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ABSTRACT

This project presents a comprehensive summary of the problems under study, our approaches, technical con-
tributions, and accomplishments that are supported throughout the entire project period, April 15, 2008 to July
31, 2014. There are two time periods for this project, one is the original award from September 1 2008 to August
31, 2011, and the other from September 1, 2011 to July 31, 2014 as the supplemental period. In the original
project, we addressed two thrusts, namely network vulnerabilities and recovery strategies in the aftermath of
WMD attacks. More specifically, this research targets a set of fundamental issues to understand network re-
sponse following an attack by WMD/WME: how to model a network topology in the presence of attacks/failures
from random threats; how to estimate or predict network survivability to sustain critical applications; how to de-
sign/form network architecture to approach the theoretical limits of network robustness; and how to inter-operate
with other available/limited sources for fast communication recovery.

With the increasing attention on the national infrastructure, such as civilian and military telecommunication
networks, power grids, and transportation systems, these large-scale, inter-connected networks are vulnerable to
WMD attacks. Under such attacks on communication media and facilities, the intrinsic nature of networking in-
evitably surrenders a given infrastructure to cascading or correlated failures in both temporal and spatial domains,
which in turn, have a great and potentially devastating impact on network operation availability and performance.
Therefore, we proposed to conduct a two-year optional extension during which we focused on network vulner-
ability to such failures, and on assessing network availability, subject to variations in traffic and user demands,
as well as critical elements. In particular, we proposed to explore correlated failures, and their propagation with
respect to temporal and spatial domain, in both inhomogeneous networks and physical systems.

To this end, we first studied the underlying network topology that is used to monitor, detect, and identify
attacks, by analyzing the topological structure (i.e., operational state) of a network such that can i) very efficiently
detect and localize failures; 1 ii) further address the so-called dynamic failures, and more specifically, correlated
failures, to not only achieve their early detection and classification but to also track them and proceed to their
isolation and all this, as proposed below, by a distributed computational strategy which hence easily scales with
the network size. We then subsequently explored structurally how cascading and correlated failures are formed
and will propagate in networks, and how such failures disrupt communications. We further moved on to the
analysis and evaluation of physical networks by extending our models to smart grids, which are also known
as the next generation power grid. In short, our proposed work included rapidly detecting, measuring, and
tracking/predicting correlated failures in both time and spatial domains, as well as optimal design against such
failures for inhomogeneous networks and their applications in physical networks.

As a result, our efforts advance the knowledge and fundamental understanding of the of WMD attacks, and
the resulting failures in the infrastructure networks which form the backbone of civilian and military capabilities.
Furthermore, we believe that our results will provide significant insights on the scope of damage due to cascading
and correlated failures, including catastrophic loss of connectivity, unsuccessful missions, slow-down of the
Internet, and damage to the economy and society at large. All together, the proposed research will leverage DoD
capability in response to attacks from WMD/WME.

1This is more than an order of magnitude more efficient than any previous approach.
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1 Objectives and Status of Efforts

Timely and accurate gathering and dissemination of information following an attack by Weapons of Mass De-
struction (WMD) or Weapons of Mass Effect (WME) are crucial to preserving DoD military capabilities on the
substratum of national infrastructure networks and military tactical networks. The destruction of infrastructure,
combat and tactical networks, will be an immediate result from WMD stressors which can be biological, chemi-
cal, and nuclear weapons. For example, widely distributed failures of electronics from a nuclear electromagnetic
pulses or a long-term denial of network elements or segments may be a consequence of WMD contamination.
In addition to the impact of WMD stressors on the national network infrastructure, the impact of nuclear elec-
tromagnetic pulse on wireless networks may even be much more severe, as radio channels are open medium for
wireless communications. This is in part due to wireless networks having become an indispensable element in
civilian and military communications, and being almost exclusively the sole means of communication during
a disaster relief and/or battlefield settings. For military applications, relying on centralized systems with base
stations and on an established network is simply not even an option in light of typically hostile and dynamic
(probably even unknown) environments. To overcome the limited radio transmission ranges (i.e., wireless de-
vices can only communicate with others within their transmission range), nodes are equipped with an ability to
forward information on behalf of others, i.e., multihop communications, which led to the research and develop-
ment of ad hoc networks and have witnessed tremendous evolution in recent years. In addition, wireless ad hoc
networks may take on a role of temporary replacement or supplement of the fixed infrastructure in reacting to
failures and dynamic networking environments or applications.

Therefore, in the original project, we addressed two thrusts, namely network vulnerabilities and recovery
strategies in the aftermath of WMD attacks. More specifically, this research targets a set of fundamental issues to
understand network response following an attack by WMD/WME: how to model a network topology in the pres-
ence of attacks/failures from random threats; how to estimate or predict network survivability to sustain critical
applications; how to design/form network architecture to approach the theoretical limits of network robustness;
and how to inter-operate with other available/limited sources for fast communication recovery. That means, we
have the following objectives:

• We aim to develop new analytical models in order to capture the impact of multiple failures due to random
threats (aforementioned) on network dynamics in the face of WMD/WME disruption, such as connection
(link) status, connectivity, and topology.

• We aim to design and analyze new metrics that it can characterize and estimate the impact of interdepen-
dence of a multitude of failures regarding network responses, based on either peacetime data or simulated
threats.

• We aim to develop new approaches that re-form or self-heal a network architecture given complete or
incomplete knowledge of communication environments and function of other nodes (Note that we use
nodes for both people and wireless devices in this context), e.g., cooperative nodes or non-cooperative
neighboring nodes whose cooperative functions may be disabled by energy depletion or WMD stressors.

7



• We aim to design new distributed methods that are distributed and with an ability to recover commu-
nications in heterogeneous networking environments by utilizing resources from other networks (sensor
networks and back-haul networks) under the circumstances with limited connection or outage due to un-
known causes. By distributed, we mean that the designed solutions should enable each node to work
independently with others, without requiring a centralized controller.

The first two objectives are under the thrust of understanding network response to WMD stressors, with
respect to the rules and parameters that govern network vulnerability and survivability. The last two objectives
are under the thrust of recovery strategies to re-form a network and to inter-operate with other networks. In
combination, we tackle the problem of identifying fundamental principles that govern network responses, and of
facilitating robust, tactical communication networks under random threats.

With the increasing understanding of network responses to WMD failures and their impact, it is more and
more clear that our national infrastructure, such as civilian and military telecommunication networks, power
grids, and transportation systems are vulnerable to large-scale attacks in WMD environments. Under such at-
tacks on communication media and facilities, the intrinsic nature of networking inevitably surrenders a given
infrastructure to cascading or correlated failures in both temporal and spatial domains, which in turn, have a great
and potentially devastating impact on network operation availability and performance. In the extension period of
this project, we focus on network vulnerability to such failures, and on assessing network availability, subject to
variations in traffic and user demands, as well as critical elements.

We note that there has been very limited work on the impact of tempo-spatially correlated and dynamic
failures which are quite unique in networks subjected to WMD environments. It is in fact and in part, due
to the lack of sound mathematical models of such failures, and of understanding these arising complex issues
in networks which cannot easily be described in terms of graphs and methodologies for simple, homogeneous
networks, as well as of predicting network inter-dependent responses. Consequently, there exists a critical gap in
the knowledge required for research in mitigating network vulnerabilities and their potentially dire consequences.
Towards reducing this gap, we propose to study the following issues in the expansion period of time:

(1) how to model and analyze correlated failures in temporal and spatial domains, with respect to their for-
mation, propagation, and evolution capability?

(2) how to measure or predict network vulnerabilities in an inter-dependent networks? For instance, what is
the temporal correlation between a cyber attack and a physical fault in power grid?

(3) how to design fast and distributed algorithms to ensure network security by detecting, localizing, and
tracking failures? We focused our work on sensor networks, which have wide range of applications including
surveillance and monitoring of potentially hazardous and inaccessible regions.

Status of Efforts: Through our productive research in the past five years, we have achieved significant research
results toward the understanding and construction of robust network architecture to resist WMD/WME threats.
As the first step of our research efforts, we have designed a novel node behavior model to accurately capture the
behavior transitions of a node under WMD attacks, such as mobile, cooperative, faulty, destructive, and dead.
The characterization of individual node behaviors lays the foundation for our advanced studies on the network
structures, based on this we have further estimated the network survivability and communication feasibility in
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WMD occurrences and designed a PROActive routing protocol to maintain network performance with tolerance
of multiple node failures. Moreover, we have also thoroughly investigated the network counter-failure capability
and the failure notification promptness by defining the novel concepts of network devolution process and infor-
mation propagation speed. In addition, a new topological analysis approach has been used to detect failures in
data space, which has the advantages of early detection and accurate localization of failures.

In the extended period of time, we also (i) designed of a low complexity distributed algorithm for detecting
and tracking such failures. We assume that nodes inside the failure region are either destroyed or unable to
communicate with any other node. The algorithm presented here does not assume any co-ordinate information for
the nodes. We evaluate the algorithm using simulations; (ii) studied of correlated failures by considering constant
and generic impact radius and their distribution, focusing on the persistent failures, which is one more step further
than the one-time failure we studied earlier; (iii) investigated the impact of cyber-attack, focusing on the CSMA-
CA based networks, which is one of the most widely used access technique in communication networks. In other
words, the results of our study can be applied to a broad range of networks of the infrastructure networks. The
key contribution of our work is that we quantify the impact of attackers’ gain and thus find out what attacks
would generate the most harmful disruption to the network, in contrast to many prior studies that are focused
on the qualitative description and justification; (iv) studied the fast tracking failures and identifying correlated
failures in power grid. As a result, we are able to track the failure without the need for any requirements on node
density; and (v) developed a Greenbench that integrates power grid simulator PSCAD and networking simulator
OMNeT++. In this simulator, we also designed three data-centric attacks and studied cascading failures in the
power grids due to cyber attacks.

In this final report, we present the research issues under study, our approaches and technical contributions in
the following five categories:

1. Mobility modeling and analysis of coverage properties in mobile networks.

2. Network connectivity and vulnerability: modeling, analysis, and countermeasure.

3. Detection, localization, and tracking of systematic failures.

4. Correlated failures and their propagation in inhomogeneous networks.

5. Cascading Failures in Power Grids due to Communication and Cyber Attacks.

Specifically, we plan to focus on: (i) The design of a PROActive routing protocol which is able to avoid delivering
data to destructive or faulty nodes so as to maintain network operation and performance in the presence of
multiple failures; (ii) Under random failures, the fundamental understanding of network topology devolution and
transitions; (iii) Given the occurrence of a failure, the speed of information propagation in large-scale networks;
and (iv) a new approach to characterize network data through topological analysis. Among four topics under
study, the first one is in the thrust of design robust network architecture against failures and attacks, while the
last three topics are in the thrust of under- standing of network responses to failures with respect to fundamental
limitations.
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2 Mobility Modeling and Analysis of Coverage Properties

2.1 Semi-Markov Smooth (SMS) Mobility Model

Node mobility, by and large, describes the presence of a node in a network, is a key factor that defines network
architecture, especially in multi-hop wireless networks. By mobility, a node can move around and thus yielding
node to node radio links for communications. During the course of studying mobility-induced failures, we have
found that existing mobility models do not have the desired properties for our analysis. We are motivated to
design a new mobility model that can abide by the physical law of moving objects to avoid abrupt moving
behaviors, and can provide a microscopic view of mobility such that node mobility is controllable and adaptive
to different network environments. In summary, this model is expected to unify the desired features as follows:

1. Smooth and sound movements: A mobility model should have temporal features, i.e., a mobile node’s current
velocity is dependent on its moving history so that smooth movements can be provided and mobile nodes should
move at stable speed without the average speed decay problem [1].

2. Consistency with the physical law of a smooth motion: In order to mimic the kinetic correlation between
consecutive velocities in a microscopic level of a node, a mobility model should be consistent with the physical
law of a smooth motion in which there exists acceleration to start, stable motion and deceleration to stop for
controllable mobility [2, 3].

3. Uniform nodal distribution: As most of analytical studies of MANETs are based on the assumption of uniform
nodal distribution, such as network capacity and delay [4], network connectivity, topology control [5] and link
change rate [6], a mobility model should generate uniform spatial node distribution. Otherwise, the non-uniform
node distribution caused by a mobility model may invoke misleading information and results [7].

4. Adaptation to diverse network application scenarios: In order to properly support rich MANET applications
having complex node mobility and network environments, such as group mobility and geographic restriction, a
generic mobility model which is adaptive to different mobility patterns is highly desirable. TABLE 1 illustrates a
detail comparison based on properties of current typical mobility models and those of our proposed SMS model,
where independent mobility parameters: speed (V ), movement duration (T ), destination (D) and direction (θ)
with respect to different mobility patterns are also included.

2.1.1 Model Description

Based on the physical law of a smooth motion, a movement in the SMS model contains three consecutive moving
phase: Speed Up phase, Middle Smooth phase, and Slow Down phase, respectively. After each movement, a
mobile node may stay for a random pause time.

• Speed Up Phase (α–Phase)
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Table 1: Properties of Different Mobility Models.

Attributes RW [8] RWP [9] RD [7] SR [10] GM [11] SMS

Parameters V , θ V , D V , θ, T V , θ V , θ V , θ, T
Movement
Phases

{moving,
pause}

{moving,
pause}

{moving,
pause}

{moving,
pause}

{moving} {speed-up, middle
smooth, slow-
down, pause}

Smoothness No No No Yes Yes Yes
Speed Decay May Yes No No No No
Uniform Node
Distribution

close no yes close yes yes

Mobility Scale macroscopic macroscopic macroscopic microscopic microscopic microscopic
Unified Model No No No No No Yes
Controllability low Low Low Medium Medium High

For every movement, an object needs to accelerate its speed before reaching a stable speed. During time
interval [t0, tα] = [t0, t0 + α∆t], an SMS node travels with α time steps. At initial time t0, the node
randomly selects a target speed vα ∈ [vmin, vmax], a target direction, φα ∈ [0, 2π], and the total number of
time steps α ∈ [αmin, αmax]. These three random variables are independently uniformly distributed.
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Figure 1: An example of speed vs. time in one SMS movement.

• Middle Smooth Phase (β–Phase)
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In reality, after the speed acceleration, a moving object should have a smooth motion according to its
stable velocity. Correspondingly, once the node transits into β–phase at time tα, it randomly selects β time
steps to determine the middle smooth (β–phase) duration interval: (tα, tβ] = (tα, tα + β∆t]. Where β is
uniformly distributed over [βmin, βmax]. Within β–phase, the mobility pattern at each time step is similar
to what is defined in Gauss Markov (GM) model [11].

• Slow Down Phase (γ–Phase)

In real-life, every moving object needs to reduce its speed to zero before a full stop. In order to avoid
the sudden stop event happening in the SMS model, we consider that the SMS node experiences a slow
down phase to end one movement. In detail, once the node transits into slow down (γ–phase), at time
tβ , it randomly selects γ time steps and a direction φγ ∈ [0, 2π]. Where γ is uniformly distributed over
[γmin, γmax]. In γ–phase, the node evenly decelerates its speed from vβ , the ending speed of β–phase, to
vγ = 0 during γ time steps.

2.1.2 Semi-Markov Process of SMS Model

We consider pause as another phase, then the stochastic process of SMS model is described as an iterative four-
state transition process. Let I denote the set of phases in an SMS movement, then I(t) denotes the phase of
SMS process at time t, where I = {Iα, Iβ, Iγ , Ip}. Accordingly, {Z(t); t ≥ 0} denotes the process which makes
transitions among phases in the stochastic modeling of SMS movements. Since the transition time between
consecutive moving phases (states), i.e., phase duration time, has discrete uniform distribution, instead of an
exponential distribution, {Z(t)} is a semi-Markov process [12]. This is the very reason that our mobility model
is called Semi-Markov Smooth model because it has an Semi-Markov process and it complies with the physical
law with smooth movement. Let π = (πα, πβ, πγ , πp) denote the time stationary distribution of SMS process.
Then, the time stationary distribution for each phase of SMS model is:

πm = lim
t→∞

Prob{I(t) = Im ∈ I} =
E{Tm}

E{T}+ E{Tp}
, (1)

where E{Tm} is the expected duration time of m–phase in an SMS movement. E{T} and E{Tp} are the
expected SMS movement period and pause period, respectively. Specifically, E{T} = E{α∆t} + E{β∆t} +
E{γ∆t}. Since ∆t is a constant unit time, for the sake of simplicity, ∆t is normalized to 1 second in the rest of
the paper.

2.1.3 Analysis of Steady-State Speed and Node Distribution

To generate stable nodal movements, a sound mobility model should select the speed independently from travel
times [1], which is exactly what occurs in SMS model. Here, we evaluate the stochastic property of steady-state
speed in SMS model and verify that SMS model can eliminate speed decay problem and achieve stable nodal
movements. In order to find out whether there exists the speed decay phenomenon in SMS model, it is necessary
to obtain both initial average speed E{vini} and average steady-state speed E{vss}.
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According to the initial stage, each node starts from an SMS phase with a certain state probability based
on the time stationary distribution of the SMS process. The average speed in each moving phase of an SMS
movement is obtained as: EIα{v} = EIγ{v} = 1

2EIβ{v} = 1
2E{vα}. Then we derive the CDF of steady-state

speed Pr{Vss ≤ v} can be derived from the limiting fraction of time when step speeds of a node are less than v,
as the simulation time t approaches to infinity. LetM(t) andMp(t) denote the total number of time steps that a
node travels and pauses during [0, t], respectively. Thus, Pr{Vss ≤ v} is derived as:

Pr{Vss ≤ v} = lim
t→∞

∑M(t)
n=1 1{vn≤v} +

∑Mp(t)
n=1 1{vn≤v}

M(t) +Mp(t)
, (2)

where 1{·} is the indicator function. Thus, if the event that {vn ≤ v} is true, then 1{vn≤v} = 1, otherwise
1{vn≤v} = 0. Finally, we can obtain:

E{vss} = EIα{vss}+ EIβ{vss}+ EIγ{vss}+ EIp{vss}

=
1
2E{vα}(E{α}+ 2E{β}+ E{γ})

E{T}+ E{Tp}
. (3)

We observed that the average initial speed is exactly same as average steady-state speed in SMS model, i.e.,
E{vini} = E{vss}. Therefore, we proved that SMS model does not have speed decay problem.

Since an SMS node selects direction, speed and phase time independently, SMS model can be considered as
an enhanced random direction (RD) model with memorial and microscopic property on step speed and direction.
RD model was proved to maintain uniform node distribution in [7]. Here, we want to prove that SMS model
also yields uniform node distribution. We evenly distribute all mobile nodes in the simulation region at the initial
time. For a simple representation, we normalize the size of the simulation region to [0, 1)2. (Xj , Yj), vj , and
φj denote the ending position, speed and direction in a node’s jth step of its first movement, respectively. When
an SMS node reaches a boundary of the simulation region, it wraps around and reappears instantaneously at the
opposite boundary in the same direction to avoid biased simulation results. Under this condition of border wrap,
we have the following Lemma:

Lemma 1. In SMS model, if the initial position P(0) and the first target direction φα of a mobile node are chosen
independently and uniformly distributed on [0, 1)2 × [0, 2π) at time t = 0, then the location and direction of the
node remain uniformly distributed all the time.

Given that the initial position (X0, Y0) and φα of a node have independently uniform distribution, the joint
probability of ending position and direction of the node’s first step movement is:

Pr(X1 < x1, Y1 < y1, φ1 < θ)

= Pr(X1 < x1|φ1 < θ) · Pr(Y1 < y1|φ1 < θ) · Pr(φ1 < θ)

=
1

2π

∫ θ

φ1=0

(∫ 1

x0=0

1{x0+v1 cos(φ1)−bx0+v1 cos(φ1)c<x1}dx0 ·∫ 1

y0=0

1{y0+v1 sin(φ1)−by0+v1 sin(φ1)c<y1}dy0

)
dφ1

=
x1y1θ

2π
. (4)

13



The result in (4) shows that (X1, Y1) and φ1 are uniformly distributed on [0, 1)2 × [0, 2π). Following the same
methodology, by induction on each following step, Lemma 1 is proved. The detailed proof is described in [13].

2.1.4 Simulation Results and Model Comparisons

Here, we verify the above theoretical analysis of SMS model by simulations and compare the results with RWP
and GM models. We integrate our SMS model into the setdest of ns-2 simulator, which currently provides both
an original and a modified version of RWP model. In order to compare simulation results between RWP and
SMS model, 1000 mobile nodes move in an area of 1401m× 1401m during a time period of 1500 seconds. For
a better demonstration, we simulated both the SMS model and the original RWP model with zero pause time.
Both GM and SMS model set the time slot ∆t as 1 second and the memory parameter ζ as 0.5, respectively. In
SMS model, we consider the range of each moving phase duration time as [6, 30] seconds.

• Average Speed

Here, we are interested in comparing the average speed between SMS model and RWP model and validate
our analytical proof shown in Section 2.1.3. To obtain the average node speed, we first calculate the
average speed of each node within every 10 seconds, and then calculate the average speed among all the
nodes. The corresponding numerical results of average speed vs. a time period of 1500 seconds are shown
in Figure 2. Given the simulation condition of zero pause time and E{α} = E{β} = E{γ}, from (3),
the theoretical result of E{vss} of SMS model is obtained as: E{vss} = 2

3E{vα} = 6.7 m/sec. From
Figure 2, we observe that the average speed of the SMS model is stable from the beginning of simulation
at the value around 6.7 m/sec, which perfectly matches the theoretical result. Therefore, the simulation
results validate our analytical conclusion that the average speed of SMS model does not decay over time.
Whereas, the average speed of RWP model keeps on decreasing as the simulation time progresses, which
is its well-known average speed decay problem [14].

• Spatial Node Distribution

To verify our derivation of node distribution, we distribute nodes uniformly in the simulation region at the
initial time. Then, we sample the node position at the 500th second for SMS model, and the 1000th second
for both RWP and SMS models. A top view of two-dimensional spatial node position of RWP and SMS
models are shown in Figure 3. The results of RWP model in Figure 3(a) show that the node density is
the maximum at the center of the region, while it is almost zero near the network boundary, which agrees
with the previous study [15]. In contrast, in Figures 3(b) and 3(c), the two node density samples of the
SMS model at different time instants are similar and mobile nodes are evenly distributed in the simulation
region. Since these two time instants are arbitrarily selected, we verified our proof that the SMS model
with border wrap maintains uniform spatial node distribution over time.
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Figure 2: Average speed vs. simulation time.

0 150 300 450 600 750 900 1050 1200 1350 1500
0   

150

300 

450

600

750

900

1050

1200

1350

1500
Spatial Nodal Distribution  with 1000 Nodes 

Length of Simulation Region (m)

Wid
th o

f Si
mu

lati
on 

Reg
ion

 (m
)

(a) RWP 2-dimensional at the 1000th sec.
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(b) SMS 2-dimensional at the 500th sec.
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(c) SMS 2-dimensional at the 1000th sec.

Figure 3: Top-View of node distribution of the RWP model at the 1000th sec and the SMS model at the 500th

and the 1000th sec, respectively.

2.1.5 Comparison

We also compare the simulation results of link lifetime distribution and average node degree among the RWP,
GM and SMS models. We find that the probability mass function (PMF) of link lifetime of both SMS model
and GM model decreases exponentially with time. In contrast, there is a peak at the 25th second of link lifetime
distribution in RWP model. Hence, it turns out that mobility models with macroscopic mobility pattern would
have different link and path properties from those of mobility models with microscopic pattern, such as the GM
and SMS models. Therefore, SMS model is more accurate for the simulation on link lifetime in MANET than
other models. We find that the result obtained in RWP model is apparently larger than that in GM and SMS
model. This is because the majority of nodes move into the center region in RWP model as the simulation
time proceeds. That means the network connectivity evaluation based on RWP model could be over optimistic.
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Therefore, SMS model with uniform node distribution is preferable for network connectivity study in MANET.

2.2 Coverage Analysis of Mobile Networks

In this part of the project, we investigated coverage properties of mobile networks. Consider the scenario where
a set of mobiles nodes are following a certain mobility pattern in a region of interest. A natural problem which
arises in these cases is the measurement of coverage properties over time of the network. Previous work in this
area was concerned with ”snap-shot” statistics such as average area covered at a given time or the time taken
until every point in the region is covered at least once. But, statistics such as average time for which a coverage
hole remain in the network until it disappears or merges with some other hole, have not been addressed in the
literature. The later statistics were the target of this research, and we outline our results below.

2.2.1 Problem formulation

The coverage information of the mobile is summarized in a ‘barcode’ describing the birth and death times of
homological features in the network over time, and we describe the relationship between these features and the
coverage properties. The barcode is obtained by employing a method from the mathematical field of computa-
tional topology, called zigzag persistent homology [16]. Specifically, the network at each time ti is modeled as
a simplicial complex Kti , and the relation between the network at two consecutive times ti and ti+1 is inferred
through their inclusions into the union. This results in a “zig-zag” diagram as shown below:

(Kt1 ∪Kt2) (Kt2 ∪Kt3) (KtT−1 ∪KtT )
↗ ↖ ↗ ↖ ↗ ↖

Kt1 Kt2 · · · KtT

(5)

This sequences of spaces and the inclusions maps in turn produce a sequence of homology spaces and linear
maps as follows,

H1(Kt1 ∪Kt2) H1(Kt2 ∪Kt3) H1(KtT−1 ∪KtT )
↗ ↖ ↗ ↖ ↗ ↖

H1(Kt1) H1(Kt2) · · · H1(KtT )

Briefly, topological features such as coverage holes at a given time are reflected in the dimension of the
respective homology space, and their persistence over time may be observed through the analysis of the induced
linear maps. The result of this analysis is summarized in a barcode, as shown for example in Figure 6, from
which the statistical properties may be determined.

2.2.2 Results

We showed that zig-zag persistence may be used to perform the following tasks in a coordinate free setting:
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1. Comparison of mobility patterns.

2. Coordinate free estimation of hole size.

3. Tracking individual coverage holes.

Comparison of mobility patterns The length of the barcode signifies the time for which a coverage hole in
the network persists before being covered or merging with some other hole. Therefore, we would expect that the
distribution of times of which these holes persist would vary with the mobility pattern. This was indeed the case,
and as shown in Figure 4, we were able to distinguish very clearly between Discrete Brownian motion [17] and
Straight Line motion [17, 18].
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Figure 4: LTcounts for the Discrete Brownian (top left) and Straight Line (bottom left) mobility patterns, as
well as the paired difference in LTcounts (right), with the lifetimes whose frequency has a statistically significant
difference between the groups highlighted. The lifetimes that occur more frequently in the Discrete Brownian
pattern (t = 1, 19, 22 and ,50) are highlighted in red in the top plot, and those that occur more frequently in the
Straight Line pattern (t = 4, . . . , 13) are highlighted in green in the bottom plot.

Coordinate free estimation of hole size The barcode obtained from zigzag persistence gives us a quantita-
tive descriptor for the time-varying coverage of a network. However, the presence of a long bar in the barcode
may or may not geometrically correspond to a large hole . Given that our network is described as a sequence of
adjacency matrices (describing the simplicial complex at each snapshot, but without coordinate information), the
best estimate available is the hop-length of the shortest cycle surrounding a hole. This can be obtained without
having to compute the shortest cycle explicitly, by performing a hop-distance filtration on the simplicial complex
(at each time point). In other words, given a cycle in the graph which surrounds a coverage hole, by successively
adding edges between nodes which are multiple hops away, and checking whether the cycle is “filled in”, we
may obtain an estimate of the size of coverage hole by this approach. In practice, we observe a strong correlation
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between a hole size estimated this way with the actual geometric area as shown in Figure 5.
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Figure 5: Relationship between coverage hole area (measured as proportion of total area) and various homo-
logical features. Left - first betti number r = 0.176), middle - sum of hole sizes (measured using depth in hop
distance filtration, r = 0.505), right - sum of squared hole sizes (measured using depth in hop distance filtration,
r = 0.747).

Tracking individual coverage holes Intuitively, our method aims to compute a ‘canonical basis’, i.e., a set of
cycles, where there is one representative cycle surrounding each hole. Given the Rips complex for a static sensor
network, without an embedding or geometric information, such a canonical basis is impossible to obtain. In the
time-varying setting however, a small amount of ‘canonical’ information is available: when a coverage hole is
first formed by the removal of a 2-simplex (triangle), the boundary of that triangle is known to surround exactly
the hole of interest. The idea behind our method is then to use that boundary as the representative cycle for the
homology class at its birth time, and propagate that information forward through the sequence of complexes as
best as possible.

Figure 6 illustrates a network which is initially fully covered, and has a number of small coverage holes
appearing over time, one of which is persistent. The barcode displaying lifetimes of homological features can be
seen in the top left, with the bars color-coded to correspond to their associated representative cycles in the other
figures. It can be seen that each representative cycle remains relatively tight around one coverage hole, and the
set of cycles does correspond to a canonical basis at each time point. Overall, when a network is dense enough
that its coverage holes appear and disappear in an isolated fashion (as opposed to splitting and merging with other
holes), this method performs very well. Preliminary results have appeared in [19].

2.2.3 Summary

We have worked on developing an analysis of various aspects of networks under the effect of catastrophic failures
such as those caused by WMDs. Starting with networks with static nodes and static topology, we have devel-
oped distributed and coordinate free algorithms to detect and localize failures. For networks with time-varying
topology, we have shown that the boundary update, and the subsequent tracking of a spreading failure, may be
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Figure 6: Representative cycles for the intervals obtained using zigzag persistence in a dense network, with
color-coding between the representative cycle at each time point and its corresponding interval (barcode - top
left).

performed using only the edge length information in real time. Building on our success in these scenarios, we
further developed methodologies for quantifying and tracking the coverage in mobile networks (where the nodes
themselves are also in motion).

This result demonstrated that the integration of traditional graph theory, distributed algorithms and the up-
coming field of algebraic topology serves as an effective set of tools for robust analysis of networks. The focus
of the funded effort herein, has focused on sensor networks, the nature of which endows certain geometric con-
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straints to the construction of the network. On the other hand, there are many important networks in use which
do not necessarily follow these geometric constraints and these networks are often interconnected and interde-
pendent. In the future, we plan on building on the accomplished work and on what we have learnt from it, to
develop algorithms and techniques which may address further issues in cyber-physical networks, where control
issues have to also be carefully addressed.

3 Network Connectivity and Vulnerability: Modeling, Analysis, and Counter-
measure

3.1 Understanding the Impact of Multi-Failure on Network Architecture

The impact of mobile node behaviors in ad hoc networks has been discussed in recent studies. For example,
in [20] a distributed and scalable acceptance algorithm called GTFT was proposed to enable nodes to decide
whether accept or reject relay requests in terms of cyber-attacks. In [21], DoS attacks launched by malicious
nodes, Jellyfish and Blackhole, were shown to have a network partitioning effect that degrades the network
performance. Recall that routing is the basic function in a wireless ad hoc network, every node action such as
node movements, misbehavior, and attacks will ultimately affect routing procedures. For example, node mobility,
which is the intrinsic feature of mobile ad hoc networks, may incur the routing table update and path re-selection.
On the other hand, routing operations may be interrupted or distorted via node misbehavior: a selfish node may
not forward packets for other nodes; a DoS attacking node may reorder or drop packets; and a failed node may
not respond to route discovery messages. Thus, routing protocols cannot be performed correctly and the network
is under the operation of communication malfunction. Therefore, we focus our efforts on the study of network
survivability in the presence of multiple failures that due to node mobility, faulty communication, and dead nodes
in the aftermath of attacks.

