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Abstract 

The Lattice Boltzmann Method continues to garner interest in fluids 
research, particularly with its ability to accurately simulate laminar flows 
in the incompressible region. This interest can be attributed in part to the 
ease of implementation the Lattice Boltzmann Method provides; including 
a lack of complex differential terms and a linear approximation of the 
collision operator contained in the Boltzmann equation. In this work, the 
traditional Lattice Boltzmann solver is augmented with support for 
immersed boundaries, thermal flows, and microchannel flows. Thermal 
and micro-enabling support is demonstrated and validated through 
Rayleigh convection in a square channel and thermally coupled Poiseuille 
flow through a microchannel, respectively. 

 

DISCLAIMER: The contents of this report are not to be used for advertising, publication, or promotional purposes. 
Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products. 
All product names and trademarks cited are the property of their respective owners. The findings of this report are not to 
be construed as an official Department of the Army position unless so designated by other authorized documents. 
 
DESTROY THIS REPORT WHEN NO LONGER NEEDED. DO NOT RETURN IT TO THE ORIGINATOR. 
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Unit Conversion Factors 

Multiply By To Obtain 

Lattice unit (lu) a constant dependent on scale Meters (m) 
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1 Introduction 

1.1 Background 

The use of the Lattice Boltzmann Method (LBM) for numerically simulating 
secondary (amorphous) phase constituents (most often represented as a 
laminar, incompressible fluid) within the context of material science-based 
applications is, for these purposes, strategically based on two primary 
motivations. The first, and possibly the most dominant, relates to the 
omnipresent problem of spatiotemporal scale compatibility and reconcilia-
tion, wherein one attempts to make macroscale material decisions based on 
microscale or nanoscale performance criteria. The second motivation 
relates to concerns about the accuracy of the method, particularly with 
respect to flows over complex geometries. 

While the details surrounding these two strategic purposes, including a 
thorough description of the “pros” and “cons” for using LBM over the 
more traditional Computational Fluid Dynamics (CFD) techniques are 
included within the first report of this series (Allen et al. 2014). This first 
report, in terms of validated examples and algorithm development, 
provided only an elementary preview into the vast capabilities and 
sophistication of LBM. The necessary extensions leading ultimately to the 
resolution of the assigned motivating purposes were left largely unfulfilled. 
The goal therefore, of this, the second report in the series, is to fulfill these 
aforementioned purposes, and advance current understanding through a 
series of verified, algorithmic extensions to the method. 

In Allen et al. 2014, an atomistic fluid solving method founded on statistical 
mechanics and kinetic theory was introduced. The LBM includes no 
continuum assumption with regard to the flow; rather the fluid is described 
by individual distribution functions that describe the expectation of finding 
a particle in some phase and temporal domain (Allen et al. 2014). In this 
model, macroscopic quantities such as density and velocity are easily 
computed as velocity moments of the distribution functions. From these 
moments, nearly all other quantities specific to the LBM can be described. 
The accuracy of the LBM with respect to macroscopic, isothermal fluid 
simulations against static, rigid boundaries was demonstrated in Report 
One through use of a number of benchmark flow cases. It was shown that 
results of these demonstrations were found to be in very good agreement 
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with Navier-Stokes (NS) based solutions in all cases, ensuring the validity of 
the LBM as an accurate fluid solving method. The Lattice Boltzmann 
Equation (LBE) as presented in Report One is: 

         ,    ,    ,    , ˆ ˆ  eq
i i t t i i i i tf x c δ t δ f x t f x t f x t F δ

τ
     

1 

    

 (1) 

However, as stated in Report One, a determining factor for the 
implementation of the LBM was its ability to simulate microscale flows, a 
feature not often available to more traditional solvers due the to a 
continuum assumption for the fluid model. Further, it was stated that the 
LBM is able to more accurately simulate flow against complex geometries 
due the mesh being of a simpler quality and less computationally expensive. 

As stated, this report attempts to address these proposals by providing an 
updated implementation of the Immersed Moving Boundary (IMB) method 
made possible by accurately capturing the momentum exchange between 
particles and fluid interface. Also, this report demonstrates the capacity of 
the method to support microchannel simulations by introducing an accurate 
model of the Knudsen layer with Diffuse Scatter Boundary Conditions 
(DSBC), wherein slip velocity on the channel walls is introduced. With 
regard to the IMB method, certain properties were desired; specifically, that 
the flow is able to respond to irregular geometries despite the lattice domain 
property of the LBM that introduces stair step geometries. Initial rigid 
boundary implementation should be changed to a dynamic one, able to 
deform per particle forcing interactions. With such an implementation, 
complex channels and boundaries can be accurately represented, as are 
often encountered in computation fluid domains.  

With regard to the microscale implementation, the chosen method should 
accurately account for fluid properties due to rarefaction effects at the 
microscale. Among these effects, is the presence of Knudsen layer whose 
existence, in many cases, dominates fluid interactions. Due to higher 
collision frequency at the wall, the implementation should also be able to 
simulate a wall slip velocity condition. It is to be shown that the DSBC, 
whose roots lie in kinetic theory, is suitable for such conditions. Further, 
implementation of the tangential momentum accommodation coefficient, 
being a property inherent to the material, allows the DSBC to be extended 
for modeling not only the aforementioned complex geometries, but also 
various material types. 
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1.2 Objective 

This report seeks to demonstrate that the accuracy of the LBM is main-
tained even with the aforementioned, implemented extensions. While 
Navier-Stokes based solvers tend to dominate CFD related simulations, the 
LBM has received much interest in recent years, due in part to being able to 
produce accurate results where Navier-Stokes approximations fail; 
particularly as a the modeled scale decreases (Allen et al. 2014). In-house 
developed code compared against international research efforts demon-
strate the validity of the current LBM implementation through a variety of 
popular simulation cases, including; drag coefficient calculations for an 
immersed cylinder, Rayleigh convection in a square channel, and microscale 
Poiseuille flow. 

1.3 Approach  

This second report is intended to serve as an extension to Report One. It 
was shown in the first report (Allen et al. 2014) that the LBM can return 
the Navier-Stokes equations using the Chapman-Enskog expansion. While 
this report does not return implemented contributions to the NS 
equations, certain NS contributions can be seen in the thermal support 
equations. Further, microscale implementations step outside the realm of 
the macroscopically employed NS scenarios and employ concepts derived 
from kinetic theory, being central to the foundations of the LBM. 
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2 Immersed Moving Boundary 

In this work, support for the IMB is implemented in the LBM to simulate 
particulate flows for complex moving geometries. The IMB was originally 
developed by Peskin (2002) for biological simulation of blood flow around 
the heart and has since quickly evolved into an effective method for fluid-
boundary simulation for incompressible flows. This section is validated by 
applying laminar flow around an immersed cylinder. Like the 
implementation of the classical LBM, the IMB method follows a similar ease 
of implementation. No complex or computationally intensive differential 
terms are needed and the translation from Lagrangian space to Eulerian 
space is relatively straightforward. Further, implementation results of the 
IMB with the single relaxation time Bhatnagar-Gross-Krook (BGK) collision 
remain comparable to multi-relaxation models (Niu et al. 2006). 

