
WORKING WITH AND VISUALIZING BIG DATA EFFICIENTLY WITH
PYTHON FOR THE DARPA XDATA PROGRAM

CONTINUUM ANALYTICS, INC.

AUGUST 2017

FINAL TECHNICAL REPORT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

STINFO COPY

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

AFRL-RI-RS-TR-2017-155

 UNITED STATES AIR FORCE ROME, NY 13441 AIR FORCE MATERIEL COMMAND

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for any purpose other
than Government procurement does not in any way obligate the U.S. Government. The fact that the
Government formulated or supplied the drawings, specifications, or other data does not license the holder
or any other person or corporation; or convey any rights or permission to manufacture, use, or sell any
patented invention that may relate to them.

This report is the result of contracted fundamental research deemed exempt from public affairs security
and policy review in accordance with SAF/AQR memorandum dated 10 Dec 08 and AFRL/CA policy
clarification memorandum dated 16 Jan 09. This report is available to the general public, including foreign
nationals. Copies may be obtained from the Defense Technical Information Center (DTIC)
(http://www.dtic.mil).

AFRL-RI-RS-TR-2017-155 HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION IN
ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

FOR THE CHIEF ENGINEER:

 / S / / S /
PETER A. JEDRYSIK JULIE BRICHACEK
Work Unit Manager Chief, Information Systems Division
 Information Directorate

This report is published in the interest of scientific and technical information exchange, and its publication
does not constitute the Government’s approval or disapproval of its ideas or findings.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information
if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

AUGUST 2017
2. REPORT TYPE

FINAL TECHNICAL REPORT
3. DATES COVERED (From - To)

OCT 2012 – MAR 2017
4. TITLE AND SUBTITLE

WORKING WITH AND VISUALIZING BIG DATA EFFICIENTLY WITH
PYTHON FOR THE DARPA XDATA PROGRAM

5a. CONTRACT NUMBER
FA8750-13-C-0033

5b. GRANT NUMBER
N/A

5c. PROGRAM ELEMENT NUMBER
62702E

6. AUTHOR(S)

Travis Oliphant, Peter Wang, Stan Seibert, Matthew Rocklin, Bryan
Van de Ven, Hunt Sparra

5d. PROJECT NUMBER
XDAT

5e. TASK NUMBER
A0

5f. WORK UNIT NUMBER
21

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Continuum Analytics, Inc.
221 W. 6th St #1550
Austin, TX 78701

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Air Force Research Laboratory/RISB
525 Brooks Road
Rome NY 13441-4505

10. SPONSOR/MONITOR'S ACRONYM(S)

AFRL/RI
11. SPONSOR/MONITOR’S REPORT NUMBER

AFRL-RI-RS-TR-2017-155
12. DISTRIBUTION AVAILABILITY STATEMENT
Approved for Public Release; Distribution Unlimited. This report is the result of contracted fundamental research deemed
exempt from public affairs security and policy review in accordance with SAF/AQR memorandum dated 10 Dec 08 and
AFRL/CA policy clarification memorandum dated 16 Jan 09.
13. SUPPLEMENTARY NOTES

14. ABSTRACT
Research performed under the XDATA program focused on computational techniques and software tools for analyzing
large volumes of data, both semi-structured (e.g. tabular, relational, categorical, meta-data) and unstructured (e.g. text,
documents, message traffic). Several open source project which have seen community and industry adoption grew out of
this effort.

- Blaze: A collection packages for describing and accessing, and manipulating disparate data sources and types
- Numba: A just-in-time function compiler for Python, based on LLVM compiler project allowing researchers to run

their Python code near native speeds on CPUs and GPUs.
- Dask: Parallelizes generic Python and extends NumPy, Pandas, and Scikit-learn with parallel variants.

 - Bokeh: Create interactive web applications from Python without having to know Javascript, CSS, or HTML.

15. SUBJECT TERMS
Python, Big Data, Visualization, Interactive, Cluster

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

19a. NAME OF RESPONSIBLE PERSON
PETER A. JEDRYSIK

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

19b. TELEPHONE NUMBER (Include area code)
NA

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

43

i

Table of Contents

LIST OF FIGURES .. III

LIST OF TABLES.. III

1 SUMMARY ... 1

1.1 Purpose, Scope, and Organization .. 1

1.2 Problem Under Investigation .. 1

1.3 Principal Results and Conclusions ... 2

1.4 Recommendations ... 3

2 INTRODUCTION .. 4

2.1 Visualization .. 4

2.2 Out-of-core, and Beyond .. 5

3 METHODS, ASSUMPTIONS, AND PROCEDURES .. 6

4 RESULTS AND DISCUSSION ... 7

4.1 Bokeh .. 7
4.1.1 Concentrate on Your Work ... 8
4.1.2 Implementation .. 11
4.1.3 Lessons Learned .. 13
4.1.4 Future Direction .. 14

4.2 Numba ... 15
4.2.1 Implementation .. 16
4.2.2 Lessons Learned .. 18

ii

4.3 Blaze .. 19
4.3.1 Datashape ... 19
4.3.2 Blaze Core ... 20
4.3.3 Blaze Server ... 21
4.3.4 Odo .. 21

4.4 Dask .. 22
4.4.1 Dask Collections .. 23
4.4.2 Dask Task Schedulers .. 24
4.4.3 Applications... 25
4.4.4 Ongoing and Future work ... 26

4.5 Datashader .. 27
4.5.1 Details of the pipeline ... 27
4.5.2 Examples ... 28

5 CONCLUSIONS.. 32

6 RECOMMENDATIONS .. 34

7 REFERENCES .. 35

7.1 URLs .. 35

8 LIST OF ACRONYMS .. 36

iii

List of Figures
FIGURE 1 - SOME BOKEH GRAPHS .. 7
FIGURE 2 - BOKEH INTERACTIVE VISUALIZATION ... 9
FIGURE 3 - HTTP://DEMO.BOKEHPLOTS.COM ... 9
FIGURE 4 – SIMPLIFIED BOKEH DOCUMENT REPRESENTATION .. 11
FIGURE 5 - BOKEH SERVER - CLIENT SYNC .. 12
FIGURE 6 - BOKEH SERVER WITH MULTIPLE BROWSERS ... 12
FIGURE 7 - NUMBA COMPILER PIPELINE .. 17
FIGURE 8 - ODO FORMAT CONVERSION GRAPH ... 22
FIGURE 9 - DASK ARRAY ... 23
FIGURE 10 - DASK DATA FRAME .. 24
FIGURE 11 - DATASHADER PIPELINE ... 27
FIGURE 12 - DATASHADER US CENSUS IMAGE (300 MILLION POINTS) .. 28
FIGURE 13 - US CENSUS DATA WITH NORMAL LINEAR ALPHA .. 29
FIGURE 14 - NYC TAXI PICKUP VS DROPOFFS ... 30
FIGURE 15 - DATASHADER IN BOKEH .. 30
FIGURE 16 - DATASHADER EUROPEAN FLIGHT PATHS .. 31
FIGURE 17 - DATASHADER GRAPH AND TIME SERIES DATA ... 31
FIGURE 18 - CODE FOR DISPLAY SMALL NUMBER OF POINTS AND PATHS ... 32
FIGURE 19 - CODE TO DISPLAY MILLIONS OF POINTS AND PATHS .. 32

List of Tables
TABLE 1 - COMMUNITY INVOLVEMENT STATS .. 33
TABLE 2- LIST OF ACRONYMS ... 36

Approved for Public Release; Distribution Unlimited
1

1 Summary

1.1 Purpose, Scope, and Organization
The objective of the effort performed was to support the DARPA XDATA program by
developing computational techniques and software tools for analyzing large volumes of
data, both semi-structured (e.g. tabular, relational, categorical, metadata) and
unstructured (e.g. text, documents, message traffic). The scope included development,
testing, and exercise support for technologies to advance the areas of scalable analytics
and data processing technologies and visual user interface technologies. Focus was on
being able to use an accessible language like Python, which domain experts can easily
learn, for these technologies to enable large scale data science applications creation
without requiring expert knowledge in the underlying technologies.