3.1.1 Characterization of Malfunction of Nodes and Operation

Basically, current modeling approaches and models have two major limitations; that is, memoryless property of
each node’s status, and independence of node failures under threats. First, most of these models are based on the
assumption of exponential distribution of individual events, e.g., the transition time between two node failures
follows an exponential distribution. Unfortunately, failure events, often times, do not follow exponential distribu-
tions in real-time distributed systems [22, 23, 24]. It is hence unable to reflect the correlation of multiple failures
and their dependencies since a plain exponential distribution is memoryless. Second, most of these models can
describe single, independent failures only, e.g., an energy model is used to estimate probability of power outage;
mobility models are used to estimate link lifetime; traffic models are used to analyze throughput, and so on. In
summary, existing modeling approaches fail to describe diverse, correlated, random threats in the face of WMD
attacks, though they are appropriate to understand basic performance issues of wireless networks. A large num-
ber of potential failures are left out in these models, including connection breakage due to the combined effect of
mobility, power outage, channel variability, incomplete knowledge of the operation capabilities of other nodes,

20



and faulty network protocol behaviors.

3.1.2 Definition of Network Survivability

The survivability of a network refers to the ability that a network resists failures not only due to physical damages,
operational errors or misconfiguration, but also due to adversaries. In order to enable a wireless ad hoc network
in operation, it is necessary to keep the network connected, whenever practical. Hence, we employ network
connectivity as the measure of the survivability for wireless ad hoc networks. In this work, we denote a wireless
ad hoc network by M and its node set by N . For a k-connected network M, the maximum value of k is
defined as the connectivity ofM, denoted by κ(M) (see graph connectivity in [25]). Then we define the network
survivability as follows:

Definition 1. The network survivability ofM, denoted by NSM(k,N), is defined as the conditional probability
thatM is k-connected conditional on the system size |N |, that is

NSM(k,N) = Pr(κ(M) = k | |N | = N), (6)

where |N |, the cardinality of N , is a random variable and N is a value of the system size.

In this definition, network survivability is a probabilistic measure of network connectivity, and affected by
multiple failures due to various causes in wireless ad hoc networks. The challenge in solving this problem is to
take the communication malfunction into account instead of deriving the probability of node isolation as a resort
to analyze network connectivity by some previous work [26, 27], where a node is isolated only because of no
active neighbors. Our approach toward this problem is composed of three steps: (i) we study the evolution of
node behaviors with potential routing malfunction, especially, we aim to find the stochastic properties of node
behaviors, (ii) we investigate the node isolation problem due to the effect of abnormal routing operations, and
(iii) based on the understanding of node isolation, we derive the network survivability.

3.1.3 Node Behavior Modeling

Our modeling of multiple failures is based on a rigorous classification of malfunction of nodes and network
protocols as a result of random threats. We found that node behavior can be modeled by a Semi-Markov Process
(SMP) to characterize transient and steady failures over time [28, 29]. We first associate nodes to one of four
classes depending on their status,

• Cooperative state (C): a node is said to be cooperative when it can correctly perform all designed com-
munication/routing functions. This node status is expected during peacetime without WMD attacks or
stressors.

• Faulty state (F ): a node is said to be faulty if this node cannot correctly perform all functions, which can
be a result of power depletion and/or electronic troubles. However, these nodes do not initiate or trigger
attacks to others, even though they may cause cascading failures, e.g., one node cannot forward information
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on time, making its neighbors unable to correctly receive data and may further make excessive requests so
as to jam radio links.

• Destructive state (D): a node is said to be destructive if it appears to be cooperative (e.g., implement control
messages correctly), but in fact, it interrupts normal communication functions, by delaying, reordering or
dropping packets, or even sending fake routing messages and other faulty network protocol behaviors ,
such as launching denial-of-service (DoS) attacks [30].

• Inactive state (I): a node is said to become inactive or failed if it cannot participate in any communication
with others. This may be a result of a dead device, or being isolated from others due to a node moving out
the transmission range of others, i.e., the effect of node mobility. This type of nodes, however, would not
launch any attacks.

The nodes’ status are thus described according to their functions subject to many random threats. Let S =
{C,F,D, I} be the state space with the following properties: (1) A node in state iwill enter state j with probabil-
ity pij ; and (2) given that the next state to be entered is state j, the transition time from states i to j (i, j ∈ S) fol-
lows a general distribution Fij(t). Therefore, the node behavior model can be better described as a Semi-Markov
Process (SMP), denoted by Z(t), t ≥ 0, with a matrix of transition functions Qij(t) = pij · Fij(t) i, j ∈ S [28].
With state space S, a discrete time Markov chain (DTMC), denoted by Xn, n ≥ 0 can be constructed with tran-
sition probability matrix P = (pij), which is the embedded Markov chain of the Semi-Markov process Z(t).

Figure 7 depicts the node behavior model defined above.

m:m
s:s
f:f
c:c

M

p2

C

p3

p5p4

p1

p6
p7

F
p8

S

Figure 7: The semi-Markov process for node behavior evolution.

• Stochastic Properties of Node Behavior Model.

In particular, we are interested in the probability thatZ(t) is in a certain state i, i.e., Pi , limt→∞ P (Z(t) =
i|Z(0) = j). Nevertheless, the existence of the limiting distribution needs to be verified.

From Figure 7, we can see that the embeddedMarkov chain ofZ(t), denoted byXn, has a finite state space
S, and in Xn each state can reach other states within finite steps and itself within one step. Thus, Xn is
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irreducible and ergodic. By Corollary 9-1 (pp. 325) in [12], we know that Z(t) is irreducible. Next, let µij
denote the expected transition time from state i to j, since node behaviors change within finite time, then
µij <∞ holds ∀i, j ∈ S. If let µi denote the expected holding time in state i, we have µi =

∑
j∈S pijµij .

Thus,
∑

i∈S µi <∞ holds, which implies that Z(t) is also positive recurrent by Theorem 9-2 (pp. 325) in
[12]. Therefore, by Theorem 9-3 (pp. 327) in [12], the limiting distribution can be obtained by:

Pi , lim
t→∞,∀j∈S

P (Z(t) = i|Z(0) = j) =
πiµi∑
j∈S πjµj

, (7)

where πi is the stationary probability of state i of Xn.

In order to calculate πi and µi in (7), we must obtain transition probabilities pij and transition time distri-
butions Fij(t), which are described as follows.

• Transition Probabilities.

To determine pxi (x ∈ {C,F,D}), we consider both energy consumption and node mobility behavior,
which are characterized by an average node lifetime, T life, and average node residence time, T in, respec-
tively. To determine pxd (x ∈ {C, S, F}), we assume that a destructive node may choose ka out of total
N nodes as victims with probability qa and needs an average time of T eff to compromise these victim
nodes. Notice that an inactive node is not affected by actions from destructive nodes, but both faulty nodes
and cooperative nodes will be affected. To determine pxf (x ∈ {C,D, I}), we assume that destructive
and inactive nodes will not become faulty (or more accurately, they will behave like normal nodes, except
disruption of network operation). As for cooperative nodes, they are assumed to turn off the packet for-
warding function if their residual energies drop below 1/η of their initial energies, so that they become
faulty at time TTS = η−1

η · T life. To determine pxc (x ∈ {S,M,F}), we assume that a cooperation stimu-
lating mechanism such as nuglet counter [31] is used, if the faulty function is due to energy concern. For
example, each faulty node possesses a certain number of tokens TCmax initially and spends tokens when
it sends or receives packets for its own benefit. So faulty nodes must become cooperative if the number of
remaining tokens drops below a threshold TCthr. For simplicity, we consider that destructive nodes cannot
become cooperative, while it is possible for an inactive node to be repaired or recharged with an average
recovery time T recr. Consider that P is a stochastic matrix, we can determine pxx (x ∈ S) correspondingly.

3.1.4 Transition Time Distributions

We use two-parameter Weibull distribution from reliability engineering to define Fxi(t) as: Fxi(t) = 1 −
exp(−(t/β̂)α̂) (x ∈ {C, S,M}), where α̂ is the slope parameter, β̂ = T life/Γ(1 + 1/α̂) is the scale
parameter, and Γ(·) is the gamma function. Fcd(t), Ffd(t) and Fcf (t) are defined by Weibull distribution
similarly. In this work, we assume that Ffc(t) is a uniform distribution with the range of [a, b]. We further
define Fic(t) and Fxx(t) (x ∈ S) by exponential distributions.

F(t) =


E(λ) W(α̂, TTSγ ) W(α̂, T effγ ) W(α̂, T lifeγ )

U(a, b) E(λ) W(α̂, T effγ ) W(α̂, T lifeγ )

1 1 E(λ) W(α̂, T lifeγ )
E( 1

T recr
) 1 1 E(λ)

 , (8)
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Then the complete definitions of Fij(t) are given by (8), where W(α̂, β̂) denotes Weibull distribution
with parameter α̂ and β̂, E(λ) denotes exponential distribution with parameter λ, U(a, b) denotes uniform
distribution with range [a, b] and γ = Γ(1 + 1/α̂).

After determining pij and Fij(t), we obtain πi by:

~π = ~πP,
∑
i∈S

πi = 1, πi ≥ 0, (9)

where ~π , (πi) for i ∈ S. We further obtain µi by:

µij =
∫ ∞

0

tdFij(t), µi =
∑
j∈S

pijµij , ∀i ∈ S. (10)

By substituting the results from (9) and (10) into (7), the limiting probability, Pi, can be obtained.

3.1.5 Discussions and Summary

Note that we have the following observations of the proposed nodal model:

(i) This model is able to characterize the transient and steady behavior of wireless nodes in presence of
multiple, interdependent failures and colluding attacks. The reason for using Semi-Markov Process (rather a
continuous-time Markov chain) is because the sojourn time during which a node behaves in any state i ∈ S may
not follow the exponential distribution. For instance, a node is more inclined to be in a failed state due to energy
consumption as time passes, and the less residual energy is left, the more likely a node changes its behavior to
defective, i.e., not forwarding data for others. The SMP allows for arbitrary distributed sojourn times and can
be viewed as a process with an embedded Markov chain (EMC), denoted by {Xn}, where the state transitions
occur at time instants when a node changes its behavior to a new state. In other words, this model enables us to
understand the evolution of node behaviors over time.

(ii) This model can be used to describe a wide variety of random threats as explained in the definition of each
node state, depending on how to diffuse data into this model. Specifically, let tn be the elapsed time between the
n-th and n+1-th transition, we can define the associated (time-homogeneous) Semi-Markov kernel Q = (Qij(t))
by

Qij(t) = Pr(Xn+1 = j, tn ≤ t|Xn = i) = pij · Fij(t), (11)

where pij = limt→∞Qij(t) = Pr(Xn+1 = j|Xn = i) is the state transition probability between states i and
j, and Fij(t) = Pr(tn ≤ t|Xn+1 = j,Xn = i) is the transition time distribution from states i to j. The
distribution matrix F(t) = (Fij(t)) can be determined by using data diffusion with trace files or by certain
probability distribution. To the best of our knowledge, there are no prior works on this problem. Therefore,
we plan to use the well-known Weibull distribution is used for its wide application in the area of reliability
engineering [32, 33, 20]. For instance, the time distribution from cooperative state (C) to inactive (I) Fci(t) is
represented by by a two-parameter Weibull distribution Fci(t) = 1 − exp(−(t/β̂)α̂), where α̂ is usually called
slope (or shape) parameter and β̂ is usually called scale parameter, which can be adjusted by iterative matching
with a real-time system [34].
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(iii) This model can be used for complete and incomplete data traces. One of the concerns for an analytic
model is whether it can be used to estimate or predict future behaviors. More importantly, the model itself must
be sufficiently generic for data diffusion, given complete or incomplete data.

• When data traces are complete, e.g., peacetime training data is available: With no loss of generality, we
can assume that all nodes in the network are cooperative at the initial time, i.e., Pr(Z(0) = c) = 1. The
transient distributions of the SMP {Z(t)}, with state space S and Semi-Markov kernel Q in (11), satisfy

Pij(t) , Pr(Z(t) = j|Z(0) = i)

= (1−Hi(t))δij +
∑
l∈S

∫ t

0
Q̇il(τ)Plj(t− τ)dτ, (12)

where Hi(t) , Pr(tn < t|Xn = i) =
∑

j∈S Qij(t) is the sojourn time distribution in state i, and δij is
the Kronecker δ function and defined by 1 for i = j and 0 otherwise. Then the transient distribution Pcc(t)
is of particular interest, since it indicates the cooperativeness of any node at time t > 0. However, it is
normally difficult to derive Pcc(t) in continuous time domain [35]. Nevertheless, a numerical solution was
proposed in [35] to solve (12) by rewriting the transient distributions in discrete-time domain as follows,

Pij(mh) = (1−Hi(mh))δij +
∑
l∈S

m∑
x=1

hQ̇il(xh)Plj(mh− xh), (13)

where h is the discretization step. In addition, Q̇il(xh) may be further approximated by the difference
quotient as,

Q̇il(xh) =
1
h

(
Q̂il(xh)− Q̂il((x− 1)h)

)
for x > 1, (14)

where Q̂il(xh) is the empirical distribution ofQil(τ). By using this method, as long as we have a complete
set of trace data that record all state transitions and time instants when transitions occur, the empirical
function Q̂il(xh) can be computed by (14), then Pij(mh) can be computed by (13). In deed, this method
has already been used in [36] to model behaviors of user mobility based on a large-scale trace database
from peacetime2. In addition, we can also use peacetime data for training purpose and simulation threats
to test the model.

• When data traces are incomplete: Unfortunately, to the best of our knowledge, there is no complete trace
data recording user behaviors in wireless ad hoc networks, especially for WMD stressors. Thus, we strive
to grasp the stochastic properties of a node malfunction by utilizing any statistics available and reasonable
estimations,

Let Ti be the sojourn time in state i, Tij be the transition time from states i to j, E[·] be the conventional
notation for expectation, then we have E[Ti] =

∫∞
0 (1−Hi(t))dt and E[Tij ] =

∫∞
0 (1− Fij(t))dt. In our

preliminary work [37], we have proved the following:
2For example, trace files can be obtained from CERT Statistics at http://www.cert.org/stats/
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Lemma 2. Given the SMP {Z(t)} associated with the state space S and the transition probability matrix
(TPM), denoted by P = (pij), the transient distribution Pij(t) converges to a limiting probability Pj as
t→∞; further, Pj can be calculated by

Pj , lim
t→∞

Pij(t) =
πjE[Tj ]∑
l∈S πlE[Tl]

, (15)

where ~π =< πj > is the stationary distribution of {Xn}.

Note that Lemma 2 provides a method to estimate the probability of a node being cooperative without a
complete set of trace data. It also indicates that statistically, as t → ∞, the probability of a node being in
a particular state can be estimated. Moreover, the limiting probability of a node in state i also implies the
portion of nodes in state i of a network. For example, a node with 80% probability of being cooperative in
a network means that there exist 80% nodes in the network are cooperative, which is a clear and concise
indication of the network health.

(iv) This model allows us to determine transition probabilities and mean time of each state under conditions
of distributed, random threats. By following this model, we have obtained mobility-induced failure probability
by using our newly developed smooth based mobility model [38, 13]. To identify defective nodes and estimate
their mean time to failure as well as failure probability, an energy threshold-based method in which the residual
energy of a wireless device can be used to decides whether it forwards data for other nodes or not [39, 40].

In the following, we will discuss how to use this model to analyze network survivability when multiple
failures are present.

3.2 Analysis of Network Connectivity

Recall that our objective is to find out the probability of an ad hoc network keeping k-connectivity in the presence
of node failures and communication failures. Based on the proposed node behavior model in Section 3.1.3, we
are ready to analyze the connectivity of multi-hop networks stochastically in this section.

3.2.1 Node Isolation due to Misbehavior

We begin our analysis by examining the effects of failures, which is so called node isolation problem. Figure 8(a)
shows the scenario where all the neighbors of node u are faulty nodes. In this case, the number of node-disjoint
outgoing paths of u is zero, where the term outgoing path refers the path through which a node can communicate
the nodes of at least two-hop away. In the scenario shown in Figure 8(b), one of the neighbors of node u is
destructive, e.g., Black Hole. In fact, only one Black Hole neighbor x2 is sufficient to trap all traffic initiated
from node u if the destination is beyond the neighborhood of node u. In this case, the number of node-disjoint
outgoing paths for node u is also zero. If node u is surrounded by one or more other destructive nodes, then
the throughput of the data stream via the destructive node will become zero after a short time period, which is
especially harmful for long communication sessions.
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Figure 8: Node Isolated by Non-Cooperative Neighborhood.

Let Nop(u) denote the number of node-disjoint outgoing paths of node u, then node u is isolated from the
network if Nop(u) = 0. Considering that there exist only two types of destructive nodes in this context, one
is to trap all traffic and the other one has abnormal routing functions (e.g., JellyFish, we have the following
observation:

Lemma 3. A node u is isolated if it has at least one Black Hole neighbor or the total number of faulty, JellyFish,
and inactive neighbors is d, given it has d neighbors.

By Lemma 3, let D denote the number of neighbors of a node, then we obtain the probability of a node being
isolated, given that the node has d neighbors, as

Pr(Nop = 0|D = d) = 1− (1− PBH)d + (1− Pc − PBH)d, (16)

where Pc and PBH are the probabilities that a node is cooperative and a Black Hole, respectively. Consequently,
a node must have at least one cooperative and no Black Hole neighbor to keep it connected to the network.

3.2.2 Condition of Keeping A Node k-Connected

Let n̂c(u), n̂BH(u) and n̂g(u) denote the number of cooperative, Black Hole and all other neighbors of node u,
respectively, then based on the analysis to node isolation problem, we have

Theorem 1. A node u has k node-disjoint outgoing paths if and only if u has k cooperative neighbors and no
Black Hole neighbor, i.e., {Nop(u) = k} ⇔ {n̂c(u) = k, n̂BH(u) = 0} for k ≥ 1.

Notice that the events of any node being in a certain behavior state are mutually independent, then by multi-
nomial probability law, we know that the joint distribution of n̂c, n̂BH , n̂g is a multinomial distribution. By
Theorem 1, the probability of a node being k-connected to network, given that the node has d neighbors, is
defined as

Pr(Nop = k|D = d) = Pr(n̂c = k, n̂BH = 0, n̂g = d− k)

=
d!

k!(d− k)!
(Pc)k · P̄ d−k, k ≥ 1, (17)

where P̄ = 1− Pc − PBH denotes the probability of a node being neither cooperative nor Black Hole.
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3.2.3 Probability of k-Connectivity of Individual Node

Let θ(MA) = min{Nop(u)|Nop(u) ∈ N, u ∈ MA}, we have the condition to keep a network k-connected as
follows:

Theorem 2. A multi-hop networkMA with Na nodes is k-connected if and only if any active node u ofMA has
at least k node-disjoint outgoing paths, when Na is sufficiently large.

Therefore, by Theorem 2, the probability of a network being k-connected can be represented by:

Pr(κ(MA) = k) = Pr(θ(MA) ≥ k). (18)

We assume that the number of outgoing paths for each node u, Nop(u), is independent, then from (18), we have:

Pr(κ(MA) = k|Na) = (1− Pr(Nop < k))Na , (19)

where Na is the number of active nodes. By the total probability law, we have

Pr(Nop < k) =
∞∑
d=k

Pr(Nop < k|D = d)Pr(D = d). (20)

To solve this problem, we need to find Pr(Nop < k|D = d) and Pr(D = d). By (17), Pr(Nop < k|D = d) is
given immediately by:

Pr(Nop < k|D = d)

= 1− (1− PBH)d +
k−1∑
m=0

d!
m!(d−m)!

(Pc)m · P̄ d−m. (21)

To derive Pr(D = d), we assume that all nodes move randomly over a finite area with size A. We divide the
area into N ′ small grids virtually so that the grid size is in the same order of the physical size of a node. Consider
that the network area is normally much larger than the node physical size, that a node occupies a specific grid,
denoted by p′, is very small. With large N ′ and small p′, node distribution can be modeled by a Poisson point
process. Then we have

Pr(D = d) ≈ µd0
d!
e−µ0 , (22)

where µ0 = ρπr2
0. ρ is the node density depending on the underlying mobility model, and r0 is the transmission

range of nodes.

Finally, by (19), (20), (21) and (22), we obtain:

Pr(κ(MA) = k|Na)

=

[
Γ(k, µ0)

Γ(k)
+ e−µ0PBH

(
1− Γ(k, µ0(1− PBH))

Γ(k)

)
− e−µ0PBH · Γ(k, µ0Pc)

Γ(k)

]Na
. (23)

where Γ(·) and Γ(h, x) = (h− 1)!e−x
∑h−1

l=0 x
l/l! are complete and incomplete Gamma function, respectively.
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Recall that the network survivability has been defined in (6) as the probability that all active nodes are k-
connected to a network. The survivability of a networkM can be given by the probability that all active nodes
have at least k cooperative degree, i.e.,

NSk(M) ≈ Pr(θ(Ma) ≥ k), (24)

whereMa is the sub-network ofM induced by all active nodes. Based on above equation, we are ready to derive
the bounds for network survivability next.

3.2.4 Bounds of Network Survivability

Although (24) offers a guideline on deriving NSk(M), it is quite challenging to find the distribution of θ(Ma).
Indeed, Pr(θ(Ma) ≥ k) is equivalent to the joint probability of every active node being at least k-connected to
the network, i.e.,

NSk(M) ≈ Pr
( ⋂
u∈Ma

Dc(u) ≥ k
)
. (25)

We notice that it has been shown that some random graph models do not generate the correlation of the degrees in
a pair of adjacent nodes [41]; however, this non-correlation does not imply the independence of node degrees and
even cooperative degrees. Considering that deriving the joint probability is actually intractable, we approximate
the survivability by finding its asymptotic upper and lower bounds.

To provide an upper bound, recall that our network model described in Section 3.1.3 is a geometric random
graph G(N , r), in which N vertexes are uniformly and randomly distributed on a 2-D square with area A. The
vertex set can actually be represented by a (homogeneous) Poisson point process Hλ with density λ = N/A.
Based on the definition of (homogeneous) Poisson point process, the numbers of points within disjoint subareas
are mutually independent random variables (with identical distribution). Thus, we can find N/(λπr2) (active)
points, denoted byND, so that their transmission ranges (πr2) are disjoint (non-overlapped) subareas (disks). As
a result, the degrees of two nodes u and v are mutually independent as u, v ∈ ND. Similarly, Dc(u) and Dc(v)
are mutually independent as well. Based on the explanation above, we have an upper bound for NSk(M) given
by

NSk(M) ≤ Pr
( ⋂
u∈ND

Dc(u) ≥ k
)

=
(

1− Pr(Dc(u) < k)
) N
λπr2 . (26)

Thus, once we obtain the distribution function of cooperative degree, we can calculate the upper bound of sur-
vivability.

Next, we explain how to obtain a lower bound for survivability. We first rewrite (25) as

NSk(M) ≈ 1− Pr
( ⋃
u∈Ma

Dc(u) < k
)
. (27)
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Let Na denote the number of active nodes in the network, 1{E} denote the indicator function, then we can bound
Pr(∪u∈MaDc(u) < k) from above by using Boole’s inequality,

Pr
( ⋃
u∈Ma

Dc(u) < k
)

= E
[
E
[
1{SNa

u=1Dc(u)<k}|Na

]]

≤ E

[
Na∑
u=1

E
[
1{Dc(u)<k}

]]
= E[Na] · Pr(Dc(u) < k). (28)

Notice that the expected value of Na is actually equal to N(1 − Pf ), i.e., E[Na] = N(1 − Pf ), where Pi is the
(limiting) probability of a node in the failed state, defined in (15). We obtain a lower bound for NSk(M) as

NSk(M) ≥ 1−N(1− Pf ) · Pr(Dc(u) < k). (29)

Again, to solve (29), we need to determine Pr(Dc < k).

From eq (20), we need to find Pr(D = d) and Pr(Dc < k|D = d).

First, to derive Pr(D = d), we use the (de)Poissonization technique presented in [42, 43]. As we mentioned
previously, the communication graph of a network M is associated with a homogeneous Poisson process Hλ
with density λ = N/A. Since we are particularly interested in the topological survivability of active nodes, let
A0 = πr2 denote the area covered by a node’s transmission range, it is known that the number of active nodes
within A0 is a Poisson random variable with density A0 · (Na/A). Thus, Pr(D = d) can be approximated by

Pr(D = d) =
µda
d!
e−µa , (30)

where µ = πr2N(1 − Pf )/A is the Poisson density. A similar result was also presented in [26], in which more
general results were presented for non-uniform node distributions.

Second, we derive Pr(Dc < k|D = d). Since the cooperative degree cannot be greater than the degree for
any node, Pr(Dc < k|D = d) is always equal to 1 when d < k. When d ≥ k, Pr(Dc < k|D = d) (k ≥ 1) can
be calculated by

Pr(Dc < k|D = d) =
k−1∑
m=1

Pr(Dc = m|D = d)

+ Pr(Dc = 0|D = d), (31)

in which Pr(Dc = 0|D = d) is the node isolation probability, and Pr(Dc = m|D = d) is the probability of a
node being k-connected. With these two items, from (31), we can re-write (31) as

Pr(Dc < k|D = d) = 1− (1− PB)d

+
k−1∑
m=0

(
d

m

)
Pmc · (1− Pc − PB)d−m. (32)

Thus, by utilizing (30) and (32), Pr(Dc < k) can be obtained from (20), and the upper and lower bounds of
the network survivability can be further obtained from (26) and (29). We present our main result next.
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3.2.5 Main Result and Implications

Theorem 3. For a wireless ad hoc networkM in the presence of node misbehavior and failures, when the number
of nodes N is sufficiently large, the network survivability defined in (6) is upper bounded asymptotically by

NSk(M) ≤
(
e−µaPB

(
1− Γ(k, µaPc)

Γ(k)

)) N
λπr2

, (33)

and lower bounded asymptotically by

NSk(M) ≥ 1−N(1− Pf )
(

1− e−µaPB
(

1− Γ(k, µaPc)
Γ(k)

))
, (34)

where µa = N(1 − Pf )/(λπr2) and λ is the node density, and Γ(h) = (h − 1)! and Γ(h, x) = (h −
1)!e−x

∑h−1
l=0 x

l/l! are the complete and incomplete Gamma functions, respectively.

The above theorem answers and quantifies the impact of different node behaviors on survivability directly.
From the upper and lower bounds given in (33) and (33), respectively, we have the following observations by
numeric analysis.

1. In general, the survivability is increasing in the cooperative probability Pc, which is accordant with our in-
tuition. When the network areaA is fixed, the higher the number of nodesN is, the higher the survivability
is, due to the increased density. While if the density is fixed, increasing N will reduce the survivability.
This implies that it will become more difficult to achieve the same survivability level as a network scale
gets larger without increasing node density substantially.

2. Given two networks M1 and M2 with the same N , λ, and Pc, besides cooperative nodes, suppose that
M1 has failed nodes only andM2 has misbehaving (selfish and Jellyfish) nodes only, then NSk(M1) <
NSk(M2) always holds. The severer impact of node failures is due to the fact that node failures are also
isolated from the network, which reduces the density of active nodes (e.g., µa).

3. For given N , Pi, and Pc, both upper and lower bounds of the survivability decreases almost exponentially
in µaPB . An interesting observation is that when PB is not zero, a network with higher density can have
a lower survivability. Recall that in Section 3.2.1 we have mentioned that a Blackhole node may mislead
path selections of its neighborhood and trap surrounding traffics, thus the negative impact of Blackhole
nodes increases if they are located in the area with high density.

Note that in real networks the nodes at the vicinity of the network (simulation) boundary have less (active)
neighbors and thus become isolated easily, which is known as the border effect. As pointed out in [44], the border
effect is negligible in analysis if the network area is much larger than the transmission coverage area of a single
node and the node density is not high. Since the survivability bounds given in (33) and (34) are all asymptotic
for sufficiently large N and we are particularly interested in large-scale extended networks (with fixed density)
[44], the border effect is not considered in our derivation. For further discussions on the border effect, readers
are recommended to refer [26, 44] and the references therein.
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Remark 1. It is a premise that Pr(Dc < k) < 1/N(1 − Pf ) should hold to guarantee a positive lower bound
given in (34); otherwise, the lower bound is zero. When Pr(Dc < k) = o(1/N), we have the following
approximation

1−N(1− Pf )
(

1− e−µaPB
(

1− Γ(k, µaPc)
Γ(k)

))
≈

(
e−µaPB

(
1− Γ(k, µaPc)

Γ(k)

))N(1−Pf )

, (35)

and the left hand side (LHS) is always less than the RHS in the above equation asN ·Pr(Dc < k)� 1. Since the
upper bound given in (33) is quite loose, we conjecture that the RHS of (35) is a tight upper bound for network
survivability. Indeed, if cooperative degrees, Dc(u), are assumed to be independent (as independent degrees
assumed in [45]), the RHS of (35) becomes the closed-form approximation for network survivability.

Remark 2. A special case of our result in Theorem 3 is that all nodes are cooperative and node isolations are due
to the lack of neighbors only. In this case, the survivability of a network can be simplified to (1−Γ(k, λπr2)/(k−
1)!)N by considering (34) and (35), which is the exact probabilistic k-connectivity approximation given in [45].
This indicates that our result provides a more generalized quantitative evaluation on the topological survivability.
Moreover, our result, especially the lower bound, is of interest not only for theoretical analysis but also for
practical design of survivable wireless ad hoc networks. For example, if the statistics of user behaviors are
available, we can use the methods proposed in Section 3.1.3 to estimate state probabilities. Then given a desired
survivability preference (e.g., > 0.9), the minimum cooperative degree or the number of nodes can be calculated
as theoretical guidance to determine a proper network deployment so that the survivability preference can be
achieved with high probability.

Up to now, we have solved the SNM-Problem by providing the loose upper and tight lower bounds to ap-
proximate the network survivability in closed forms, in which the impacts of node misbehavior and failures can
be evaluated directly. Next, we conduct exhaustive simulations to confirm our analytical result.

3.2.6 Simulation Results

Up to now, we have obtained the stochastic properties of the impact of node behaviors on network connectivity. In
this section, we evaluate our node behavior model and network connectivity of ad hoc networks by simulations.

In this work, we use NS2-v2.27 and MATLAB-v6.5 to perform the simulations. Unless specified otherwise,
all simulations are performed in a 1000× 1000 m2 square area, over which 200 mobile nodes with transmission
range 150 m are distributed uniformly. IEEE 802.11 is used for medium access control and AODV is used as the
routing protocol. BonnMotion [46] is used to generate Gauss-Markov modeled movement scenarios. In order to
calculate the probability of connectivity, we collected the neighborhood statistics of each node per 10 seconds,
including the number of neighbors and the behavior of each neighbor. With these information, the number of
outgoing paths of each node can be obtained, then the probability of k-connectivity can be calculated.

• Probability of A Node Being Cooperative
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Figure 9: Probability of A Node Being Cooperative Pc.