In the IMB approach, boundary nodes are represented as a mesh of 
underlying Lagrangian markers able to be moved in continuous space. 
This contrasts with the discretized Eulerian markers that mark the flow as 
shown in Figure 1. Once the flow on the Eulerian markers reaches a 
Lagrangian boundary marker, a calculated force is exerted on the 
Lagrangian boundary marker, accelerating the boundary and updating its 
translational and angular velocities. The exerted force on the Lagrangian 
markers is then pushed back on the Eulerian markers using a carefully 
chosen mollifier to ensure agreement with Newton's Third Law (Feng and 
Michaelides 2003; Peskin 2002). Functions that may be categorized as 
mollifiers must be smooth and the functionally bounded area must be 
unity. This makes a well-chosen mollifier ideal for reapplying the 
boundary force onto the flow. 

The IMB algorithm procedure occurs as follows:  

1. Collide the particles. 
2. Add calculated forces to the collisions.  
3. Stream updated distribution functions. 
4. Update Lagrange markers using Lagrange polynomials. 
5. Calculate bounceback contribution at Lagrange points. 
6. Update Eulerian mesh using mollifier. 
7. Repeat steps 1-6 until convergence. 
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Figure 1. Non-rigid Lagrangian mesh imposed over Eulerian mesh. 
The dark, hollow points represent Langrangian nodes, while 

vertices of coordinate lines represent Eulerian nodes. 

 

As shown by Equation. 1, the LBM allows the addition of external forces. In 
the IMB, the external force is the force that is exerted by the Lagrangian 
mesh onto the Eulerian mesh. While there are many schemes to add an 
external force to the LBM equations, in this work, the force adding scheme 
demonstrated by Mohamad et al. (2010), as shown in Equation 2 is applied.  

    i
b i i

s

wf F c
c

 




 (2) 

This requires the force to be split into eight separate elements (𝐹𝐹0 is always 
zero due to 𝑐𝑐0) to be added to the respective distribution functions. As 
previously mentioned, the single relaxation time BGK collision term is 
used throughout this work. After colliding the particles, the force is then 
added as previously shown. The particles are then streamed across the 
Eulerian markers. 

To represent the boundary locations, Lagrangian markers are placed at 𝑋⃗𝑋𝑠𝑠 
for 𝑠𝑠 𝜖𝜖 Ω where Ω is the fluid domain, 𝑠𝑠 represents the 𝑠𝑠𝑡𝑡ℎ marker, and 𝑋⃗𝑋𝑠𝑠 is 
the position of that marker at 𝑋⃗𝑋𝑠𝑠(𝑋𝑋𝑠𝑠,𝑌𝑌𝑠𝑠). Note that, in this work, capital 
letter quantities are used to represent Lagrangian quantities while 
lowercase letter quantities represent Eulerian quantities. 
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To calculate the distribution functions at a Lagrangian marker, two-
dimensional Lagrange interpolation is employed on the surrounding 
Eulerian markers by Equation 3. Here, interpolate all Lagrangian marker 
distribution functions accurate to the third order. 

    
,    ,

   ,    , 
  

tot toti j
s kj s im

α s α ij
ij k k i m m jij kj ij im

X x Y yf X t f x t
x x y y   

                 
  

1 1





 (3) 

Once the distribution functions have been interpolated, they are updated 
using the bounceback scheme (Zou and He 1997) presented in Equation 4 
to ensure a no-slip condition on the boundary, where 𝛽𝛽 is the opposite 
direction of 𝛼𝛼 or 𝑐𝑐𝛽𝛽 = −𝑐𝑐𝛼𝛼and 𝑢𝑢�⃗ 𝑡𝑡𝑡𝑡𝑡𝑡 is the total velocity written in terms of 
the translational velocity, 𝑢𝑢�⃗ 0, and the angular velocity, 𝜔𝜔��⃗ 0, shown in 
Equation 4.1. 

    ,      ,  α tot
β s t α s α

s

c uf X t δ f X t w ρ
c


   22
 

 

 (4) 

where 

  tot o o s cmu u ω X X   
 

  

 (4.1) 

The force density, 𝐹⃗𝐹𝑠𝑠�𝑋⃗𝑋𝑠𝑠, 𝑡𝑡� at 𝑋⃗𝑋𝑠𝑠 that is to be exerted on the nearby 
Eulerian markers is calculated by Equation 5. The difference in the 
opposite distribution functions is representative of a momentum exchange 
between the particles that results in a change in the boundary's velocity. 
The direction of 𝐹⃗𝐹𝑠𝑠 is determined by the magnitude of this exchange when 
multiplied by the lattice velocity. 

      ,  ,  , s s β β s α s
β

F X t c f X t f X t    
   



 (5) 

With 𝐹⃗𝐹𝑠𝑠�𝑋⃗𝑋𝑠𝑠, 𝑡𝑡� calculated, the force can now be distributed to the flow 
through the use of the aforementioned mollifier. The total force 
redistributed to the flow is given by Equation 6. 

      
Ω

,    , r s sF r t F X t δ r X ds 
   

 

 (6) 
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where 𝛿𝛿ℎ is the chosen mollifier. In his work, Peskin (2002) presented two 
delta functions for 𝛿𝛿ℎ, shown in Equation 7 and Equation 8. 

  

 
 
 

 

, 

,

,

,

,

, 

h

x

x x x x

x x x x
δ x

x x x x

x x x x

x

                              

2

2

2

2

0 2
1 5 2 7 12 4 2 1
8

1 3 2 1 4 4 1 0
8
1 3 2 1 4 4 0 1
8

1 5 2 7 12 4 1 2
8

0 2

 (7) 

  
cos ,

,otherwise
h

πx x
δ x

             

1 1 2
4 2

0
 (8) 

Applying 𝛿𝛿ℎ(𝑥𝑥) to both the x and y Eulerian coordinates yields Equation 9. 
The effective force distribution geometry is a square where the Lagrangian 
marker is located at the center and the length of the sides is two for both 
Equation 7 and Equation 8. In this work, Equation 8 is used exclusively 
primarily due to ease of implementation without loss of accuracy 
(Appendix A).  

   ij s ij s
ij ij s h h

x x x

x X y Y
D r X δ δ

δ δ δ

                 2

1



 (9) 

Independent of the mollifier, because the fluid domain is discretized into 
Eulerian markers with constant spacing 𝛿𝛿𝑥𝑥, Equation 6 must be discretized 
accordingly. (It is important to note that summing the mollifier on discrete 
steps of ∆𝑥𝑥 still sums to unity, proving that no magnitude of force is lost in 
redistribution to the flow. See Appendix A for a more formal proof of this). 
Placing Equation 9 into Equation 6 yields the final force distribution. 

      ,  ,  Δr ij s s ij ij s s
s

F r t F X t D r X l 
   

 

 (10) 
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2.1 Object properties 

In this implementation of the IMB, Lagrange markers are initialized with a 
link to the nearest Lagrange markers for quick access to information 
contained by surrounding Lagrange nodes. Following this, it is possible to 
start at an arbitrary Lagrange marker and follow its links to many other 
Lagrange nodes. The term object is applied to the collection of such a 
group of linked Lagrange markers. Further, this linking scheme allows the 
possibility to create as many objects as desired which are able to interact 
with other objects with little description of object interaction. 

In this implementation, each Lagrange marker is weighted by a mass 𝑚𝑚𝑠𝑠, 
such that an object's mass is: 𝑚𝑚𝑜𝑜 = ∑ 𝑚𝑚𝑠𝑠𝑠𝑠 . The first moment of mass 
divided by 𝑚𝑚𝑜𝑜 is shown in Equation 11 and provides the location of the 
center of mass of the object. 

 cm s s
so

X m X
m

 1 

 (11) 

To obtain the total force on an object, simply sum the balance force of the 
respective Lagrange markers' forces contained by the object as shown in 
Equation 12.  

 o s
s

F F
 

 (12) 

This now allows the opportunity to turn to Newton's Second Law to 
calculate the translational velocity of an object, provided in Equation 13. 

  o
o

o

F dtdu
m







 (13) 

Similarly, the total torque on the object is given by Equation 14. Note that 
the torque acts in the third dimension, and is not present in the 2-
dimentional lattice (D2) with nine discrete velocities (D2Q9) model (Allen 
et al. 2014). 