The Continuum effort was primarily composed of three teams aligned to the underlying
projects.

• Blaze (later spawned Dask): Provide Python users with a familiar interface to
query data living in a variety of other data storage systems. One Blaze query can
work across data ranging from a CSV file to a distributed database.

• Numba: JIT compiler for NumPy-specific and generic Python allowing Python
code to run at near native speeds on CPUs and GPUs.

• Bokeh (later spawned Datashader): Rich data-driven apps and plots in the web
without requiring a user to know Javascript, CSS, or HTML.

1.2 Problem Under Investigation
The research performed under this program focused on the following problems facing
researchers needing to access and process large amounts of data.

• Easy expression of computation kernels and data transformations on large
datasets in order to allow analysts and scientists to productively write robust and
efficient code, without getting bogged down in the details of how to distribute
computation, or worse, how to transport and convert data between databases,
formats, proprietary data warehouses, and other silos.

• A mechanism for referencing remote data sources, and seamlessly merge views
of remote data with local data

• Shift modern, large scale computing from service oriented architectures that pull
data around into different computing and business object silos into a data

Approved for Public Release; Distribution Unlimited
2

oriented architecture where data is described in formats where it lives and
moving computation to the data.

• Scaling Python up and out to support processing big data workloads so the many
researches who know and use Python can easily take advantage of modern
processors, GPUs, and cluster technologies.

• A method to allow creating interactive web applications without requiring
knowledge and expertise of web technologies.

1.3 Principal Results and Conclusions
Development of techniques and tools for using a higher level, accessible language like
Python for large scale data science applications is a fruitful area of research. As the
research and software created under this program show it is possible to create libraries
and tools for reading, processing, and creating interactive visualizations of big data
workloads without requiring domain experts to learn other lower level languages such
as C or C++. Several technologies were developed during the course of the program:

• Bokeh provides a means to create rich, interactive, data driven web applications
without requiring the user to learn web-specific technologies such as javascript
and CSS.

• Numba allows Python users to effectively use the processing power on a given
machine and to speed up Python to speeds approaching Fortran and C and to
run the code on CPUs and GPUs, including remote, with speedups of 2x to 250x
over native Python or NumPy code.

• Blaze is an “interface” to data systems, somewhat like dplyr for R, for describing
structured data, querying that data on various backends, moving data between
formats, and remotely executing queries.

• Dask parallelizes Python using a distributed scheduler. To make it easier to
adopt, Dask extends NumPy, Pandas, and Scikit-Learn with parallel variants,
which allows users of those libraries to use Dask without having to learn a new
API. Additionally, Dask parallelizes generic code without requiring the code’s
author to deal with the intricacies of multithreading their data processing pipeline.

• Datashader is a companion package for Bokeh that renders arbitrarily large data
into fixed-size images. Datashader provides the ability to interact with data in a
visual manner for hundreds of millions of points on a laptop.

Approved for Public Release; Distribution Unlimited
3

1.4 Recommendations
The team sees a number of areas for future research and development that would
support processing, analyzing, and making decisions on ever increasing amounts and
types of data. For Bokeh and Datashader, further work on native graph support, easy to
use integration for streaming data, support for tiling and partitioning large data, and
support for GPU dataframes,would be valuable for an existing and growing user base.
For Blaze, Dask, and Numba further work on supporting new hardware technologies,
support for complex machine learning algorithms, support for disparate data, and an
easy extension mechanism could produce promising advances.

Approved for Public Release; Distribution Unlimited
4

2 Introduction
Python is one of the most popular languages for scientific and data analysis, largely
because of the existence of NumPy, SciPy, and the broad and diverse ecosystem of
libraries and tools built on them. Not only has Python made large inroads into many
traditional industries with heavy computational needs, such as Finance and Oil & Gas, it
is also one of the most popular languages for web application development and system
administration and monitoring.

The goal of this XDATA project was to create an accessible, expressive language for
analysts and visualization designers to create novel ways of looking at complex data.
Additionally, the project sought to generalize and extend NumPy, Python's extremely
popular array library, to handle out-of-core computations on large data that exceed the
system memory capacity, as well as distributed and streaming datasets.

This report covers the technology developed by Continuum Analytics under the XDATA
program and is targeted toward managers and technical managers. Each of the key
technologies will be covered divided by the areas and the current project name for each
component. Introduction will touch on the high level technology and the Results and
Discussion will provide more detail on the technology along with some of its uses to
date. This report will end with some recommendations on areas that the team has
identified as fruitful for further exploration and development.

2.1 Visualization
The principal innovation in Bokeh is the integration of scene-graph style construction
with Grammar of Graphics style abstract specification. Scene graph style construction
is effective at direct configuration and constructing reusable components. However, it is
difficult to do more abstract manipulation, such as controlling coordinate spaces or
presenting semantic transformations. Grammar of Graphics style languages essentially
trade these attributes. They excel at high-level transformations, but are extremely
awkward at detailed definitions and customization. Properly blending the two brings the
power of both together. This enables abstract, high-level definitions (through GoG style
declarations) with composition and customization that scene graphs provide.

Bokeh's render information feedback loop is a significant innovation. Providing rich
information about the rendering status back to the analysis system will enable many
interesting visualization tools. Bokeh is designed with extension and integration derived
from the lessons learned around Stencil, D3, and Protovis. One significant lesson
learned from these earlier projects is how to treat different types of data structures. In

Approved for Public Release; Distribution Unlimited
5

conjunction with the Blaze project, Bokeh includes integration with the specific
characteristics of multiple underlying data structures.

The Datashader pipeline is another significant innovation, providing a way to build
accurate visualizations and deliver them interactively without causing issues with local
clients or narrowband remote connections. The result will allow web browsers to
visualize data many orders of magnitude larger than would otherwise be possible, while
still allowing detailed interactive control.

2.2 Out-of-core, and Beyond

Blaze extends NumPy's successful model of array-oriented programming to out-of-core
and distributed data. It provides a generic n-dimensional array/table object, a very-
general data-type descriptor for all kinds of data but especially semi-structured, sparse,
and columnar data, and a generalized calculation engine that can iterate over the array
and dispatch to low-level kernels selected via the dynamic data typing mechanism. This
allows analysts and scientists to productively write robust and efficient code, without
getting bogged down in the details of how to distribute computation, or worse, how to
transport and convert data between databases, formats, proprietary data warehouses,
and other silos.

All of the core functions in Blaze and its support system of numerical libraries
manipulate this multidimensional array and build expression graphs behind the scenes
as the user is writing familiar Python code. At evaluation time, these expression graphs
are dynamically assembled to vectorized and optimized machine code via the Low
Level Virtual Machine (LLVM) library via Numba. Such robust dynamic compilation
(especially with auto-parallelization) is only possible because the Blaze array object is a
sufficiently rich description of the data layout that allows fast, a priori reasoning about
code dispatch and memory and disk access.