As explained in modeling of node behavior, node mobility is represented by the average residence time
T in. The smaller T in is, the faster a node will leave a network, cooperative to its neighbors. As shown
in Figure 9(a), the cooperative probability Pc is proportional to T in when T in ≤ T life and remains a
constant of 1/T life afterward. From Figure 9(a), Pc is affected by the initial energy Einit as well, i.e., a
node with a higher Einit is more likely to be cooperative. From the discussion of Stochastic Properties of
Node Behavior Model in Section 3.1.3, as η increases, pcs keeps deceasing until 1/T life, which reflects
the fact that a node is more likely to be cooperative if it takes longer time to become selfish. Therefore, in
Figure 9(b), Pc increases quickly at the beginning, then almost remains constant afterward. Meanwhile, we
can see that a higher token threshold TCthr can increase Pc effectively, which shows that it is necessary
to use a cooperation stimulating mechanism to mitigate selfish behavior. Moreover, by Section 3.1.3,
the shorter T eff is, the more likely a node is compromised to become destructive, which leads Pc in
proportion to T eff , as shown in Figure 9(c). If the fraction of vulnerable nodes within total nodes, ka/N ,
is increased from 0.01 to 0.05, then cooperative probability Pc drops dramatically for the same T eff . Thus,
we conclude that external attacks can impact Pc substantially.

• Probability of k-connectivity We now study how network connectivity is impacted by misbehaving nodes
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Figure 10: Probability of k-connectivity: Effects of Node Behaviors.

and node failures. Figure 10(a) shows the simulation results of the probabilities of k-connectivity against
Pc for k = 1, 2, 3, 4, respectively. In this experiment, Pi and PBH are set to 0 such that we can observe
the effect of Pc clearly. From Figure 10(a), the probability of k-connectivity is inversely proportional
to k given constant Pc, and proportional to Pc given constant k. To obtain a higher k-connectivity, it is
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necessary to have a higher Pc.

In order to see the effect of probability of node failure Pi, we set both Pf and Pd as zero to eliminate
the impact of misbehaving nodes in our simulations. From Figure 10(b), the probability of k-connectivity
decreases very fast as Pi increases. As we expected, for a highly connected network, the impact of Pi is
more significant, e.g., the probability of k = 3-connectivity drops to 0.4 even as Pf = 0.2.

In the same way, we obtain the results from node selfishness as shown in Figure 10(c). Similar to that
in Figure 10(b), the plot in this figure indicates that the probability of k-connectivity decreases as selfish
probability Pf increases. Nevertheless, differing from the results in Figure 10(b), the probability of k-
connectivity does not change significantly when Pf is increased at the beginning, especially for lower k.
Notice that the number of active nodes Na decreases as Pi increases, which makes the network sparser in
terms of the decreased node density (e.g., ρ = Na/A if the node distribution is uniform). Therefore, node
failures have severer partitioning effects than selfish nodes.

Compared to the analytical results, the simulation results are lower than analytical ones, which can be
explained by the border effect, i.e., the nodes at the vicinity of the simulation boundary have less neighbors
and thus become isolate easily. Therefore, the analytical result provides a upper bound for the probability
of k-connectivity.

• k-connectivity Impacted by Other Parameters
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Figure 11: Probability of k-Connectivity: Effects of System Parameters.

In addition to node behaviors, we continue to evaluate the impact of other system parameters on network
connectivity. Here we look at the effect of Black Hole with the probability of PBH . By (23), PBH has
tremendous influence on the probability of k-connectivity. Analytical results are illustrated in Figure 11(a)
from which we can see thatBlack Hole is the most harmful behavior since it destroys network connectivity
much severer than node failures do. Recall the node isolation issue discussed in Section 3.2.1, we find that
a Black Hole actually can isolate all its neighbors, and its influential scope will be extended when it roams
in the network.

Next, we discuss the effect of system size N on the network connectivity. In this simulation, the transmis-
sion range r0 is set as 100m to enlarge system sizeN . Figure 11(b) shows that the required network sizeN
should be enlarged to guarantee the same k-connectivity when destructive or inactive nodes are in present.
To discuss the effect of the node’s transmission range r0 on the network connectivity, we change the system
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size N to 150 from 200 to enlarge the change of r0. Figure 11(c) shows that the higher k-connectivity is
required, the larger r0 is needed. Similar to the analysis to Figure 11(b), we conclude that the required r0

has to be increased to guarantee the same k-connectivity if destructive or inactive nodes exist in a mobile
ad hoc network.

3.2.7 Summary

In this work, we focused on the modeling and analysis of the impact of node and communication failures to
network connectivity of multi-hop wireless networks, which has been rarely studied before. We first classified
node behaviors into four types: cooperative, faulty, destructive and failed, then proposed a node behavior model
by employing a semi-Markov process. In our model, mobile nodes change their behaviors according to the
well-defined transition probability matrix and transition time distribution matrix. After obtaining the limiting
probability of a node being in each behavior state. we analyzed the node isolation problem resulting from
misbehaving neighbor nodes and provided the condition under which mobile nodes can be connected with a
mobile ad hoc network. In consequence, we obtained the close-form and upper bound of network survivability,
that is, the probability of a network being k-connected.

3.3 k-Connectivity Routing

In this project, we target military networking infrastructures such as combat strategic systems, tactical ad hoc
networks, which carry time-sensitive information and demand for reliable and non-disruptive communications.
after studying the analysis of network survivability in the presence of multiple failures as a consequence of
node mobility, energy depletion and operations, and various nodes faulty behaviors. We also derived network
survivability when communication operations are interrupted. Through detailed analysis, we obtain a close-
form representation of probability of node isolation and survivability for k -connected networks. Based on our
models and analysis, we aim to to design a network protocol that is robust against random failures and routing
misbehavior.

3.3.1 Objectives and Approaches

How to improve the network performance or at least maintain a graceful performance degradation of wireless
multi-hop networks in the presence of misbehaving nodes is an important design issue and research problem.
Previous works on tackling misbehaving nodes in wireless multi-hop networks can be classified into three cate-
gories: cryptographic-based secure routing protocols, incentive- based cooperation stimulating mechanisms, and
multipath-based reliable forwarding schemes. However, all existing works cannot fully mitigate the impact of
faulty nodes which may be routing-compliant or may not be malicious nodes. Instead, they cannot operate prop-
erty due to random threats, such as dysfunctional devices, connection or link failures, incomplete knowledge of
function and trustworthiness of other nodes caused by disruption as a result of biological, chemical, electromag-
netic pulses, or dysfunctional devices; and faulty networking behaviors due to cyber-attacks. More importantly,
none of previous reputation schemes has ever considered whether excluding faulty nodes will impair the net-
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work connectivity, which is, however, a prerequisite for all communications. Therefore, the routing-compliant
misbehavior is an open and challenging problem for the design of wireless multi-hop networks.

We approach the k-connectivity routing from the perspective of topology control because the DTRA mission
is to provide strategies of robust network architecture. More specifically, we strive to design a resilient topology
over a network such that network operations on both control and data planes are distributed only between coop-
erative neighbors and the network is k-connected with high probability (e.g.,≥ 0.9). We first define a new metric
called resilient capacity to measure the maximum number of destructive nodes that a network can sustain under
the constraint that the network is k-connected with a certain probability. By analyzing the theoretical bound
on resilient capacity, we are able to know how many destructive nodes can be excluded without impairing the
connection of the network (to a certain level). Further, we show that an optimal resilient topology can maximize
the resilient capacity and satisfy the connectivity requirement if all and only cooperative nodes are included in
the topology in which each node has at least k-cooperative neighbors and the average degree scales with log(N),
where N is the network size.

To achieve the optimal topology, we next determine node behavior dynamics by proposing a node co-
operativity measurement scheme to quantify the likelihood of any node being cooperative. By using the measure-
ment scheme, we then design a distributed topology control protocol called PROACtive to enhance the network
resilience to routing-compliant misbehavior. By applying the PROACtive protocol, every node is able to select
more than k cooperative neighbors and exclude misbehaving nodes from its neighbor set dynamically. As a result,
the union of all cooperative neighbor sets forms a resilient topology which satisfies the connectivity requirement
and maximizes the resilient capacity (at the best effort).

Compared with other works, the design of PROACtive protocol has several unique features and advantages.
First, the reliable data delivery is achievable with the assistance of the routing protocol since control packets are
only dispersed among the member nodes in the generated topology; second, our approach does not involve new
security vulnerabilities and can avoid the false accusation problem; third, our protocol is quite light-weight in
the computation and communication complexity and has a bounded convergence time. Finally, by implementing
the PROACtive protocol in the network simulator tool ns2, we confirm that after applying routing protocols
(e.g., AODV) on the topology generated by the PROACtive protocol, the network goodput can be improved
significantly in different network scenarios. Further, the protocol is quite scalable due to its low overhead and
fast convergence, and performs even good in networks with high node mobility. Therefore, the PROACtive
protocol is a very promising and feasible solution for wireless multi-hop networks to enhance their resilience to
more sophisticated node misbehavior.

3.3.2 Resilience Capacity and PROActive Protocol

Our contributions include the rigorous definition and analysis of resilience capacity, necessary conditions for
probabilistic k-connectivity, and design of PROActive protocol.

To define the resilient capacity of a network rigorously, let (Ω,F , P r) be the probability space on which
the random link connection of mobile nodes is defined. In particular, Ω is the sample space consisting of all the
possible topology G of a network, F is a σ-field in Ω and Pr is a probability measure on F . From graph theory,
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we know that the connectivity of a graph G, denoted by κ(G), is the maximum k such that G is k-connected
[25]. Due to node mobility and random node behavior, the topology of a given wireless multi-hop network is
dynamically changing at all times, which results in the variant connectivity. Thus, the connectivity of a dynamic
network can be treated as a random variable defined on Ω and the probabilistic k-connectivity of a network can
be defined by Pr({G ∈ Ω : κ(G) = k}), or simply Pr(κ(G) = k), for G as the geometric random graph model
of the network. With above notations, we define the resilient capacity as below

Definition 2. Given a wireless multi-hop network, let its topology be represented by a geometric random graph
GN ,r(N0

m), where N0
m is the initial number of destructive nodes in the graph. For a connectivity preference

0 < ψ0 < 1, the resilient capacity of the (topology) graph is defined by

Λ(ψ0, G) , max{N∗m −N0
m, 0} (36)

where N∗m = max{Nm : Pr(κ(GN ,r(Nm)) = k) ≥ ψ0}.

0

0.5

1

Number of misbehaving nodes

Pro
ba

list
ic k

−co
nn

ect
ivit

y

Λ(ψ
0
, G)

ψ
0

N
m
0 N

m
*

Figure 12: The relation between the resilience capacity and probabilistic k-connectivity.

The physical meaning of the resilient capacity is the maximum number of extra destructive nodes that a
topology can accommodate such that the topology is still k-connected with a certain probability, as illustrated in
Figure 12. If N∗m ≤ N0

m, we define Λ(ψ0, G) as 0, implying that no cooperative node can become destructive
any more without degrading the probabilistic k-connectivity below a certain level. In fact, the resilient capacity
also measure the maximum number of extra misbehaving nodes that can be excluded from the topology.

However, it is worthy of noting that whether a node can establish reliable connections to other nodes depends
on whether the node has cooperative adjacent nodes that operate normally on both control and data planes.
Let Dc(ω) be the number of cooperative adjacent nodes of node ω, called the cooperative degree of ω, we
define θ(GN ,r(Nm)) (or simply θ(G)) as the minimum cooperative degree of a graph GN ,r(Nm), i.e., θ(G) ,

min{Dc(ω), ∀ω ∈ G}. As a result, we have

Proposition 1. For a wireless multi-hop network represented by GN ,r(Nm), let µ be the average number of
nodes in a node’s transmission range. Suppose N � 1, then for any positive integer k ≥ 1,

Pr(κ(G) = k) ≈ Pr(θ(G) ≥ k)

≥ 1−N
(

Γ(k, µ(1− Pm))
Γ(k)

)
, (37)

where Γ(h) = (h−1)! and Γ(h, x) = (h−1)!e−x
∑h−1

i=0 x
i/i! are the complete and incomplete Gamma functions,

respectively.
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Remark 3. Proposition 1 implies that the necessary condition for a network to be k-connected is that every node
should have at least k cooperative adjacent nodes. Thus, (37) provides us a useful tool to design a k-connected
topology w.h.p. in a localized and distributed algorithm. In addition, from (37), we know that Pr(κ(G) = k)
is a decreasing function in Pm, which implies that the more misbehaving nodes a network has, the harder for
the network to keep its topology k-connected w.h.p.. By using this result, we are able to determine the resilient
capacity, presented next.

Proposition 2. Given a network modeled by GN ,r(N0
m), let Nc be the set of cooperative nodes in G with Nc =

|Nc|. Let the topology containing all cooperative nodes be denoted by G−Nc,r(0), and let G′N ′,r(N
′
m) denote any

topology containing both cooperative and misbehaving nodes for 0 < N ′m < N0
m and |N ′| = Nc + N ′m. Then

Λ(ψ0, G
−) > Λ(ψ0, G

′) holds for any 0 < ψ0 < 1 and k = 1.

Remark 4. The result of Proposition 2 implies that the resilient capacity can be maximized when the generated
topology contains only and all cooperative nodes of the original network. The above analysis also provides a
new insight on the trade-off between eliminating destructive and tolerating destructive in that the more existing
destructive nodes can be deleted from the topology, the more new constructive nodes can be accommodated.
Nevertheless, under the constraint of connectivity, the maximum number of sustainable misbehaving nodes is
upper bounded such that not all existing misbehaving nodes can be eliminated if the resilient capacity is already
zero.

With above understanding, it is clear that theoretically it is possible to design an optimal routing protocol
to achieve the maximum resilience capacity under connectivity constraints. The details of our protocol will
not be discussed here. Instead, we highlight our results and observation here. To evaluate the performance of
our solution, we implement the PROACtive protocol in the simulation tool ns2 and make three modifications
to the existing AODV module. First, the promiscuous mode is supported such that every node can measure
others’ cooperativities; second, RREQ and RREP messages are distributed only among neighbors such that
path selections are controlled within the topology generated; third, the destructive effect is introduced by letting
nodes configurable to drop data packets to be forwarded randomly.

Figure 13(a) shows a network without applying any topology control. Figure 13(b) shows the topology
generated by the PROACtive protocol, in which cooperative and destructive nodes are represented by solid dots
and circles, respectively. From the figure, we can see that the topology excludes most of destructive nodes, while
keeping most of cooperative nodes connected. To highlight the difference from other topology control protocols,
the topology generated by the K-Neigh protocol (Phase 1 only, with K = 9) [47] is shown in Figure 13(c). It is
no wonder that all misbehaving nodes are included in Figure 13(c) because the neighbor selection in K-Neigh is
only based on the distance between nodes.

To test connectivity, we use the DFS (depth-first-search) algorithm to calculate the maximum number of nodes
can be removed without partitioning the network. Then the probabilistic k-connectivity is calculated by the ratio
between the number of k-connected topologies and that of all topologies tested. In Figure 14(a), we can see that
the k-connectivity probabilities of generated topologies keep beyond 0.9 when N > 700 for both Pm = 10%
and Pm = 40% when original networks are almost physically k-connected. Nevertheless, when N < 500, the k-
connectivity probabilities for generated topologies and original networks decrease dramatically even down to 0.
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(a) No topology control (b) Topology generated by PROACtive (c) K-Neigh with K = 9 (Phase I)

Figure 13: The illustration of the topology generated, compared with the original network (circles: misbehaving
nodes, dots: cooperative nodes).

Further, we observe that the k-connectivity can hardly be preserved if Pm is too high, e.g., Pm > 30%, as shown
in Figure 14(b). Another observation is that the average (node) degree is reduced considerably in the generated
topologies, as shown in Figure 14(c), and it is decreasing slightly in the misbehaving ratio Pm because of the less
chance to find enough cooperative neighbors. Recall that µ = Θ(logN) is a condition for connectivity, from
Figure 14(c) we can see that the average degree of generated topologies is asymptotically greater than logN
(given the original networks k-connected), which satisfies the second condition of the connectivity constraint and
also implies the effectiveness of our neighbor cooperativeness threshold.
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Figure 14: The preservation of k-connectivity in the generated topology.

3.3.3 Summary

The main objective of this study is to find recovery strategies, or more importantly, to proactively deliver data
in a timely manner. Therefore, our definition of resilience capacity is the corner-stone toward such an objec-
tive because we need a rigorously defined metric for optimal design. Our results have demonstrated following
features:
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• Localized and distributed algorithm: This protocol is fully distributed and it requires local topology for-
mation only.
• Preservation of k-connectivity: This protocol can preserve the connectivity of generated topology w.h.p.

(≥ 0.9) if the underlying network is physically k-connected.
• Acceptable false positive (negative) ratio: This protocol can avoid the case of the exclusion of cooperative

nodes, called false positive, and the case of the inclusion of destructive nodes, called false negative.
• Low overhead and fast convergence: This protocol is light-weight in the computation and communication

complexity and have a bounded convergence time.
• Interoperability with routing protocols: This protocol is interoperable with routing protocols to provide a

graceful performance degradation.

3.4 Network Devolution Under Random Failures

3.4.1 Objectives and Approaches

A prerequisite for any communications in multi-hop networks is that the underlying topology should be con-
nected. Although many works have been done to provide theoretical guidance to achieve an asymptotic full
connectivity, this full connectivity is impractical to achieve all the time when wireless multi-hop networks scale
larger and larger. Thus, we find the fraction of nodes in the largest connected component (giant component) to be
a better metric to evaluate the resilience of a large network to failures, that is, the larger the giant component is the
more resilient a network shall be. Consequently, understanding the network devolution process when the number
of node failures increases, especially the critical time when the network experiences topological transitions, is of
importance in both theory and practice.

In this subtopic, we focus on the following question: for a large-scale wireless multi-hop network in the
presence of random failures, when does the network change its behavior from an almost connected phase to a
fully partitioned phase? Here a network is said to be almost-connected if there exists a giant component that is
composed most of surviving nodes with high probability; while a network is fully-partitioned if no such a giant
component exists asymptotically almost surely. To tackle this problem, we couple a network devolution process
with a continuum percolation process in a geometric random graph with uniform node distribution. By using the
concept of percolation probability, we first define two metrics, the last connection time and first partition time, to
characterize the critical phase transition time. The former is the last time at which a network is almost connected
and the latter is the first time at which a network is fully partitioned. Then we analyze the conditions under which
a geometric random graph does (not) have a giant component of surviving nodes.

Our approach takes following procedures. We first map the percolation process defined on the continuous
plane onto a discrete lattice, whose edges are declared open if certain properties of the Poisson process in their
vicinity are met (closed otherwise). In the discrete lattice, we then investigate the condition when infinite open
paths (composed of open edges) exist with positive probability. With a careful definition on the open edge in
the lattice, a reverse mapping can be carried out back to the continuous plane so that infinite open paths on
the discrete plane indicate connected components on the continuous plane. Finally, we obtain the continuum
percolation conditions, which enable us to derive the bounds of critical phase transition time, i.e., tc(n) and
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tp(n), for given survival functions.

Main Results: To the best of our knowledge, this is one of the first studies on network evolution problem. There-
fore, our definitions and formulation of problems have laid a good foundation for future research.

In order to understand the critical phase transition time during network devolution, we first define almost
connected and fully partitioned networks as follows

Definition 3. Let G(Hλ0,sn , rn) be a geometric random graph, in which every point is associated with the same
survival function S(t). Let λ1(t) , λ0S(t), then the network represented by G(Hλ0,sn , rn) is said to be almost
connected if p∞(λ1(t)) > 0, and fully partitioned if p∞(λ1(t)) = 0, where p∞(·) is the percolation probability.

Next we define two new metrics called the last connection time and first partition time.

Definition 4. With the same conditions given in Definition 3, the last connection time is defined by

tc(n) , sup{t > 0 : p∞(λ1(t)) > 0}, (38)

where λ1(t) , λ0S(t). The first partition time is defined by

tp(n) , inf{t > 0 : p∞(λ1(t)) = 0}. (39)

Definition 5. The critical phase transition time, denoted by TC , is the critical time point above whichG(Hλ0,sn , rn)
is disconnected a.a.s. (sub-critical) and below which G(Hλ0,sn , rn) is connected a.a.s., (supercritical), that is

lim
n→∞

Pr(G is connected) =

{
1, if t < TC ,
0, if t > TC .

(40)

The exact value of Tc is unknown, but it is expected to be bounded by tc(n) and tp(n) from below and above,
respectively, based on our definitions on tc(n) and tp(n).

3.4.2 Network Partion Problem and Theoretical Limits

Now we formulate the problem addressed in this paper as the Network Partition Time (NPT) problem.

Definition 6. (NPT problem): For a large-scale wireless multi-hop network represented by a geometric random
graph G(Hλ0,sn , rn), every node is assumed to be independently associated with a common survival function
S(t). Given the network is fully connected at initial time t = 0, find out

1. the relations among n, λ0, rn, and S(t) that would be sufficient to guarantee that the network is almost
connected or fully partitioned, respectively;

2. the upper limit of tc(n) and the lower limit of tp(n), such that the critical phase transition time TC can be
bounded by these limits.
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The results of this problem reveal that when time t < tc(n), the network is guaranteed to be almost connected
(super-critical); while t > tp(n) will be sufficient for the network to be fully partitioned (sub-critical). We expect
the bounds of critical phase transition time (i.e., tc(n), tp(n)) to be tight so that the phase transition is sharp
and the period of phase transition (i.e., the gap between tc(n) and tp(n)) converges to 0 as fast as possible.
Nevertheless, in practical, a longer period of phase transition might be preferable to provide a smooth degradation
of connectivity.

Our theoretical results can be summarized as follows:

Theorem 4. Given a graph G(Hλ0,sn , rn), assume µ0 = λ0πr
2
n = Θ(log n) and the degree bound K = (1 +

εn)µ0 where εn is an arbitrary increasing function of n. There exists a positive constant cε, such that if the
survival function S(t) satisfies,

S(t) >
√

5(ln 18− ln(1− 15φn))
cεrn
√
λ0 lnn

, (41)

where φn = 1− exp(−2c2ε lnn
ε2nµ0

), then G(Hλ0,sn , rn) is in the super-critical phase.

Theorem 5. Given a graph G(Hλ0,sn , rn), assume µ0 = Θ(log n) and K = (1 + εn)µ0. There exists a positive
constant cε, such that if the survival function S(t) satisfies:

S(t) <
ln
√

3ψK − ln(
√

3ψK − 1)
cεrn
√
λ0 lnn

, (42)

where ψK = Γ(K,µ0)
(K−1)! and Γ(x, y) is the incomplete Gamma function, then G(Hλ0,sn , rn) is in the sub-critical

phase.

Remark 5. The assumptions on µ0 and K are needed to achieve an initial fully connectivity, which is the
condition of the NPT problem. Further, they also guarantee ψK > 1

3 such that ln(
√

3ψK − 1) is a real number.
In fact, the format of K indicates that the impact of interference has to be sufficiently small so that the degree
bound could be large enough to support the percolation as n → ∞, which is accordant with the result proved in
[48].

Next, the following corollaries answer the second part of the NPT problem, providing the theoretical bounds
on the critical phase transition time.

Corollary 1. (Limits of tc(n) and tp(n) with light-tailed S(t)): Assume the survival function S(t) = e−αt (ex-
ponential), where the positive 1/α represents the mean lifetime of a node, then the upper limit of last connection
time tc(n) is,

tc(n) =
1
α

ln(lnn) + c1 ∼ Θ(log(log n)), (43)

where c1 = 1
α(ln(cε

√
c
π )− ln(

√
5 ln 18

1−15φn
)) and c , µ0

lnn . The lower limit of first partition time tp(n) is,

tp(n) =
1
α

ln(lnn) + c2 ∼ Θ(log(log n)), (44)

where c2 = 1
α(ln(cε

√
c
π )− ln(ln

√
3ψK√

3ψK−1
)).
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Corollary 2. (Limits of tc(n) and tp(n) with heavy-tailed S(t)): Assume S(t) = (t/η)−ρ (heavy-tailed Pareto,
ρ > 1) with mean ηρ

ρ−1 , then the upper limit of tc(n) is,

tc(n) = c3(lnn)1/ρ ∼ Θ((log n)1/ρ), (45)

where c3 = η( cε
√
c/π√

5(ln 18−ln(1−15φn))
)1/ρ and c , µ0

lnn . The lower limit of tp(n) is

tp(n) = c4(lnn)1/ρ ∼ Θ((log n)1/ρ), (46)

where c4 = η( cε
√
c/π

ln(
√

3ψK)−ln(
√

3ψK−1)
)1/ρ.

Remark 6. A premise used in above theorems is µ0 = c lnn = Θ(log n) where c is some constant such that the
network is fully connected initially. In particular, Xue and Kumar proved in [49] that 5.1774 log n is required
for a.a.s. connectivity and this threshold was further improved by Balister et al in [50] to 0.5139 log n (also see
[51]). However, in our simulations, we find that 0.5139 log n is far less sufficient to achieve an initial connected
random topology and actually 5.1774 log n is a “good” threshold for connectivity.

Remark 7. From reliability engineering, we know that many lifetime distributions (e.g., exponential, log-normal,
Pareto, Weibull) are either light-tailed or heavy-tailed according to the decay speed of their tails. Since the
exponential distribution is the only distribution to have a constant failure rate and applies naturally to model
memoryless lifetime, it is used to represent light-tailed survival functions; while the Pareto distribution is used to
represent heavy-tailed survival functions when node lifetime is power law or with very large variance.

Remark 8. A network with Gaussian node distribution is more resilient to random failures, in terms of a graceful
degradation on the relative giant component size and a longer network survival time, compared with the coun-
terpart with uniform node distribution. This finding implies that the node distribution can be also an important
factor in determining the overall network resilience to random failures.

3.4.3 Simulation Results: Visible Network Devolution

To emulate the devolution process, nodes fail one by one in the increasing sequence of their lifetimes. Upon node
failures, we use a depth-first search (DFS) algorithm to record all components induced by surviving nodes and
calculate the giant component size S (i.e., the number of surviving nodes in the largest component). The relative
giant component size is defined by SR , S/n′ where n′ is the number of remaining surviving nodes, in order to
characterize the phase transition phenomenon.

Figure 15 illustrates an example of the topological devolution process of a graph of 1000 nodes, where solid
dots and circles represent surviving nodes and failed nodes, respectively. The survival function is Pareto with
parameters set above. By using (45) and (46) and choosing cε = 2.5, we have tc(n) = 733.8 and tp(n) = 2041.
As expected, When t < tc(n), the topology constructed by remaining nodes is almost connected with a single
giant component, as shown in Figure 15(a). On the contrary, when t > tp(n), the network is fully partitioned
and has only several small components, shown in Figure 15(c). Figure 15(b) shows the topology in the period of
phase transition, i.e., tc(n) < t < tp(n), where the network are disconnected into parts but with a component
larger than others.
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(a) t = 729.5 < tc(n) (b) tc(n) < t = 1204.4 < tp(n) (c) t = 2193.4 > tp(n)

Figure 15: Snapshots of the graph devolution process at different times.
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Figure 16: The phase transition and critical time bounds with exponential survival functions (α = 0.001).
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Figure 17: The phase transition and critical time bounds with Pareto survival functions (ρ = 2.0, η = 500.0).

Figures 16 and 17 show clearly how the relative giant component size (SR , S/n′) decreases when the
network experiences increasing random failures. We summarize our observations as follows. First, the period
of phase transition is bounded by the theoretical limits of tc(n) and tp(n) in all simulation scenarios, which
confirms the correctness of our analytical results. Second, as expected, the larger the network size n is, the
sharper the phase transition is, which is true for both light-tailed and heavy-tailed survival functions. Third,
compared with the actual value of the giant component size S (or the ratio S/n), it is clear that the relative
giant component size, i.e., SR = S/n′, is a more appropriate metric to indicate the phase transition phenomenon
in the devolution process due to random failures. Finally, a surprising observation is that given the same n
and average node lifetime, the network with Pareto survival function decomposes substantially faster than the
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network with exponential survival function. To explain this phenomenon, it is noticed that the variance of Pareto-
distributed lifetimes is much larger than that of exponential-distributed lifetimes. This implies that the majority
of Pareto-distributed lifetimes have to be short enough to compensate a small number of huge lifetimes, in order
to achieve the same average lifetime with exponential-distributed lifetimes. Consequently, more nodes with
Pareto-distributed lifetimes fail earlier than the nodes with exponential-distributed lifetimes.

4 Correlated failures and their propagation in inhomogeneous networks

4.1 Failure Propagation via Multi-Hop Communications

During the course of studying fundamental limits of network responses to attacks, we found our understanding
of network architecture is very limited for which we hardly find any literature on the topic. For instance, once
a failure is detected or occurred, how fast can such failures be known (by one or more nodes) in the network?
The problem is important in two-fold: first it is critical the design of recovery strategies because a network
should be designed sufficiently robust against the impact of such failure; second, the network (and protocols)
needs to be designed intelligently such that the information of failure can be made available to as many nodes as
possible within the shortest time period. Therefore, a fundamental problem is: what is the speed of information
propagation?

4.1.1 Objectives and Approaches

In the pioneering paper [52], Zheng shows that there is a constant upper bound W on the information diffusion
rate and the network is able to achieve a constant diffusion rate, regardless of the network population, in both
the extended and the dense networks. Achieving W requires three conditions: i) every node uses an optimal
transmission radius R, ii) the transportation distance of a packet is a multiple of R, and iii) the relay nodes are
aligned with separation distance R. Lacking any of these conditions results in W unreachable.

However, a few interesting questions remain unanswered yet. First, if the packet transportation distance is
known and not equal to a multiple of R, what is the best propagation strategy for the packet to achieve the fastest
delivery? Since W is unreachable, is there a tighter speed upper bound? Second, when delivering a packet,
we care about both how fast and how well the packet is delivered, that is, whether all the intended recipients
can receive the packet successfully. When the satisfaction of packet delivery without missing any recipient is
considered, what is the speed upper bound under this constraint? Third, if the optimal transmission radius R is
used but the relay nodes are not perfectly located, what is the gap between the actually achieved speed and the
desired upper bound W ? We attempt to provide the answers to these three questions in this work.

Main Results: Our objective is to find the speed of propagation in an arbitrary network which nodes are not placed
evenly and they have different transmission ranges.

Before we investigate the speed of information propagation, it is necessary to understand how information
propagates in multihop wireless networks. An illustration is shown in Figure 18, in which a packet is originated
by node v0 at time zero. Node v0 chooses a transmission radius rv0 and sends out the packet. The packet is
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Figure 18: Information propagation in multihop networks.

received by all the relay nodes inAv0 by the end of v0’s transmission. These relay nodes then forward the packet
by rebroadcasting it. Figure 18(a) depicts the area reached by the packet after two hops.

Denote V(t) as the set of nodes that have received the packet by time t and Ṽ(t) ⊂ V(t) as the subset that have
forwarded the packet. The total area that the packet has reached by time t is expressed as A(t) = ∪

vi∈eV(t)
Avi .

In addition, let Lϕ denote the line starting from v0 toward the direction ϕ ∈ [0, 2π) and Lϕ(t) = Lϕ ∩ A(t). In
Figure 18(b), Lϕ(t) is the line segment oz. The Information Propagation Speed in the direction ϕ is then defined
to be

wϕ(t) =
|Lϕ(t)|
t

, (47)

where |Lϕ(t)| is the length of Lϕ(t).

As the first contribution, we show that there is another optimal transmission radius other than R if the packet
transportation distance is not a multiple of R. We note that in broadcast communications, as the locations of
packet recipients may not be known in advance, R is the best transmission strategy. In unicast communications,
however, the location of the packet recipient may be known. If the known transportation distance is not a multiple
of R, another transmission radius that optimally fits the specific distance should be used. Interestingly, we find
that there is a unified optimal transmission radius and speed upper bound in large wireless networks.

As the second contribution, we determine the speed upper bound under the constraint of guaranteeing a given
level of packet delivery satisfaction. We examine two different noise models. In the first model, the noise in the
network is determined by the background Gaussian noise. We show that there exists a threshold node density,
above which there is a constant speed upper bound. In the second model, interference is the determinant source
of noise. We show that there also exists a threshold node density, above which, however, the speed upper bound
decreases to zero.