  ( ) ,o s cm s
s

T X X F X t 
    

 (14) 

The moment of inertia, 𝐼𝐼𝑜𝑜, is given by 
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 ( )o s s cmI m X X  2
 

 (15) 

From the object’s torque and moment of inertia, the angular velocity can 
be obtained, which is shown in Equation 16. 

 o
o

o

T dtdω
I







 (16) 

Finally, considering both the translational and angular velocity 
contributions, the total velocity is calculated by Equation 4.1. 

In this implementation, the object is able to rotate about its center of 
mass. This is accomplished by employing the rotation matrix shown in 
Equation 17, where 𝜃𝜃 is given in Equation 18. 

 
cos sin
sin cos

θ θ
R

θ θ

     
 (17) 

 odθ ω dt


 (18) 

The parameter 𝑋⃗𝑋𝑠𝑠′ denotes the new location of Lagrange marker 𝑋⃗𝑋𝑠𝑠 after 
rotation and is given by Equation 19. 

 ' ( )s s cm cmXRX X X 
   

 (19) 

2.2 Validation 

To validate the computational accuracy of the IMB method, laminar flow 
across an immersed cylinder is considered. This flow problem has been 
studied extensively and has been shown to preserve accuracy in the LBM. 
(Niu et al. 2006). However, this problem can be difficult to model 
effectively due to the stair step geometry imposed on boundary walls by 
lattice discretization. The IMB method remediates this problem due to the 
boundary being composed of Lagrangian markers with no ties to any 
specified Eulerian marker. One common measurement of flow around an 
immersed cylinder is the drag coefficient 𝐶𝐶𝐷𝐷. This quantity may be defined 
in terms of the streamwise component of the force acting on the boundary 
by 𝐶𝐶𝐷𝐷 = 𝐹𝐹𝑥𝑥

𝜌𝜌𝑎𝑎𝑎𝑎𝑎𝑎𝑢𝑢02𝑟𝑟
, where 𝑢𝑢0 is the inlet stream velocity and r is the radius of 

the cylinder.  
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To set up this simulation, the cylinder was initially placed at 𝑥⃗𝑥 = �2
5
𝐿𝐿, 1

2
𝐻𝐻�, 

where L and H are the length and height of the channel, respectively. A 
prescribed velocity of 𝑢𝑢0 is set at the inlet. The top and bottom walls are 
treated by standard no-slip bounceback conditions and the outlet density 
is extrapolated from nearby lattice sites. Further, the size of the channel is 
defined by L = 80r and H = 80r. It can be seen in Figure 2 that two 
vortices develop behind the object. The x-wise length, or recirculation 
length, of the vortices can be expressed in terms of the radius of the 
cylinder by 𝐿𝐿𝑤𝑤 = 4𝐿𝐿𝑟𝑟

𝑟𝑟
, where 𝐿𝐿𝑟𝑟 is the measured recirculation length. 

Results of yielded drag coefficient and recirculation for Re = 20 are 
compared with other LBM implementations by Niu et al. (2006) and He et 
al. (1998) and are presented in Table 1. 

Figure 2. Flow around and immersed cylinder for Re = 20. 

 

Table 1. Drag coefficient and recirculation length comparison for Re = 20. 

 𝑪𝑪𝑫𝑫 Abs. Error 𝑳𝑳𝒘𝒘 Abs. Error 

Niu et al. 2.144 - 1.89 - 

He et al. 2.152 0.373 1.84 2.645 

Current 2.259 5.363 1.95 3.174 
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3 Thermal Interactions 

Thermal support in the LBM has been an area of interest for accurate 
simulation of thermal particulate interaction for various scales and has led 
to the development of thermal implementation methods. Among these 
methods are the multispeed method (McNamara et al. 1995), the passive 
scalar method (Shan 1997) and the thermal energy distribution function 
method (He et al. 1998). 

The multispeed method extends the LBM equation to include calculations 
of macroscopic temperature through implementation of new, higher order 
velocity terms. While the multispeed approach may be straightforward for 
the LBM, results from this method are often unstable. Further, the range 
of supported temperatures is limited. (McNamara et al. 1995) 

The passive scalar method implements thermal support by introducing a 
second distribution function to simulate thermal interactions. This 
method assumes that viscous heat dissipation and compression work done 
by the pressure can be ignored, but does suffer from the same numerical 
instability as the multispeed method. 

In this work, the thermal energy distribution function method proposed by 
He et al. (1998) is implemented. Following the work done by Peng et al. 
(2003), the thermal energy distribution function is simplified by neglecting 
the compression work done by the pressure and the viscous heat dissipa-
tion. Eliminating these contributions is a stipulation also imposed by the 
aforementioned passive scalar method and are justified in incompressible 
fluid interaction as described by Peng et al. (2003) Further, these contribu-
tions are contained in a complex gradient term that complicates the LBM 
and was shown by Peng et al. (2003) to double computation time in many 
situations. 

The density distribution function and thermal distribution functions as per 
the work of He et al. (1998) are presented in Equations 20 and 21. 

       ,    ,  ,  ,ˆ  ˆ eqt ν i t
i i t t i i i

ν t ν t

δ τ F δf x c δ t δ f x t f x t f x t
τ δ τ δ

        
 

1 1
2 2

    

 (20) 
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         , 
,    ,  ,  , ˆ ˆ c i i teqt

i i t t i i i

c t c t

τ f x t q δδg x c δ t δ g x t g x t g x t
τ δ τ δ

        
 

1 1
2 2



    

 (21) 

where 𝑓𝑓𝑖̅𝑖 and 𝑔̅𝑔𝑖𝑖 are the new distribution functions introduced by He et al. 
(1998) and are written in terms of 𝑓𝑓𝑖𝑖 and 𝑔𝑔𝑖𝑖, where 𝑓𝑓𝑖𝑖 is the traditional 
density distribution function and 𝑔𝑔𝑖𝑖 is the thermal distribution function and 
𝑞𝑞𝑖𝑖 represents the viscous heating and compression work. The respective 
relaxation times are now denoted as 𝜏𝜏𝜈𝜈 and 𝜏𝜏𝑐𝑐 for the density and thermal 
distribution functions, respectively. Also proposed by He et al. (1998) are 
related, but simpler functions, shown in Equations 22 and 23. 

  eqt t
i i i i i

υ

δ δf f f f F
τ

   
2 2

 (22) 

  eqt t
i i i i i i

υ

δ δg g g g f q
τ

   
2 2

 (23) 

where 𝐹𝐹𝑖𝑖 is the distribution of a force 𝐺⃗𝐺 acting on the system and the force 
adding scheme is applied in the collision step by 

  i eq
i i

G c u
F f

RT
 





 

 (24) 

The 𝑞𝑞𝑖𝑖 term in Equation 23 contributes to recovering the viscous heating 
and compression work done by the pressure and is written as 

      Πi i iq c u p c u u
ρ
 
          

1    

 (25) 

where the stress tensor 

  Π ρυ u u   
 

 (26) 

The introduction of 𝑓𝑓𝑖̅𝑖 and 𝑔̅𝑔𝑖𝑖 seeks to repair an inconsistent viscosity 
calculation among the two distribution functions, as exposed by Chapman-
Enskog multiscale expansion (Peng et al. 2003). However, because of the 
negligible effect of viscous heating for incompressible flows, the following 
simplified thermal energy distribution proposed by Peng et al. (2003) can 



ERDC TR-14-6; Report 2 13 

 

be shown to preserve computational accuracy by eliminating the complex 
gradient calculations in Equation 25, and, by extension, the necessity of 𝑓𝑓𝑖̅𝑖 
and 𝑔̅𝑔𝑖𝑖. 