Additionally, and more importantly, Blaze provides a mechanism for referencing remote
data sources, and seamlessly merging views of remote data with local data. Its compute
graphs and dynamic scheduler and compiler will be able to reason about what
computations to distribute to remote data, and what reductions can be used to minimize
data movement. This ability to richly reference remote data in a generic way is
analogous to how the URI scheme for HTML allowed the creation of unified hypertext
documents that incorporated a broad set of hypermedia of any form. Likewise, Blaze
arrays and tables can be composed of data compiled from disparate, remote sources.
This mechanism forms the basis of a true "data web".

Approved for Public Release; Distribution Unlimited
6

As data has become so large, moving the data to compute resources has become a
very expensive operation. A goal of this work is to shift modern, large scale computing
from service oriented architectures that pull data around into different computing and
business object silos into a data oriented architecture where data is described in
formats where it lives, and code is brought to the data. Dask parallelizes Python using
a distributed scheduler and, along with Numba, provides a high-level interface for users
which allows domain experts to execute their code at hardware accelerated speeds
across multiple machines. This allows them to be productive in producing solutions
without feeling like they are giving up performance.

3 Methods, Assumptions, and Procedures
An open source development model was used for the research. All work was performed
in open repositories with frequent builds. Following the open source development model
team members presented and participated in some of the key conferences focused on
Python and data science, including SciPy, PyCon, PyData, and Strata. Feedback from
these conferences, as well as from users of the software, were used for real world
feedback on direction. The usage by these open source consumers made it possible to
use the technologies on very disparate workloads which helped uncover key features
and performance bottlenecks to address. Additionally, participation in XDATA
“hackathons” and “challenges” provided additional large scale problems that were used
to identify additional features that would be beneficial to support. All work was tracked
as issues in the respective GitHub repositories, all of which are public repositories.

● Blaze GitHub repository: https://github.com/blaze/blaze
● Numba GitHub repository: https://github.com/numba/numba
● Dask Github repository: https://github.com/dask/dask
● Bokeh Github repository: https://github.com/bokeh/bokeh
● Datashader Github Repository: https://github.com/bokeh/datashader

https://github.com/blaze/blaze
https://github.com/numba/numba
https://github.com/dask/dask
https://github.com/bokeh/bokeh
https://github.com/bokeh/datashader

Approved for Public Release; Distribution Unlimited
7

4 Results and Discussion

4.1 Bokeh

Figure 1 - Some Bokeh Graphs

Bokeh is a platform for creating visualizations and data applications that targets modern
browsers for presentation. It provides a means to create rich, data driven web
applications without requiring the user to learn web-specific technologies such as
javascript and CSS. With Bokeh users can create interactive visualizations for their
data, like Shiny does for R users, but now able to exploit the rich ecosystem of data-

Approved for Public Release; Distribution Unlimited
8

processing tools only available for Python. Higher level portions of Bokeh allow easy
creation of plots and visualizations that can be customized. For truly unique
visualizations, users can use lower level building blocks to create whatever they can
envision. Bokeh supports streaming data and can easily create interactive, responsive
plots with 100,000 points. Interactive Bokeh plots can be displayed with any modern
browser and can be run with or without the Bokeh Server component. Bokeh Server
works with Bokeh widgets to allow the user to perform actions, written in Python, based
upon user input in the browser, such as selecting values from a dropdown that change
the data being displayed or applying a different algorithm to the data. Some of the
features and capabilities that Bokeh supports are:

● Interactive visualization, widgets, and tools

● Versatile and high-level graphics

● Streaming, dynamic, large data

● For the browser, with or without a server

● Across multiple languages (Python, R)

● No JavaScript

4.1.1 Concentrate on Your Work
The main practical problem that Bokeh aims to solve for scientists, data scientists, and
analysts is one of productivity. How to enable these groups to concentrate on the actual
problems in front of them (instead of extraneous “web tech”) and stay productive with
the tools and workflows they already have. In short, it aims to stay out of the way.
Bokeh allows both standalone documents and server applications to be created and
shared easily:

● Completely written in Python, no HTML or CSS or “webapp” coding

● Simple python scripts, no special classes of frameworks

● Useful for exploratory analysis or sharing and publishing

● Automatically mirrors and synchronizes Python and browser state

● Connect the full PyData stack to interactive web apps

In the case of standalone documents (i.e. without a Bokeh server) simple python scripts
can be used to generate plots easily. Even though these plots are “standalone’ or ‘static’
in the sense that they have no need for Python once generated, they can still have

Approved for Public Release; Distribution Unlimited
9

many interactive elements: tools for panning, zooming, hover tooltips for detail, and
linked interactions. A small example is shown below:

Figure 2 - Bokeh Interactive Visualization

Bokeh also provides an optional server that can be used to develop rich and interactive
data applications inside modern browsers using a live Python process. These
applications can have all the usual tools available to standalone documents, but can
additionally connect UI and tool events to real Python code. In this way the full
ecosystem of Python data analytics packages (e.g. Pandas, scikit-learn, etc.) is
available to drive and inform these applications in the browser. A small gallery of such
apps can be seen at http://demo.bokehplots.com

Figure 3 - http://demo.bokehplots.com

http://demo.bokehplots.com/

Approved for Public Release; Distribution Unlimited
10

Writing such apps does not require creating or learning any special classes or
framework, and can often be accomplished in a few dozen lines of code. The full source
code for the “sliders” demo is shown below:

import numpy as np
from bokeh.io import curdoc
from bokeh.layouts import row, widgetbox
from bokeh.models import ColumnDataSource, Slider, TextInput
from bokeh.plotting import figure

x = np.linspace(0, 4*np.pi, 200)
y = np.sin(x)
source = ColumnDataSource(data=dict(x=x, y=y))

plot = figure(title="my sine wave", tools="pan,reset,save,wheel_zoom",
 x_range=[0, 4*np.pi], y_range=[-2.5, 2.5])

plot.line('x', 'y', source=source, line_width=3, line_alpha=0.6)

def update_title(attrname, old, new):
 plot.title.text = text.value

text = TextInput(title="title", value='my sine wave')
text.on_change('value', update_title)

def update_data(attrname, old, new):
 a = amplitude.value
 b = offset.value
 w = phase.value
 k = freq.value

 x = np.linspace(0, 4*np.pi, 200)
 y = a*np.sin(k*x + w) + b

 source.data = dict(x=x, y=y)

offset = Slider(title="offset", value=0.0, start=-5.0, end=5.0, step=0.1)
amplitude = Slider(title="amplitude", value=1.0, start=-5.0, end=5.0)
phase = Slider(title="phase", value=0.0, start=0.0, end=2*np.pi)
freq = Slider(title="frequency", value=1.0, start=0.1, end=5.1)
for w in [offset, amplitude, phase, freq]:
 w.on_change('value', update_data)

inputs = widgetbox(text, offset, amplitude, phase, freq)

curdoc().add_root(row(inputs, plot, width=800))

Bokeh apps often follow this simple pattern: set up data and plots, add widget and
callbacks, finally place things inside a layout for display.