Based on our theoretical analysis, we find that, given the parameter γ, there exists an optimal transmission
radius Rγ(λ) that may achieve the maximum information propagation speed Wγ(λ) in a network with node
density λ. However, as we have discussed earlier, actually achieving this maximum speed requires an additional
condition that all the relay nodes are aligned and separated from each other by the distance Rγ(λ). Since the
nodes are randomly distributed, it is impossible to find these perfectly located relay nodes when λ < ∞. There
is always a gap between the actually achievable speed wϕ(t) and the bound Wγ(λ).
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As the third contribution, we quantify the gap between the actually achievable speed and the desired upper
bound. We prove that a packet propagates omnidirectionally in large wireless networks and the speed gap shrinks
as the node density increases. Furthermore, we show that in both noise models, there exists a threshold node
density, below which the gap is bounded by constants and above which the gap converges to zero exponentially.
Since this result is more practical and useful to DTRA missions, we present the main results here.

By definition, the actual information propagation speed is measured by wϕ(t) = |Lϕ(t)|
t . Due to the ran-

domness of node locations, this speed may be faster or slower when the packet travels through different subareas
in the network. To evaluate wϕ(t) without introducing the subarea bias, we define the long-term speed in the
direction ϕ to be

wϕ = lim
t→∞

wϕ(t) = lim
t→∞

|Lϕ(t)|
t

. (48)

Since every node uses the same optimal transmission radiusRγ(λ), the 1-hop transmission time τ = L
B log2(1+ P

N
R−αγ (λ))

is the same for every node. Thus, Eq (48) is rewritten as

wϕ = lim
m→∞

Zm
mτ

= lim
m→∞

∑m
i=1 ρi
mτ

=
ρ

τ
, (49)

where Zi = |ozi|, ρi = Zi − Zi−1 and ρ = limm→∞
Pm
i=1 ρi
m = E[ρi].

4.1.2 How Fast Can Failure Propagation?

First, we show that the actual information propagation speed is omnidirectional in large networks. In the long
term, a packet is disseminated to the same distance away from the source in any direction and the frontier of the
covered area is in the circular shape with the source node as the center, as specified in the following theorem.

Theorem 6. In a network with homogeneous node distributions, ∀ ϕ1, ϕ2 ∈ [0, 2π), wϕ1 = wϕ2 = w.

Remark 9. Theorem 6 states the fact that a packet reaches the same distance away in any direction after suffi-
ciently long propagation time, though it can be faster or slower temporarily in one direction than another.

Figure 19 depicts an example of the speed comparison in different directions. As the packet propagates
farther away, the speeds in all directions converge to the same value.

It can be proved that w is determined by the node density λ, we write w = w(λ) = ρ(λ)
τ . We define the gap

between the actual speed w(λ) and its upper bound Wγ(λ) as

ε(λ) =
Wγ(λ)− w(λ)

Wγ(λ)
=
Rγ(λ)− ρ(λ)

Rγ(λ)
. (50)

The next theorem provides a quantified measurement of ε(λ).

Theorem 7. In a network where the nodes are randomly distributed in a Poisson point process with density
λ and the optimal transmission radius Rγ(λ) is used, defining a = λπR2

γ(λ), g1(a) =
∫ 1

0 e
a(x2−1)dx and

g2(a) =
∫ 1

0 e
− 1

3
ax2

dx,
g1(a) ≤ ε(λ) ≤ g2(a). (51)
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Figure 19: A comparison of the packet propagation speeds in six randomly chosen directions, in which the
normalized speed is defined as the ratio of the minimum speed to the maximum speed in the six directions,
λ = 30.
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(a) α = 2
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(b) α = 4
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(c) α = 6

Figure 20: The speed gap in the ambient-noise-dominant model, PN = 103.

Remark 10. Theorem 7 provides the bounds on the convergence rate of the speed gap as the node density
increases.

Remark 11. We find that in the ambient-noise-dominant model the speed gap converges to zero exponentially
with exponent λ1−ε, where ε is an arbitrarily small positive real number. The speed gap ε(λ) and its bounds are
shown in Figure 20 as an example.

Remark 12. We find that in the interference-dominant noise model the speed gap converges to zero exponentially
with exponent λ(1− 2

α
)(1−ε), where ε is an arbitrarily small positive real number.

Therefore, our results show that in both noise models there is a threshold node density, below which ε(λ)
is bounded by constants (the constants are determined by the choice of parameter γ) and above which ε(λ)

converges to zero exponentially, in the rates of cλ
1−ε

and cλ
(1− 2

α )(1−ε)
respectively.

The study on speed of information propagation is a new problem toward the first thrust of the original goals,
that is, the fundamental limits of network vulnerabilities in the present of multiple failures.
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4.2 Failure Propagation via Topological Analysis

To assess the health of a network, we may have access to a variety of measurements at the individual nodes. The
characterization of these measurements yields a variety of information, which include that about the functionality
of the network. To cope with an onset or the aftermath of a significant attack in the likes of one by weapons of
mass disruption/destruction, our focus primarily lies in detecting early failures and in localizing them to infer the
degree to which the topology of a network is preserved. The power of a detection strategy lies in its versatility
and its adaptability

4.2.1 Objectives and Approaches

We take a more abstract approach of characterizing the network processes as ‘Data’ along with some ‘Charac-
teristics’ associated with it. We present the task of identifying the process taking place in the network as a Data
Classification problem. There is extensive literature present in the field of Statistical Data Learning/Classification
which we can put to effective use when modeling the network processes in the above manner. Furthermore, we
explore a recently emerging field of Applied Topology to study our network data. Data in many practical applica-
tions does not admit any natural geometric properties and searching for metrics in this space might be redundant.
(Although, searching for right ‘features’ which characterize our data is important). It is for this reason that
analyzing the topological structure of the data becomes more apt for our situation.

Our approach is to consider a network of nodes represented by Xi and each node has a measurement vector
Mi . We assume that the nodes Xi are random samples taken from a manifold and the measurements are samples
of a vector field defined on this manifold. There is an operator which is a mapping from this vector field onto a
feature space. The operator ϕ is chosen such that the topological invariants of the feature space correspond in
some way to the underlying processes on the network. The problem statement then is three-fold:

• Designing the operator based on prior knowledge of the process such that the topology of the feature space
reflects the characteristics of the process.
• Identifying or classifying the underlying processes in the network by analyzing the topology, or if necessary

and appropriate, the geometry of the feature space.
• Localizing the required processes in the network.

4.2.2 Experimental Results and Observations

We experiment with the network database from the KDD 2000 contest. The data base is a series of records
where each record describes a connection. Many attacks/intrusions were emulated in a real-life networks and
information about each connection were stored as a record. In our model, we treat the set of records at each
node Xi as the measurement vector Mi . Also, as of now, we collect all these measurement vectors and perform
”centralized” processing. Our future goal is to decentralize the processing so as to minimize the overhead on the
network. In our preliminary attempts towards designing such an operator, we employed the linear discriminant
analysis. In this method, we design a linear operator from the measurement space to the feature space such that
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points corresponding to different processes (“normal” connections, DOS attack, etc...) form different clusters and
points within each cluster are packed as tightly as possible. We describe below the linear discriminant analysis
briefly:

We are given a training data set XNk , N is the number of records and k is the dimension of each record.
The records correspond to C different processes which we call classes which are available to us. Therefore, the
data set can be partitioned into C disjoint sets as X = X1, X2, ..., Xc where Xi represents the set of records
corresponding to the class i . We represent a record in the set Xi as xi .The number of records in class i is
represented by Ni . The goal is to design a linear operator Â so as to optimize the fisher criterion:

Â = argmax
ATSb ·A
ATSw ·A

(52)

where Sb is called the between class scatter matrix and Sw is called the within class scatter matrix. The above
optimization problem reduces to generalized eigen-value problem and can be solved by simultaneously diago-
nalizing both the scatter matrices. The figures below show that effectiveness of such analysis.

Figure 21: Result of linear discriminant analysis.

To the left above in Figure 21 records from three different processes are plotted in three dimensions (after
reducing the dimension from 41 to 3). On the right in Figure21 shows the same records after being mapped onto
the feature space using the linear operator designed as stated above. As the figure shows, the records of two kinds
of processes which were indistinguishable originally shows considerable amount of topological variation in the
feature space. Even though they perform very well in certain cases, the linear operators as design above form a
small subset of the vast class of operators one can design and fail to capture the non-linear discriminant features
in the measurement data. For this, we should consider the classes of non-linear maps and optimize among those
classes.

To give an idea of which non-linear operators are best suited for certain situations, consider the following
Figure 22: The figure to the left shows a simulated data set which red ”blobs” show on the top and to the bottom
correspond to the same process. The resulting feature space of our mapping should be able to group the red blobs
together and separate the blue blob. Clearly, linear operators cannot accomplish such a task. The figure to the
right shows the same data points but color coded with the feature values of a non-linear operator. The feature
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Figure 22: Non-linear mapping.

space is one-dimensional in this case. The mapping of this non-linear operator ϕ: <→< is shown in Figure 23.

Figure 23: Optimization result with non-linear operator.

It is quite apparent at this stage that non-linear features can better capture the discriminative characteristic
of the data. But it is often difficult to choose the right class of non-linear operators. Also, is very important
and extremely useful to be able to design such an operator in a decentralized manner within the network without
collecting the data at a central place. Both the above problem will be a major focus of our future research.

4.2.3 Clustering Analysis based on Applied Topology

We further studied Applied Topology. As seen in the above application, we were looking for different clusters
in the feature space to distinguish between different processes. Clustering can be viewed as a discrete version
of looking for connected components in a continuous space. Such a feature is called a topological feature.
The phrase “studying topology of a space” roughly implies studying the arrangement of points in that space.
We extend the above idea of looking for connected components, which is a zero order feature to higher order
topological features such as cycles, voids etc. We present here a few applications where such higher order
features can give us considerable information about the underlying process on which this topological space is
described.

We start with a practical scenario/process and represent it using a topological space. Briefly, a topological
space describes a set of all open sets so that we can define a notion of continuity. We then analyze these spaces
to extract topological invariants which characterize the underlying processes. In the application described above,
the underlying processes are the different kinds of network connections and the topological space is the feature
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space (the range of our designed operator) in which we were searching for connected components. In order to
facilitate the digital computation of these invariants, we use homology which assigns to each topological space
a sequence of algebraic objects such as groups and vector spaces. The topological invariants can be extracted
by performing computations on these algebraic objects. The following diagram depicts pictorially the above
process.

Invariant
Topological Algebraic

Properties

Topological
Space/
Manifold

Object
AlgebraicPractical 

Scenario 

Figure 24: Big picture of applied topology.

Homology is a function which assigns to each topological space, a sequence of algebraic objects. We call
these objects homology classes. But computing homology of an uncountable set (containing infinite points such
as a disc in two dimensions) is not possible on a computer. We can show that under certain mild conditions we
can use random sampling from this space to extract its homology accurately with certain probability guarantees.
More specifically, a simplicial complex called the Rips complex formed using these random samples has the
same homology classes as the original topological space. We now define precisely a simplicial complex and
Homology classes and describe the method of computing these homology classes. We then describe a process
for computing these homology classes distributively in a network.

Algebraic
Properties

 

Complex
Simplicial 

Uncountablel
"continous"

Space

Homology

Figure 25: Assigning algebraic objects.

We also investigate other methods such as simplicial complex and chain complex. A simplicial complex is a
generalization of the standard notion of a graph. In a graph we have a set of nodes and a set of pairs of nodes
which we call edges. The edges can either be directed or undirected (oriented or unoriented). A Simplicial
Complex generalized this concept to form simpleces which can contain any number of nodes instead of two as
in edges. A k-th order simplex contains k + 1 nodes. A face of a k-th order simplex is a k − 1 order simplex
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formed by removing one of the node. An oriented k-th order simplex is one which an order is specified for the
set of k + 1 nodes. A more precise definition of a simplicial complex is as follows:

A simplicial complex K is a collection of simplices σki where k is the order and i is the index such that:

• Every face of a simplex σ ∈ K also ∈ K.

• The intersection of any two simplices (defined as the simplex with common vertices) is a simplex in K.

For Chain Complex, we assign a sequence of vector spaces Ck to a simplicial complex K . The points in
these spaces are called chains. The vector space Ck is formed by taking all the k-th order simplices in K as the
basis and taking all linear combinations over a field. We will usually work on the field or real numbers R.

Given a chain complex, we define homology classes (vector spaces in this case) as the following quotient
space:

Hk(K) = ker(∂k)/img(∂k+1)

The dimensions of the homology classes give us useful topological information. The dimension of H0(K) (also
called zeroth Betty number or b0 ) gives us the number of components. b1 gives us the number of cycles, b2 gives
us the number of voids and so on.

For computing these classes distributively, we make use of Laplacian operators on the simplicial complex K
. The k-th order Laplacian operator Lk : Ck → Ck is defined as

Lk = ∂k+1∂
∗
k+1 + ∂∗k∂k

A special property of the Laplacian operator is that its action over a simplex can be expressed only in terms of
its adjacent simplices. We use this local property to compute the laplacian of K over a network. Now, we have
an important relation that the kernel of the k-th Laplacian is Isomorphic to Hk(K) . Therefore, the problem now
reduces to computing distributively the null space of the k-th laplacian.

4.2.4 Relevance to Original Goals

In order to identify failures in a large-scale network, a variety of measurements may be taken. This work, along
with some “Characteristics’ associated with it, present a solution for early detection of failures and localization
of failures. We present the task of identifying the process taking place in the network as a Data Classification
problem in the field of Statistical Data Learning/Classification which we can put to effective use when modeling
the network processes. Also, we explored a recently emerging field of Applied Topology to study our network
data that do not admit any natural geometric properties.

4.3 Multi-Failure Correlation and Spreading

As one of the two thrusts we intend to explore in this project, we want to understand and characterize the impact of
multiple failures caused by WMD attacks on the network infrastructure. In our work of last year, we investigated
the multiple failure problem by modeling the network under attack as a devolution process and determined
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the critical time for network partition. As failures occur over time, the network transits from its original fully
connected state into a partitioned state in which node communication distances become limited. Our results give
the first evaluation of this critical turning-point in the network devolution process. However, we only considered
the scenario of random and independent node failures in last year. The underlying assumption was that multiple
node failures are isolated events from one another. We note that in some cases node failures could be correlated
in the sense that a failure happens as a result of earlier failures. We extend our previous work by incorporating
failure correlations to advance our understanding of the impact of multiple failures on the network infrastructure.

4.3.1 What is Multi-Failure Correlation?

To design WMD resistant networks, we first need to understand the severity of impact that WMD attacks can cre-
ate in the network infrastructure. Many existing works in the literature have proposed a wealth of solutions that
improve the network resilience to failures via different techniques and strategies, including failure prevention,
failure detection, failure mitigation, and failure reparation, which aim to restore the normal network functioning
when failures happen. The majority of these studies deal with specific types of failures and their countermeasures,
for example, planning traffic paths away from the failure-prone regions, providing continuous surveillance cov-
erage when a subset of sensors fail, finding alternative routes when nodes or links become unavailable, and using
small-sized packets and error control codes to communicate in networks with low-quality links. These studies
have greatly contributed to the failure resilience of large networks. From a different perspective, we intend to
characterize the failure impact on the network infrastructure. Our work provides a fundamental understanding on
the quantification of failure impact, which is a critical supplement to the existing research works and an important
step towards designing effective counter-failure solutions under the threats of WMD.

Our prior work analyzed the critical phase transition time of a large network in which random failures grad-
ually break down an initially connected network into small pieces of disjoint components. The results present an
observation on the impact of failures from the network connectivity perspective. However, we did not character-
ize all the failure possibilities under WMD threats. In some cases, causal relations exist among failures, i.e., some
failures happen as a result of other earlier failures caused by WMD. One example of correlated failures is traffic
overloading and energy depletion. When a node fails, its traffic is redistributed to the neighboring nodes and
these neighboring nodes undertake a heavier packet relaying load than before. Some neighbors may deplete their
energy fast and fail in a short time. Another possible case of failure correlation is node malfunction and protocol
non-compliance after WMD attacks. When a subset of nodes are damaged by attacks, they may not comply with
their designed protocols and cause other nodes to work in unexpected states. The node malfunction may spread
out from the initially damaged nodes to other nodes as a result of the protocol non-compliant working states.

In view of the potentially devastating impact caused by correlated failures, we characterize the spread of
correlated failures in the network infrastructure. In particular, we attempt to determine the conditions under which
a single initial failure will and will not spread to the entire network. In an effort to gain a generally applicable
understanding on the spread of correlated failures, we model the failure correlations as general functions and
determine their characteristic regimes in terms of the ability of an initial failure to permeate the network. The
correlation functions model the geometric constraints in failure propagation, i.e., the distance and probability for
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a failure to spread in one hop. Based on the correlation functions, we then use the percolation theory to tackle the
failure spreading problem. Percolation theory provides a mighty tool for analyzing a wide range of contact-and-
relay problems observed in reality. We determine analytically the pervasiveness of failure spreading conditioned
on the failure correlation functions by using the concept of percolation. Intuitively, stronger correlations drive
an initial failure to spread into a larger area than weaker correlations. Our results provide a quantification of the
relation between failure correlations and failure pervasiveness in large networks. The results are useful for us to
evaluate and enhance the resilience of our network infrastructure against WMD attacks.

4.3.2 Modeling of Node Failure Correlation

Main Results: Our contributions are the formal and generalized modeling of the correlated failures and determi-
nation of the conditions in which an initial failure will and will not spread out to the entire network.

We model the communication network under WMD threats as a large network consisting of n nodes in
a region B = [−L

2 ,
L
2 ]2 (L → ∞). The number of nodes n is assumed to be a Poisson distributed random

variable with constant density λ everywhere in the network. Let Xi (1 ≤ i ≤ n) denote the random location
of node vi that is uniformly distributed in the network, independent of n and any Xj (i 6= j). We know that
Hλ = {X1, · · · , Xn} is a homogeneous Poisson point process.

We model the node failure correlation by defining two probabilistic correlation functions. When a node fails,
it may trigger other failures in its neighbors. Let ‖Xi − Xj‖ denote the Euclidean distance between vi and
vj . We define the failure impact radius r to be the farthest distance between the location of a triggering failure
and the location of an immediate follow-up failure, i.e., failure may propagate from vi to vj in one hop only
if ‖Xi − Xj‖ ≤ ri, where ri is the r of vi. Considering the difference of the nodes in their respective failure
impacts, the impact radius r is modeled as a random variable with probability density function f(x) (0 ≤ x ≤ 1).
For different nodes vi1 and vi2 , ri1 and ri2 are independent. Besides, we define the failure connection function
g(x) to model the likelihood of failure propagation from vi to vj . If vj is located within the impact radius of vi,
failure spreads to vj with a probability g(‖Xi − Xj‖). If vj is beyond the impact radius of vi, failure cannot
spread from vi to vj . For any two pairs of nodes, failure propagation is independent from each other.

To differentiate between the possibilities that a node may be at risk of failure only once and that a node may
be impacted by other nodes’ failures multiple times, we categorize failure correlations into two classes: one-time
correlation and persistent correlation. We say that the failures are one-time if each node is subject to the impact
of other nodes only once. For example, if nodes vi and vj have failed sequentially and vk is within their impact
radius ri and rj , then vk only has the failure risk after vi. If vk does not fail after vi, vk also does not fail when vj
fails. We say that the failures are persistent if a node may fail each time one of its neighbors fails. In the example
we used above, vk may fail after both vi and vj with persistent failure correlation.

We use percolation theory to investigate the long-term trend of failure spreading when failures are correlated.
When failure propagates from vi to vj in one hop, we say that vi and vj are connected (or the connection is
open). Otherwise, vi and vj are not connected (or the connection is closed). Note that the connections considered
here represent the failure correlations among nodes, which are completely different from the communication
links. In percolation terminology, each node in the network is a site and failure connections define the bonds
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Figure 26: Failure spreading in large wireless networks.

between neighboring sites. As node locations are randomly distributed, this percolation process is also known
as continuum percolation. In its basic form, continuum percolation assumes an open bond between any two
neighboring sites. We have introduced here the probabilistic functions f(x) and g(x) for each bond, so our
network model is also called the random connection model in which a bond is open only probabilistically.

Given node locations and their bonds, our problem is to determine whether an initial failure will spread to
the entire network. An example of failure spreading is illustrated in Figure 26. In this example, the initial failure
occurs at node v0. As a result of this failure, nodes v1–v3 fail subsequently and spread the failure further away
to nodes v4–v13. In each step of spreading, a node that has just failed in the previous step passes failure to a
random subset of nodes in its neighborhood, as modeled by the impact radius distribution function f(x) and the
connection function g(x). As time goes, there are two possible results regarding failure spreading: either the
spreading continues for ever or it stops automatically.

We represent the network infrastructure under WMD threats as a random geometric graph and denote
it as G(Hλ, f(·), g(·)). Regarding node v0 that initiates the failures, we define the percolation probability
p∞(λ, f(·), g(·)) as

p∞(λ, f(·), g(·)) , Pr[|C(v0)| =∞], (53)

where C(v0) denotes the cluster of nodes that fail as a result of the initial failure at v0 and |C(v0)| denotes the
size of cluster C(v0). When |C(v0)| = ∞, we call C(v0) a giant component. If p∞(λ, f(·), g(·)) > 0, failure
percolates in the network with a positive probability. If p∞(λ, f(·), g(·)) = 0, failure does not percolate in the
network almost surely.

Our goal is to determine the regimes of functions f(x) and g(x) such that p∞(λ, f(·), g(·)) > 0 and
p∞(λ, f(·), g(·)) = 0 with given λ, respectively. Obviously, G(Hλ, f(·), g(·)) is a subgraph of G(Hλ, 1, 1) and
p∞(λ, f(·), g(·)) = 0 whenever p∞(λ, 1, 1) = 0. To avoid triviality, we only consider the case p∞(λ, 1, 1) > 0
and determine the respective constraints on f(x) and g(x) for p∞(λ, f(·), g(·)) > 0 and p∞(λ, f(·), g(·)) = 0.
It is well known that there exists a critical density λc in G(Hλ, 1, 1) defined as

λc , inf{λ > 0 : p∞(λ, 1, 1) > 0} (54)

that specifies the minimum λ for p∞(λ, 1, 1) > 0. So far, the best known rigorous bounds on λc are 0.7698 <
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λc < 3.372. Hence, we assume λ > 3.372. In addition, if r is a constant, we also assume λr2 > 3.372, which
guarantees p∞(λ, r, 1) > 0 by the scaling property.

4.3.3 Impact of One-Time Failure Correlation

Based on our generalized modeling of the failure correlations, we have found the following important results
regarding the failure spreading in the network infrastructure after WMD attacks.

We aim to find the conditions under which an initial failure will and will not spread out to the entire network
when the failures are one-time correlated. Specifically, we provide the quantified relations among the node
density λ, the failure impact radius r and the failure connection probability p that determine the failure spreading
trend. In more general cases of the random failure impact radius, we have the following result.

Theorem 8. With one-time failure correlation, for random failure impact radius r with probability density func-
tion f(x) (0 ≤ x ≤ 1) and constant g(x) = p,

i) p(one)
∞ (λ, f(·), p) > 0 if ph1(f(x)) > λc

λ ,

ii) p(one)
∞ (λ, f(·), p) = 0 if p(1− h2(f(x))) < λc

λ ,

where h1(f(x)) = max{0≤a≤1}{a2
∫ 1
a f(x)dx}, h2(f(x)) = max{0≤a≤1}{(1− a2)

∫ a
0 f(x)dx}.

Intuitively, r and p represent the degree of failure contagiousness. When r and p increase, failure tends to
percolate. When they decrease, percolation becomes unlikely to happen. Our results in Theorem 8 present a
quantified measure on r and p. Moreover, in the general case of a random r, it indicates that the chance of failure
percolation increases if the probability distribution f(x) shifts toward large r (such that h1(f(x)) increases) and
decreases if f(x) shifts toward small r (such that h2(f(x)) increases).

When the failures have persistent correlation, we have derived the following results to characterize the con-
ditions under which failure spreading will and will not happen.

Theorem 9. With persistent failure correlation, for constant impact radius r and connection probability p,
p∞(λ, r, p) > 0 if pr2 > 1.8889

λ .

Theorem 10. With persistent failure correlation, for constant impact radius r and connection probability p,

p∞(λ, r, p) = 0 if pr2 <
− ln(1− 0.1642

λ
)

2.5981λ .

Theorems 9 and 10 provide us with the sufficient conditions to judge whether an initial failure will or will not
spread to the entire network when the failures are persistently correlated. Our results quantify the relation among
λ, r and p to predict the long-term failure spreading trend. We also further generalize the results in Theorems 9
and 10 by considering arbitrary f(x) and g(x) functions and to obtain more applicable results.

As a visual verification of our derived failure percolation conditions, we present the simulation results.
Specifically, we give our simulated failure spreading results for Theorem 8. All the other simulation results
for the other theorems are similar, so we do not include each of them in this report.
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Figure 27: Simulation results for failure percolation and non-percolation.

In our simulations, we assume that f(x) is a uniform distribution in the range 0 ≤ x ≤ 1. It is not difficult to
find h1(f(x)) = 0.1481 and h2(f(x)) = 0.3849. By Theorem 8, we know that failure percolates if 0.1481pλ >
λc and does not percolate if 0.6151pλ < λc. Given 0.7698 < λc < 3.372, we need to verify the percolation
results for pλ > 3.372

0.1481 = 22.7684 and pλ < 0.7698
0.6151 = 1.2515 respectively.

However, as the existing simulation result has demonstrated that 1.43 < λc < 1.44 with high confidence, we
simulate pλ > 1.44

0.1481 = 9.7232 and pλ < 1.43
0.6151 = 2.3248 instead. If failure percolates with pλ > 9.7232, it

must percolate with pλ > 22.7684. Similarly, if failure percolation does not happen with pλ < 2.3248, failure
definitely cannot percolate with pλ < 1.2515.

Therefore, we choose pλ = 9.8 and pλ = 2.3 respectively with the above consideration. We present the
results of failure spread in a 20 × 20 area in Figure 27, where the initial failure occurs at the center of this area.
For clearer presentation, we have only shown in the figures the connections through which failure is propagated
from a failed node to a normal node (which becomes failed after the propagation) but ignored the connections
between any two nodes that have already failed before these connections are used for failure propagation. We
observe that failure is able to spread to a majority of nodes in Figure 27(a) while only to a limited small cluster
of nodes in Figure 27(b), hence supporting our claims in Theorem 8.

4.3.4 Impact of Persistent Failures

We explore the percolation of persistent failures in this and next sections. Specifically, we focus on constant
failure impact radius r and constant failure connection probability p in this section. We will study the general-
ized functions f(x) and g(x) in the following section. Next, we discuss separately the sufficient conditions for
percolation and non-percolation of persistent failures with constant r and p. We use p∞(λ, r, p) to denote the
percolation probability of persistent failures with constant r and p.

Sufficient Condition of Percolation: Constant r and p Our discussion on the difference between persistent
and one-time failures shows that persistent failures are easier to percolate. Therefore, percolation of persistent
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failures should happen under the same sufficient condition for one-time failures, i.e., pr2 > λc
λ . As the current

best known rigorous bounds on λc are 0.7698 < λc < 3.372, we infer that percolation occurs when pr2 > 3.372
λ .

In regime pr2 < 3.372
λ , we have no idea on failure percolation. Further judgment depends on the improved

accuracy of the bounds on λc.

However, since persistent failures are easier to percolate than one-time failures, we expect a tighter sufficient
condition that allows percolation with smaller r and p than pr2 > 3.372

λ . We next determine a new condition by
using the technique of continuum-to-discrete percolation mapping. We divide the network area into many small
hexagonal cells [53]. As failure spreads, it travels through a cluster of continuous cells. We define a cell as open
if it contains at least one failed node and closed otherwise. Let Ccell

0 denote the cluster of open cells and |Ccell
0 |

denote its size. It is obvious that |Ccell
0 | = ∞ if |C0| = ∞, and vice versa. The mapping between the cluster of

failed nodes and the cluster of open cells thus allows us to find the sufficient condition for |Ccell
0 | =∞ and use it

for |C0| =∞.

We observe that when the cells have hexagonal shape, the discrete lattice is triangular. In the literature, square
cells are usually used as they generate square lattice that is simple and easy for analysis. We use hexagonal cells
in this paper for two reasons. First, hexagonal cells yield a tighter bound on r and p for failure percolation than
square cells. Second, they render the study of failure non-percolation possible under this mapping framework.
With triangular lattice, there exists a critical probability pM

c = 2 sin( π18) = 0.3473 [?] such that percolation
occurs, i.e., |Ccell

0 | =∞, if each bond is open with a probability higher than pM
c and not occurs, i.e., |Ccell

0 | <∞,
otherwise. The discrete percolation in triangular lattice allows us to derive a tighter sufficient condition for failure
percolation. Our result is

Theorem 11. For constant r and p, p∞(λ, r, p) > 0 if pr2 > 1.8889
λ .

Sufficient Condition of Non-Percolation: Constant r and p Our result on the sufficient condition of percola-
tion have quantified r and p that are large enough for an initial failure to spread to the entire network. Similarly,
we are also interested in determination of r and p when failure cannot percolate in the network. From the
continuum-to-discrete percolation mapping, we know that |C0| <∞ if |Ccell

0 | <∞. Thus, our task is to find the
condition for |Ccell

0 | <∞.

We still divide the network into many hexagonal cells. Compared to square cells, failure non-percolation is
easier to study with hexagonal cells. When we choose the cell size sufficiently large, the failed nodes in one
cell can only connect to the six neighboring cells and the connections are symmetric in probability. We can
focus on the connections between any two neighboring cells to understand failure spreading. With square cells,
however, a cell has eight neighbors: four horizontal or vertical ones and four diagonal ones. Its connections
to the horizontal or vertical neighbors are not symmetric to those to the diagonal neighbors, rendering failure
percolation difficult to analyze. By mapping into hexagonal cells, we have the following theorem to characterize
the sufficient condition on r and p for failure non-percolation.

Theorem 12. For constant r and p, p∞(λ, r, p) = 0 if pr2 <
− ln(1− 0.1642

λ
)

2.5981λ .
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Figure 28: Function Ψ(g′(x), Xo,∆) ,
∫

∆ g
′(‖Xo −Xε‖)dε.

Percolation of Persistent Failures: General Failure Correlations When the failure impact radius r is ran-
dom and the failure connection function g(x) is in a general form, modeling of failure spread becomes even
complicated. We present two theorems in this section that characterize the general failure correlations for perco-
lation and non-percolation. To facilitate our study, we first combine the functions f(x) and g(x) into a unified
failure connection function.

Lemma 4. For random r with probability density function f(x) (0 ≤ x ≤ 1) and general g(x), the failure
correlations can be modeled equivalently by a constant r′ = 1 and a unified connection function g′(x) =
g(x)

∫ 1
x f(z)dz if 0 ≤ x ≤ 1 and g′(x) = 0 if x > 1.