Peng et al.'s (2003) simplified thermal distribution functions follows the 
same evolution as the density distribution function and is presented as 

         ,    ,    ,   ˆ  ˆ ,eq
i i t t i i i

c

g x c δ t δ g x t g x t g x t
τ

    
1    

 (27) 

The new distribution function presented in Equation 27 follows the same 
collision and streaming evolution as the classic LBM. For the thermal 
distribution function, the internal energy is represent by 𝜀𝜀 = 𝐷𝐷𝐷𝐷𝐷𝐷

2
, where 

𝐷𝐷 = 2 for two dimensions and is calculated as 

 i
i

ρε g  (28) 

The macroscopic temperature can then be extracted by solving Equation 28 
for 𝑇𝑇. In D2Q9, the equilibrium thermal distribution is given by 

  

 

,  , ,

, , ,

eq

ieq i

ieq i

ρε ug
c

c uρε c u ug
c c c

c uρε c u ug
c c c



      
  
      
  

2

0 2

2 2

1 2 3 4 2 4 2

2 2

5 6 7 8 2 4 2

2
3

3 3 9 3
9 2 2 2 2

9 33 6
36 2 2



 

  

 

  

 (29) 

In the simplified thermal energy distribution model, the viscosity is 
consistent across both distribution function and is given by 

 υ s tυ τ c δ
     

21
2

 (30) 

Another parameter of interest is the thermal diffusivity, X, and it is related 
to the thermal relaxation time by 
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 Χ c tτ c δ
     

22 1
3 2

 (31) 

3.1 Boundary conditions 

Correct implementation of boundary conditions is especially important for 
the thermal distribution function method due to the addition of a second 
distribution function. In their work, Liu et al. (2010) applied a density 
boundary condition shown along a single wall. In this work, such a 
boundary condition is applied and is presented for the case of a general 
wall as reformulated by the authors. In this scheme, the unknown density 
distribution functions are given as 

  *
σ σ

wf f c Q
c

  




 (32) 

where 𝑄𝑄�⃗ = �𝑄𝑄𝑥𝑥 𝑥⃗𝑥,𝑄𝑄𝑦𝑦 𝑦⃗𝑦� and acts as a force corrector to enforce the desired 
momentum on the boundary and 𝑓𝑓𝜎𝜎∗ is a value to be chosen and is usually 
represented by an approximation to 𝑓𝑓𝜎𝜎. In this work, 𝑓𝑓𝜎𝜎∗ = 𝑓𝑓𝜎𝜎

𝑒𝑒𝑒𝑒 , and 𝜎𝜎 
represents the set of the three unknown distribution function indexes on 
the wall such that 𝜎𝜎 = {𝛼𝛼,𝛽𝛽, 𝛾𝛾}. Following the traditional formulation for 𝜌𝜌 
and 𝑢𝑢�⃗ = (𝑢𝑢 𝑥⃗𝑥, 𝑣𝑣 𝑦⃗𝑦) and assuming that 𝑢𝑢 and 𝑣𝑣 on the wall are known, 𝜌𝜌, 𝑄𝑄𝑥𝑥, 
and 𝑄𝑄𝑦𝑦 can be solved by setting up the following linear system: 

 

†

†

†

x y

xx xy x x

xy yy y y

k k ρ f
u k k Q f
v k k Q f

                                             

1
 (33) 

 

†

†

†

i σ
i σ

x i ix σ σx
i σ

y i iy σ σy
i σ

f f f

f f c f c

f f c f c

 

 

 

 

 

 

 (34) 
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x σ σx
σ

y σ σy
σ

xx σ σx
σ

yy σ σy
σ

xy σ σx σy
σ

k w c

k w c

k w c

k w c

k w c c





















2

2

 (35) 

where 𝑤𝑤𝜎𝜎 is the 𝜎𝜎𝑡𝑡ℎ weight determined using the D2Q9 template, 𝑓𝑓𝜎̅𝜎 = 𝑓𝑓𝜎𝜎 −
𝑓𝑓𝜎𝜎∗, and 𝑓𝑓𝜎𝜎 is the yet to-be-updated 𝜎𝜎𝑡𝑡ℎ function value. It is important to 
note that this formulation for 𝑓𝑓𝜎𝜎 on the wall is derived using only Equation 
32, 𝜌𝜌 = ∑ 𝑓𝑓𝑖𝑖𝑖𝑖  and 𝜌𝜌𝑢𝑢�⃗ = ∑ 𝑐𝑐𝑖𝑖𝑓𝑓𝑖𝑖𝑖𝑖 . Using Equation 34 and Equation 35, values 
for 𝜌𝜌, 𝑄𝑄𝑥𝑥, and 𝑄𝑄𝑦𝑦 can be determined exactly by any preferred linear system 
solving method. For the special case of 𝑢𝑢 = 𝑣𝑣 = 0, 𝐴𝐴−1 becomes 

 

y xy x yy x xy y xx

xx yy xy xx yy xy

yy xy

xx yy xy xx yy xy

xy xx

xx yy xy xx yy xy

k k k k k k k k
k k k k k k

k k
A

k k k k k k

k k
k k k k k k



                           

2 2

1
2 2

2 2

1

0

0

 (36) 

Note that for all non-corner nodes, 𝑘𝑘𝑥𝑥𝑥𝑥 = 0, thus yielding Equation 37 

 

yx

xx yy

xx

yy

kk
k k

A
k

k



                     

1

1

10 0

10 0

 (37) 

Equation 37 is applied to all walls in the simulation involving Rayleigh 
convection. At the corner nodes, the non-equilibrium bounceback 
condition must be satisfied: 

 neq neq
α βf f  (38) 



ERDC TR-14-6; Report 2 16 

 

where 𝑓𝑓𝑖𝑖
𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑓𝑓𝑖𝑖

𝑒𝑒𝑒𝑒 − 𝑓𝑓𝑖𝑖 and again 𝑐𝑐𝛼𝛼 = −𝑐𝑐𝛽𝛽. Because 𝑓𝑓5 and 𝑓𝑓7 for the top 
left and bottom right corners and 𝑓𝑓6 and 𝑓𝑓8 for the bottom left and top 
right corners do not stream into the system (Figure 3), yet contribute to 
the density of the corner nodes, they are set to their respective equilibrium 
function values. 

Figure 3. Example of non-streaming lattice 
velocity directions in the D2Q9 model for the 
top left channel corner. It follows that for the 

bottom left and top right corners, lattice 
velocities 6 and 8 directions do not stream. 