Approved for Public Release; Distribution Unlimited
11

4.1.2 Implementation
At a high level, Bokeh consists of a sophisticated Javascript library (named "BokehJS"),
whose data models are designed to be reflected by parallel libraries in data analysis
languages. These user-facing libraries, for instance Bokeh.py and rbokeh, are able to
generate declarative JSON models of the data visualization, which then drives the
BokehJS runtime to materialize the actual graphic in the HTML DOM of the web page.
The Document class is a container for Bokeh Models to be reflected to the client side
BokehJS library. This contains all the necessary information to render layouts and plots.

Figure 4 – Simplified Bokeh Document Representation

The optional Bokeh Server allows plots to be updated "live" from Python or R code, with
changes reflected in the client-side web page. The Bokeh server automatically sends
changes to the Document to the client browser to be rendered.

Approved for Public Release; Distribution Unlimited
12

Figure 5 - Bokeh Server - Client Sync

When there are multiple clients connected, each client is given a unique Document
instance. This prevents actions being performed by one client impacting the other
clients.

Figure 6 - Bokeh Server with Multiple Browsers

Approved for Public Release; Distribution Unlimited
13

4.1.3 Lessons Learned

Over the course of developing Bokeh, three main lessons were realized:

4.1.3.1 Always Send Explicit Models

As mentioned above, Bokeh documents consist of collections of models that represent
elements of a plot or application. There is a 1-1 correspondence between Python model
objects and BokehJS model objects, expressed by a JSON representation that both
sides can understand. Early in Bokeh development, there were instances where some
BokehJS models did not have full Python counterparts. Instead, some ad-hoc collection
of property values was mapped internally to a set of BokehJS objects. In every instance,
this practice eventually proved problematic and limiting in some way. Now, the project
maintains full 1-1 parity for all models.

4.1.3.2 Splitting Datashader

The original project vision for Bokeh included handling large datasets directly. This
functionality was briefly and partially implemented in a sub-component called Abstract
Rendering, whose code was coupled very tightly to the rest of the BokehJS codebase.
This proved difficult to manage, as well as difficult to develop and test. Eventually this
functionality was split off into the Datashader project (described separately). Separating
things into two projects allowed for independent, de-coupled development with defined
interfaces for integration. This has proved beneficial for both projects, leading to a
simpler codebase for Bokeh and close integration between Datashader and the
separate HoloViews projects, which allows Datashader to be used easily in both Bokeh
and Matplotlib.

4.1.3.3 Migrating Server to Tornado

The original Bokeh server was implemented using Flask, and stored JSON
representations of Bokeh documents in a Redis database. This architecture proved to
be problematic in a number of ways. It did not scale well, as it required explicit
replication to Redis. It was difficult to support across platforms, as Redis is not
supported or easily available for Windows. Finally it did not perform well. The REST
approach did not offer any real path towards streaming protocols, and the constant
marshalling and unmarshalling to and from Redis added a great deal of overhead.

For Bokeh 0.11 a new second-generation Bokeh server was introduced. It was based
on Tornado, which uses a pure websocket protocol. Documents for active sessions are

Approved for Public Release; Distribution Unlimited
14

simply stored in memory (as opposed to memory and a backing store) which makes the
system much more horizontally scalable. Additionally the websocket protocol was more
performant and also provided avenues for even further optimizations such as efficient
binary encodings and streaming protocols.

4.1.4 Future Direction

Many of the original large-scale goals of the project have been attained, and we are
looking forward to a 1.0 release in 2017. There is still a great deal of polish and bug-
fixing yet to to do, but the list of larger tasks that are “must have” for a 1.0 release is
now short:

● Migrate BokehJS to TypeScript

BokehJS was originally written in CoffeeScript, which facilitated rapid
development, especially by the initial core developers who largely had mostly
Python experience. However, for long term stability and maintenance, TypeScript
offers advantages that are especially useful in a cross-language, cross-runtime
project, where accurate exchange of type information is crucial.

● Increase WebGL coverage

 Bokeh currently has limited WebGL support for a subset of glyphs. Extending this

to include patches would allow Bokeh to be more useful for larger geographical
and map type plots.

● Support for scripted animations and visual transitions

 Bokeh supports animation through server updates to data sources, including an

efficient streaming protocol. However there are cases where users would like
lighter weight solutions purely in the browser, or solutions that offer very smooth
intermediate transitions between visual states.

● Static image (PNG) generation

A long-requested feature, necessary for anyone wanting to include static images
of Bokeh plots in presentations or spreadsheets or anywhere JavaScript
execution is not an option. This work is currently funded and ongoing, based on
Selenium, PhantomJS, and eventually Chrome Headless. It is scheduled for
inclusion in a mid-2017 release.

https://www.typescriptlang.org/

Approved for Public Release; Distribution Unlimited
15

● Network/Graph capabilities

 Another long-requested feature. This work is also funded and ongoing. The

support will be split between Bokeh (for small graphs) and Datashader (for large
graphs). The Bokeh component will see the addition of a new data source and
renderer specific to network and graph data, with layout either supplied up front
from the Python API, or computed in the browser dynamically.

4.2 Numba
Numba is a function-at-a-time, Just-in-Time (JIT) compiler for the standard Python
interpreter (AKA “CPython”). Numba was spun out of the Blaze project into a separate
effort in order to specifically tackle the difficult problem of compiling complex
expressions and user-defined functions operating on NumPy arrays to efficient machine
code. Frequently, developers would need to switch to other languages, such as C or
FORTRAN, to achieve high performance on numerical algorithms. Numba enables
nearly the same level of performance, and in many cases even higher performance, to
be achieved with standard Python functions that have been explicitly designated for
compilation. At runtime, Numba will compile the desired functions when they are first
called, specializing the machine code for the specific data types used in the call. If the
function is called again with a different set of input data types (as is quite common in a
dynamically typed language like Python), Numba will compile another machine code
implementation, and dispatch to the correct version on subsequent calls.

Numba is implemented as a library that can be loaded by programs running in the
CPython interpreter and does not replace the interpreter itself. Its current focus is to
target a Python subset that makes heavy use of NumPy arrays and numeric scalars in
loops. Numba uses the type and memory layout information stored in the NumPy array
header to generate specialized machine code for each operation. As Numba continues
to develop, the supported subset of the Python language and standard library data
types is expanding. Numba currently has support for the following Python language
features:

● int, float, bool, complex, tuple, and enum types
● Support for lists and sets of a single element type
● Standard operators and control flow constructs
● Raising exceptions and asserts
● Generators
● Recursion (in most cases)
● Calling ctypes-wrapped C functions

Approved for Public Release; Distribution Unlimited
16

● Random number generation

Numba was initially developed to optimize the inefficient use-cases of NumPy. This
includes iterative functions that need to access individual array elements, which Numba
can typically speed up by a factor of 100x or more. However, Numba can also translate
a regular Python function into a special kind of function called a “universal function” in
NumPy. Universal functions define an operation on scalar elements (or smaller
dimensional arrays) that are implicitly broadcast over all elements of input arrays using
standard rules. This allows the same function to be used with scalar inputs, input arrays
of the same shape, or even input arrays of dimensionality in some cases. Most of the
math functions in NumPy are in fact universal functions. Before Numba, the only way to
create a fast universal function was to write it in some compiled language, like C. Due
to the explicitly parallel nature of universal functions, Numba can also automatically
generate multi-threaded or GPU-accelerated implementations of universal functions
with very little user intervention.