We skip the proof of Lemma 4 due to space constraint. Given the equivalence in modeling failure correlations,
we consider r′ and g′(x) instead of f(x) and g(x) in the rest of this section. For clearer presentation, we now
define a few concepts that will be used in our following theorems. We define function

Ψ(g′(x), Xo,∆) ,
∫

∆
g′(‖Xo −Xε‖)dε, (55)

which is the integration of the probability g′(x) over region ∆ with respect to location Xo, as illustrated
in Figure 28. In addition, with respect to all the possible Xo and ∆ (|∆| = σ), we define Ψmin(g′(x), σ) =
min{Xo,|∆|=σ}{Ψ(g′(x), Xo,∆)} and Ψmax(g′(x), σ) = max{Xo,|∆|=σ}{Ψ(g′(x), Xo,∆)}, which denote the
minimum and maximum of Ψ(g′(x), Xo,∆) respectively when we change Xo and ∆ arbitrarily, as long as the
area of ∆ is kept constantly as σ. With the help of these definitions, we present our results regarding failure
percolation with general f(x) and g(x) as follows.

First, the sufficient condition of percolation regarding f(x) and g(x) is

Theorem 13. For general f(x) and g(x), p∞(λ, f(·), g(·)) > 0 if Ψmin(g′(x), 0.1999) > 0.4266
λ .

Second, the sufficient condition of non-percolation is

Theorem 14. For general f(x) and g(x), p∞(λ, f(·), g(·)) = 0 if Ψmax(g′(x), 1.2535) < − ln(1− 0.1642
λ

)

λ .

To verify Theorems 13 and 14, we consider a special case of the function g′(x). We let g′(x) be a linearly
decreasing function of x, i.e., the probability of failure propagation decreases as the hop distance increases. As
before, we generate randomly located nodes in a 20 × 20 area with node density λ = 5. The initial failure
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happens at the center of this area. We first specify g′(x) = 1 − 0.56x (0 ≤ x ≤ 1), which satisfies the
condition given in Theorem 13. We also observed that the failure percolates in the network. We then require
g′(x) = 0.0052− 0.0052x (0 ≤ x ≤ 1) which satisfies the condition given in Theorem 14.

Our analysis for failure spread provides a mathematical framework to evaluate the resilience of the network
infrastructure against correlated failures. Given a network with node density λ, we may sample the nodes to
estimate their failure impact radius distribution f(x) and their failure propagation probability g(x), and determine
the characteristic regime (percolation or non-percolation) that λ, f(x) and g(x) fall into. This evaluation allows
us to predict the potential impact on the network when failure occurs.

Besides network resilience evaluation, our analysis also indicates a few strategies to prevent correlated fail-
ures from wide spreading in the network. Known from the analysis, failure becomes unlikely to percolate if we
reduce the impact radius r and the failure connection probability p when the node density λ is given. We are
hence able to control the failure spread via bounding r and p.

4.3.5 Relevance to Our Goals

One of our research thrusts is to understand the impact of WMD attacks on the network infrastructure. An insight-
ful understanding of the attack impact provides the foundation for our efforts to design attack-resistant networks.
Our work on the failure spreading characterization advances our previous work on the network devolution un-
der random node failures and presents new knowledge regarding the network resilience in an environment with
potential WMD threats. Our results have the following unique features:

• We have presented a formal and generalized analytical model to characterize the correlations among a
variety of failures. This model captures the essential features of failure correlations.

• For one-time failures, we contain the failure spread by limiting either r or p. To limit r, each node in
the network is configured not to execute any suspicious command received from nodes located beyond a
certain distance, which effectively reduces the impact radius of each failed node. To limit p, we need to
sample and test some portion of nodes in the network to ensure that these tested nodes are not vulnerable
to the type of failure that we are concerned with, such that the failure probability of an arbitrary node in
the network is controllably low after the test.

• For persistent failures, however, we may not be able to reduce r or p separately. In the example of traffic
overloading, if we require the routing logic to limit the path reparation radius to a small value, the failure
probability of each node within this radius might be high as each node is expected to receive a large share
of the re-routed traffic. In other words, r and p are coupled. Therefore, the best strategy to reduce the
degree of failure correlations is to incorporate load balancing into the routing protocol design.

• In addition to the network resilience evaluation, our results also suggest network design criteria to ensure
the network architecture to meet certain resilience requirement.
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4.4 Inter-Cooperation toward Robust Communications

Since the radio resource in the recovery network is limited, we should make full utilization of the resource to
maximize the information delivery capability of the recovery network. Our work on the localized scheduling
achieves the maximum utilization goal by coordinating node transmissions carefully to avoid collisions. When
each node has a large amount of information to exchange with others, the radio resource in the network is fully
used by our scheduling scheme. However, if every node does not have sufficient information to send, the radio
resource is wasted when a node is assigned a radio channel but does not send any information over the radio
channel. In such cases, we can temporarily allow other nodes to borrow the unused channels to improve the
resource utilization, which is called a Cognitive Radio Network (CRN). We hence have studied the information
propagation problem in cognitive radio networks as a supplementary strategy to maximally exploit the recovery
network utilization.

4.4.1 Objectives and Spectrum Recycling

Our research objective is to understand the feasibility and capability of delivering information in the recovery
network by using the opportunistically available radio channels. In recent years, there has been intensive research
on understanding and optimizing the performance limits in cognitive radio networks. However, an interesting
question is still open that what are the achievable benefits of information dissemination in such networks, which
is essential to the full exploration of the potentials and applications in cognitive radio networks. Understanding
how packets disseminate and their temporal and spatial limits, such as dissemination area, transmission speed
and latency, can also be beneficial to the deployment, design and application of cognitive radio networks.

Similar problems, on the other hand, have been studied for wireless multihop networks or sensor networks,
which explore the conditions for connectivity or percolation in order to ensure the information can be dissem-
inated to the whole network. In addition, information propagation speed or delay has been discussed in recent
works, which categorized the delay into bandwidth-incurred propagation delay and topology-incurred delay. In
particular, when the network topology remains unchanged or changes very slowly, the bandwidth-incurred prop-
agation delay, which is the transmission time spent by a packet in all the links along its transportation path, is
dominant, while topology-incurred delay is negligible.

However, these existing results on multihop wireless networks are not applicable to cognitive radio networks.
For instance, the network topology in cognitive radio networks is dynamic not only because of factors such
as user mobility and radio link quality, but it is more or less due to the opportunistic channels available over
time. As a result, the network is more likely to be a percolated network. That is, a network is almost surely
connected, instead of a fully connected one as assumed in earlier works. Furthermore, in current studies on
network topology and performance, the critical density is a key condition in identifying whether a network is
percolated or not. When node density is higher than the critical density, the network is considered percolated;
otherwise, the network is not percolated. The challenge is that prior results are based on a common assumption of
homogeneous networks in which all nodes are the same. Nonetheless, a cognitive radio network is intrinsically
a heterogeneous network because primary nodes and secondary nodes are different from each other regarding
their transmission ranges, usages of communication channels, locations, and routing functions. Therefore, how
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to determine the conditions for a percolated cognitive radio network is an unknown problem.

Our research approach is to determine the fundamental limits for information propagation in cognitive radio
networks by defining new models and new metrics that capture the most basic and important characteristics
regarding information propagation. Specifically, we focus on the following two questions: (1) for a large multi-
channel cognitive radio network, how far can a packet originated from an arbitrary node be disseminated? (2)
When a packet can be disseminated to a sufficiently large area, how long does it take this packet to reach a
chosen destination? To tackle these problems, we define two new metrics, the disseminating radius ‖L(t)‖ and
the propagation speed S(d) to study the spatial and temporal limits, respectively. The former is the maximum
Euclidean distance that a packet disseminates in time t and can be used to characterize the dissemination area.
The latter is the speed that a packet transmits between a source and destination at distance d apart, which can be
used to interpret the end-to-end delay. Here, we focus on the topology-incurred delay by ignoring bandwidth-
incurred propagation delay. Our study has leaded to a few insightful understandings on ‖L(t)‖ and S(d).

4.4.2 Main Results and Inter-Operation

Main Results: We consider a large cognitive radio network consisting of n secondary nodes {v1, . . . , vn}, which
distribute independently and uniformly in a region Ω = [0,

√
n
λ ]2 for some constant λ and opportunistically

access a set of channels {ch1, . . . , chm}. Each chk is licensed to an overlaid primary network Poisson distributed
with density λpk. Instead of homogeneous transmission range, each vi is assumed to have an independently
adaptive transmission range ri with P(ri < γ) for some constant γ > 0, to save energy and limit interference
with primary nodes. We assume that ri follows a common distributionFr for simplicity. LetHλ = {X1, . . . , Xn}
denote the random locations of secondary nodes. Denote ‖Xi − Xj‖ as the Euclidean distance between vi and
vj and they may communicate with each other directly only when ‖Xi −Xj‖ < min(ri, rj). We only consider
γ = 1 and results derived here can be easily extended to the scenarios with any γ > 0.

In cognitive radio networks, each secondary node vi needs to frequently sense the communications among
primary users in the neighborhood before transmission to avoid interference. That is, each vi alternates inde-
pendently between the communicating (active) state and sensing (inactive) state with periods determined by the
stationary i.i.d on/off process W (t). Denote η as the stationary probability of vi being active. Let RI be the
interference range of primary nodes. We say chk is available to the link vivj if there is no primary users using
chk within B(Xi, RI) ∪ B(Xj , RI), where B(x, r) denotes a circle with radius r centering at x. Denote Ps as
the probability that there exist at least one channel available to vivj . We represent the cognitive radio network as
G(Hλ, Fr,W (t)). To address our research problems, we have defined a few concepts.

4.4.3 Dissemination Area

We consider that information is disseminated through broadcasting in cognitive radio networks. Let us denote
V(t) as the cluster of nodes that have received the packet by time t, given that the packet is sent at time t = 0.
The dissemination area at t, A(t) ∈ R2, that is, the total area covered by V(t), can be expressed by A(t) ,⋃
vi∈V(t) B(Xi, 1), where B(x, r) is a ball with radius r centering at point x ∈ R2 and Xi is the location of vi.
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Figure 29: Illustration of information dissemination in a percolated CR network.
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Figure 30: An illustration of dissemination area after long time t.

An illustration of information dissemination in a cognitive radio network G(Hλ, Fr,W (t)) is shown in Figure
29 in which a packet is originated by node v0. When v0 starts broadcasting this packet at time 0, its neighbors
receive the packet and they rebroadcast the packet. Here two nodes vi and vj are called “neighbors” at t = t′

if the link vivj ∈ G(Hλ, Fr,W (t′)). Without considering propagation delay, at t = 0, the packet has spread to
cluster V(0) ⊂ G(Hλ, Fr,W (0)) containing v0 (see Figure 29(a)). We refer τ as topology-incurred delay for
node v ∈ V(τ)\V(τ−) to receive this packet from v0.

Assume that v0 is located at the origin o ∈ R2. Illustrations of dissemination area for sufficiently large t
are shown in Figure 30. Since the network is not fully connected, any sufficiently large area B is only partially
covered byA(t). The uncovered area, which is also called vacancy in this paper, is shown in Figure 30 as shaded
areas. Letting A∞ = limt→∞A(t), we illustrate A∞ < ∞ and A∞ = ∞ in Figure 30(a) and Figure 30(b)
respectively. Denote Lϕ as the line starting from the origin o in the direction ϕ ∈ [0, 2π) and Lϕ(t) = oz, where
z = arg maxv∈Lϕ∩A(t) ‖v‖ is the farthest intersection point between Lϕ andA(t). For example, in Figure 30(b),
Lϕ1(t) is the line segment oz1. The length of Lϕ(t), ‖Lϕ(t)‖, is defined as the transmitting distance at t.

Definition 7 (Dissemination radius ‖L(t)‖). The dissemination radius at time t is defined as ‖L(t)‖ = maxϕ∈[0,2π) ‖Lϕ(t)‖.
The limiting dissemination radius is defined as ‖L(∞)‖ = limt→∞ ‖L(t)‖.

The dissemination radius indicates how far a packet can reach in spatial domain in a large network. Next, we
move on to the temporal domain. GivenLϕ(t), an intuitive definition of information propagation speed is ‖Lϕ(t)‖

t ,
which tells the maximum speed in direction ϕ. However, due to the dynamics in cognitive radio networks, a node
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closer to v0 may receive the packet later than a farther node. For example, in Figure 29, v2 receives the packet
later than v1. Instead of maximum speed, we are more interested in how long the packet can be disseminated to
a chosen destination at d apart. Thus, the Information Propagation Speed is defined as follows.

Definition 8 (Information propagation speed Sϕ(d)). Let rϕ(d) be the point on Lϕ with ‖rϕ(d)‖ = d (see
Figure 30). Denote T (v0, v) , arg mint≥0{v ∈ V(t)} as the topology-incurred delay of the node v. Denote
ṽϕ(d) as the node closest to rϕ(d) which can receive the packet. That is, ṽϕ(d) = arg minv∈V∞ ‖v − rϕ(d)‖,
where V∞ = limt→∞ V(t). When ‖L(∞)‖ = ∞, the Information Propagation Speed in direction ϕ is defined
as Sϕ(d) , d

T (v0,ṽϕ(d)) . When ‖L(∞)‖ < ∞, Sϕ(d) , d
T (v0,ṽϕ(d)) for d ≤ ‖L(∞)‖, and Sϕ(d) , 0 for

d > ‖L(∞)‖. The limiting propagation speed Sϕ(∞) is defined as limd→∞ Sϕ(d). The definition of S(d)
denotes the propagation speed in an arbitrary direction.

For convenience of presentation, we have the following terminologies, which differentiate infinite and finite
limits of information dissemination.

Definition 9. For a packet b originated by v0 at t = 0, b is said to be disseminated locally if ‖L(∞)‖ < ∞
and globally otherwise. Particularly, b is said to be disseminated globally “instantaneously” if ‖L(0)‖ = ∞,
be disseminated globally “within finite time” if ‖L(0)‖ < ∞ but ‖L(φ)‖ = ∞ for some bounded φ, and be
disseminated “gradually” if L(t) <∞ for any t but L(∞) =∞.

Based on our models and definitions, we have discovered the following important results regarding the infor-
mation propagation radius and speed.

Theorem 15. For a cognitive radio network G(Hλ, Fr,W (t)), given the number of channels m and the spatial
density of primary nodes λp = {λpk}mk=1, there exists a critical density λc,c on secondary nodes, above which
G(Hλ, Fr,W (t)) remains percolated for all t and below which G(Hλ, Fr,W (t)) is not percolated for all t.
Specifically, we have

λc,c < min
0<‖e‖<0.5

1.21 log
(

1

1−
q

Pc
Ps

)
‖e‖2η(1− Fr(2‖e‖))

, (56)

where Pc is the bond open probability sufficient for percolation on a dependent triangular lattice and Ps =
1−

∏m
k=1

(
1− e−λpkα

)
. Furthermore, almost surely,

λc,c >
1

Γ(1− CLCC)
, (57)

where Γ = 2πη
∫ 1

0

∫ r
0 x(1− Fr(x))PsdxdFr and CLCC is the Link Correlation Coefficient.

Theorem 16. (i) When λc,w < λ < λc,c and v0 ∈ C∞(G(Hλ, 1)), information b originated by v0 can be
disseminated gradually at some constant speed Sϕ(d) = κ, for sufficiently large d. (ii) When λ > λc,c and
v0 ∈ C∞(G(Hλ, 1))\C∞(G(Hλ, Fr,W (0))), b can be disseminated globally within finite time with probability
1. (iii) When λ < λc,w, b can only be disseminated locally with probability 1 and the limiting speed Sϕ(∞) = 0.

Figure 31 shows an example of when λc,w < λ < λc,w, how the packet b originated from v0 disseminates,
where the bigger dots connected by the solid line denote the cluster of nodes that have received b at time t.
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Figure 31: Snapshots of packets disseminating gradually when λc,w < λ < λc,c.
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Figure 32: Dissemination radius and propagation speed analysis.

Particularly, given Ton = 0.9s, Toff = 0.1s and λ = 230 (per km2), we find that G(Hλ, 1) is percolated but
G(Hλ, Fr,W (t)) not by simulation. As expected, in this case, only a very small set of nodes will receive b
initially, as shown in Figure 31(a). However, b will be disseminated to more and more nodes gradually, as shown
in Figure 31(b) and Figure 31(c).

For comparison, we also consider an ideal dissemination strategy, which has been well studied in the wireless
sensor networks, by assuming that once a secondary node receives b, it stays active and keeps sending b using
maximum transmission power, until all nodes within its maximum transmission range receive b. Comparing with
Figure 31(c), Figure 32(a) shows that, with ideal dissemination strategy, the information disseminates at least
two times faster.

The average dissemination radius based on 100 independent simulations with parameters λ = 230 (per km2),
m = 10 and λpk = 10 (per km2) is shown in Figure 32(b). We find that the dissemination radius using ideal
dissemination strategy almost scales linearly with time. An interesting observation is that the dissemination
radius without using ideal dissemination strategy still increases linearly with t for any η, although the speed is
much slower. We also note that the dissemination radius is an increasing function of η. This is natural since larger
η means more nodes in communicating state, which can help relay the packet farther. 5 independent simulations
of propagation speed S(d) with parameters λ = 230 (per km2), m = 10 and λpk = 10 (per km2) are shown
in Figure 32(c). We observe that although the practical information dissemination in cognitive radio networks
is much slower than that in wireless sensor networks with ideal dissemination strategy, the propagation speed
S(d) is still some constant for large transmission distance d. This validates our theoretical results in Theorem 16.
Similar to Figure 32(b), we also observe that S(d) can be increased by increasing η.
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4.4.4 Importance of Inter-Operation Networks

One of our original research objectives is to design recovery strategies for fast communication restoration after
WMD attacks. As the recovery network is limited in available radio resources, we should maximally exploit
the radio utilization in the recovery network in order to deliver the large amount of information that enters the
network after an attack. Our work on the cognitive radio networks provides the fundamental understanding on
the possibility of utilizing temporarily unused radio channels for additional information delivery, which is an
important and promising technique to achieve the full network utilization in the recovery network. To be specific,
our work has contributed to our original research goals in the following few perspectives.

• We have constructed a network model that captures the important communication features in cognitive
radio networks in respect to the information propagation process.

• We have defined the novel metrics to investigate quantitatively the radius and speed of information propa-
gation in the cognitive radio networks.

• We have derived the conditions governing information propagation capability and characterized the infor-
mation propagation radius and speed in cognitive radio networks.

4.5 Failure Propagation in Inhomogeneous Networks

Our previous study along with other literature on performance limits in cognitive radio networks demonstrates
the feasibility of information delivery through recycling the temporarily unused radio resources in the recovery
network, like in cognitive radio networks (CRNs)k. Since the recovery network is limited in the availability of
radio resources, the cognitive radio technology is important to supplement the scheduling schemes to make the
full network utilization. Therefore, an interesting, yet challenging question is that how fast can failures propagate
in such an inhomogeneous networks. There are three main challenges in addressing this question. First we must
consider that there are two types of users, the primary users and secondary users, in which primary users who have
license from the regulator and thus have priority to utilize spectrum, and secondary users who opportunistically
access spectrum without interfering with the coexisting primary users. This demands for a new study in an
inhomogeneous network instead of homogeneous networks in the past. Second, we consider finite as well as large
CRNs, where secondary users are mobile under general mobility and primary users are either mobile or static. In
other words, we need to provide a general mobility framework which captures most characteristics of the existing
mobility models and takes spatial heterogeneity into account. Third, we must consider both “finite” and “large”
networks,” while most of existing works focus on asymptotic results for large or infinite large networks.

4.5.1 Objectives and Approaches

By reviewing existing studies on CRN performance, we find that the seminary in[52, 54] studied the packet
latency in the fully connected wireless ad-hoc networks and showed that there exist bounds on the latency and
these bounds are tight when the number of nodes are large enough. Instead of full connectivity, the work in
[55, 56] further showed that the latency scales asymptotically at least linearly with the transmission distance in
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wireless sensor networks when these networks are percolated. Although these results have greatly advanced our
understanding of the nature of latency, they may not be applicable to CRNs for the following challenges.

First, these results were obtained by assuming that wireless nodes are static. However, in many cognitive
applications (e.g., cognitive vehicular networks, military networks), secondary users usually need to move around
to achieve “better spectrum opportunities” or “more security”. In recent years, a significant effort has been
devoted by the research community to understand how the mobility influences the performance of wireless ad
hoc networks or sensor networks. In the seminal work [57], Grossglauser and Tse showed that mobility can
improve the capacity in large wireless ad hoc networks at the cost of the delay. The mobility pattern considered
by them assumes that nodes move according to an ergodic process that is equally likely to visit any portion of the
network area. Motivated by [57], capacity-delay trade-offs have been extensively studied under various mobility
models, such as under the i.i.d model [58], the Browian motion [59], the reshuffling model [60] and different
variants of random walks and random way-point [61, 62]. In all these studies, nodes are assumed to be spatially
homogeneous. That is, the motion of a node uniformly covers the entire network. Later on, spatial inhomogeneity
has been taken into account. In [63], the network is partitioned into cells and nodes are restricted to move within
on randomly chosen cell. The work in [64] studied the capacity under mobility where each node has a home point
and the nodes move around their own home points. These works demonstrated that mobility plays an important
role in networks’ performance, but the question about how the general mobility (instead of a specific mobility
model) affects the performance, or especially the latency of wireless networks remains open.

Furthermore, the works in [65, 54, 55, 56] only derive the latency of networks where the number of nodes
is infinite or approaches to infinity. Although these results enable the deployment of the large general purpose
ad hoc or sensor networks, in many real applications, the number of nodes is small and finite. The question
of What the latency is in networks with finite nodes leaves unanswered. Moreover, the network topologies in
[65, 54, 55, 56] are homogeneous, i.e., nodes of these networks are identical. Nevertheless, there exist two types
of nodes in CRNs and cognitive (secondary) communications are subject to primary communications. What the
impact of the primary communications on the latency of secondary users is stay under-explored. We remark that
we are not the first to study the heterogeneous topology of CRNs. For example, in [66], Ren et al. studied the
challenge due to the heterogeneous nodes on connectivity of CRNs. However, to the best of my knowledge, there
is little work on the impact of topological heterogeneity on the latency of CRNs.

Therefore, we will study the latency in general mobile CRNs. Particularly, we first define an abstract frame-
work which captures most of the features of the existing mobility models and takes spatial inhomogeneities into
account. Then we study the latency of a CRN where secondary users are mobile under this general framework
(and primary users may be either mobile or static). We show that in finite CRNs, the dissemination latency de-
pends on the spatial distribution and the mobility capability α (characterizing the region that a mobile user can
reach) of secondary users. And given any spatial distribution of secondary users, there exists a critical value
on α, above which the latency has a heavy tail; and below which the tail of its distribution is bounded by some
Gamma distributions. In addition, as the network grows to infinity, the latency asymptotically scales linearly with
respect to the “distance” (characterized by the transmission hops or Euclidean distance) between the source and
destination nodes if the network remains “connected” (fully connected or percolated). Moreover, we further find
that although the primary traffic will negatively impact the expected latency, it will not influence the “threshold”
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structure (on α)of the distribution of the latency in finite CRNs and the “linearity” of the asymptotic latency (with
respect to the dissemination “distance”) in large “connected” CRNs.

4.5.2 Main Results of Spatial and Temporal Limits

Our contributions on this works are three-fold: a general mobility model, latency for finite inhomogeneous
networks, and large, percolated networks.

Mobility models: We consider a family of mobility models which are denoted byM(Φ,Ψ, α) and characterized
by three parameters Φ, Ψ, α. Spatial heterogeneity has been taken into account in M(Φ,Ψ, α). Specifically,
we first study spatial inhomogeneity of the trajectory of a particular mobile node. We consider the scenario that
a node spends most of the time in a small region, and rarely visits the areas far away from it. We model this
behavior by assuming that each node vi has a home point [64], located at vhi . Nodes move “around” their home
points according to independent stationary and ergodic processes. Moreover, we describe the probability density
of a node vi around vhi by a non-increasing and direction-invariant function Ψi(x) = Ψ(x − vhi ). We assume
that Ψi is non-zero in and only in a region characterized by a constant α; that is, Ψi(x) = Ψ(x− vhi ) > 0 when
‖x− vhi ‖ < α and Ψi(x) = Ψ(x− vhi ) = 0 otherwise. α is called mobility capability since 2α characterizes the
moving diameter of nodes.

To further account for spatial inhomogeneity of the home points over Ωn, we assume that each home point vhi
is associated with a fixed point vci , which is called the center point of vi. The center points are regularly placed in
Ωn. For example, {vc1, . . . , vcn} are placed regularly at positions ( 1

2
√
λ

+ i√
λ
, 1

2
√
λ

+ j√
λ

) with 0 ≤ i ≤
√
n−1 and

0 ≤ j ≤
√
n−1 (see Figure 33). We describe the distribution of the home point vhi around vci by a non-increasing

probability density function Φi(x) = Φ(x− vci ), which is assumed to be invariant in all directions.

Discussion: “Home points” have been introduced in [64] to describe the spatial inhomogeneity incurred by

the mobility of a particular wireless node. In M(Φ,Ψ, α), besides the “home points”, we further introduce
the “center points” to model the heterogeneously spatial distribution of the home points, which characterizes
the spatial inhomogeneity incurred by heterogeneous mobility of variant users. This two-level mobility model
accounts for a wide range of mobility patterns. For example, if the probability density function Φ(x) is a constant
function independent of x (i.e., home points are uniformly distributed over Ωn),M(Φ,Ψ, α) reduces to Uniform
Anisotropic model in [64]. Furthermore, if the probability density function Ψi(x) = Ψ(x − vhi ) = δ(x − vhi ),
where δ(x) is the Dirac impulse function, M(Φ,Ψ, α) reduces to the static model in [67], where nodes are
assumed to be static and uniformly distributed; if Ψ(x) is also a constant function independent of x and α,
M(Φ,Ψ, α) reduces to the homogeneous mobility model in [57]; and if Ψ(x) is a threshold function whose
value is zero when x > α and a nonzero constant when x < α, M(Φ,Ψ, α) reduces to the constrained i.i.d
model used in [56].

In this work, we assume that secondary users are mobile under the general mobility patternM(Φ,Ψ, α).
To facilitate the study of the dissemination latency of secondary users, we further categorize M(Φ,Ψ, α) into
three classes based on the extent of spatial inhomogeneity of home points:

• Extremely Inhomogeneous Home Points (EIHP) mobilityM(ΦE ,Ψ, α): Home points are fixed and reg-
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Figure 33: An illustration of the general mobility patternM(Φ,Ψ, α).

ularly placed over Ωn. Here ΦE(x) = δ(x).

• Partial Inhomogeneous Home Points (PIHP) mobilityM(ΦP ,Ψ, α): As shown in Figure 33, center points
{vci }ni=1 partitioned Ωn into n subregions {Oi}ni=1 as Voronoi diagrams (we generally assume that n is a
square of some integer for simplicity). In this category, the home point vhi is independently distributed in
Oi. The clustered grid mobility in [64] falls into this category.

• Homogeneous Home Points (HHP) mobilityM(ΦH ,Ψ, α): Home points {vhi }ni=1 are independently and
uniformly distributed over Ωn. Here ΦH(x) is a constant density function independent of x.

We need to remark here that between the extremely inhomogeneous mobility EIHP and homogeneous mo-
bility HHP, there still exist some other partially inhomogeneous mobility patterns, besides PIHP considered
in this paper. However, the analysis techniques and results for PIHP can be easily extended to other partially
inhomogeneous mobility patterns. Thus in this study, we only consider PIHP case.

Notation and Problem Formulation We first denote (Fm,n,M(Φ,Ψ, α),MH) as a mobile CRN Fm,n where
secondary users are mobile underM(Φ,Ψ, α) and primary users are mobile underMH throughout the paper.
Denote L(t) as the set of communication links among secondary users in (Fm,n,M(Φ,Ψ, α),MH) at time t.
The interference model [68] shows that L(t) are dynamic as the primary and secondary users are mobile.

As our main interest lies in the dissemination latency, i.e., how fast information can be disseminated from the
source secondary user to the destination secondary user, rebroadcasting and “store-carry-and-forward” communi-
cation paradigm (also named mobility-assisted routing) have been considered. Specifically, without considering
the propagation delay, when the source vs broadcasts a message at time 0, all the secondary users connected to vs
(i.e., secondary users which have a communication path to vs in L(0)) receive the message instantaneously. The
destination vd may not receive this message if it is disconnected from vs at time 0. As time goes on, nodes move,
and the message is passed from message-carrying secondary users to other secondary users whenever they are
connected in L(t). Thus, the message is disseminated throughout the network and vd may receive this message
at some time as this process continues. Before the problem formulation, we define a few relevant concepts.
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Definition 10. Let li,j denote a communication link between secondary users vi and vj . The first hitting time
between vi and vj is defined as Th(vi, vj) , inf{t ≥ 0 : li,j ∈ L(t)}.

Definition 11. Let V(t) be the set of secondary users that have received the message at time t. The dissemination
latency between vs and vd is defined as Td , inf{t ≥ 0 : vd ∈ V(t)}.

Td can be coupled as the first passage time in the weighted graph [55]. Next we formulate the latency problem
addressed in this paper as follows.

Definition 12. Dissemination Latency Td. Given (Fm,n,M(Φ,Ψ, α),MH) with a source secondary user vs
disseminating a message to the destination vd at time 0, find out:

1. In a finite Fm,n, what the distribution of the dissemination latency Td is;

2. as the number of users m and n increases to infinity, the dissemination latency Td is scalable or not.

To further describe “how fast” information can be disseminated, we usually scale the dissemination latency
Td with the “distance” between the source and destination secondary users.

Definition 13. Distance D. In (Fm,n,M(Φ,Ψ, α),MH), three metrics can be used to characterize how far
two nodes vi and vj are apart: the “distance” between secondary users vi and vj at time t d(t)(vi, vj), the
“distance” between vhi and vhj dh(vi, vj), and the “distance” between vci and vcj dc(vi, vj). Here the “distance”
can be any p-norm metric function and we consider two of the most popular metrics: “transmission hops” and
Euclidean distance. Denote D as the “distance” between vs and vd and define Sd , Td

D . Sd characterizes
how fast information disseminates and is called “dissemination speed” in this paper for convenience. D will be
specified in the particular analysis.

The key question in this study is how fast information is disseminated in both finite and large CRNs under
general mobility M(Φ,Ψ, α). To facilitate our analysis, we first study the dissemination latency Td in CRNs
where secondary users are mobile under the three subclasses of models EIHP, PIHP and HHP, respectively.
Then based on the generalization of these results, we obtain the fundamental properties of the dissemination
latency Td when secondary users are mobile under the general mobilityM(Φ,Ψ, α). We summarize our main
results as follows.

Theorem 17. In a finite CRN (Fm,n,M(Φ,Ψ, α),MH), there exists a critical value on the mobility capability
α, above which the tail of dissemination latency Td is bounded by some Gamma distribution; below which Td has
a heavy-tailed distribution and P(Td =∞) > 0.

Remark 13. P(Td = ∞) > 0 indicates a positive probability that the destination will not receive the message
from the source. Thus the requirement P(Td < ∞) = 1 in the mobile wireless networks is equivalent to the
connectivity in the wired networks, which is used as a prerequisite to evaluate the functionality of the network
applications. Moreover, a heavy tail of the dissemination latency Td implies a significant probability that it takes
long time to disseminate a message from the source to the destination. Thus not only a bounded dissemination
latency (i.e., P(Td < ∞) = 1), a light-tailed distributed dissemination latency Td (i.e., E(Td) < ∞) is required
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for time-critical applications. Therefore, a light-tailed distribution of Td is assumed or required in many deploy-
ments and performance studies of wireless networks in the literature. For example, the authors in [57] implicitly
assume that the dissemination latency is exponentially bounded (light-tailed) so as to make their delay-capacity
tradeoff analysis tractable.