 

If the temperature on the wall is known, the thermal boundary conditions, 
presented by Liu et al. (2010), are similar to the density conditions. For 
this case, the three unknown thermal distribution functions are given by 

 *
σ σ σ cg g w G   (39) 

The set of distribution functions, 𝑔𝑔𝜎𝜎∗ , are determined arbitrarily (In this 
work, 𝑔𝑔𝜎𝜎∗ = 𝑔𝑔𝜎𝜎

𝑒𝑒𝑒𝑒). Because the temperature on the wall is known, it follows 
that 

 *( )k i σ σ σ c
i σ σ

ρε RT g g g w G        (40) 

where 𝑇𝑇𝑘𝑘 is the known temperature and 𝜎𝜎 again represents the set of the 
unknown distribution function indices. The quantity 𝜌𝜌𝜀𝜀∗ is represented as 
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 * *
i σ σ

i σ σ

ρε g g g      (41) 

With Equation 40 K, 𝐺𝐺𝑐𝑐 is determined by 

 
*

c
σσ

ρε ρεG
w





 (42) 

thus allowing solutions of the unknown wall distribution functions from 
Equation 39. 

For walls where the temperature is unknown, a second order Taylor series 
expansion is applied. To obtain the temperature on the wall, the 
temperature of the two closest normal nodes and the local rate of change 
of the temperature in the normal direction are required. On the bottom 
wall, for example, the temperature is given by 

 ,
, , ,

j
j y j j

T
T δ T T

y


  


0
0 1 2

2 4 1
3 3 3

 (43) 

where 𝛿𝛿𝑦𝑦 is the lattice spacing. Once the temperature on the wall marker is 
determined, the values of the three unknown distribution functions can be 
found from Equations 39–42. 

3.2 Validation 

In this work, thermodynamically driven convection was simulated to 
demonstrate computational validity for the thermal energy distribution 
method. Natural convection has been shown to be a conventional method 
to simulate thermal flows and is an attractive validation case due to ease of 
implementation (Nor Azwadi et al. 2006; Guo et al. 2007; He et al. 1998; 
Liu et al. 2010; Peng et al. 2003; Shu et al. 1997).  

Here, a square chamber of particles, initially at rest, is introduced with the 
left wall maintained at a high temperature, 𝑇𝑇1, and the right wall 
maintained at a low temperature, 𝑇𝑇0. The top and bottom walls are 
assumed to be adiabatic, such that 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
= 0. The temperature difference 

between the two walls introduces a temperature gradient in the system. 
Convection occurs when a newly introduced dimensionless parameter, the 
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Rayleigh number, Ra, is above a critical value causing the system to tend 
toward thermal equilibrium. 

Many studies of Rayleigh convection are examined under the Boussinesq 
approximation, which assumes that the thermal expansion coefficient, 𝛽𝛽, 
and the viscosity, 𝜐𝜐, are constant. Under this assumption, the buoyancy 
force acting on the system is given as 

  mρG ρβg T T j 0




 (44) 

where 𝑔𝑔0 is the acceleration due to gravity, 𝑇𝑇𝑚𝑚 is the static average 
temperature given by 𝑇𝑇𝑚𝑚 = 𝑇𝑇1+𝑇𝑇0

2
, and 𝚥𝚥 is the unit vector pointing in the 

opposite direction of gravity. Two other important quantities are the 
dimensionless Rayleigh, Ra, and Prandtl, Pr, numbers given as 

 Δ
Χ

βg THRa
υ


3

0  (45) 

 
Χ
υPr   (46) 

where ∆𝑇𝑇 = 𝑇𝑇1 − 𝑇𝑇0  and 𝐻𝐻 is the height of the channel. To test validity of 
the method the Prandtl number is set to Pr =  0.71 allowing for simulation 
of many gases. The study is conducted over a set of fixed Ra. In this work, 
the incompressibility constraint (less than 5% mass loss) is determined by 
the value of 𝛽𝛽𝑔𝑔0∆𝑇𝑇𝑇𝑇. Setting 𝛽𝛽𝑔𝑔0∆𝑇𝑇𝑇𝑇 to a sufficiently small value will 
maintain the system within the incompressible limit and is chosen per the 
Rayleigh number. 

Once the value of Pr and Ra is chosen, 𝜐𝜐 and Χ can be determined by 
Equations 45 and 46. With 𝜐𝜐 and X, 𝜏𝜏𝜐𝜐 and 𝜏𝜏𝑐𝑐 are then determined by 
Equations 30 and 31, respectively. 

The Nusselt number, Nu, is another important dimensionless parameter 
that describes convective heat transfer. Its average value, 𝑁𝑁𝑁𝑁����, is given by  

  , 
Δ

H H

x
HNu q x y dxdy

X T H
  2

0 0

1  (47) 
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      , 
,    , x x

T x y
q x y u T x y X

x


 


 (48) 

On the boundary, Liu et al. (2010) velocity conditions per Equation 37 are 
applied with all wall velocities set to zero. Similarly, the right and left 
thermal boundaries employ the known temperature condition set to 𝑇𝑇1 and 
𝑇𝑇0, respectively. For the top and bottom walls, an adiabatic condition is 
applied. The temperature is extrapolated following the second order 
Taylor scheme shown in Equation 40. To ensure the wall is adiabatic, 𝑑𝑑𝑇𝑇𝑤𝑤

𝑑𝑑𝑑𝑑
 

is set to zero, where 𝑇𝑇𝑤𝑤 is the temperature on the walls. 

To demonstrate the validity of the simulation, the obtained results (Table 2 
are compared with the simplified thermal distribution function LBM 
implementation of Peng et al. (2003), and the results from a differential 
quadrature implementation (noted as DQ in the table) of the Navier Stoke’s 
equations by Shu et al. (1997). 

Table 2. Comparison of convection velocities for various values of Ra. 

Ra  
103 

𝟏𝟏𝟏𝟏𝟏𝟏 × 𝟏𝟏𝟏𝟏𝟏𝟏 
104 

𝟏𝟏𝟏𝟏𝟏𝟏 × 𝟏𝟏𝟏𝟏𝟏𝟏 
105 

𝟐𝟐𝟐𝟐𝟐𝟐 × 𝟐𝟐𝟐𝟐𝟐𝟐 
106 

𝟐𝟐𝟐𝟐𝟐𝟐 × 𝟐𝟐𝟐𝟐𝟐𝟐 

umax 

Current 3.712 16.275 33.557 60.600 

Peng 3.644 16.146 34.261 63.671 

DQ 3.649 16.190 34.736 64.775 

y 

Current 0.810 0.820 0.855 0.855 

Peng 0.810 0.820 0.855 0.852 

DQ 0.815 0.825 0.855 0.850 

vmax 

Current 3.752 19.748 69.058 224.52 

Peng 3.691 19.593 67.799 217.57 

DQ 3.698 19.638 68.640 220.64 

x 

Current 0.180 0.120 0.065 0.040 

Peng 0.180 0.120 0.065 0.040 

DQ 0.180 0.120 0.065 0.035 

𝐍𝐍𝐍𝐍���� 

Current 1.132 2.253 4.524 8.756 

Peng 1.117 2.241 4.511 8.737 

DQ 1.118 2.245 4.523 8.762 
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The maximum value of the x velocity component, umax, and its y position at 
a static x location of 𝑥𝑥 =  𝐿𝐿

2
, where is L is the length of the channel, is 

recorded. In the same way, the maximum value of the y velocity component, 
vmax, and its x position at a static y location of 𝑦𝑦 = 𝐻𝐻

2
, where H is the height of 

the channel, is recorded. The corresponding average Nusselt number is also 
presented for each case. The isotherms and velocity streamlines are 
presented in Figure 4 and Figure 5, respectively. The results show very good 
agreement with both previous LBM and NS simulations. 