One novel feature of Numba is its support for targeting different hardware. It currently
provides an NVIDIA GPU back-end, and there is a experimental support for AMD GPUs
as well. Rather than attempt to create a portable execution model supported by all
targets, Numba directly exposes the execution model of each GPGPU architecture to
Python. Users who wish to use the GPU (aside from the universal function support
noted above) need to tailor their code to the specific features and performance
characteristics of each GPU architecture. Numba also provides access to platform
specific operations, such as thread barriers and atomic operations on GPGPU targets.
This allows GPU-accelerated algorithms to be developed very rapidly within a Python
application, while still achieving high performance in the generated GPU machine code.

4.2.1 Implementation
Unlike most JIT compilers for interpreted languages, Numba does not perform tracing
nor replace the interpreter. Instead, it relies on the user actively transforming the
Python functions that need compiling at runtime. In Python, this is done by applying a
decorator to the function:

@jit
def example(a, b):
 acc = 0.0
 for a_i, b_i in zip(a, b):
 if a_i > b_i:
 acc += a_i
 return a_i

Approved for Public Release; Distribution Unlimited
17

The decorator replaces the original Python function with a special object that just-in-time
compiles the function when it is first called with a new type signature. To relieve user
from the burden of explicit type annotation, Numba inspects the types of the arguments
and performs local type inference on the function. As a result, the compiler can have
accurate type information for each value in the function without tracing the execution.

The full compiler pipeline is shown below:

Figure 7 - Numba Compiler Pipeline

The bytecode of the input Python function is analyzed and translated to a Numba-
specific internal representation (“Numba IR”) which undergoes type inference. After
type inference, certain language constructs, such as array expressions, are rewritten to
simplify later compilation stages. After rewriting, the Numba IR is translated through a
process called “lowering” to a low-level machine code form that is specialized for the
actual data types present in the function.

The lowered form of the function is represented using the LLVM intermediate
representation language (“LLVM IR”). LLVM is a very popular open source compiler
framework with broad industry support, including Intel, AMD, IBM, NVIDIA, Apple, and
many other companies. As a result, LLVM can generate machine code for a wide range
of CPU and GPU architectures, which allows Numba to support many platforms. The
Numba-generated LLVM IR is just-in-time translated to machine code, cached, and

Approved for Public Release; Distribution Unlimited
18

executed. The complexity of the compilation process means that the first execution of a
function is fairly slow, but subsequent execution are extremely fast. Users can mitigate
the compilation time using some of the caching or ahead-of-time compilation features in
Numba.

Numba’s support for targeting both CPU and GPU hardware is novel among Python
compilation projects. Numba currently provides a NVIDIA CUDA GPU back-end using
the NVVM library, and an AMD GPU backend using the ROCm libraries. Both NVVM
and ROCm provide vendor-specific versions of LLVM with additional support for their
hardware.

4.2.2 Lessons Learned
Python is a challenging language to compile due to its dynamic nature. The data type
associated with a variable can change during execution, functions can freely operate on
any data type, and functions and types themselves can even be modified during
execution. This flexibility is what makes Python a very productive language, but in
practice most code within an application does not take advantage of all the dynamic
properties of Python. For example, a given function could operate on any data type, but
in a particular application might only operate on 1 dimensional floating point arrays.
This is the situation where type-specializing compilation, as provided by Numba, can be
hugely beneficial. In addition, these core algorithms tend to be the sections of a
program where most execution time is spent, and therefore compilation will improve the
application’s runtime the most if applied there.

As a result of these observations, Numba’s current design is very conservative,
compared to other projects. Numba compilation is opt-in; the user must indicate which
functions should be compiled, and users are encouraged to only target functions which
constitute the bulk of the runtime. Numba also will only generate efficient type-
specialized code if the entire function can be compiled this way. For greater
predictability, the current Numba releases will not flip between unoptimized and
optimized code within the same function, as previous versions of Numba did. Switching
in and out of the optimized code generation mode within a function made the compiler
very complex, and resulted in some cases with code that ran slower than the original,
uncompiled version. For scientific use cases, it was decided that it was much better for
Numba to have a narrower scope of supported Python language features but to be able
to always generate efficient code for functions that fell within that scope. Future
versions of Numba may allow greater mixing of optimized and unoptimized code paths,
but for now the more limited scope has helped users achieve predictable results.

Approved for Public Release; Distribution Unlimited
19

In addition, by limiting Numba’s scope to primarily numerical algorithms and basic
language constructs, Numba was able to be ported to both CPU and GPU targets much
more easily. It is very difficult to port a compiler based on tracing, as is done in many
Javascript runtimes, as well as the PyPy JIT compiler for Python, to support compilation
for coprocessor-type hardware like a GPU.

4.3 Blaze
The Blaze project is an ecosystem of packages that help users describe, transform, and
query data. Python has become an extremely popular language for data science due to
its ease with which a user can combine different software packages into an analysis.
Blaze strives to improve that capability, but for combining different data sources.
External constraints (and performance requirements) seldom allow all data in an
organization to be centralized into single data store with a single computational API.
Instead, data scientists will frequently have to move between systems, local and
remote, SQL and non-SQL based. Blaze introduces interfaces for data types and
expressions on data that simplify moving between data stores. In addition, Blaze
includes an array server that serves up data from any of the data store backends Blaze
understands to clients using a single JSON-based web API.

Blaze began with the goal of making NumPy & Pandas more scalable. Tackling this
problem requires a multipronged approach, with a strong need for separation of
concerns. In many ways, Blaze has been successful as an incubator and inspiration for
a wide range of spinoff projects:

● Numba (for compilation of Python expressions)
● Dask (for distributed and out-of-core computing)
● Datashape (for portable description of data)
● Odo (for easy translation between data formats)

Numba and Dask are described in other sections of this document, so this section will
focus on Datashape, Blaze and Odo.

4.3.1 Datashape
Datashape is a grammar for describing array-like data in-situ, without requiring data to
be translated into a single canonical form. Ideally, any data source should be able to
describe its contents using datashape, which enables the rest of the Blaze ecosystem to
understand the field names, field types, nested structures, array dimensions and array
shapes of a data set. The grammar is designed to be human readable, though in most
cases it is machine-generated.

Approved for Public Release; Distribution Unlimited
20

An example datashape describing the records for 100 people would look like:

100 * {
 name: string,
 birthday: date,
 address: {
 street: string,
 city: string,
 postalcode: string,
 country: string
 }
}

This demonstrates how datashape can represent nested structures, such as
address.street within arrays. Multidimensional arrays are represented by separating
multiple shapes with the asterisk symbol, such as in:

5 * 10 * 20 * int

which describes a 3 dimensional integer array (5 by 10 by 20). Datashape can express
all of the following type concepts:

● Scalar types: fixed size signed and unsigned integers, floats, complex numbers
and booleans

● Unicode and byte strings, dates, times
● Optional types (value could be null or None)
● Records (collections of named fields)
● Multidimensional arrays of fixed shape, or ragged arrays

4.3.2 Blaze Core
The Blaze package provides a data() constructor that takes a URI description of a data
source (such as a filename, like iris.csv, or a URI for a remote service, like
postgresql://username:password@hostname:port), and returns a Blaze data
object. Blaze has support for a wide variety of backends including CSV, SQL
databases, AWS S3, AWS Redshift, JSON, Redshift, HDF5, Hadoop, Hive, Spark,
MongoDB, and SAS.

This object can then be used in Blaze expressions, which will filter, group, and
transform the data to a result in memory when executed. Blaze expressions are lazy,
which means they do not evaluate until the entire computation has been described.