Theorem 17 reveals that to achieve a light-tailed dissemination latency (note that Gamma distribution is a
type of light-tailed distribution), the mobility capability of secondary users α need to be larger than some critical
value, which will be specifically identified in Propositions for EIHP, PIHP and HHP mobility, respectively [68].
This result encourages and validates the existing endeavor of deploying CRN for practical applications, including
time-critical applications, such as emergency networks and military networks. In addition, the result in Theorem
17 also motivates further performance studies of CRNs, for example, the delay-capacity tradeoff study.

We must emphasize that the goal of this study is to investigate the fundamental properties of the dissemination
latency Td in CRNs where secondary users are mobile according to the general mobility patterns. However, if
given more knowledge of the CRN, e.g.,the specific mobility patterns, the same proof can also be used to derive
the more specific distributions of Td

As the network size of the CRN increases, we next have the following theorem on the availability of the
dissemination latency Td.

Theorem 18. We consider two types of connectivity in large CRNs: full connectivity and percolation-based
connectivity. The former is that there exists a communication path between any two nodes; and the latter is
that there exist a large component well scattered over the entire network. CRN (Fm,n,M(Φ,Ψ, α),MH), there
exists a finite constant κ such that P(limD→∞ Sd = limD→∞ TdD = κ) = 1.

Remark 14. Scalability has been the most fundamental concern that has so far discouraged the deployment
of large wireless networks. Among the several scalability issues, perhaps the most basic one is that related to
the dissemination latency. Theorem 18 demonstrates that in large connected CRNs, the dissemination latency
Td asymptotically scales linearly with the initial “distance” between the source and destination, i.e., the mes-
sage sent by a source reaches its destination at a fixed asymptotic speed. This result enables and verifies the
deployment of CRNs for large applications, such as sensor networks.

This paper aims to understand the fundamental properties of the dissemination latency Td in CRNs under
general mobility. However, besides the theoretical importance of our findings, our results can be used practically
not only in the initial deployment of a CRN, but also in evaluating the performance of specific CRN applications.
For example, in a large deployment of a mobile CRN as a wireless sensor network, the result in Theorem 18 can
be used to estimate the delay elapsed between the time at which an incoming event is sensed by some node of the
network and the time at which this information is retrieved by the data collecting sink. In the next two sections,
we will present the proof for Theorem 17 and Theorem 18, which studies the distribution and scalability of the
dissemination latency Td in finite and large CRNs under EIHP, PIHP and HHP mobility, respectively.

The Scalability of Td in Large CRN

We have studied the distribution of the dissemination latency Td in finite mobile CRNs and proved Theorem
17. We next prove Theorem 18, which studies the scalability of the dissemination latency Td in large mobile
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CRNs and states that Td asymptotically scales linearly with the “distance” between the source and destination
nodes. Particularly, our results demonstrate that as the network size (n and m) increases to∞, E(Td)→∞ even
with large mobility capability α. Thus in large CRNs (i.e., the network size is large enough), the distribution of
Td cannot be used to measure how fast information is disseminated. Therefore, we will investigate, instead of
the distribution, the scalability of Td in large CRNs. Specifically, we will study the scaling behavior of Td with
respect to the “distance” D between the source vs and destination vd, which can be characterized by the “speed”
Sd = Td

D .

Based on the distribution study of Td explained earlier, we have the implication that the tail of Sd may
“disappear” as the network size increases. We rigorously study in this section the scalability of Td, which validate
our implication (see Theorem 18). We must emphasize that our derivation is based on the assumption that the
number of nodes n and m are finite. However, n and m may approach to ∞ in large CRNs. Therefore, the
techniques and results in finite CRNs may not be applied to large CRNs directly. Instead, we will use large
number theory to demonstrate that Td asymptotically scales linearly with D, i.e., limD→∞ Sd is convergent to
some positive constant. Specifically, the main tool used is Liggett’s subadditive ergodic theorem, [69].

Note that Liggett’s theorem provides a method to study the limiting behavior of a large random process. We
next show how to use Liggett’s theorem to study the limit of the dissemination speed Sd. Before we proceed,
we need first to make some clarification about our model (Fm,n,M(Φ,Ψ, α),MH) for large CRNs. To study
the dissemination latency Td and speed Sd in large CRNs, we progressively increase the number of secondary
and primary users n and m in Ωn. Note that as m and n increases, the homogeneously distributed primary users
are asymptotically distributed as a two-dimensional Poisson point process with density λp = λn/m. Assume
that λp is a constant for simplicity (i.e., m and n increases proportionally). Another implicit assumption is that
λp is not large thus there exist enough spectrum opportunities for secondary communication. This assumption
is reasonable since the low spectrum utilization of primary users is the motivation for CRNs. And similarly, to
facilitate the analysis, we have proved Theorem 18 under three subclasses of mobility EIHP, PIHP and HHP
respectively.

4.5.3 Simulation Results

In this section we provide simulation results to support our theoretical analysis on distribution and scalability of
latency in finite and infinite CRNs, respectively. In these simulations, time is partitioned into unit slots and in
each time slot, primary users are uniformly distributed at random within the network area and secondary users
are uniformly distributed around their home points (i.e., Ψ is uniform). Furthermore, home points are uniformly
distributed around the center points under PIHP mobility (i.e., ΦP is uniform). The transmission range r of
secondary users and the interference range RI of primary users are set as r = 0.1 kilometer (km) and RI = 0.3
(km), respectively. Secondary users opportunistically access m = 2 channels.

We first study a finite CRN where n = 16 secondary users are mobile within an 2 × 2 (km2) area (i.e.,
λ = 4 per km2). Figure 35 illustrates the complementary distribution (CCDF) of the dissemination latency
P(Td > t) on a log-log scale for EIHP, PIHP and HHP models with different values of the mobility radius α and
the spatial density λp of primary users. The probability is calculated based on the average of 1000 independent
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Figure 34: CCDF of the first hitting time Th(vi, vj) between neighboring secondary users vi and vj .

simulations. It is observed in Figure 35 that as λp increases, the curves move right-ward, which indicates the
increasing expected dissemination latency. However, regardless of the value of λp, when α = 0.4 (km), which
is larger than the cutoff point under EIHP but smaller than those under PIHP and HHP, the dissemination latency
Td has a light tail under EIHP but heavy tails under PIHP and HHP. As α increases to 0.6 (km), which is larger
than the cutoff point in PIHP, but still less than that in HHP, the heavy tail of Td in PIHP disappears, but Td in
HHP presents a heavy tail. These results are in good agreement with our theoretical analysis.

We further perform a series of simulations to validate our asymptotic results in large networks. Figure 36(a)
and 36(b) show the latency scalability in large CRNs under EIHP and PIHP models, respectively, where the
spatial density of secondary users is λ = 4 (per km2). As shown in 36(a) and 36(b), no matter how large the
mobility radius α is, the dissemination latency Td scales linearly with the dissemination distance D (Manhattan
distance). Moreover, The latency scalability in a large percolated CRN under HHP mobility, where the spatial
density of secondary users is set as λ = 200 (per km2) to ensure percolation, which shows that in percolated
CRNs, the dissemination latency Td scales linearly with the dissemination distance D (Euclidean distance) as D
increases. In addition, as shown in Figure 36, the scalability decreases as the spatial density λp increases. These
observations provide a straightforward illustration of Propositions [68].

4.5.4 Relevance to Original Goals

In summary, we study the distribution of the information dissemination latency Td in finite CRNs and the scala-
bility of Td in large CRNs under general mobility. We found that in finite networks, there exists a cutoff point
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Figure 35: CCDF of the dissemination latency Td under general mobilityM(ΦH ,Ψ, α).
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Figure 36: The dissemination speed Sd = Td
D (s/km) for 5 independent simulations with parameters λ = 4 and

λp = 0.5, respectively.

on the mobility radius α of secondary users, above which the tail distribution of Td is bounded by some Gamma
distribution and below which Td has a heavy-tailed distribution. When networks become large, the dissemination
latency Td is (linearly) scalable with respect to the dissemination distance. Our results demonstrate that when
secondary users can move in a large region, a Gamma distributed (light-tailed) latency in finite networks, or
a scalable latency in large networks, is achievable, which encourages the deployment of CRNs for immediate
communications in the aftermath of WMD attacks, which implies that inter-operation among different networks
would make a big difference in delivery messages and large-scale applications.
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5 Dection, Localization, and Tracking of Systematic Failures

Our primary methodology is to use algebraic geometry to identify failures in terms of coverage holes. While it has
a wider application scope, we have focused in this work, on sensor networks, for both the sake of concreteness, as
well as the for the generic properties of sensor networks which make them very suitable for such basic research
into the impact of weapons of mass destruction on networks. Sensor networks are an important class of distributed
and pervasive systems, with applications in areas including environmental monitoring, health care and military
operations [70]. A unifying theme of many of these problems is to glean consensus information by systematically
combining the data collected at individual nodes, in accordance to the structure of the network. The consensus
information thus obtained characterizes the network, or the data in the network as a whole, and better represents
the underlying phenomenon than may be inferred from the data at individual nodes. This reveals the fundamental
nature of sensor networks, where global patterns emerge from simple interactions between nodes.

In order to remain robust to unprecedented scenarios and limitations of resources, a likely situation in the
event of a WMD attack, we are motivated to rigorously seek, the minimal required information, and tools needed
to process this information, so as to perform a certain task. Owing to limited power and communication capabil-
ities, and for robustness, we are motivated to develop distributed algorithms. The information which is readily
available in sensor networks, is for each node to know its neighboring nodes. Two nodes are neighboring nodes
if they can communicate with each other. This is equivalent to having a distributed representation of the commu-
nication graph. With limited communication between the nodes, we may also obtain the higher order cliques in
the graph, and the sub-cliques through which they connect to other cliques.

We observe that many tasks in sensor networks may alternatively be stated in topological terms. The tasks
of detection and localization of coverage holes and worm holes are two such examples. Coverage holes may
also be caused due to a large localized failure in the network, such as that caused by a WMD. The combinatorial
information mentioned above is sufficient to compute topological invariants, and is the subject of Algebraic
Topology [71]. We employ this theory to develop distributed algorithms to detect and localize coverage and
worm holes. We emphasize that this is the first work which simultaneously solves both problems, supporting our
thesis that algebraic topology offers a general framework for topological analysis in sensor networks, and other
applications in general networks.

Perhaps the more likely scenario produced by a WMD is that of a dynamically varying network produced
by spatially and temporally correlated, for potential future mitigation of systematic failures. In this context, we
investigated the problem of tracking such systematic failures, a process which led us to unify several existing
definitions of network boundary in the literature into a single mathematical framework, and develop efficient
algorithms to compute and update network boundaries. Tracking such failures provides information about the
nature of a failure, helps in estimating its impact in the future and develop counter-measures.

It is often the case that surveillance of a region is performed using mobile agents/robots/UAVs, etc., (which
we will model as nodes for simplicity). In such cases, analyzing the network formed by these mobile nodes
provides us with valuable information which the nodes do not, on their own. However, the mobile nature of the
network imposes difficult challenges in its analysis. We showed that the recently developed theory on zig-zag
persistent homology [16] can also be effectively used to analyze mobile networks, and efficiently track which
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lack coverage, again without the need for any co-ordinate information. These strategies also help analyze and
compare mobility patterns which was not possible with previously available techniques.

5.1 Localization of Failures in Large-Scale Networks: A Manifold Learning Approach in Data
Space

To assess the health of a network, we may have access to a variety of measurements at the individual nodes. The
characterization of these measurements yields a variety of information, which include that about the functionality
of the network. To cope with an onset or the aftermath of a significant attack in the likes of one by weapons of
mass disruption/destruction, our focus primarily lies in detecting early failures and in localizing them to infer the
degree to which the topology of a network is preserved. The power of a detection strategy lies in its versatility
and its adaptability to the data {xi}i=1,··· ,N (N is the number of nodes) which may be available at a given point
in time. The rationale of our proposed technique is based on the fact that normal measurements of a network
lie on some manifold to be learned, and any interruption/deviation thereof is an indication of a failure. In what
follows we describe our technique which is for any arbitrary network topology and is independent of the data
nature measured at the network and which provides the first alert of malfunction. We are currently working on
the localization of the failure and its direct impact on the overall topology of the network.

There are a variety of manifold learning algorithms, and for simple illustration we choose to use isomap
algorithm. This choice is due to the fact that isomap has provided successful embedding results and has its
theory has been widely studied [72]. The principle and motivations of this work are, however, extensible to other
mapping (embedding) algorithms.

5.1.1 Isometric Feature Mapping (Isomap)

Isomap is a nonlinear mapping algorithm that starts from the assumption that the high dimensional data lie
on a Riemannian manifold [73]. To achieve the dimension reduction, isomap defines a mapping that aims to
preserve the geodesic distances on the initial manifold. We may describe isomap as merely an improved version
of Multidimensional Scaling (MDS) embedding where the interpoint distance is restricted to lie on the initial
manifold of the data. Given a data point sample of N points Xi, i = 1, · · · , N , from a d-dimensional manifold
M, whereM∈ Rn and d < n, we describe the different steps of isomap embedding algorithm in Table 2.

5.1.2 Adaptive Isomap

Although classical isomap shows good embedding results, it remains very unstable and sensitive to noise and to
the choice of the parameter ε and the distance function used prior to applying MDS. Changing the distance from
Euclidean to geodesic appears, thus, to be insufficient to completely respect the intrinsic geometric structure of
the initial manifoldM.

In what follows we propose to introduce a different distance matrix DM to replace DE in the algorithm
described in Table 2. Our objective is to define, each time, a distance that is fully dependent on the sample point
{Xi}Ni=1. We, hence, rescale the data coordinates based on their distributions onM as well as their correlations.
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Table 2: Non-adaptive isomap algorithm.

Step 1: Construct a weighted graph G;

Let G = {A,X}, where:

• A is an (N ×N ) adjacency matrix;

• X = [X1, · · · , XN ]T ;
Compute DE , the matrix of Euclidean distances between each
two points in {Xi}Ni=1.
Choose ε, the neighborhood radius.
for i, j ∈ {1, · · · , N} do

if DE(i, j) < ε do
A(i, j) = DE(i, j);

else
A(i, j) =∞;

end if
end for

Step 2: Compute geodesic distances on G.

Let DG be the matrix of geodesic distances between each two
points in {Xi}Ni=1.
do DG = A; (initialization) for i, j ∈ {1, · · · , N}; k = 1; do

while DG(i, j) 6= DG(i, k) + DG(k, j) do
for k ∈ {1, · · · , N} do

DG(i, j) = min(DG(i, j),DG(i, k) + DG(k, j));
end for

end while

Step 3: Apply MDS on DG.
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Table 3: Description of the learning step ( new adaptive distance)

Step 0: Compute DM , the new distance onM.

Choose ε1, the neighborhood radius for manifold learning;
and ε2, the neighborhood radius for the construction of G.
for i ∈ {1, · · · , N} do

Yi = XT
i ; (initialization)

for j = 1, cdots,N do
while DE(i, j) < ε1 do

Yi = [Yi;XT
j ];

end while
end for∑

i = cov(YT
i ), cov(·) being the covariance matrix;

end for
for i ∈ {1, · · · , N} do

for j ∈ {1, · · · , N} do
DM (i, j) = (Xj −Xi)

∑−1
i (Xj −Xi)T ;

end for
end for
do ε = ε2; DE = DM ;
go to Step 1. (See Table 2)

Because it relies on a learning procedure, we refer to this modified isomap as adaptive isomap algorithm. We
start, therefore, the algorithm of Table 2 with a learning step, i.e, Step 0, as described in Table 3.

5.1.3 Performance comparison

In this section, we qualitatively and quantitatively compare the performances the the versions (adaptive and non-
adaptive) of isomap embeddings. To that end, we start by defining a performance measure. We, then simulate
different classical examples of manifolds to embed in a lower dimensional space. The choice of our examples is
such that one may visually inspect and verify the properties and the intuitions behind each technique.

We choose residual variance ρ to be our performance indicator. In further applications, we will show we may
use it to investigate the topological structure of a manifold. Residual variance ρ is defined in (58).

ρ = 1−
(
corrcoef(DX ,DZ)

)2
, (58)

where:

• DX : is the distance matrix for the initial data in M. For isomap embedding technique, this matrix is
the geodesic distance matrix DG that is fed into MDS. We note that DG changes depending on the first
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distance matrix used to identify the neighborhood. For the classical non-adaptive isomap, this distance was
simply Euclidean, i.e., DE , while for the adaptive case we defined it as DM . This difference is crucial in
comparing the performances of the two versions of isomap algorithm.

• DZ : is the distance matrix for the final (embedded) data of reduced dimension p (p < n). We take
advantage of the simplicity of the geometries of our examples (swiss rolls, hemispheres, parallel sheets),
and take p equal to 2 and consider DZ to be Euclidean. It becomes trivial to visually verify the accuracy
of our assumption. For more complex geometrical and topological structures, one would, however, need to
compute geodesic distances on the new manifold embedded in Rp

• corrcoeff(·, ·): is the linear correlation coefficient. If we note {dX} and {dZ} as two ordered sets of the
distances (matrix elements) of DX and DZ , respectively, then:

corrcoef(DX ,DZ) =
σXZ
σXσZ

, (59)

σXZ being the correlation between the two sets {dX} and {dZ}, and σX and σZ being the standard
deviations of {dX} and {dZ}, respectively.

As stated earlier, in the presence of noise, non-adaptive isomap sees its performances drastically dropping.
We, hence, test how well/bad adaptive isomap performs on the same noisy datasets. We use the data point samples
(omitted due to file size). We add Gaussian noise to them with standard deviations varying between 0% and 8%
of the orthogonal distance between the two parallel sheets, the normal distance between two consecutive levels
of the swiss roll, and the orthogonal distance between the poles of the two adjacent hemispheres.

In summary, a manifold learning approach is explored to identify the locations of attacks or failures by
detecting variations in massive data space under the assumption that many sensors (e.g., road-side monitoring
sensors) are used to collect information for normal operation of a network. Regardless of the contents being
collected by sensors, it is important to localize the incidents by examining data set. As an initial effort, we have
demonstrated that manifold learning is an effective approach to reduce the dimension of high-dimensional data
set and to detect points of failure with abnormal data.

5.1.4 Coverage hole detection and localization

We consider a problem where a set of sensors, with capability to communicate with neighboring sensors and
perform simple arithmetic operations, are deployed in a region for surveillance and monitoring purposes. We say
that there is a hole in the coverage if any part of the intended region of surveillance is not in the range of any
sensor. This might be due to failure of deployment, or intentional sabotage. One such scenario is shown in Figure
37 Our goal is to detect and locate these holes in the coverage in a robust, resource efficient, fast, and distributive
manner. The problem is stated more precisely as follows.

Problem Formulation Consider N sensor nodes randomly deployed in a region of interest R in a plane. We

denote the collection of all the nodes as the set V = {vi}. Each node vi can communicate with a set of neigh-
boring nodes Ni, in its vicinity. A communication graph G = (V,E) is thus formed as the collection of the set
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(a) (b) (c)

Figure 37: Figure shows the problem context for localizing coverage holes. The union of balls around each sensor
(a) is called the coverage ares (b). Holes in the coverage area implies that that region remains unmonitored, and
hence indicates a failure in coverage. The only information available is the proximity neighborhood for each
node, as summarized by the communication graph (c).

V together with the set of edges E = {(vi, vj)} where (vi, vj) ∈ E, if and only if vi, vj can communicate with
each other. A graph is said to be a unit disk graph, denoted by G1 = (V,E1), when (vi, vj) ∈ E1 if and only
if d(vi, vj) ≤ 1. A graph is said to be a ε−quasi unit disk graph, denoted by Gε1 = (V,Eε1), if 1) (vi, vj) ∈ Eε1
whenever d(vi, vj) ≤ 1 − ε, 2) (vi, vj) ∈ Eε1 with probability 0.5 whenever 1 − ε < d(vi, vj) ≤ 1, and 3)
(vi, vj) 6∈ Eε1 whenever d(vi, vj) > 1. We model the graph as a quasi-unit disk graph due to imperfections in the
antenna’s directional sensitivity.

Let Ric denote the coverage area of the sensor on node vi, and the union Rc = ∪iRic is the coverage area of
the network. The existence of coverage holes is determined by whether or not the following set relation holds:

R ⊆ Rc = ∪iRic

(a) (b) (c) (d)

Figure 38: Figure shows the results of the coverage hole localization algorithm. The input to the algorithm is
Rips complex (constructed locally from the communication graph) and the result of the localization are cycles
around holes as shown in (b), (c), and (d).

To better reflect the challenges faced under a WMD attack scenario and to be faithful to the technical diffi-
culties of deploying large number of sensors, we further impose the following restrictions:

1. There is no central location which can gather all the data from the network for processing.

2. Each sensor only knows the identities of senors in its geographic proximity, and nothing else.
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3. The senors are not aware their global location, and there is no means to obtain this information.

4. The reception strength of the antennas is not uniform in all directions owing to imperfections in manufac-
turing, and more importantly, due to presence of obstacles and fading.

We are happy to report that even under these restrictions, we have developed a provably correct algorithm [74]
which outperforms the state of the art algorithms [75] for similar (often with less stringent restrictions) problems.

Results. The output of our algorithm for an example sensor network is shown in Figure 38. The left most figure

shows the input network with coverage holes, and the remaining figures shows the locations of the coverage
holes as determined by our algorithm. The preliminary versions of these results were published in [76], and
the complete work in [74], where we analyze the complexity in detail. To give a sense of the comparison, the
complexity of our algorithms is same as that of computing a starting point for the state of art algorithm for solving
the same problem of localization under the restriction assumed here.

5.2 Failure Identification and Localization

The infrastructure of computing systems is rapidly transitioning from centralized systems to distributed and per-
vasive systems. A very important category of such systems are sensor networks which find applications in areas
including Environmental monitoring, Health care and Military operations [70]. There has been a considerable re-
search interest in this field over the past decade addressing problems including node localization [77], distributed
compression [78], probabilistic inference and motion tracking. A unifying theme of many of these problems is to
glean consensus information by systematically combining the data collected at individual nodes in accordance to
the structure of the network. The consensus information thus obtained characterizes the network, or the data in
the network, as a whole and better represents the underlying phenomenon which can be inferred from the data at
individual nodes. This reveals the fundamental nature of sensor networks: they are essentially complex networks
in which global patterns emerge from simple interactions between nodes. From an engineering perspective, the
fundamental challenge in sensor network applications is to cope with the limited resources; a limited communi-
cation capability of nodes, i.e. nodes can communicate only with their neighbors, a limited power and a limited
memory. Furthermore, sensor networks are often deployed in inaccessible locations and situations where main-
tenance is impractical; this makes careful use of exhaustible resources such as power, imperative.

This unique combination motivates the use of techniques such as topological analysis, which directly extracts
global information without being overly dependent on the local structure and thereby alleviating the need for
excessive resources.

5.2.1 Objectives and Approaches

There are two main categories of techniques in literature relating to the analysis of the topology: Morse Theoretic
and Algebraic Topological techniques. In our endeavor to analyze the topology of spaces of interest, we predom-
inantly followed the Algebraic Topological methodology. Algebraic topology, in contrast to a Morse theoretic
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approach, is relatively a more direct technique to analyzing the topology of a space easily expressed in terms
of algebraic objects. There is an extensive literature in Algebraic topology [79, 80] which shows a very strong
relationship between topological spaces and their algebraic counterparts. Also, this enables us to draw from the
extensive pool of knowledge from algebra to develop fast and efficient algorithms. The assigned algebraic objects
have the following important properties;

• They directly reflect the topological features of an underlying space.

• They are invariant to continuous deformations.

Figure 39: A high level schematic of Algebraic Topology.

The use of algebraic topology for the coverage problem was introduced in [81, 82, 83] demonstrates dis-
tributed computation of homology groups and [84] attempts to localize the holes by posing the localization as an
optimization problem. We further exploit the spatially constrained nature of the coverage holes and formulate a
very effective “divide and conquer” algorithm.

5.2.2 Localization of Failures

Main Results: We demonstrate the merits of such analysis by exploiting tools to solve two specific important
problems:

• A Coverage Hole detection and localization

• A Worm-Hole Attack detection and localization

The problem of coverage hole localization seeks to identify a closed contour in the network which encloses
a specific region of interest. This region can be the part of the sensor network which has been destroyed by a
WMD attack or a region indicating some other undesirable parameters, for example, radiation level above a given
threshold. We further demonstrate the effectiveness of such topological analysis by looking at more complex at-
tack in the network which, fundamentally, alters the perceived topology of the network in order to significantly
disrupt its usage.

Given a set of sensors monitoring a given region of interest, with each sensor having a certain coverage area,
we want to confirm whether each point in this region is covered by at least one sensor. Further, if this is not the
case, we want to find the set of sensors surrounding the region which is not covered (coverage hole).
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(a) Communication Graph G. Di-
ameter nodes as circles and Bound-
ary nodes as squares

(b) Rips Complex extracted from
the communication graph

(c) Active nodes after first segmen-
tation. Segments differentiated by
colors.

(d) Active nodes after two itera-
tions

(e) Active nodes after three itera-
tions

(f) Active nodes after four itera-
tions

Figure 40: Simulations showing convergence to hole locations

A computer simulation of the proposed algorithm is shown in Figure 40.

Problem Statement: We wish to first detect if there is a worm hole attack taking place in the network. Fur-
ther, if an attack is detected, we wish to locate precisely the sensor nodes surrounding the attack nodes so as to
quarantine them and nullify the attack.

5.2.3 Worm hole detection and localization

A worm hole attack is typically launched by two colluding external attackers who do not authenticate themselves
as legitimate nodes to the network. When initiating a wormhole attack, an attacker overhears packets in one part
of the network, tunnels them through the wormhole link (external to the network) to another part of the network.
This effectively generates a false scenario of the presence of the original sender in the neighborhood of the remote
location. Many routing algorithms depend on the nodes’ ability to accurately discover their neighboring nodes.
The nodes ordinarily perform a broadcasting beacon (including ID, and other information) to their neighbors. If
the neighbor discovery beacons are tunneled through wormholes, the good nodes will get false information about
their route. Although finding faulty routes is in itself a problem, worm holes can cause further critical security
threats using these faulty routes. The resulting effect of wormholes on the routing, is to include a worm hole link
in most of the computed routes. This in turn, gives an attacker complete control of transmitting great amounts of
data, which may be selectively or completely dropped.

Figure 41 demonstrates this change in topology for a grid network. Many important functions such as routing
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Original Grid with the worm hole

(a) network grid with links caused because of a worm-
hole

(b) the same grid shown in 3d to respect distant proper-
ties measured as hop distances

Figure 41: Deformation in network structure because of a worm hole. The cycle created is shown in red

and localization [85, 86] can be severely affected by these attacks.

Edge removal on interior nodes gives rise to alternative shortest path

(a) v1, v2 not in vicinity of X and Y . A
shortest path can be found in the network
surrounding the nodes removed.

Removal of Worm Holes

X

Y

(b) v1, v2 in vicinity ofX and Y . Alterna-
tive shortest path includes all the nodes in
the cycle

Figure 42: Worm hole localization algorithm. When an edge is removed from the shortest cycle, and an alternate
path is sought between the incident nodes, this path consists of all other edges in the shortest cycle (b) only when
the edge removed is in the vicinity of the wormhole attack position.

Assume that a worm-hole attack is launched by two colluding nodes at positions p1 and p2 inside a network.
Denote the neighborhood regions around these points by N1 and N2. The two attacking nodes may receive all
the packets transmitted from within their respective neighborhoods, and relay them to the other. Denote by V1

and V2 the sets of vertices (sensor nodes) which lie in N1 and N2 respectively. The result of a worm-hole attack
will be to produce a complete bi-partite graph with V1 and V2 as the two classes of vertices. The problem of
localizing a worm hole attack, hence reduces to identifying the sets V1 and V2. Figure 42 shows an example of a
worm hole attack. In this case, X and Y are the positions p1 and p2 and the neighborhoods A and B are N1 and
N2 according to our definition.
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By a simple observation, we show that the algorithm to find a coverage hole, may be extended to address this
problem. We note here that in order for the proposed hole localization algorithm to work in the presence of a
wormhole attack, we do not require the attacking nodes to perform any computation, or follow any protocol. We
assume that the attacking nodes “carry out their tasks for coverage hole detection ”, i.e., relay the broadcast signals
from one position to another. This effectively creates a virtual link in the network, and the nodes in the network
perform all the computations. An additional assumption here, is that the behavior of the attacking nodes does
not change during the run time of our algorithm. Figure 42 demonstrates the workings of the algorithm, where it
is successful in correctly identifying the worm hole location. These results are widely publicly disseminated in
[87].

For the sake of clarity, we note that the worm hole localization algorithm does not share the mathematical
rigor of its coverage hole counterpart, but remains a heuristics. In the dissertation [87], we also provide an
example where it is impossible to distinguish between coverage holes and worm holes in the absence of geometric
information. Owing to this lack of rigor, we analyze the empirical performance of algorithm in distinguishing
between a coverage and a worm hole as shows in Figure 43. As seen, the algorithm has a good detection and
false alarm rates.
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Figure 43: Experimental results show that the algorithm is able to correctly identify both the coverage holes and
worm holes about 85% of the time.

5.2.4 Summary and Benefits

As one of the most important objectives of this project, we aim to develop new models and approaches to identify
the impact of multiple failures. To this end, we have achieved the following milestones.

• Demonstrated that this is fundamentally a topological problem and formulated the problem in a generalized
topological framework. This involves generalizing the notion of a graph into a simplicial complex.

• We used tools from Algebraic Topology to effectively solve the problem.

• We introduced a novel distributed “divide and conquer” algorithm which converges to desired solution
significantly faster than the previously proposed methods in the literature.
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• We also achieve huge saving in the communication energy required by purring half the active nodes to rest
in each iteration.

• We solve the problem in the same generalized framework developed to solve the coverage hole problem
thus demonstrating the effectiveness of our framework for a myriad of topological problems in sensor
networks.

• We developed a distributed, efficient and fast algorithm to detect the attack and localize the attack position.

5.3 Detection and Tracking of Random Failures

Due to ease of availability and versatility of applications, sensor networks have received much attention in the
literature in past decade. Owing to their low cost and pervasive characteristics, sensor networks are ideal to be
deployed in, and to monitor hazardous environments such as volcanic eruptions, wild fires, land slides, war zones
etc. One feature common among these environments is that they produce events which cause correlated failures
in both space and time. Being able to detect and track such failures becomes crucial both for the sake of tracking
itself and for any emergency response thereafter. Further, any such tracking algorithm should be simple and very
fast so as to decrease the response time. In this paper, we present a simple algorithm which meets the above
needs.

In the deployment, works in [88, 89], the authors present a new fault tolerance metric for deployment called
the Region based connectivity. For usual k-connectivity criteria, the network is designed so as to ensure the
connectivity of the network even when k−1 nodes fail, but the nodes may be taken from any part of the network.
Region based k-connectivity imposes an additional condition that all these k−1 nodes are within a closed region.
These type of failures depict, for example, the scenario of WMD attacks. They show that the design using this
criteria requires fewer nodes than required for the standard k-connectivity.

In [90], the author presents a statistical test to identify whether a given set of node positions is likely to be
produced by a random deployment of nodes. If the given set of node positions does not fall in the confidence
region, a systematic failure is detected. The author in [90] assumes the availability of localization information
so as compute the voronoi diagram for the given points. Further, he also assumes that deployment is in a convex
region. We do not make both the above assumptions.