Figure 4. Isotherms for various values of Ra 
Ra = 103      Ra = 104 

  

Ra = 105      Ra = 106 
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Figure 5. Velocity streamlines for various values of Ra. 
Ra = 103      Ra = 104 

  

Ra = 105      Ra = 106 
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4 Microflow Interactions 

Due to the difficulty of simulating microscale interactions with popular NS 
based fluid solvers (Lim et al. 2002; Niu et al. 2004), an extension to the 
LBM able to capture rarefaction effects is introduced (note this implemen-
tation is able to incorporate such effects solely by means of an increase in 
Kn and implementation of Diffuse Scattering Boundary Conditions to 
calculate the slip velocity with respect to a solid-fluid interface characteristic 
to microscale flows). For traditional macroscopic flows, rarefaction effects 
on the microscale are usually considered negligible and are omitted in 
practice. To measure microscale interactions, the Knudsen number, Kn, is 
employed, being a dimensionless parameter, defined as the ratio of a 
particle's mean free path to the characteristic length of the channel. As the 
Knudsen number increases (i.e., the mean free path is on the order of the 
characteristic length), particulate interactions must be considered. This 
ensures that traditional Navier-Stokes solvers are generally unable to yield 
accurate results in the transitional regime (0.1 ≤ 𝐾𝐾𝐾𝐾 ≤  1) due to modeling 
a fluid as continuum with continuous macroscopic quantities. However, 
microscale interactions must be studied with emphasis on rarefaction 
effects with discrete macroscopic quantities (Allen 2006). The LBM is an 
attractive method for microscopic fluid flow study due in part to the lack of 
an assumed continuum flow constraint, as well as a straightforward 
implementation of the Diffuse Scattering Boundary Conditions, able to 
expose slip velocity in rarefied gas flows. Further, the use of non-constant 
collision frequency allows direct implementation of microscale interactions.  

Among the rarefaction effects to be modeled at the microscale is the 
existence of a Knudsen layer which exhibits non-equilibrium effects at the 
boundary and spans about the distance of one mean free path from the 
fluid-solid interface. This layer is formed due to the heightened frequency 
of particle collisions at the boundary (Homayoon et al. 2011) and creates a 
slip velocity at the fluid-solid interface expressed as the particle’s velocity 
relative the boundary velocity. For higher Kn, the effects of the Knudsen 
layer are a dominant effect in the flow. Further, collisions at boundaries 
are reflected in a manner slightly inconsistent with the equilibrium state 
described by the Maxwellian distribution function. Certain treatments 
must be implemented for accurate simulation of a Knudsen layer, as well 
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as boundary conditions able to describe fluid-boundary collisions. (Lilley 
and Sader, 2008) 

A variety of proposals exist to effectively tie the LBM with accurate 
microchannel representation. Among these are the introduction of effective 
quantities as employed by Ghazanfarian and Abbassi (2010) and Homayoon 
et al. (2011), and are written in terms of the originally calculated quantities. 
Hoyamoon et al. (2011) proposed an effective dynamic viscosity that yields 
an effective relaxation time where both parameters were inversely 
proportional to some function of Kn. Lim et al. (2002) introduced an 
updated Kn inversely proportional to the pressure distribution in the 
channel effectively updating the relaxation time due to the assumption that 
the channel pressure is proportional to the mean free path and the mean 
free path is proportional to the relaxation time. Niu et al. (2004) presented 
𝜏𝜏𝜐𝜐 ∝ 𝐾𝐾𝐾𝐾 modified by the specific heat ratio for a monatomic gas. 

Of greatest significance though, is that most authors agree that the 
dimensionless relaxation time is proportional to the Knudsen number 
since 𝜏𝜏𝜐𝜐 ∝ 𝐾𝐾𝐾𝐾 (Ghazanfarian and Abbassi 2010; Homayoon et al. 2011; 
Lim et al. 2002; Niu et al. 2004). Therefore, the introduction of a fixed Kn 
is directly reflected in an update of the collision frequency.  

Letting 𝜆𝜆 represent the mean free path of the considered particles and H 
be the characteristic length of the channel, here representing the channel 
height, the Knudsen number is given by 

   λKn
H

  (49) 

The mean free path can then by calculated by 𝜆𝜆 = ⟨𝑣𝑣⟩Θ, where ⟨𝑣𝑣⟩ is the 
average magnitude of velocity of the particles enclosed in the system given 

by ⟨𝑣𝑣⟩ = �8𝑅𝑅𝑅𝑅
𝜋𝜋

 and Θ is the relaxation time related to 𝜏𝜏𝜈𝜈 by Θ = 𝜏𝜏𝜈𝜈𝛿𝛿𝑡𝑡. (Niu et 

al. 2004) In the D2Q9 model, ⟨𝑣𝑣⟩ is transformed by 𝑐𝑐 = √3𝑅𝑅𝑅𝑅 to ⟨𝑣𝑣⟩ =

𝑐𝑐� 8
3𝜋𝜋

. Thus, writing 𝜆𝜆 in terms of 𝜏𝜏𝜈𝜈 yields 

 ν tλ c τ δ
π


8

3
 (50) 
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The characteristic length is then given by 

 H xH N δ  (51) 

where 𝑁𝑁𝐻𝐻 is the number of lattice sites that span the width of the channel 
and 𝛿𝛿𝑥𝑥 is the lattice site spacing and is assumed to be constant throughout. 
From Equation 50 and Equation 51, the evaluation of Kn can be updated, 
yielding: 

 ν t

H x

τ δKn c
π N δ


8

3
 (52) 

Noting that 𝑐𝑐 = 𝛿𝛿𝑥𝑥
𝛿𝛿𝑡𝑡

 and implementing a correction factor of −1
2
 to maintain 

second order accuracy (in accordance with with the Chapman-Enskog 
analysis (Ghazanfarian and Abbassi 2010)), Equation 52 becomes 

 Kn  
ν

H

τ

π N




1
8 2

3
 (53) 

The Kn has now been effectively tied to relaxation time as assumed by the 
present authors. With this formalization of Kn for the D2Q9, the 
relaxation time can now be determined in terms of a desired Kn. With the 
calculated 𝜏𝜏, 𝜆𝜆 can also be computed by Equation 50. In order to ensure a 
more accurate Knudsen layer, Ghazanfarian et al. (2010) proposed a wall 
function that modifies 𝜆𝜆 in Equation 50 by 

 e
λλ

y H yψ ψ
λ λ


             

1
 (54) 

where 𝜓𝜓 is given by 𝜓𝜓(𝑥𝑥) = 𝑒𝑒−𝐶𝐶𝐶𝐶, 𝐶𝐶 is a constant set to unity in this work, 
Pr is the previously introduced Prandtl number and y is the normal 
distance relative to the bottom wall. Further, Ghazanfarian and Abbassi 
(2010) also formulated a modification to 𝜏𝜏𝜈𝜈 in attempt to couple the 
contributions generated by the density and internal energy distribution 
functions that is given by 
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 '

ω
ν

ref
ν

ref

τ ρ
τ

y H y ρψ ψ
λ λ

                    

1
2

1
12
21




 (55) 

Note that 𝜏𝜏𝜈𝜈′  is written in terms of 𝜏𝜏𝜈𝜈, 𝜖𝜖, and 𝜌𝜌. This calculation considers 
the desired microscale interactions through the implementation of 𝜏𝜏𝜈𝜈 
derived from a chosen Kn, internal energy updated by thermal 
interactions, and pressure contributions due to the linear relationship of 
pressure and density in the LBM. Implementation of Equation 55 couples 
density and internal energy interactions in LBM allowing for both and 
pressure and thermal interactions to be simulated on the microscale. 