Approved for Public Release; Distribution Unlimited
21

This allows the Blaze backends to move the computation to execute on the data source
(as in the case of a SQL database), which is typically much more efficient than bringing
all the data to the client and performing the operations locally. Blaze Expressions can
include operations like:

● Projection: extract a subset of columns
● Selection: extract a subset of rows
● Arithmetic: math operations on values
● Split-apply-combine: similar to group-by operations in databases
● Join: combine two datasets using common columns

4.3.3 Blaze Server
The Blaze Server is a lightweight web application that exposes Blaze data objects to
clients using a JSON-based protocol. This allows an administrator to create a data
catalog out of a possibly heterogeneous collection of data sources. For example, a
single Blaze server could serve up a mixture of CSV files, SQL databases, and
MongoDB databases using a common interface. In addition, any client computation
done on Blaze data sources without built-in compute capabilities (such as plain data
files) will be performed on the server, rather than on the client. This reduces the
compute requirements of the client dramatically.

4.3.4 Odo
Odo is a subproject of Blaze allows data to be easily transformed from one format to
another, or one data storage server to another. Internally, odo takes a set of known
conversion operations (such as CSV->Pandas Dataframe) and builds a conversion
graph:

Approved for Public Release; Distribution Unlimited
22

Figure 8 - ODO Format Conversion Graph

Then Odo can transform any format to any other format by finding the least expensive
path through the conversion graph connecting the two formats together, even if no
direct conversion method is known.

4.4 Dask
Dask grew out of Blaze development. When developing a unified front-end for array
computing it became clear that out-of-core and distributed multi-dimensional array
backends were lacking. Dask started as an out-of-core multi-dimensional NumPy
library. Multi-dimensional array algorithms were more complex than traditional

Approved for Public Release; Distribution Unlimited
23

MapReduce-style algorithms and so we had to build a more general purpose task
scheduler. It quickly became apparent that this task scheduler was useful for more
applications than just arrays, so parallel dataframes and generic APIs for parallel
computing quickly followed.

Experiences with Blaze encouraged us to keep the scope of Dask small and to remove
barriers to adoption like a new user API, exotic dependencies, and new type systems.
From a user’s perspective, Dask introduces very few new concepts and so is easy to
integrate into existing workloads without significant proselytizing on our part. It copies
existing APIs from NumPy, Pandas, Scikit-learn, concurrent.futures, etc. and uses
existing data structures. This allowed a user community to come online within a short
time and start valuable feedback cycles which improved the design and led to
unforeseen advantages.

Dask enables parallel computing for Python libraries. It has been used both to provide
parallel variants of popular libraries like NumPy and Pandas and to build completely
new parallelized libraries and solutions. It is in wide use today within the PyData open
source ecosystem, empowering data scientists from a number of disciplines.

Dask is composed of two components:

1. At its core, Dask is a dynamic task scheduler optimized for computational
workloads. Dask runs small tasks / functions on data on parallel hardware. It
tracks dependencies between these tasks and moves data around as necessary.
Dask schedulers exist for single multi-core workstation machines as well as
moderately large distributed clusters.

2. Algorithms for Big Data collections like parallel arrays and dataframes that
extend common interfaces like NumPy and Pandas to larger-than-memory or
distributed environments. These parallel collections run on top of the dynamic
task schedulers.

4.4.1 Dask Collections

4.4.1.1 Arrays
Dask Array implements a subset
of the NumPy ndarray interface
using blocked algorithms, cutting
up the large array into many small
arrays. This lets us compute on
arrays larger than memory using
all of our cores. Dask arrays Figure 9 - Dask Array

Approved for Public Release; Distribution Unlimited
24

coordinate many NumPy arrays arranged into a grid. These NumPy arrays may live on
disk or on other machines.
Today Dask array is commonly used in the sort of gridded data analysis that arises in
weather, climate modeling, or oceanography, especially when data sizes become
inconveniently large. Dask array complements large on-disk array stores like HDF5,
NetCDF, and BColz. Additionally Dask array is commonly used to speed up expensive
in-memory computations using multiple cores, such as you might find in image analysis
or statistical and machine learning applications.

4.4.1.2 DataFrames
Dask Dataframe implements a subset of the Pandas
Dataframe interface using blocked algorithms, cutting
up the large DataFrame into many small Pandas
DataFrames. This lets us compute on dataframes that
are larger than memory using all of our cores or on
many dataframes spread across a cluster. One
operation on a dask.dataframe triggers many
operations on the constituent Pandas dataframes.
Dask dataframes coordinate many Pandas
DataFrames/Series arranged along the index.
Dask.dataframe is partitioned row-wise, grouping
rows by index value for efficiency. These Pandas
objects may live on disk or on other machines.

4.4.2 Dask Task Schedulers
The Dask collections (arrays, dataframes, etc.) encode task graphs. These are
collections of functions linked with dependencies that may be executed in parallel. The
outputs of some functions may be used as the inputs to others. It is the job of a task
scheduler to take such a task graph and some parallel hardware, either a multi-core
machine or a multi-machine cluster, and run that task graph efficiently on that hardware,
taking into account dependencies, data locality, communication costs, expected
runtimes, failed computers, failed tasks, etc.

4.4.2.1 Single-machine
Dask’s original task scheduler was optimized for single machines, either personal
laptops or large workstations. This scheduler focuses on running the computation in a
small memory footprint, so that we run tasks that allow us to quickly release

Figure 10 - Dask Data Frame

Approved for Public Release; Distribution Unlimited
25

intermediate results. This proved to be most valuable to the communities that were
using Dask at the time (climate science, geospatial, data science, etc.) because it let
them analyze 100+GB datasets comfortably from their personal laptop. Additionally the
single machine scheduler was used to accelerate computations on large workstations
with a large number of cores. Speedups of 10x were common on computationally
bound Pandas computations running on larger workstations.

4.4.2.2 Distributed
Dask.distributed is a centrally managed, distributed, dynamic task scheduler. The
central dask-scheduler process coordinates the actions of several dask-worker
processes spread across multiple machines and the concurrent requests of several
clients. The scheduler is asynchronous and event driven, simultaneously responding to
requests for computation from multiple clients and tracking the progress of multiple
workers. The event-driven and asynchronous nature makes it flexible to concurrently
handle a variety of workloads coming from multiple users at the same time while also
handling a fluid worker population with failures and additions. Workers communicate
amongst each other for bulk data transfer over TCP. Internally the scheduler tracks all
work as a constantly changing directed acyclic graph of tasks. A task is a Python
function operating on Python objects, which can be the results of other tasks. This
graph of tasks grows as users submit more computations, fills out as workers complete
tasks, and shrinks as users leave or become disinterested in previous results.

This scheduler has about a 10ms latency and a 200 microsecond task overhead. This
makes it less powerful than MPI for high performance computing, such as is common
for simulation codes, but a very easy-to-use and flexible system for data analysis. The
flexible task scheduling APIs of Dask make it a very approachable way for non-expert
Python programmers to use their institution’s cluster.

4.4.3 Applications
Dask has had broad impact throughout the PyData ecosystem and further (other
languages like Julia have copied the model). It has also had specific impact within a
few particular domains:

● Gridded geospatial analysis: Atmospheric, oceanographic, and land analysis
frameworks like XArray and Iris are now built on top of Dask and provide
researchers within these communities with interfaces that are both intuitive and
scale up to modern data sizes.