For topological analysis, the collection of work in this topic deals with detecting failure event region and
analysis of its topological changes. In [91, 92, 93], the authors present some in network heuristics to detect a hole
formation and collapse, and other topological changes. Further work in [94, 95] formulate and solve the above
problem in a concrete mathematical setting using low complexity distributed algorithms.
In contrast to the above mentioned articles: 1)our work deals with catastrophic situations where the nodes inside
the region of interest fail completely or unable to communicate with any other node. 2)such nodes cannot partic-
ipate in response mechanisms which makes the problem more complicated as we can only use the information
available in the neighboring nodes to perform any task, 3) Our formulation does not assume any hardware with
capabilities to sense the phenomenon causing the failure, and 4) is robust to random failures of nodes. The work
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in [96] presents a distributed algorithm to track dynamic boundaries but assumes co-ordinate information and no
node failures.

Dynamic curve tracking has been extensively studied in image processing, a domain from our perspective,
deals with centralized processing with complete co-ordinate information. Significant work in this area can be
grouped as 1)active contour analysis with linear/non-linear evolution models using parametric/non-parametric
kalman filtering techniques, and 2)variational methods [97, 98] where the curve/boundary of interest is obtained
as a solution to a certain functional optimization. Application range widely including land slide tracking[99],
volcanic material flow analysis, object tracking [100] etc. These methods cannot be directly adopted here as they
assume co-ordinate information and centralized processing.

5.3.1 Objectives and Approaches

We aim to develop a low complexity distributed algorithm for detecting and tracking such failures. We assume
that nodes inside the failure region are either destroyed or unable to communicate with any other node. The
algorithm presented here does not assume any co-ordinate information for the nodes. We evaluate the algorithm
using simulations.

We consider a region R in which a set of nodes V are deployed. For a communication radius rc, a com-
munication graph Grc = (V,E) is induced on V where (v1, v2) ∈ E ⇐⇒ d12 = | (v1, v2) | < rc. An edge
(v1, v2) in Grc implies that v1 is within the communication region (and vice-versa) of v2, or in other words, can
be observed by v2. In what follows, we use vi to denote the node with index i and also its position in R.

Definition 14. For a time evolving C2 smooth, simple and closed curve C(s, t) : S × R → R, a systematic
failure is defined to be occurring if

• ∀t > 0, vi ∈ C(s, t)⇒ vi fails at time t.

• Let F (t) denote the set of nodes failed at or before time t and in Int (C(s, t)), then |F (t)| ≥ 2.

The time evolution of the curve C(s, t) can be specified by assigning a velocity vector at each point of the
curve in a normal direction. We consider the vector only in the normal direction as any horizontal component
will only result in a reparameterization of the curve.

5.3.2 Tracking Random Failures using A Graphic Tool

We use the representation on the graph in which tracking problem is generally formulated as estimation of both
C(s, t) and ν(s, t). The accurate estimation of both these quantities is not possible in our scenario, because of
lack of co-ordinates. Tracking can only be performed from the reference of the graph itself, i.e., the position of
C(s, t) can be given by specifying the nodes in the graph which are “close” to it. But the graph doesn’t provide
the means to accurately determine C(s, t). For example, Figure ?? shows a snap shot of a failure event, and the
failure region is indicated by the ellipse. As can be seen in this example, a good part of the curve does not have
any nodes (which have not yet failed) close to it. Owing to these inherent problems, we formulate it as following:
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for each node vi and a given time t, we estimate the time T̂i(t) after which the node fails. Specifying the time
remaining at each node, captures both the distance to phenomenon causing the failure and the speed at which it
is approaching, and also gives us a measure of risk at each node.

Main Results: We describe the tracking algorithm which computes and maintains the estimates of time to fail-
ure at each node. As we assume that the sensors do not necessarily have any hardware equipped to sense the
phenomenon causing the failure, the only observations that can be made are nodes failing, and the time a node
fails is our event of interest. When a node fails, its neighbors make a decision whether the failure represents a
systematic failure or a random failure. This decision process will be described. If a systematic failure is detected,
the neighbors estimate the speed, with which this failure is happening (locally) and propagate this information
into the network. Given this speed, we describe later in this part, a methodology to be used to determine this
speed in other parts of the network. We adopt a simple prediction rule, i.e., the speed of approach at any node
will remain constant during the time interval between two failures.

Our simulations show that this is a good approximation and we leave the more detailed modeling of this
evolution as a part of our future work. As such, we adopt here a predict-and-update methodology used in a
Kalman filter. We cannot use a Kalman filter directly as the the evolution statistics are difficult to obtain which
is discussed in more detail next. In what follows, we denote the time between any two node contiguous failures
as ∆t and the difference in failure times of nodes vi and vj as ∆tij . Each node vi, maintains an estimate of time
to failure T̂ (t), and a speed of approach ŝi(t). When the node vi fails at time t, it computes an observed speed
soi (t) and uses this observation to compute its estimate ŝi(t). Note that here and in what follows, we adopt for
convenience the notation “a failed node computes”, while these computations are actually being performed in the
neighboring nodes.

Failed nodes Given the time difference between two node failures, the primary difficulty in estimating the average
speed is that the distance between these two nodes is computed using the graph distance (path length) which is
only approximate. The work in literature presents important statistical results on random graphs in limiting cases
(n → ∞), but little is known about the statistics of path lengths in random graphs with relatively small number
of nodes. As such, we compute speeds by considering the time difference only between adjacent nodes. More
importantly, we have to wait for a node to fail to make a computation, as this is the only way to measure the time
the failure phenomenon takes to reach that node.
When a node vi fails at time t, the apriori estimate ŝ−i (t) is computed using a simple prediction model as given in
Equation 60. In the event when there are two other neighbors vj , vk which failed previously, such that (vi, vj , vk)
forms a clique (simulations show that this is very likely to happen), we can compute the speed of approach with
reasonable accuracy. Figure 5.3.2 shows the construction for this computation. The red arcs show the part of the
evolving curve passing through the nodes. If (vi, vj , vk) form a clique, we can compute the angle θ as we know
all the sides of the triangle. The chord vjX1 can be approximated as being perpendicular to ovi; let r′ = |pX1|,
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then

r′

di
=

r

di
(1− cos(φ)) =

r

di

(
1−

√
1− a2sin(θ1)

r2

)

≤ r

di

(
1−

√
1− r2

csin(θ1)
r2

)

the second step is obtained using the application of sine law on the triangle ovjvi. This immediately shows that
as r → ∞, r′/d → 0 and therefore, for large r, angle ∠viX1vj is very close to π/2. Approximating both the
chords vjX1 and vkX2 as being perpendicular to the line ovi, we have the following equations:

|viX1| = di = a cos(θ1), |viX2| = d′i = b cos(θ2)

θ1 + θ2 = θ,
di

∆tij
=

d′i
∆tik

the last equations arises from the fact that the speed is assumed to be constant during the interval ∆tij . Solving,
we have

di =
sin(θ)√

1
a2 + c2

b2
− 2c

ab cos(θ)
, c =

d′i
di
,

and the speed soi (t) is obtained as being equal to di/∆tij . As we have the complete information to compute the
speed, the estimate at time twill be equal to soi as given in Equation 61. In case we do not have a triangle of failed
nodes as assumed, we use Equation 62. The lengths of the edges used in the computation are always greater than
the closest distance between the node and the curve. As a result, we end up overestimating the speed. The min
in Equation 62 serves to compensate this effect, and further, since it might not be very accurate, we use a simple
smoothing function as given in Equation 63 for updating the estimate.

Figure 44: The construction used to compute speed when a node fails.

ŝ−i (t) = ŝi(t−∆t) (60)

ŝi(t) = soi (t) (61)
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soi (t) = min
j∈N(i)

dij
∆tij

(62)

ŝi(t) =
1
2
(
ŝ−i (t) + soi (t)

)
. (63)

Alive nodes: have not yet failed, the speed prediction is same as in Equation (60). To calculate the T̂i and update
ŝi, each node maintains a distance d̂ic(t) = d̂ic(t −∆t) −∆tŝi(t −∆t) which is the estimate of the minimum
distance from the node to the curve. When a node vj fails, its speed estimation is applicable to node vi (not
failed) only when vj is the closest amongst the failed nodes to node vi. Figure 70 illustrates this concept. Since
the curve evolution is given by the speed in the normal direction, the time which the ellipse (failure phenomenon)
takes to reach v is independent of ν2, and ν1 is determined by the looking at the point on the curve closest to v. A
similar idea can be extended onto the graph. Figure (a) shows all the nodes alive in red, and failed node (shown
as blue circle). When the failed node satisfies this condition, we use Equation 64 to update the estimated speed
and T̂i(t) = d̂ic/ŝi(t).

ŝi(t) =
1
2
(
ŝ−i (t) + soj(t)

)
. (64)

Random Failures: In order to make our algorithm robust to random failures due to causes other than systematic
time evolving failure, we first detect the occurrence of a systematic failure before estimating times to failure at
the nodes. For this, the following simple rules should suffice: 1)if all the neighbors of a failed node are alive, no
speed is estimated and no action is taken, 2)if for a failed node, there is a neighbor which already failed, then a
tentative speed is computed and 3) if for a failed node, there is a neighbor which previously failed and has a speed
computed, the new failed node computes the speeds and compares it with the tentative speed of its neighbor. If
the speeds are close enough, a systematic failure is detected and the information is broadcast to all alive nodes to
compute the time to failure. If there are more than one failed neighbors, then a systematic failure is detected if at
least one neighbors’ speed is compared and confirmed.

The only step which needs some explanation for its implementation is the broadcasting of the information
that a systematic failure is detected. When a node fails and a speed is confirmed, its broadcasts this speed to all
its neighbors. As the data packets are passed along, they aggregate the edge lengths along their way. Any node
broadcasts the information about a node failure only once. Further, if the distance from the failed node vj to the
node vi is greater than dic, then vi does not propagate this information. This way, the information about the node
vj being failed will reach only those nodes for which vj is closest amongst all the other failed nodes. Based our
our description of active nodes, this is sufficient and a significant cost in terms of power is saved.

Simulation and Evaluation: We simulated a time evolving failure on a network with 500 nodes. The time
evolving curve was taken to be an ellipse with speed at the tip of the major axis being twice as that at the tip of
minor axis and continuously changing in between. Figures 45(a) and 45(b) pictorially depict the time estimates at
the nodes for two different times. The red color implies that the nodes estimate relatively smaller time to failure
and the blue implies longer times. Figures 45(c) and 45(d) show the error between the speed and time estimates
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(a) snapshot depicting time estimates at time t1 (b) snapshot depicting time estimates at time
t2 > t1

(c) convergence of speed to the true value (d) error in Time estimates vs time

Figure 45: Simulation and evaluation results.

and the true values as a function of time. The results in Figures 45(c) and 45(d) are for a isotropic case where
the curve evolving was a circle and speed is constant in all directions. We chose this scenario to illustrate the
convergence of speed estimates. The error in speed values converges to zero as time progresses. The error in
time estimates converges to a positive value. This is because of the error in approximating the true straight line
Euclidean distances between points with the path distance on the graph.

5.3.3 Summary and Discussions:

As one of the most important objectives of this project, we aim to develop new models and approaches to detect
and track multiple failures. To this end, we have presented a simple, low complexity and distributed algorithm to
detect and track a systematic and time-evolving failure. The accuracy of the results despite a very simple model
shows much promise in this strategy. In our future research, we will investigate more sophisticated models for
tracking the curve evolution to further improve the accuracy and convergence rates. A significant hurdle to cross
would be obtaining good statistics for the error between actual distance between two nodes and the path length
on a geometric graph.

In our DTRA funded work to-date, we have developed very efficient, very rapid and novel algorithms to
detect and localize static failures viewed as coverage holes, and where the connectivity was primarily defined
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in terms of range proximity. These algorithms also enjoyed a very important characteristic of being distributed
and coordinate-free. The latter feature is particularly important in a WMD environment, where it is more likely
that nodes would not be benefiting of Global Positioning System (GPS) help due to its unavailability. A nat-
ural follow-up question is then of characterizing the correlated failures caused by one or more WMD events,
and distinguishing them from failures which are random and unrelated by using failure detection and tracking
algorithms.

5.4 Identification and Tracking of Systematic Failures

Our goal is to detect and track “systematic” failures, which amount to being spatially and temporally correlated.
In a region where a sensor network is deployed, catastrophic events such as wild fires, volcanic eruptions or
massive explosions, cause large number of node failures. The nature of these events is such that, the positions of
the failed nodes are confined to a geographic region. Also, all the nodes within this region fail. The area of such
region increases with time, and the evolution of its boundary is continuous in time.

5.4.1 Network Classification

The application of network synthesis and classification requires a proper model capturing the properties that
control the network evolving as well as the features that characterize the network. To this end, we propose a
generalized Markov Graph model, whose dependence structure of the network is used to control the network
evolving, and probability distribution of the networks provides features characterizing the networks.

To date, research in network analysis has evolved in many dimensions. For network synthesis, Barabási-
Albert model[101] successfully generates networks that follow a power law degree distribution based on the
assumption of preferential attachment. In statistics, the Markov Graph model[102], the p∗ model[103] as well
as the models from Statistical Mechanics[104] are well known for characterizing the probability distribution of
networks. More recently, we proposed a method based on a Markov Graph model to address the problem of
network classification[105].

We were the first to propose a method based on Markov Graph model to classify different types of networks[105].
It makes use of the two features, degree distribution and the number of triads, which determine the probability
distribution of networks in Markov Graph model as the crucial features for classification of social networks. In
the research area of social network synthesis, Barabási-Albert model as well as many other related models en-
able the synthesis of the evolution of simple networks whose degree distributions obey the power law[101]. The
algorithms for these models are clear and efficient. The open question, however, and in light of these models’
shortfall of fully capturing the probabilistic structure of a network, is about the statistical behavior of the required
additional features, namely the clustering and crowding coefficients3. To this end, we propose a model which
provides answers to this question and on both counts.

Dependence structure of the network. In a generalized Markov Graph model, pairs of nodes and triplets of nodes
are both considered as basic units in the dependence graph D. We use the term ”doublet-node-vertex”, denoted

3Crowding coefficient is a new feature for networks.
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by {i, j}, to represent the basic unit in D corresponding to a pair of nodes i and j in G and ”triplet-node-vertex”,
denoted by {a, b, c}, for that corresponding to a triplet of nodes a, b and c in G. And M{a,b} is the value of the
element {a, b} in the adjacency matrix {M}, T{a,b,c} represents the state of a triplet-node-vertex, and T{a,b,c} = 1
when M{a,b} , M{b,c} and M{c,a} all take value 1, and T{a,b,c} = 0 otherwise.

The dependence graph for networks under our proposed generalized Markov Graph model is defined as:

DGM = {nodeDGM , edgeDGM}.

The node set of DGM is defined as nodeDGM = N2 ∪N3, where N2 =
⋃
i,j,i6=j{{i, j}} is the set of all doublet-

node-vertices, and N3 =
⋃
i,j,k,i6=j 6=k{{i, j, k}} is the set of all triplet-node-vertices. The set edgeDGM includes

all edges between two nodes in DGM whose states conditionally depend on each other and such a dependence
structure is shown as follows:

1. if {i, j} ∩ {a, b} 6= ∅ and {i, j} 6= {a, b}, the probability mass function P (M{i,j}) depends on variable
M{a,b};

2. if {i, j} ∩ {a, b, c} 6= ∅ and {i, j} /∈ {a, b, c}, P (M{i,j}) depends on variable T{a,b,c} and P (T{a,b,c})
depends on variable M{i,j};

3. if {i, j, k} ∩ {a, b, c} 6= ∅ and {i, j, k} 6= {a, b, c}, P (T{i,j,k}) depends on variable T{a,b,c}.

Crucial features for networks. Any pseudo-homogeneous simple network graphGwith an associated dependence
graph DGM , has a probability mass function:

PGM (G) =z−1exp(
∑
k

dk(G)Θk +
∑
c

bc(G)Γc

+
∑
−→m

t−→m(G)τ−→m),
(65)

where dk(G) is the number of nodes which share the same degree k in networkG, Θk is the associated coefficient,
bc(G) is the number of nodes which share the same clustering coefficient c, Γc is the associated coefficient,
t−→m(G) represents the number of triads which share the same crowding coefficient −→m, and τ−→m is the associated
coefficient.

The sequence {dk(G)}, {bc(G)}, {t−→m(G)} correspond to the histograms of the degree list, the clustering
coefficient list and the crowding coefficient list, respectively, and their information could be expressed by the
degree distribution, the clustering coefficient distribution and the crowding coefficient distribution of network G.

Network synthesis. We evaluate the synthesis power of the generalized Markov Graph model by designing a
social network evolving algorithm based on its properties introduced in previous section. According to its first
two properties, the probability function for the state of a doublet-node-vertex {i, j} in a network should only
depend on the state of all the doublet-node-vertices that include node i or node j as well as triplet-node-vertices
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that include either one:

PGM (M{i,j}) = f(M{i,1},M{i,2}, ...,M{1,j},M{2,j}...,

T{i,1,2}, T{i,1,3}, ..., T{1,2,j}, T{1,3,j}, ...),

where f(...) is a function that depends on the variablesM{i,1},M{i,2}, ...,M{1,j},M{2,j}, ..., T{i,1,2}, T{i,1,3},
..., T{1,2,j}, T{1,3,j}, ... . As an application example of the generalized Markov Graph to network synthesis, we
change the preferential attachment algorithm in Barabási-Albert model, which is a special case of a Markov
Graph model, to a new algorithm based on a generalized Markov Graph model, by specifying the probability
function of the state of a doublet-node-vertex {i, j} in network G to be:

P
′
G(Mi,j |i > j) = CΣk,k 6=iM{j,k}

Σk,n,k 6=i,n6=iM{j,k}M{j,n}M{n,k}/2,

where Σk,k 6=iM{j,k} represents the degree of node j, Σk,n,k 6=i,n 6=iM{j,k}M{j,n}M{n,k}/2 is the number of triads
that include node j, C is a normalization factor, and i > j represents i is a newer node than j. It indicates
that the probability is proportional to degree of node j, and to the number of triads that include it. Note that
P
′
G(Mi,j |i > j) is a special case of PGM (M{i,j}).

Based on P
′
G(Mi,j |i > j) resulting from a generalized Markov Graph model, we specify the rules of a

network evolution and verify that the resulting network satisfies the features described earlier. The rules are as
follows:

1. There are m0 nodes in the network at time t = 0.

2. At each time step, a new node with m0 attached edges is introduced to the network.

3. Each of these edges will find another node as its vertex in the network. The probability of a node being
picked is P

′
G(Mi,j |i > j), where i represents the newly added node, and j for the node being picked.

5.4.2 Systematic Failure Analysis

Sensor networks are often deployed to monitor hazardous environments. Several events/phenomenon in such
environments may cause spatially and temporally correlated failures in the network. We present here, a low
complexity distributed algorithm for detecting and tracking such failures. We assume that nodes inside the failure
region are either destroyed or unable to communicate with any other node. The algorithm presented here does
not assume global co-ordinate information for the nodes, nor any capabilities to sense the phenomenon causing
the failure, and that there are some nodes failing randomly. We utilize the well studied Restricted Delaunay
Triangulation (RDT) and show that we can distinguish between systematic and random failures, thus enabling
their robust detection. By formulating simple, local optimization problems which have closed form solutions,
the evolution of the failure front is tracked accurately. The methodology presented is evaluated using several
substantiating simulations.
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Topological Analysis In contrast to deployment related failure problems, the research this topic focuses on de-
tection of dynamic failure regions, and analysis of their topological changes. While the related work presented
here is in no way comprehensive, we intend to provide an insight into the distributed algorithms for detecting
topological changes.

The work in [91, 93], seeks to detect topological changes on a scalar field defined on the nodes in the network.
The topological changes are described as creation/loss of holes and formation/merging of connected components.
In [91], such events are detected by observing the 1-hop neighborhoods of nodes, and by detecting the topolog-
ical changes therein, with the assumption that the communication graph accurately captures the topology of the
field of interest. [93] constructs a tree structure representing the adjacency of topological components, and by
analyzing the change in this structure when the topology changes, are able to detect it.

In [92, 96], the authors seek to track an evolving topological component, for example, a subset of the region
where a defined field is above a threshold. The topological component of interest is assumed to be of polygonal
shape, which is identified by computing the convex hull of the component. Such computation is facilitated by
maintaining a hierarchical structure in the network. The cluster heads gather the required information from nodes
in the cluster to compute the convex hull. [96] extends such analysis to cases where the sensor measurements are
noisy and clear transition is not well defined. A regression-based spatial estimation technique determines discrete
points on the boundary and estimates a confidence band around the entire boundary, and a Kalman Filter-based
temporal estimation technique tracks changes in the boundary and aperiodically updates the spatial estimate.
They assume global coordinate information in order to perform the regression analysis.
In contrast to the above mentioned articles, our work deals with catastrophic situations with the following char-
acteristics:

1. the nodes inside the region of interest fail completely, or are unable to communicate with any other node,

2. such nodes cannot participate in response mechanisms, restricting the tasks performed to the information
available in the neighboring (still active) nodes,

3. lack of hardware with capabilities to sense the phenomenon causing the failure,

4. and, there are “randomly” occurring failures of nodes.

Network model We consider a region R ⊆ R2, in which a set of nodes V are deployed. For a communication
radius rc, a communication graph G = (V,E) is induced on V where (v1, v2) ∈ E ⇐⇒ d12 = | (v1, v2) | < rc.
An edge (v1, v2) in G implies that v1 is within the communication region (and vice-versa) of v2, or in other
words, can be observed by v2. For a node vi ∈ G, (or equivalently, vi ∈ V ), we denote by Ni, the neighbors of
vi in G. Given this model for the communication graph, the notion of the deployment region R may be made
precise as follows.

Definition 15. The projection Ĉ ′ of a subgraph Ĉ ⊆ G, is a collection of line segments vivj in R such that
(vi, vj) ∈ Ĉ.
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Definition 16. The outer boundary ∂(R) is the union of line segments in the projection of G, which encloses all
the nodes. The region of deployment R is the region enclosed by ∂(R).

Throughout, we use vi to denote the node with index i and also its position in R. We assume that we
neither have any localization, i.e., no global co-ordinates for the nodes are known, nor any global orientation
information. We however assume the distances between the nodes (the lengths of edges in the communication
graph) is known to us. This information can be obtained from several techniques such as Received Signal Strength
(RSS) estimation, time difference of arrival (TDoA), etc. [106]

Systematic Failure In the work presented here, we endeavor to track such failures only using the communication
graph and its edge lengths. The resolution of the regions we are able to detect is restricted by the node density. As
such, we require the region of systematic failure to be “big enough” relative to the communication radius, so as
to be detected, and hence tracked. We now make the above description of the systematic failures mathematically
precise.

Definition 17. For a time evolving smooth and simple curve C(s, t) : S×R→ R, a systematic failure is defined
to be occurring if

1. ∀t > 0, vi ∈ C(s, t)⇒ vi fails at time t,

2. C(s, t)/∂(R) is closed,

3. ∃t0, such that ∀t > t0, we can inscribe a circle of radius rc/
√

3 in the region enclosed by C(s, t) (when
C(s, t) is closed), or by C(s, t) and ∂(R) (when C(S, t) is open and intersects the boundary),

4. The area enclosed by C(s, t) (when C(s, t) is closed), or by C(s, t) and ∂(R), is increasing with time.

The time evolution of the curve C(s, t) can be specified by assigning a velocity vector at each point of the
curve in a normal direction. We consider the vector only in the normal direction, as any horizontal component
will only result in a reparameterization of the curve. Therefore, the boundary of any systematic, time evolving
failure region can be described by a time evolving curve given as:

∂C(s, t)
∂t

= −ν(s, t)n̄, (66)

where ν(t, s) is a scalar specifying the speed with which the curve is expanding at parameter s and time t.
In contrast to a systematic failure, nodes may fail “randomly”, in which case, the positions of the failed nodes
do not necessarily lie in a region which can be expressed by above properties. In fact, when nodes fail randomly,
their positions are usually uncorrelated in space or time.

Algorithm Overview Our process of detecting and tracking the systematic failure has the following steps:

1. compute local coordinates

2. compute restricted delaunay triangulation and its boundary

3. compute tight subgraphs
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(a) subgraph induced on G by a node and its
neighbors

(b) subgraph as realized according to local co-
ordinates

Figure 46: Comparison of original subgraph (in global coordinates) with the one realized using local coordinates.
The subgraph is induced by a node (shown as red block) and its 1-hop neighbors.

4. identify the tight subgraphs which enclose failed nodes (active contours)

5. detect systematic failures and compute the speed of propagation

Local coordinates At each node vi, given the subgraph Gi ⊆ G induced by the nodes vi ∪ Ni, and the distance
function Di indicating the lengths of edges in Gi, we compute of the local coordinates µi : vi ∪Ni → R2. The
local coordinates are computed such that ‖µ(vj) − µ(vk)‖ = Di(j, k),∀(vj , vk) ∈ Gi. Localization in sensor
networks, is a well researched subject, with several distributed algorithms presented in the literature [107],[108].
Unlike network localization problems seeking to compute global coordinates for the nodes, we are primarily
concerned with coordinates locally at each node and its neighbors. Table 4 describes the algorithm for computing
local coordinates and Figure 46 shows an example application of this algorithm.

Restricted Delano Triangulation Restricted Delaunay Triangulation (RDT (G)) [109] has the following proper-
ties which are useful in our context.

1. RDT (G) is locally similar to DT, in that it is planar, and the circumcircle of a triangle does not contain
any other node.

2. Denote by UDel(G), the graph obtained by removing all the edges of length greater then rc from DT.
RDT (G) satisfies the following set inequality:

UDel(G) ⊆ RDT (G) ⊆ G

A distributed algorithm for computing RDT (G) was given in Chapter 3 of the thesis [110]. An important
aspect of this algorithm in the context of distributed processing is that, under dynamic conditions, when a set of
nodes fail, theRDT (G) only needs to be recomputed locally. It is also shown that the communication complexity
(total number of messages broadcasted over all the nodes) is of the order O(

√
n log n). Given a triangulation on

a manifold, the boundary of the manifold may be found by looking at the edges in the triangulation, which are
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Table 4: Algorithm for computing local coordinates µi at vi
set µi(vi) = (0, 0)
if there exists a 4-clique including vi

find the most robust 4-clique
else if there exists a 3-clique including vi

select a 3-clique
else

distribute the nodes evenly around vi
return

compute coordinates for the nodes in the clique selected
put the collected clique nodes into poolNodes

while nodes remaining with no coordinates {
if there exists a node with 3 links into the poolNodes

triangulate its position
else if there exists a node with 2 links into the poolNodes

choose the node with smallest distance from node vi
fix the position which conforms with the local adjacency

else

find a position which conforms with the local adjacency

put the nodes with computed coordinates into poolNodes
}
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Figure 47: The boundary of the restricted delaunay triangulation of G.

(a) (b)

Figure 48: dividing a connected component in ∂(RDT (G)) into tight subgraphs.

faces of only 1 triangle. The boundary ofRDT (G) gives a close approximation to the boundary of the network, a
part of which may potentially describe the propagating failure front. Figure 47 showsRDT (G) and the boundary
(in red).

Tight subgraphs. To “tightly” surround a region which might potentially be the systematic failure region, we need
to further partition ∂(RDT (G)). Given a subgraph with loops and handles as shown in Figure 48(a), our goal
is to divide this subgraph into smaller loops and handles as shown in Figure 48(b). ote the outermost boundary
of ∂(RDT (G)) encloses all the nodes and does not give us any information about the “holes”. Therefore, we
remove the outermost boundary. The handles in the figure may be caused if the failure region is near the boundary.
In all subsequent discussions, we denote ∂(RDT (G)) to be the boundary with the outermost boundary removed.
The Algorithm given in Table 5 computes tight subgraphs.

Active Contours. We need a test which identifies whether a given tight subgraph is an active contour (i.e., it
encloses failed nodes). The main idea is to test whether the failed nodes being observed by the nodes on a tight
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Table 5: Algorithm for finding tight subgraphs in ∂(RDT (G))

start
select a node vi with degree 2
send a forward packet (i, i, 1) to one of its neighbors

when a node vk 6= vi receives a forward packet (i, j, hi(j)) from node vj
store in table (i, j, hi(j))
broadcast to all nodes in Nk \ j, the packet (i, k, hi(j) + 1)

when a node vk 6= vi receives a reverse packet (i)
assign vk → comp(i)
find ĵ = arg minj hi(j)
transmit to ĵ, the reverse packet (i)

at node vi
wait to receive all the forward packets (i, j, hi(j)
if received any forward packets

find ĵ = arg minj hi(j)
send the reverse packet (i) to ĵ

else

find the shortest path p between the leaves
∀vk ∈ p, assign vk → comp(i)

subgraph are located in the region separated by the subgraph. When a failed node does not share such a region
with any active node, we say that the failed node lies in the region being separated by the subgraph. The theorem
below summarizes this idea.

Definition 18. We define a total cyclic ordering � on the neighbors Ni of vi, as the order in which the nodes
appear either in clockwise, or in counterclockwise direction.

Theorem 19. Let vf denote a failed node. A subgraph Ĉ ⊆ RDT (G) which has the following properties

1. ∃vi ∈ Ĉ, with degĈ(vi) = 2, such that vf ∈ NRDT
i ,

2. ∀vi ∈ Ĉ,∃ an active node vaj ∈ NRDT
i where vaj /∈ Ĉ,

3. Ĉ is a modified tight subgraph

is an active contour enclosing vf if and only if,

1. The edges in Ĉ are faces of at most 1 triangle

2. ∀vi ∈ Ĉ with degĈ(vi) = 2, there does not exist an ordering of the form vj � vf � vaj � vk � · · · , where
vj , vk ∈ Ĉ ∩NRDT

i and vaj ∈ NRDT
i .
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Velocity Estimation. To estimate the normal direction n̄(s, t) and the speed ν(s, t), locally, we approximate the
curve as a straight line. Specifically, for an observing node vi, let the normal to the curve at s0 pass through vi.
In the vicinity of vi, we approximate C(s, t) as its tangent line at s0. The problem can then be restated as an
estimation of the direction θ which the normal line makes at s0 with the x− axis in the local coordinate system
µ, and the speed ν(s0). Denote the unit vector in the direction of the normal line at s0 (direction of arrival) as
n̄i = (a, b). The computations for estimating the velocity are performed at one of the surviving neighbors of
vi, when the node vi fails. For each node vj in the set of neighboring failed nodes Nf

i ⊆ Ni, denote the local
failed time as tj = τ fj − τ

f
i . As we do not assume global time synchronization, only the local failure times tj are

available to us. The relationship between the positions of the failed nodes, the direction of arrival, and the speed,
can then be given locally as:

n̄i · vj + νtj = 0⇒ axj + byj + vtj = 0 (67)

In the case of a systematic failure, Equation (67) will be satisfied for all failed nodes exactly, and the normal
direction with the speed can be computed by solving a system of three linear equations. In a practical scenario, we
may have random failures of some of the nodes and errors in the recorded failure times. Therefore, we formulate
the estimation of the velocity as the following optimization:

(ˆ̄ni, ν̂) = (â, b̂, ν̂) = arg min
a,b,ν

f(a, b, ν) = arg min
a,b,ν

∑
j∈Nf

i

(axj + byj + vtj)
2 (68)

with the following constraint

h = a2 + b2 − 1 = 0. (69)

The above optimization problem has a closed form solution. Figure 49 shows some simulations demonstrat-
ing the accuracy and robustness of the above method.