Since 𝑃𝑃𝑃𝑃 = 𝜐𝜐
𝑋𝑋

, 𝜈𝜈 ∝ 𝜏𝜏𝜐𝜐, and 𝑋𝑋 ∝ 𝜏𝜏𝑐𝑐, the thermal relaxation time can then be 

computed in terms of Pr as 

 
Pr

υ

c

τ
τ


 

1
12
2

 (56) 

4.1 Boundary conditions 

To correctly model the slip velocity on the walls, the standard bounceback 
condition is shifted to a discretized Maxwell boundary condition, referred 
to as the DSBC. The DSBC as presented (Tang et al. 2005) is shown and 
was implemented in this work. 

With knowledge of the wall velocity, the motion of the particles near the 
wall can be expressed with slip reference velocity of 𝜉𝜉𝑖𝑖 = 𝑐𝑐𝑖𝑖 − 𝑢𝑢�⃗ 𝑤𝑤. The 
reference velocity projection over the unit normal to the wall is then given 
as 𝜉𝜉𝑖𝑖 ∙ 𝑛𝑛�⃗ , where 𝑛𝑛�⃗  is the normal unit vector pointing into the flow. With the 
values of 𝜉𝜉𝑖𝑖 ∙ 𝑛𝑛�⃗ , the respective 𝑓𝑓𝑖𝑖 can be grouped into three sets. Particles 
with values of 𝜉𝜉𝑖𝑖 ∙ 𝑛𝑛�⃗ < 0 must be incident to the wall and are grouped in 𝐼𝐼𝑖𝑖. 
Particles with 𝜉𝜉𝑖𝑖 ∙ 𝑛𝑛�⃗ > 0 are reflected particles and are placed in 𝐼𝐼𝑟𝑟. Finally, 
particles with 𝜉𝜉𝑖𝑖 ∙ 𝑛𝑛�⃗ = 0 must be "grazing" particles and are placed in 𝐼𝐼𝑔𝑔. 

In this grouping, information about incident and grazing particles are 
already known and the reflected particles must be solved for. According to 
kinetic theory, the reflected particle distribution function is related to that 
of the incident particles by (Struchtrup 2013) 
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 

  '
tot

r

i

i

j I i i i i
i Ij

f f c c ξ n
ξ n





  



1 

  





  (57) 

Here ℛ(𝑐𝑐𝑖𝑖 → 𝑐𝑐𝑖𝑖′) is the scattering kernel which represents the probability 
that particles which hit the boundary with velocity {𝑐𝑐𝑘𝑘′ , 𝑐𝑐𝑘𝑘′ + 𝑑𝑑𝑐𝑐′} will return 
to the flow with velocity {𝑐𝑐𝑘𝑘, 𝑐𝑐𝑘𝑘 + 𝑑𝑑𝑐𝑐′}. Due to the consideration of only 
nonporous and nonabsorbent boundaries, the normalization constraint for 
ℛ(𝑐𝑐𝑖𝑖 → 𝑐𝑐𝑖𝑖′) yields (Struchtrup 2013; Tang et al. 2005) 

  '
tot

i

i

i i
i I

c c dc


  1
  

  (58) 

which guarantees that all boundary colliding particles are returned to the 
flow. For purposes in the LBM, discretization of Equation 57 is written as 

    
i

j j i ij i
i I

ξ n f ξ n f


   
 

 

  (59) 

In attempt to represent multiple particle-boundary interactions, various 
formulations of ℛ are considered by kinetic theory. In his model, Maxwell 
chose to consider the specular and diffusive derivations of ℛ and couple 
them linearly with the tangential momentum accommodation coefficient, 
𝜎𝜎𝑣𝑣, such that 𝜎𝜎𝑣𝑣 ∈ [0, 1] by applying 𝜎𝜎𝑣𝑣 to the diffuse condition and 𝜎𝜎𝑣𝑣 − 1 
to the specular condition. Considering the specular and diffusive boundary 
conditions, the DSBC in the LBM may be expressed as 

 

      
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


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  


 



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

  



 

 


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 (60) 

where 𝑗𝑗 ∈ 𝐼𝐼𝑟𝑟. Note that taking 𝜎𝜎𝑣𝑣 = 1 considers the particle reflection to be 
completely diffusive and 𝜎𝜎𝑣𝑣 = 0 takes the particle reflection to be completely 
specular. In this work, the value of 𝜎𝜎𝑣𝑣 = 1 is exclusively considered. The 
diffusive interaction ensures that incoming particles are reflected in such a 
way that the particle "loses its memory" of its incoming direction and is 
after scattered such that both the tangential and normal components of its 
direction are altered. (Niu et al. 2006; Struchtrup 2013; Tang et al. 2005) It 
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has also been shown by Niu et al. (2006) that for steady flow where the 
velocity varies only the streamwise-normal direction the slip velocity may 
written in terms of only Kn and 𝑢𝑢�⃗ . 

4.2 Validation 

Correct implementation of microchannel support for the LBM was 
validated through simulation of Poiseuille flow with heated walls over a set 
of fixed Kn. A strong pressure gradient of ratio 2 across the channel is 
implemented using the enforced density boundary condition proposed by 
Zou et al. (1997). In the work, 𝑃𝑃1

𝑃𝑃2
= 2, with 𝑃𝑃1 being the inlet pressure and 

𝑃𝑃2 is the outlet pressure. The velocity is then calculated in order to 
maintain the desired pressure. At the north and south walls, the velocity 
condition in Equation 37 was first applied to ensure the wall velocity was 
zero and then DSBC conditions were applied. Due to the DSBC, the 
presence of a slip velocity was observed as expected for microscale flows. 

The bottom and top walls have an imposed internal energy of 𝜖𝜖1 and 𝜖𝜖2, 
respectively, with an internal energy ratio corresponding to 𝜖𝜖1

𝜖𝜖2
= 2. At the 

inlet, the internal energy is as measured with respect to the top wall is 𝜖𝜖𝑖𝑖𝑖𝑖
𝜖𝜖2

=

1.5. To enforce the internal energy on the walls, the thermal boundary 
condition presented in Equations 39–42 are used by first determining the 
known temperature from the internal energy with 𝜖𝜖 = 𝑅𝑅𝑅𝑅.  

To enforce the effects of the Knudsen layer, the wall function modification 
of 𝜆𝜆 shown in Equation 54 is implemented. The adjustment of 𝜏𝜏𝜐𝜐 by 
Equation 55 is also implemented, effectively coupling the microchannel 
and thermal interactions. With the use of Equation 55, the viscosity and 
thermal diffusivity are now both dependent on pressure and internal 
energy. Due to this, it can be observed that the pressure distribution is no 
longer linear. The pressure is presented after being normalized by 𝑃𝑃−𝑃𝑃𝑙𝑙

𝑃𝑃2
 

where 𝑃𝑃𝑙𝑙 is the expected linear pressure distribution given in terms of 𝑥𝑥∗ =
𝑥𝑥
𝐿𝐿
 with L being the length of the channel by 𝑃𝑃𝑙𝑙 = 𝑃𝑃1 + 𝑥𝑥∗(𝑃𝑃2 − 𝑃𝑃1). Deviation 

from linear pressure is compared to the results found by Ghazanfarin and 
Abbassi (2010) and is presented for various Kn in Figure 6. 

To demonstrate the validity of the implemented model, comparisons of 
velocity profiles normalized by the bulk velocity are presented for various 
Kn. The presented results are compared with those produced by 
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Ghazanfarian and Abbassi (2010) and are shown in Figures 6–9. Due to 
thermal-microscale coupling, the velocity is updated depending on 
pressure, internal energy, and Knudsen layer modeling, making the velocity 
profiles an interesting calculation. It is seen that the yielded results agree 
very well with those presented by Ghazanfarian and Abbassi (2010). 