● Time series analysis: The broader Pandas community has taken on
development work and use of the dask.dataframe project, bringing it near parity
with the original Pandas codebase for most common workflows.

Approved for Public Release; Distribution Unlimited
26

● Machine learning: A number of researchers have chosen to implement their
algorithms in Dask. This is both because it provides a scalable multi-dimensional
array construct and because it allows for arbitrary task scheduling, which enables
cutting edge researchers to implement newer algorithms easily.

● Bespoke pipelines: Research groups and companies have built their own
systems on top of the Dask schedulers, taking the engine that powers large
arrays and dataframes and repurposing it for entirely new applications within their
domain. This support of custom applications is by far the fastest growing use of
Dask.

4.4.4 Ongoing and Future work
Dask has integrated itself into the software of a variety of user communities and
scientific domains. Its ability to provide lightweight parallelism without requiring a
significant paradigm shift has made it attractive to existing software projects. We
continue to work with these communities in outreach activities to empower them to
operate on larger datasets and on larger clusters. Existing communities include
geospatial analysis, time series analysis, machine learning, real-time analysis systems,
and more. Many other communities and domains may also benefit, such as genomics
and medical imaging.

As Dask is used in more communities we find ways to improve the internal schedulers
to become smarter about more novel situations. As we run on more hardware, such as
traditional HPC systems, we find ways in which we can improve our communication
stack. As we run at more institutions we find ways to improve the launching and cluster
management process to lower barriers to entry for an increasingly broad population of
scientists.

Approved for Public Release; Distribution Unlimited
27

4.5 Datashader
Datashader provides a highly optimized computational pipeline that accurately
transforms data into an image that can be plotted:

Figure 11 - Datashader Pipeline

Here, a columnar Data set is mapped in some way onto a 2D plane to create a Scene,
which is then aggregated into a regular grid, with the Aggregate potentially transformed
in some way to select or modify grid cells of interest, and then rendered as an Image.
In this way, arbitrarily large datasets can be rendered into a fixed-sized image that can
be delivered to a remote or local client. For interactive use, the client can then generate
requests for other images covering different regions of the Scene space, allowing
exploration within an interactive Bokeh Plot or dashboard while avoiding the need to
ever send the full Data to the local browser.

4.5.1 Details of the pipeline

In this pipeline, the Data can currently be either a Pandas or a Dask dataframe. The
Dask dataframe allows out of core execution (for datasets larger than memory),
multithreaded execution (to make use of multiple cores on a single machine), and
distributed processing (to make use of multiple compute nodes). By delegating the
responsibility for such parallelization to Dask, the Datashader code becomes much
simpler and can benefit from improvements to Dask supported by other projects.

The Projection is a symbolic or logical step rather than a computation, consisting of the
user’s declaration that they wish to see certain columns of this dataset mapped onto the
x axis, y axis, or a categorical axis, along with a specification for the ranges of the data
to be considered and the corresponding height and width of the aggregate array to be
created in the next step. The actual computation of this projection is performed in a
single step during aggregation (next).

The Aggregation step is the only computationally expensive stage, because it requires
an entire pass through the dataset. Here, Numba-optimized code is used to calculate
the number, average, or other reduction of all the datapoints falling into each bin of the
aggregate array. The array itself is an xarray datatype, which allows storing multi-
dimensional data (indexed by x, y, and category, with arbitrarily many associated value
dimensions) efficiently and conveniently.

Approved for Public Release; Distribution Unlimited
28

After aggregation, the originally arbitrarily large dataset has been reduced down to a
fixed-size array containing counts per pixel, means per pixel, and so on. The value in
each cell in that array can then be mapped into a color, from which an image can be
generated and displayed.

4.5.2 Examples

As an example, here is an image created by Datashader in 3 seconds on a Macbook
Pro laptop from a 300-million-point dataset, one point for each person in the US 2010
Census, approximately located at that person’s residence:

Figure 12 - Datashader US Census Image (300 Million Points)

To make this image, Datashader iterated over a three-column Dask dataframe
collecting counts (number of people) per pixel in the final image into each cell of the
aggregate array, and then scaled that value into a brightness value for the pixel in that
image.

The Colormapping stage in Datashader is designed to construct such images in a way
that maximizes the bandwidth of the output device and of the human visual system. If
there are 255 colors available in a given display device, a naive approach would be to
map a count of 0 to black, and the highest observed count per pixel to 255, but
unfortunately this approach gives a nearly unusable plot that looks black with only a few
white points, even though it is a plot of 300 million points:

Approved for Public Release; Distribution Unlimited
29

Figure 13 - US Census Data with Normal Linear Alpha

Instead, Datashader uses a nonlinear mapping by default (as in the first census image
above) that equalizes the number of pixels that are assigned to each of the available
colors, providing a rank-order mapping that maximizes information about the distribution
of the original dataset (unlike the mostly redundant information provided by a linear
transformation, for data that is highly nonlinearly distributed). Using this histogram-
equalization approach, a highly informative image can be created without any user-
adjusted parameters, by simply automatically finding the minimum and maximum values
(which map to the minimum and maximum values in the color range) and nonlinearly
mapping the intermediate values according to the histogram.

Crucially, each of the steps in the pipeline is available to the Datashader user. For
instance, for the following dataset of New York City Taxi trips, a Datashader user can
easily aggregate over all dropoffs and all pickups separately, then select only those
pixels where pickups are more common than dropoffs to plot in red, and those where
dropoffs are more common than pickups to plot in blue. The result very cleanly
distinguishes arterial thoroughfares from residential side streets, which would be a
calculation very difficult to express or measure on the non-aggregated data:

Approved for Public Release; Distribution Unlimited
30

Figure 14 - NYC Taxi Pickup vs Dropoffs

The resulting images can then easily be embedded into Bokeh plots or Bokeh apps and
combined with data from other sources, such as maps:

Figure 15 - Datashader in Bokeh

The above plots are all for point data (people or taxi locations), but similar techniques
work for trajectories, such as this Opensky data on flight paths in Europe (with the left
plot indicating overall frequency of travel, and the others showing ascending flights in
blue and descending (and often circling) flights in red:

Approved for Public Release; Distribution Unlimited
31

Figure 16 - Datashader European Flight Paths

Similar techniques can be used for graph data (here showing 100,000 UK research
collaborations) or time series data (here showing millions of points, plotted to show the
true density of overlap in every location, avoiding overplotting):

Figure 17 - Datashader Graph and Time Series Data

Constructing these plots takes remarkably little code, and typically no user intervention,
because of the automated processing at each stage. For instance, using the new high-
level HoloViews interface to Bokeh and datashader, changing a Bokeh plot of 1000
points (Figure 18 - Code for Display Small Number of Points and Paths) to a
datashader-based plot of one million points requires adding only the single word
“datashade” (Figure 19 - Code to Display Millions of Points and Paths). In this way,
researchers and analysts can now work with even very large datasets interactively and
conveniently in the web browser, making it much simpler to discover the properties of
their datasets and convey them to others.

