
Python, which domain experts can easily learn, for large scale data science 
applications.  Historically, languages like Python lacked the performance for large scale 
data analysis, a way to for users to easily access data used in such analysis, and a 
means to easily create exploratory and compelling interactive visualizations of the data. 
Through the XDATA program Continuum has been able to provide tools to address 
some of the scaling needs and there has been a broadening community support and 
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usage for these tools. Increasing, industry leaders such as Intel, AMD, NVIDIA, IBM, 
and Microsoft are using the tools and technologies developed under this research as 
either foundations for their offerings or as a means to make their technologies more 
accessible. As data continues to grow at an accelerated pace we see continued 
demand for faster and more scalable computing capability and evolving visualization 
capabilities accessible from easy to use languages such as Python.  
 
Over the past year we have also seen continued, increasing interest from the open 
source community in supporting and contributing as reflected in the numbers below. 
 

Table 1 - Community Involvement Stats 

 Latest 
Version 

# of 
releases  

Github 
Stars # contributors 

Monthly 
download 
count (Dec 

2016) 

Blaze 0.11.0 49 1830 51 28k 

datashape 0.5.4 19 91 22  

odo 0.5.0 33 582 29  

Bokeh 0.12.5dev11 43 5360 207 102k 

Dask 0.13.0 29 1257 83 101k 

Datashader 0.4.0 5 478 10 1.5k 

Numba 0.30.1 78 2100 68 88k 
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6 Recommendations 
The team sees a number of areas for future research and development that would 
support processing, analyzing, and making decisions on ever increasing amounts and 
types of data. 
 
For Blaze 

- Work on integration with Dask to provide an easy to use interface that can be 
used to access, transform and process data in a distributed manner.  

- Research and develop GUIs to allow non-technical users to be able to access 
and perform basic analysis on data of different types without having to know how 
to access the data (ex. SQL or how to get data on a Hadoop cluster). 

- Continue building-out the backend to provide access to different data types, 
including access to more specialized data, such as satellite imagery. 

  
  
Numba 

- Continue to increase SIMD performance with support for fast math flags and 
improved support for AVX, Intel’s large vector instruction, and Xeon Phi Intel’s 
many core processors with massive parallelism. For example, AVX-512 lets a 
Xeon Phi core operate on 16 floats at once 

- Improved the user experience for developers with better debug support and 
better error messages. 

- Support for "partial compilation" of functions (mix compiled and interpreted code 
in the same function)   

- Stand-alone extension module production   
- More Python language supported (jit-classes, comprehension)   

  
Dask 

- Work on making Dask accessible to R users. 
- Support complex machine learning algorithms 
- Easier deployment on clusters 
- Support for Graph algorithms   
- Further integration with the rest of the PyData ecosystem   
- Integration with MPI-based sub-clusters and GPU sub-clusters   

  
Bokeh 

- R support in Bokeh Server so R users can leverage the features of Bokeh 
Server. 

- Native visualization for Graph / Network data 
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- Capability for programatic static (.png, .svg, etc) image generation. Currently 
Bokeh images require a browser. 

- Mechanism to make Bokeh extensions easily sharable, discoverable,  and 
installable. 

- Support nested coordinate systems and axes  
- Integration with VegaLite / Altair 
- Datasource views, to support client-side animations, filters, and group-bys  

 
 Datashader 

- Large graph/network rendering 
- Rendering surface meshes (e.g. altitude measurements, LIDAR) as orthographic 

projections 
- Full support for datetime axes (for time series plots) 
- Automated legends, color keys, color bars, and hover support for use with Bokeh 

and other libraries 
- Improved integration into Bokeh and HoloViews, adding additional interactive 

features (selection, linking, etc.) 
- Tiling/partitioning support for input data and output images 
- Interfaces for streaming data 
- Support for GPU-based dataframes 

 

7 References  

7.1 URLs 
Blaze GitHub repository: https://github.com/blaze/blaze 
Numba GitHub repository: https://github.com/numba/numba 
Dask Github repository: https://github.com/dask/dask 
Bokeh Github repository: https://github.com/bokeh/bokeh 
Datashader Github Repository: https://github.com/bokeh/datashader  

  

https://github.com/blaze/blaze
https://github.com/numba/numba
https://github.com/dask/dask
https://github.com/bokeh/bokeh
https://github.com/bokeh/datashader
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8 List of Acronyms 
Table 2- List of Acronyms 

Term Description 

Bcolz A columnar data container that can be compressed. 

CPU Central Processing Unit for a computer. 

CSS Cascading Style Sheets - A style sheet language used for 
describing the presentation of a document written in a 
markup language. It is used in conjunction with HTML to 
control the appearance of web page elements. 

CSV Comma delimited file format 

GPGPU General-purpose computing on graphics processing units 
- The use of a graphics processing unit (GPU), which 
typically handles computation only for computer graphics, 
to perform computation in applications traditionally 
handled by the central processing unit (CPU). 

GPU Graphics Processing Unit 

HDF5 A data model, library, and file format for storing and 
managing data. It supports an unlimited variety of 
datatypes, and is designed for flexible and efficient I/O 
and for high volume and complex data 

HDFS The Hadoop Distributed File System (HDFS) is a 
distributed file system designed to run on commodity 
hardware. 

HPC High Performance Computing 

HTML Hypertext Markup Language - The standard markup 
language for creating web pages and web applications 

JIT Just-In-Time - Compilation done during execution of a 
program – at run time – rather than prior to execution. 

JSON JavaScript Object Notation - A lightweight data-
interchange format.  

LLVM A collection of modular and reusable compiler and 
toolchain technologies used to develop compiler front 
ends and back ends. 
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LLVM IR The intermediate representation, a low-level 
programming language similar to assembly generated by 
the LLVM compiler. 

ND-Array A multidimensional container of items of the same type 
and size. 

NetCDF Network Common Data Form - a set of software libraries 
and self-describing, machine-independent data formats 
that support the creation, access, and sharing of array-
oriented scientific data. 

NVVM A compiler intermediate representation (IR) based on 
LLVM IR designed to represent GPU kernels. 

REST Representational state transfer -  One way of providing 
interoperability between computer systems on the 
Internet. 

ROCm A platform for GPU Enabled HPC and UltraScale 
Computing 

SIMD Single Instruction Multiple Data 
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