Figure 6. Deviation from linear pressure distribution for various Kn. 

 

Figure 7. Normalized velocity profile corresponding to Kn = 0.1. 
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Figure 8. Normalized velocity profile corresponding to Kn = 0.2. 

 

Figure 9. Normalized velocity profile corresponding to Kn = 0.4. 
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5 Summary 

This report demonstrated the validity of various physical extensions 
implemented within the LBM. It was shown, through a variety of worked 
examples, that the LBM is able to accurately account for flows around 
complex immersed boundaries, thermal convection driven flows, and 
microchannel flows. Further, this effort also served to set the LBM apart as 
a computationally accurate method, especially for microscale flow 
scenarios. In particular, this accuracy was demonstrated in simulations of 
(1) flow around an immersed cylinder, (2) natural convection in a square 
channel, and (3) pressure driven flow with heated walls and Knudsen layer 
accommodation. Of particular interest is the effective coupling of thermal 
and microchannel support. Given the present work as a foundation, future 
efforts may focus on particulate flows through microscale electronics, 
deformation and heat transfer of grain-structured materials, and 
rarefaction effects on microscale boundaries. 
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Appendix A: Discretized Delta Function 
Validation 

Consider a Lagrange marker located at 𝑋⃗𝑋𝑠𝑠 = �𝑥𝑥𝑖𝑖 + Δ𝑥𝑥,𝑦𝑦𝑗𝑗 + Δ𝑦𝑦� where 𝑟𝑟𝑖𝑖𝑖𝑖 =
�𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑗𝑗� is the nearest lower left Eulerian marker relative to 𝑋⃗𝑋𝑠𝑠 and 𝑥𝑥𝑖𝑖 ≥
Δ𝑥𝑥 > 𝑥𝑥𝑖𝑖+1, 𝑦𝑦𝑗𝑗 ≥ Δ𝑦𝑦 > 𝑦𝑦𝑗𝑗+1. If the force at the Eulerian nodes is updated by 
Equation 8 and applied to a domain Ω, the magnitude of force distributed 
to 𝑟𝑟𝑖𝑖𝑖𝑖 is given by 

    Δ Δ
n n

h h
i j

δ i n x δ j n y
 

      
1 1

1 1  (A1) 

Let 𝛼𝛼 be the first summation and 𝛽𝛽 the second summation, such that 𝛼𝛼 =
∑ 𝛿𝛿ℎ𝑛𝑛
𝑖𝑖=1 (𝑖𝑖 − 𝑛𝑛 + 1 + Δ𝑥𝑥) and 𝛽𝛽 = ∑ 𝛿𝛿ℎ(𝑗𝑗 − 𝑛𝑛 + 1 + Δ𝑦𝑦)𝑛𝑛

𝑗𝑗=1 . Note that terms 
above 𝑛𝑛 = 4 equal 0. Expanding 𝛼𝛼, we find 

        Δ Δ Δ Δh h h hα δ x δ x δ x δ x        2 1 1  (A2) 

Evaluating first term of 𝛼𝛼 yields 

   ΔΔ cosh
π xπδ x

             

1 22 1
4 2 2

 (A3) 

Applying the trigonometric identity for cos(𝑎𝑎 + 𝑏𝑏), we find Equation A3 
evolves into Equation A4 

   Δ ΔΔ cos cos sin sinh
π xπ π xπδ x

  
     
  

1 2 22 1
4 2 2 2 2

 (A4) 

After following this procedure of evaluating the delta function and 
applying the trigonometric identity for cos(𝑎𝑎 + 𝑏𝑏) for the remaining three 
terms in 𝛼𝛼, we group terms and find 
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Δxcos cos cos cos cos

Δsin sin sin sin sin

π π π π π

α
xπ π π π π

                           

2 04
2 2 2 2 21

4 2 0
2 2 2 2 2

 (A5) 

Evaluating the four inner cosines and sines proves that 𝛼𝛼 = 1 for all Δ𝑥𝑥. 
This same procedure can be applied for 𝛽𝛽 and it becomes apparent that 𝛽𝛽 
= 1 as well. Therefore, 𝛼𝛼𝛼𝛼 = 1 for enclosed discretized Eulerian markers 
independent of the location of the forcing Lagrange marker at 𝑋⃗𝑋𝑠𝑠. 
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Appendix B: Definition of Mathematical 
Symbols Used in LBM 

Table B1. Definition of Mathematical Symbols used in LBM. 

Symbol Definition Units 

𝒇𝒇𝒆𝒆𝒆𝒆 density equilibrium distribution function   
D dimension  
H domain height  
L domain length  
F external force  

𝒖𝒖��⃗  fluid velocity  

𝒄𝒄�⃗  lattice velocity  

𝒘𝒘𝒊𝒊 lattice weights  

𝒙𝒙��⃗  position vector  
p pressure  

𝒄𝒄𝒔𝒔 speed of sound  
t time  

Greek 

𝝉𝝉𝝊𝝊 density distribution relaxation time  

𝝆𝝆 fluid density  

𝝊𝝊 kinematic viscosity  

𝜹𝜹𝒙𝒙 spatial discretization step  

𝜹𝜹𝒕𝒕 temporal discretization step  
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Appendix C: Definition of Mathematical 
Symbols Used in IMB 

Table C1. Definition of Mathematical Symbols used in IMB. 

Symbol Definition Units 

𝑪𝑪𝑫𝑫 drag coefficient  

𝑭𝑭𝒓𝒓 force reapplied to flow  

𝑭𝑭��⃗ 𝒔𝒔 immersed boundary body force  

𝑰𝑰𝒐𝒐 immersed boundary moment of inertia  

𝑻𝑻𝒐𝒐 immersed boundary torque  

𝑿𝑿��⃗  Lagrangian node position  
m mass  

𝑿𝑿��⃗ 𝒄𝒄𝒄𝒄 object center of mass  

𝑫𝑫𝒊𝒊𝒊𝒊 2D lattice force mollifier  
Greek 

𝝎𝝎 angular velocity  

𝜹𝜹𝒉𝒉 force distribution mollifier  
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Appendix D: Definition of Mathematical 
Symbols Used in Thermal Interactions 

Table D1. Definition of Mathematical Symbols used in Thermal Interactions. 

Symbol Definition Units 

𝒈𝒈𝟎𝟎 acceleration due to gravity  

𝑻𝑻𝒎𝒎 average temperature  
R gas constant  
T temperature  

𝒈𝒈𝒆𝒆𝒆𝒆 thermal equilibrium distribution function  
q viscous heating and compression contribution  

∆𝑻𝑻 wall temperature difference  
Greek 

𝜺𝜺 internal energy  

𝚷𝚷 stress tensor  
X thermal diffusivity unitless 

𝝉𝝉𝒄𝒄 thermal distribution relaxation time unitless 

𝜷𝜷 thermal expansion coefficient unitless 
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Appendix E: Definition of Mathematical 
Symbols Used in Microflow Interactions 

Table E1. Definition of Mathematical Symbols used in Microflow Interactions 

Symbol Definition Units 

𝑵𝑵𝑯𝑯 characteristic length  

𝓡𝓡 scattering kernel  
Greek 

𝝃𝝃�⃗  fluid-wall relative velocity  

𝝀𝝀 mean free path unitless 

𝚯𝚯 relaxation time s-1 

𝝈𝝈𝒗𝒗 tangential momentum accommodation coefficient unitless 
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