Approved for Public Release; Distribution Unlimited
32

Figure 18 - Code for Display Small Number of Points and Paths

Figure 19 - Code to Display Millions of Points and Paths

5 Conclusions
There continues to be great interest in being able to use an accessible language like
Python, which domain experts can easily learn, for large scale data science
applications. Historically, languages like Python lacked the performance for large scale
data analysis, a way to for users to easily access data used in such analysis, and a
means to easily create exploratory and compelling interactive visualizations of the data.
Through the XDATA program Continuum has been able to provide tools to address
some of the scaling needs and there has been a broadening community support and

Approved for Public Release; Distribution Unlimited
33

usage for these tools. Increasing, industry leaders such as Intel, AMD, NVIDIA, IBM,
and Microsoft are using the tools and technologies developed under this research as
either foundations for their offerings or as a means to make their technologies more
accessible. As data continues to grow at an accelerated pace we see continued
demand for faster and more scalable computing capability and evolving visualization
capabilities accessible from easy to use languages such as Python.

Over the past year we have also seen continued, increasing interest from the open
source community in supporting and contributing as reflected in the numbers below.

Table 1 - Community Involvement Stats

 Latest
Version

of
releases

Github
Stars # contributors

Monthly
download
count (Dec

2016)

Blaze 0.11.0 49 1830 51 28k

datashape 0.5.4 19 91 22

odo 0.5.0 33 582 29

Bokeh 0.12.5dev11 43 5360 207 102k

Dask 0.13.0 29 1257 83 101k

Datashader 0.4.0 5 478 10 1.5k

Numba 0.30.1 78 2100 68 88k

Approved for Public Release; Distribution Unlimited
34

6 Recommendations
The team sees a number of areas for future research and development that would
support processing, analyzing, and making decisions on ever increasing amounts and
types of data.

For Blaze

- Work on integration with Dask to provide an easy to use interface that can be
used to access, transform and process data in a distributed manner.

- Research and develop GUIs to allow non-technical users to be able to access
and perform basic analysis on data of different types without having to know how
to access the data (ex. SQL or how to get data on a Hadoop cluster).

- Continue building-out the backend to provide access to different data types,
including access to more specialized data, such as satellite imagery.

Numba

- Continue to increase SIMD performance with support for fast math flags and
improved support for AVX, Intel’s large vector instruction, and Xeon Phi Intel’s
many core processors with massive parallelism. For example, AVX-512 lets a
Xeon Phi core operate on 16 floats at once

- Improved the user experience for developers with better debug support and
better error messages.

- Support for "partial compilation" of functions (mix compiled and interpreted code
in the same function)  

- Stand-alone extension module production  
- More Python language supported (jit-classes, comprehension)  

Dask

- Work on making Dask accessible to R users.
- Support complex machine learning algorithms
- Easier deployment on clusters
- Support for Graph algorithms  
- Further integration with the rest of the PyData ecosystem  
- Integration with MPI-based sub-clusters and GPU sub-clusters  

Bokeh

- R support in Bokeh Server so R users can leverage the features of Bokeh
Server.

- Native visualization for Graph / Network data

Approved for Public Release; Distribution Unlimited
35

- Capability for programatic static (.png, .svg, etc) image generation. Currently
Bokeh images require a browser.

- Mechanism to make Bokeh extensions easily sharable, discoverable,  and
installable.

- Support nested coordinate systems and axes
- Integration with VegaLite / Altair
- Datasource views, to support client-side animations, filters, and group-bys

 Datashader

- Large graph/network rendering
- Rendering surface meshes (e.g. altitude measurements, LIDAR) as orthographic

projections
- Full support for datetime axes (for time series plots)
- Automated legends, color keys, color bars, and hover support for use with Bokeh

and other libraries
- Improved integration into Bokeh and HoloViews, adding additional interactive

features (selection, linking, etc.)
- Tiling/partitioning support for input data and output images
- Interfaces for streaming data
- Support for GPU-based dataframes

7 References

7.1 URLs
Blaze GitHub repository: https://github.com/blaze/blaze
Numba GitHub repository: https://github.com/numba/numba
Dask Github repository: https://github.com/dask/dask
Bokeh Github repository: https://github.com/bokeh/bokeh
Datashader Github Repository: https://github.com/bokeh/datashader

https://github.com/blaze/blaze
https://github.com/numba/numba
https://github.com/dask/dask
https://github.com/bokeh/bokeh
https://github.com/bokeh/datashader

Approved for Public Release; Distribution Unlimited
36

8 List of Acronyms
Table 2- List of Acronyms

Term Description

Bcolz A columnar data container that can be compressed.

CPU Central Processing Unit for a computer.

CSS Cascading Style Sheets - A style sheet language used for
describing the presentation of a document written in a
markup language. It is used in conjunction with HTML to
control the appearance of web page elements.

CSV Comma delimited file format

GPGPU General-purpose computing on graphics processing units
- The use of a graphics processing unit (GPU), which
typically handles computation only for computer graphics,
to perform computation in applications traditionally
handled by the central processing unit (CPU).

GPU Graphics Processing Unit

HDF5 A data model, library, and file format for storing and
managing data. It supports an unlimited variety of
datatypes, and is designed for flexible and efficient I/O
and for high volume and complex data

HDFS The Hadoop Distributed File System (HDFS) is a
distributed file system designed to run on commodity
hardware.

HPC High Performance Computing

HTML Hypertext Markup Language - The standard markup
language for creating web pages and web applications

JIT Just-In-Time - Compilation done during execution of a
program – at run time – rather than prior to execution.

JSON JavaScript Object Notation - A lightweight data-
interchange format.

LLVM A collection of modular and reusable compiler and
toolchain technologies used to develop compiler front
ends and back ends.

Approved for Public Release; Distribution Unlimited
37

LLVM IR The intermediate representation, a low-level
programming language similar to assembly generated by
the LLVM compiler.

ND-Array A multidimensional container of items of the same type
and size.

NetCDF Network Common Data Form - a set of software libraries
and self-describing, machine-independent data formats
that support the creation, access, and sharing of array-
oriented scientific data.

NVVM A compiler intermediate representation (IR) based on
LLVM IR designed to represent GPU kernels.

REST Representational state transfer - One way of providing
interoperability between computer systems on the
Internet.

ROCm A platform for GPU Enabled HPC and UltraScale
Computing

SIMD Single Instruction Multiple Data

	1 Summary
	1.1 Purpose, Scope, and Organization
	1.2 Problem Under Investigation
	1.3 Principal Results and Conclusions
	1.4 Recommendations

	2 Introduction
	2.1 Visualization
	2.2 Out-of-core, and Beyond

	3 Methods, Assumptions, and Procedures
	4 Results and Discussion
	4.1 Bokeh
	4.1.1 Concentrate on Your Work
	4.1.2 Implementation
	4.1.3 Lessons Learned
	4.1.3.1 Always Send Explicit Models
	4.1.3.2 Splitting Datashader
	4.1.3.3 Migrating Server to Tornado

	4.1.4 Future Direction

	4.2 Numba
	4.2.1 Implementation
	4.2.2 Lessons Learned

	4.3 Blaze
	4.3.1 Datashape
	4.3.2 Blaze Core
	4.3.3 Blaze Server
	4.3.4 Odo

	4.4 Dask
	4.4.1 Dask Collections
	4.4.1.1 Arrays
	4.4.1.2 DataFrames

	4.4.2 Dask Task Schedulers
	4.4.2.1 Single-machine
	4.4.2.2 Distributed

	4.4.3 Applications
	4.4.4 Ongoing and Future work

	4.5 Datashader
	4.5.1 Details of the pipeline
	4.5.2 Examples

	5 Conclusions
	6 Recommendations
	7 References
	7.1 URLs

	8 List of Acronyms