5.4.3 Main Results on Network Classification and Failure Detection

In this part, we highlight our experimental results on network classification and synthesis as well as detection
results of systematic failures.

Network synthesis. First we present the experimental results on network synthesis. In the first synthesis exper-
iment for our new algorithm, the total time step is 3000 and the initial number of nodes is 4. As shown in
Figure 50, the experimental results demonstrate that the corresponding degree distribution of such a model still
satisfies a power-law distribution, indicating that the degree distribution is a feature that all resulting networks do
share in our new model, as in Barabási-Albert model.

We also record the changes of the statistics of clustering coefficients from time-step 1500, when the changes
of statistics of clustering coefficients starting to be very small, i.e., when the statistics has stabilized in the
network. Another experiment with the same setting but for Barabási-Albert model is run, and we record the
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(b) Error in angles computed vs error in failure times
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(c) Error in speeds computed vs error in node positions
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(d) Error in angles computed vs error in node positions

Figure 49: Robustness of the velocity estimation. The error in velocity estimated is small, when the errors in
failure times and positions are small, and has a graceful degradation.
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changes of statistics of clustering coefficients as well. We calculate and compare the standard deviation of the
changes for both experiments, which are normalized by the values of the statistics at the last time-step. The
result is shown in Table 6. The changes of the statistics of clustering coefficients in the network generated by the
algorithm based on the generalized Markov Graph model are much smaller than those by Barabási-Albert model,
which indicates that our new model could generate a network with a much faster stabilizing clustering coefficient
distribution than Barabási-Albert model does.
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Figure 50: Degree distribution of the network evolving according to the rules that satisfy the properties of the
generalized Markov Graph model.

To further validate that the algorithm based on the generalized Markov Graph model outperforms Barabási-
Albert model on generating networks with more stable clustering coefficient distributions, we repeat the previous
experiment 1000 times for both Barabási-Albert model and our new algorithm. Table 7 shows the mean and
variance of the selected statistics (mean, variance, skewness and kurtosis) of the clustering coefficient distribu-
tions for both models. Compared to their ranges [0, 1] (as any clustering coefficient is limited between 0 and 1),
the variance of the mean and the variance of clustering coefficients for the new model is very small. This veri-
fies that the clustering coefficient distribution is a common feature of all networks generated by our new model.
Furthermore, in Table 7 the ratio of the variance to the mean of almost all the statistics of the clustering coeffi-
cient distribution for the new model is much smaller than that for Barabási-Albert model. This indicates that the
new model could generate networks that have more stable clustering coefficient distribution than Barabási-Albert
model does.

In summary, the algorithm based on the generalized Markov Graph model can generate networks that follow
a certain degree distribution together with a more stable and faster stabilizing clustering coefficient distribution
than Barabási-Albert model does. This is not very surprising in light of the generalized Markov Graph model.
The algorithm itself relies on two features of the generalized Markov Graph model, namely the degree distribution
and the clustering coefficient distribution. To simulate a network with N nodes, the complexity of this algorithm
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models Barabási-Albert
model

generalized
Markov Graph
model

mean 0.0022 1.97e-4
var 0.0057 7.43e-4
skewness 0.0069 0.0038
kurtosis 0.0221 0.0012

Table 6: Standard deviation of the change of the statistics of clustering coefficients

Algorithm
Preferential Attachment Algorithm from Algorithm based on generalized

Barabási-Albert model Markov Graph model
Statistics of distribution mean var var/mean mean var var/mean

mean 0.0107 8.96e− 4 8.37% .2279 .0011 0.483%
var 0.0013 1.507e− 4 11.59% 0.0263 3.089e− 6 0.012%

skewness 4.83 0.386 7.99% 0.6340 0.09 14.19%
kurtosis 33.8 8.12 24% 3.2171 0.3504 10.89%

Table 7: Statistics of clustering coefficients of networks generated by both models.

is O(N4), which is the same as Barabási-Albert model. The computational cost of this algorithm is twice that of
Barabási-Albert model: both the degree list of the whole network as well as the number of triads at each node
have to be calculated in the new algorithm while, in Barabási-Albert model, only the degree list needs to be
calculated.

Detection of systematic failures. An active contour is a potential candidate for representing a systematic failure,
as it represents spatially correlated failures. However, it might also be surrounding randomly failed nodes. In
order to accurately detect a “systematic” failure, we also need to test for temporal correlation, which can be
summarized in the following two properties

1. Causality in failure times

2. Consistency in speeds

By causality we mean, that when seen in the direction of arrival of the propagating failure, the nodes farther
away (or are well inside a failure region) should have failed before the nodes which are closer to the boundary.
The optimization problem described earlier, estimates both speed ν̂i and direction ˆ̄ni of propagation at a failed
node vi. The directional distance of a failed node vj , in the direction of the propagating failure may be determined
as the dot product < vj · ˆ̄ni >, using the local coordinates at node vi. The problem then reduces to checking if
the order of failure times is the same as that of the directional distances. If the order is not the same, the causality
condition is not satisfied, and we consider the failed node vi as a randomly failed node. If all the failed nodes be-
ing observed by the active contour fail the causality test, then the active contour is considered non-representative
of a systematic failure.
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We also assume that in a systematic failure, the speed of propagation does not change suddenly in any given
direction, a property we call consistency in speeds. We test for consistency in speeds as follows. Consider a node
vi which fails at time t and is enclosed by an active contour, and vi estimates the speed of propagation as ν̂i (note
that this computation is performed at an active node). Let vac be the node on the active contour which is closest
to vi. Then, if the node vac is still active at time t+ rc/νi, we declare that the failure of node vi is not systematic.
If all the failed nodes being observed by the active contour fail the consistency test, then the active contour is not
considered to be representing a systematic failure.

5.4.4 Tracking Systematic Failures

Sensor networks are ideal when deployed to monitor hazardous environments such as volcanic eruptions, wild
fires, land slides, war zones etc. A common feature among these environments is that they produce events
which cause correlated failures in both space and time, which we call systematic. Being able to detect and track
such failures becomes crucial both for the sake of tracking itself and for any emergency response thereafter.
The problem of tracking systematic failures is exacerbated when some of the nodes fail randomly (due to some
malfunction), which is the case considered here.

As adopted in this paper, a natural methodology for tracking such systematic phenomenon is based on fast
and efficient identification of boundaries. We would expect any algorithm performing this task to include the
following important properties: 1) the boundary output is geometrically close to the actual boundary, and 2) the
interior of the boundary is topologically faithful to the original space. It is often the case that we are only given
random samples from the space. We may then reconstruct the space by first placing balls of a certain radius
around these points, and then by taking the union of these balls.

(a) (b)

Figure 51: The systematic failure tracking in done in two steps, (1) updating the boundary of the network at a
specific time as shown in (a), and (2) segmenting the boundary and identifying the parts surrounding a systematic
failure.

Problem formulation We consider a compact region R ⊆ R2, in which a set of nodes V are deployed. For a

communication radius rc, a communication graph G = (V,E) is induced on V where (v1, v2) ∈ E ⇐⇒ d12 =
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| (v1, v2) | < rc. An edge (v1, v2) in G implies that v1 is within the communication region (and vice-versa) of
v2, or in other words, can be observed by v2. For a node vi ∈ G, (or equivalently, vi ∈ V ), we denote by Ni,
the neighbors of vi in G. Given this model for the communication graph, the notion of the deployment region R
may be made precise as follows.

Definition 19. The projection Ĉ ′ of a subgraph Ĉ ⊆ G, is a collection of line segments vivj in R such that
(vi, vj) ∈ Ĉ.

Definition 20. The outer boundary ∂(R) is the union of the minimum number of line segments in the projection
of G, which encloses all the nodes. The region of deployment R is the region enclosed by ∂(R).

We define the communication region Rc as the union of balls of radius rc/2, with centers as the nodes in V .
Note that whenRc is path connected, the communication graph is a connected graph.

Throughout, we use vi to denote the node with index i and also its position in R. We assume that we have
neither localization, i.e., no global co-ordinates for the nodes are known, nor global orientation information. We,
however, assume the distances between the nodes (the lengths of edges in the communication graph) are known.

We next make the above description of the systematic failures mathematically precise.

Definition 21. For a time evolving smooth and simple curve C(s, t) : S×R→ R, a systematic failure is defined
if

1. ∀t > 0, vi ∈ C(s, t)⇒ vi fails at time t,

2. C(s, t)/∂(R) is closed,

3. the region enclosed by C(s, t) (when C(s, t) is closed), or by C(s, t) and ∂(R) (when C(s, t) is open and
intersects the boundary), is large enough to create a hole inRc.

4. The area enclosed by C(s, t) (when C(s, t) is closed), or by C(s, t) and ∂(R), is increasing with time.

The time evolution of the curve C(s, t) can be specified by assigning a velocity vector at each point of the
curve in a normal direction. We only consider the vector in the normal direction, as any horizontal component
will only result in a reparameterization of the curve. The boundary of any systematic, time evolving failure region
can therefore be described by a time evolving curve given, that is given as:

∂C(s, t)
∂t

= −ν(s, t)n̄, (70)

where ν(t, s) is a scalar specifying the speed the curve is expanding at, for parameter s and time t, and n̄ is the
normal vector.

As shown in Figure 51(b), we correctly identify the segment of the boundary surrounding the failure in the
presence of random failures, using just the local orientation information. The speed of evolution can then be
estimated using an optimization function which has a closed form solution, and which is quite robust to noise as
shown in Figure 49. Parts of this work appeared in [111], and in [112], and the complete version of the journal
paper is currently under review. A draft is available online at [113].
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Summary. The tracking of systematic failure is divided into two steps, 1) Fast and localized estimation of

network boundary at each time step, and 2) Robust estimation of segment of the boundary surrounding the failure
in the presence of noise, and estimating the speed of evolution. We use a geometric object called an α-shape to
define the boundary of the network, and argue for why such a definition is relevant in the context of failures. In
addition, we also develop a fast, localized and coordinate free algorithm for computing the α-shape, which has
interesting implications on its own. Figure 51(a) shows the α-shape of a network. Observe that it is topologically
faithful to the boundary of the communication region. As a by-product of our analysis, we also develop a
mathematical framework which unifies several boundary definitions adopted in the literature.

5.4.5 Relevance to Original Goals

To facilitate classification of networks and identify anomalous networks, we introduced a generalized Markov
Graph model and its application to social network classification and social network synthesis. The main result
of the generalized Markov Graph model is that the degree distribution, the clustering coefficient distribution, and
the crowding coefficients are three fundamental statistics for characterizing generic social networks. In addition,
the generalized Markov Graph model provides a new insight into clustering coefficient: it is the result of the
dependence between higher order structures, namely the triads, in social networks.

To detect and track systematic failures in networks, We have presented a distributed algorithm to track a
systematic failure in sensor networks which is robust to random failures. The algorithm presented has a low
communication complexity, and requires a small number of local communications which makes it ideal for real
time applications. We assume neither any global coordinate information nor any capability of directly sensing the
phenomenon causing the failure. We presented precise mathematical formulations of the algorithms along with
proofs for their correctness. The simulations performed demonstrate the accuracy and robustness of our methods.

6 Cascading Failures in Power Grids due to Communication and Cyber Attacks

The second issue that our research explores is the formation and properties of correlated failures in communi-
cation networks. Following a WMD event, one or multiple failures can be identified. Unfortunately, this is not
the end of story: the intrinsic nature of networking and communication will impulsively surrender a communi-
cation network vulnerable to these failures, and further create more and more failures, which is recognized as
an epidemic and detrimental phenomena in every inter-dependent architecture, including social networks and
transportation systems. The majority of existing studies address specific failures as a-priori knowledge and de-
sign their countermeasures. However, there are very few studies on the evolution process of these failures, and
on the extent of damage to network composition and structure. Therefore, this is the first effort in modeling
and exploring the impact of correlated failures, which would greatly contribute to the failure resilience of large
networks.

By analyzing the correlated failures, we modeled the impact of traffic overloading. To further study the
performance impact of failures, we need address the performance of cyber-physical attacks with new metrics.
More over, we aime to study the scale properties of attacks. The detection and localization of failures provide the

108



information of where a failure occurs and what its impact is on the topological composition. However, failures
in the same location may have varying impact because of their attack methods. We seek answers to questions
like 1) what kind of properties should an attack have in order to make a severe damage to the communication
networks? 2) Are there any asymptotic bounds of an attack in temporal domain? 3) What is the scaling law in
large-scale networks?

6.1 Performance Impact of Cyber Attacks

6.1.1 Objectives and Approaches

The cyber-physical attacks, not only sabotage the vulnerable or impaired nodes, but also reproduce themselves
to propagate the damage epidemically. On the other hand, the damage to communication links, or physical in
contrast to cyber attacks, may be easily detected. However, it is a challenging issue to assess the impact of such
destruction. However, to quantify the network vulnerability in tempo-spatial domain, the widely used performanc
e metrics, such as throughput or delay cannot not illustrate the impact of failures. Therefore, we need to propose
new metrics, and more important a new method to study the problem.

Our methodology is to study the gain that a misbehaving node can obtain via two general classes of backoff
misbehavior. The first class is called continuous misbehavior, which performs misbehavior persistently and does
not stop until it is disabled by countermeasures. The second class is called intermittent misbehavior, which
in contrast to continuous misbehavior, performs misbehavior in on periods and returns to be legitimate in off
periods. The goal of intermittent misbehavior is to obtain benefits over legitimate nodes and at the same time to
evade the misbehavior detection. Then, we define both legitimate users and misbehaving users formally in the
sense that their attack time and selection of attacking are represented by mathematical models.

One of the main contributions of our work is to define a new metric, namely, “order gain” to quantify the
benefits of backoff misbehaving nodes, or the damage to legitimate users. Then based on this measure, we
examine the responses of different attack models and identify the most harmful attack models for which the
countermeasures need to be designed.

Main Results: Our contributions in the study of A new metric, order gain, is defined to measure the performance
benefits of misbehaving nodes over legitimate nodes, which is helpful in evaluating the gain and impact of a
misbehaving node in a CSMA/CA-based wireless network. We find that the order gain of a continuous double-
window backoff misbehaving node always converges to log2(p/pD) as t→∞, where p and pD are the collision
probabilities of legitimate and misbehaving nodes, respectively. While the order gain of a continuous fixed-
window backoff misbehaving node is an increasing function to infinity as t → ∞. We also find that the order
gain of the intermittent misbehaving node always converges as t → ∞ regardless of the misbehavior scheme it
chooses in the on state.

Our analytical and experimental results show that both double-window backoff misbehavior and fixed-window
backoff misbehavior achieve significant gains when the number of users is small. However, double-window back-
off misbehavior is more sensitive to the number of users and has marginal gains as the number of users increases.
Thus, the number of users can be considered as an evaluating factor for the deployment of a counter-strategy in a
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Figure 52: A single transmission in a simple slotted CSMA/CA network

wireless network. We also find that an intermittent misbehaving node can not achieve substantial gain by setting
a short on period to perform misbehavior. Thus, even an intermittent misbehaving node may evade misbehavior
detection, it can not cause significant damage to a wireless network.

6.1.2 What is Order Gain?

The benefits of misbehaving nodes can be either gaining more resources for selfish nodes or degrading network
performance. In the first case, a selfish node tries to acquire a higher chance to access the channel than legitimate
nodes, which is quite easy in operation. However, the effect of misbehaving can be devastating, and therefore,
it is one of the earliest and most well studied issue for wireless access networks [?, ?, ?, ?]. In the second case,
the goal of malicious nodes is to disrupt normal network operation. Such nodes are often referred to as jammers
[?, ?]. In this work, we focus on the first case that in fact would evolution into the second case under condition.

The network performance, on the other hand, can be evaluated by a number of metrics, such as throughput,
which can be the data transmission rate of one user, or aggregated rate of a group of users. There have been
many works on throughput analysis of CSMA/CA networks, such as [?] and [?]. By taking a close look, we can
find that many analysis are based on the waiting time and transmission time. For example, Figure 52 illustrates
a simple example of a transmission in a slotted CSMA/CA network. During the transmission in Figure 52, the
throughput can be computed as η = transmission time/(waiting time + transmission time) = 1/7. We can see
that the throughput η is in fact a consequence of waiting time that is the number of slots during the node contends
for the channel. Therefore, the waiting time can immediately represent the performance of a node: the longer the
waiting time, the worse the performance, and vice versa. We define the waiting time as follows.

Definition 22 (Waiting-time). Waiting time of a node is the number of slots between the instant that the node
starts to contend for the channel to transmit a packet and the instant that the node successfully transmits the
packet; namely, the waiting time W ,

∑N
i=0 T (i), where N is the number of collisions before the node makes a

successful transmission, T (i) is the random backoff time after the i-th collision.

We have shown that the waiting time is essential to the performance of a node. However, our objective is
not to evaluate the performance of a single node but to understand benefits of backoff misbehaving schemes, that
is the gains of misbehaving nodes over legitimate nodes. To achieve this goal, we will introduce a performance
metric by considering the following constraints:

• The definition of the metric must be generic, without depending on a particular protocol. This is due to
the wide deployment of CSMA/CA networks, especially IEEE 802.11 and IEEE 802.15. Therefore, the
definitions of control messages, such as RTS/CTS, ACK should not affect the interpretation of the gain.
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• The metric can not be limited to the first-order statistics, which are referred to as the means of random vari-
ables, such as mean delay. First-order statistics are in general not able to be extended to other performance
metrics. For example, the delay jitter [?], which is a second-order statistic, can not be calculated by only
knowing the mean delay.

• If the gain of node A over node B is G1 and the gain of nodeB over node C is G2, then the gain of node A
over node C is G1 +G2. This property is very important because it enables us to quantitatively compare
the impacts of two misbehaving nodes by directly comparing their metrics.

With above consideration, we introduce a new metric, namely order gain of waiting time4 as follows.

Definition 23 (Order gain of waiting time). LetWA andWB be the waiting times of nodesA andB, respectively.
The order gain of node A over node B is defined as

G(t) , logt
P(WB > t)
P(WA > t)

, (71)

where P(WA > t) and P(WB > t) are the tail distribution functions (or complementary cumulative distribution
functions, CCDFs) of WA and WB , respectively.

Remark 15. The definition of order gain is based on tail distribution functions of nodes A and B. The tail
distribution function, for example, P(WA>t) denotes the probability that the waiting time of node A is greater
than a given t, showing that how often the waiting time of node A is larger than a given value. Thus, P(WA>t)
can in fact indicate the performance of node A since the larger the waiting time, the less the chance for the node
to access to channel.

The most commonly-used misbehaving backoff schemes are double-window and fixed-window misbehavior,
which both belong to continuous misbehavior and have been extensively studied regarding detection schemes [?,
?] and incentive-based protocols [?, ?]. Therefore, in this section, we first study the two continuous misbehavior:
double-window misbehavior, which conforms to binary exponential backoff but chooses a smaller minimum
contention window than legitimate nodes, and fixed-window misbehavior, which chooses random backoff time
uniformly from a fixed range. Then, we move on to the intermittent backoff misbehavior, in which a misbehaving
node performs misbehavior and legitimate backoff in on state and off state, respectively.

We summarize the main results on the order gain of double-window misbehavior as follows.

Theorem 20. The order gain of a double-window backoff misbehaving node over legitimate nodes is

GD(t) = log2

(
p

pD

)
+ Θ

(
1

ln t

)
, 5

where p and pD are the collision probabilities of the legitimate and misbehaving nodes, respectively.

4This is referred to as order gain throughout this paper unless otherwise specified.
5We say function f(x) is of the same order as function g(x) and write f(x) = Θ(g(x)) if and only if there exist two positive real

numbers c1 and c2 and a real number x0 such that c1|g(x)| ≤ |f(x)| ≤ c2|g(x)| for all x > x0.
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Figure 53: Order gain of a double-window backoff misbehaving node in an 802.11 network with different num-
bers of legitimate nodes.

Remark 16. Theorem 20 shows that GD(t) converges to log2(p/pD) as t → ∞, showing that the order gain
of double-window misbehavior depends on the ratio of the collision probabilities of legitimate and misbehaving
nodes. It has been shown in [?] that the ratio p/pD → 1 as the number of nodes goes to infinity in a network,
which in turn indicates that the performance gain of a double-window misbehaving node becomes marginal as
the number of nodes increases.

Remark 17. We also find that the order gain of fixed-window backoff misbehavior is an increasing function to
infinity as t→∞ regardless of the number of nodes in the network, which indicates that a misbehaving node can
always obtain substantial benefits from fixed-window backoff misbehavior. Thus, any countermeasure to backoff
misbehavior should consider fixed-window backoff misbehavior as its primary target.

6.1.3 Intermittent Backoff Misbehavior

We have derived the order gains of the two widely-used schemes for continuous misbehavior. However, a misbe-
having scheme is not always guaranteed to be continuous, especially when there exists a counter-strategy in the
network that tries to detect and to disable any misbehavior. It has been shown in [?] that a node that performs
misbehavior intermittently may evade such misbehavior detection. Thus, it is important to know the gain of an
intermittent misbehaving node in a network. The backoff scheme of an intermittent misbehaving node is defined
as a Markov process with on and off states. With this definition, we state our result on intermittent misbehavior.

Theorem 21. The order gain of an intermittent misbehaving node over legitimate nodes satisfies

GI(t) = log2

pon
p
off

+ Θ
(

1
ln t

)
,

where pon and p
off

are collision probabilities of legitimate nodes in on and off states, respectively.

Theorem 21 shows that, perhaps surprisingly, the order gain of an intermittent misbehaving node GI(t)
always converges as t→∞ regardless of the misbehaving backoff scheme in the on state.
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Figure 54: Order gain of an intermittent misbehaving node in an 802.11 network with 5 legitimate nodes.

We use ns2 simulations to further assess the performance of intermittent misbehavior by considering an
802.11 network consisting of five legitimate nodes and one intermittent misbehaving node. The intermittent
misbehaving node performs misbehavior by choosing random backoff time uniformly from [0, 7] when it is on.
Figure 54 demonstrates the order gains of the intermittent misbehaving node for different on-state ratios θ. We
see from Figure 54 that the order gain of the misbehaving node always has an initial increasing phase, and after
reaches a maximum, starts to converge decreasingly, which shows there exists a phase transition phenomenon in
the order gain of intermittent misbehavior. The phase transition phenomenon is more evident when θ becomes
large. We denote by t∗ the phase transition point, which is the value of waiting time corresponding to the
maximum of the order gain. During simulations, we find that t∗ increases as θ increases, but the increment is not
significant. For example, in Figure 54, t∗ increases from 18 to 33 as θ goes from 50% to 99%.

Figure 54 also shows that the order gain of the intermittent misbehaving node is not significant when θ

is small. For example, when θ = 50%, the order gain is always smaller than 0.35 and the phase transition
phenomenon is not evident. When θ=70%, the order gain is also upper bounded by 0.6. Consequently, our sim-
ulation results indicate that if an intermittent misbehaving node tries to evade misbehavior detection by choosing
a small θ, its performance gain is not significant.

The goal of an intermittent misbehaving node is to achieve performance gain over legitimate nodes and at
the same time to evade misbehavior detection. We find that, interestingly, if an intermittent misbehaving node
chooses a small θ to evade misbehavior detection, it can not achieve substantial gains. For example, the order gain
is always smaller than 0.35 when θ=50%. On the other hand, if an intermittent misbehaving node chooses a large
θ to achieve substantial gains, it may not be able to evade misbehavior detection in that it performs similarly as a
continuous misbehaving node. For example, we can see that in Figure 54 that when the intermittent misbehaving
node has θ=99%, it has the similar order gain as the “100%” order gain when the waiting time t is small, which
shows that it has a higher risk to be detected.
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6.1.4 Discussions and Summary

So far, we have studied the problem of quantifying the gain of backoff misbehavior and obtained the order gains
for two continuous backoff misbehavior schemes and the intermittent misbehaving scheme, which are validated
by simulation. We further present experimental results to illustrate the impact of backoff misbehavior. Our
findings can be summarized as:

1. Double-window misbehavior is more sensitive to the number of users than fixed-window misbehavior and
can only achieve marginal gains when the number of user increases, which shows that, on the other hand,
the performance loss of legitimate nodes due to double-window misbehavior is not significant in a network
with a large number of users.

2. Fixed-window misbehavior can always achieve substantial gains over legitimate nodes regardless of the
number of users. Therefore, fixed-window misbehavior should always be the primary target of counter-
measures to backoff misbehavior.

3. An intermittent misbehaving node can not achieve significant gain when it chooses a small θ to evade
misbehavior detection.

The above results are studied from a “gain” perspective. Note that the network resources are limited and finite,
especially for a number of users sharing the same medium. In other words, when some users gain throughput or
bandwidth benefits, others can potentially lose their transmission opportunity, resulting in zero user-throughput.
A trivial example is that one user occupies the channel for the entire time period, regardless of transmitting useful
data or not, which is an extreme of misbehavior and becomes so called “jamming” attack [?]. When this happens,
the entire network appears to be dysfunctional, and even not accessible to legitimate nodes. It is interesting to
see that the distribution function of a jammer’s waiting time P(WJ > t)=0 for all t > 1 since the jammer never
backs off. Then, a jammer’s order gain GJ(t) = ∞ for all t > 1, showing that the jammer has “infinite gains”
over legitimate nodes.

It is worthy of mention that our results have several limitations: 1) We did not consider the upper limits
of contention window and re-transmissions for legitimate nodes, such as the 7 short-retry limit in the basic
access model of 802.11 DCF. Thus, the order gain is in fact a theoretical metric to performance gain of backoff
misbehaving nodes. Nevertheless, we believe our results are still applicable in practical scenarios. For instance,
a legitimate node will start a new transmission after reaches the upper limit of re-transmissions, which means its
chance to access the channel becomes larger. Thus, our results should provide an upper bound on performance
gain of misbehaving nodes for a practical network. 2) Our experiments are limited in a small-scale and single-hop
network. Thus, our experimental results may not be able to reveal the performance and impact of misbehaving
nodes in more complicated wireless environments. 3) We acknowledge that in the real world, a misbehaving
node may be more sophisticated than our models defined in this paper. However, our analytical framework can
still serve as a preliminary study to more complicated misbehavior models.

Cyber-attacks, such as virus, not only sabotage the vulnerable or impaired nodes, but also reproduce them-
selves to propagate the damage epidemically. On the other hand, the damage to communication links, or physical
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in contrast to cyber attacks, may be easily detected. However, it is a challenging issue to assess the impact of
such destruction.

This study provides another perspective to understand the scale properties of attacks. The detection and
localization of failures provide the information of where a failure occurs and what its impact is on the topological
composition. However, failures in the same location may have varying impact because of their attack methods.
We seek answers to questions like 1) what kind of properties should an attack have in order to make a severe
damage to the communication networks? 2) Are there any asymptotic bounds of an attack in temporal domain?
3) What is the scaling law in large-scale networks?

6.2 Tracking Power Grid Vulnerability under Data-Centric Attacks

Smart grid is a cyber-physical system, which integrates communication networks into traditional power grid.
This integration, however, makes the power grid susceptible to cyber attacks. One of the most distinguished
challenges in studying the aftermath of cyber attacks in smart grid is referred to as data-centric threats. In power
grids, these data-centric attacks may result in unstable power systems, and further detrimental impact of power
supplies. In this paper, we present Greenbench, a benchmark that is designed to evaluate real-time power grid
dynamics in response to data-centric attacks. The simulation results provide several counter-intuitive suggestions
to both smart grid security research and deployment

6.2.1 Motivation

As a prospective replacement to the traditional power grid, smart grid promises a more reliable, effective and
efficient power delivery and distribution by integrating advanced communication technologies into traditional
power grid. This integration, however, brings a new host of vulnerabilities stem from Internet and opens the door
for potential adversaries to tear down a physical system through a cyber attack.

Being aware of the risks, researchers begin to study potential cyber attacks and develop defense schemes
to protect this cyber-physical system [114, 115]. However, a practical security solution remains daunting partly
because the lack of a commonly recognized platform to evaluate the attack/defense scheme. Question arises
when we try to classify various attacks so that we could develop protection solutions in a prioritized way: How
do we analyze, simulate, and evaluate the physical impact caused by a cyber attack in smart grid?

To address this question, we focus on the data-centric threats in smart grids. A data-centric attack in cyber
system aims at gaining advantage by manipulating data exchanged within this system. Although vary in form,
the basic attributes of data-centric attacks always lies in one or more of the three categories: Confidentiality,
in which the attacker gains access to data which is not supposed to be disclosed to him; Integrity, in which the
attacker distort the content of data; and Availability, in which the attacker block or delays the data delivery to
legitimate user. These three attributes are the basis of information security and the breach on any of them may
cause disastrous consequence.

Even though such attacks are critical to the information network, they will result in much more cascading
impact than they behave in cyber world. This is because for an information-centric network, distorted or delayed
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information undermines services and applications. But in power grid, these data-centric attacks may result in
bursty traffic of power flows, unstable power systems, and further detrimental impact of power supplies.

Critical as they are in the cyber domain, the impact and destructiveness of date-centric attacks could be am-
plified significantly when being brought into cyber-physical systems like smart grid. From academic researches
such as the false data injection attack [116] which points out the design flaw of the monitoring system in mod-
ern power grid, to practical attacks like the Stuxnet [117] which destroys nuclear power plant by infecting and
distorting control data, it is obvious that data-centric cyber attacks is real and the demand for the defense is
urgent.

6.2.2 Green Hub: A Micro Smart Grid

(a) Green Hub Physical System (b) Green Hub Cyber System

Figure 55: Cyber-physical system.

Our objective is to develop a cross-domain simulation platform that can be used to demonstrate the interaction
and inter-dependency of cyber attacks and power grid in real-time. As a platform, we use Green Hub as the
underlying physical system for our study.

The Green Hub system is a novel distribution level microgrid which has been developed at the Future Re-
newable Electric Energy Delivery and Management (FREEDM) systems center for the study of power manage-
ment strategies [118]. The Green Hub is abstracted from an actual residential distribution system, which is a
230kV/22.86kV substation along with two 22.86kV distribution feeders in the Raleigh area, while the substation
voltage is reduced to 69kV/12kV to fit our study purpose. The Green Hub contains various innovative power de-
vices developed in FREEDM center, such as the Solid State Transformer (SST), and the Fault Isolation Devices
(FIDs), and it is also connected to green energy sources such as the Photovoltaic (PV) and Wind Turbine (WT).
All those devices are equipped with Intelligent Electronic Devices (IEDs), which are ARM-based embedded sys-
tems used for real time control/monitor and communication. Those IEDs interact with each other to make the
Green Hub a self-autonomous micro smart grid which could either be connected to main power grid or operate
in an isolated mode.

In order to use this power subsystem for our study, we have to deal with two issues as follows:
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• System abstraction: An actual system includes a large number of various devices which makes it im-
proper for study and simulation, thus it is necessary to simplify and abstract a high-level system with a
suitable size and omit the minor details. The abstracted power system is shown in Figure 55(a), which is
a 17-bus power distribution system. Each bus is connected with a SST, which is able to implement bi-
directional energy flow and DC/AC transformation. Each SST is connected with a load (Load represents
AC load, PHEV represents DC load), and a renewable energy source (PV, WT, or DESD). To ensure the
reliability of the system, four FIDs are deployed on different feeder segments, which will open the circuit
breaker and isolate failure from upper level power grid in case of a fault happens.

• Domain mapping: The challenge here is to map the physical domain into cyber domain by replacing each
physical devices with its corresponding IEDs, the mapped cyber domain system is shown in Figure 55(b).
Smart meter is used to represent AC load as it is the typical controller for AC load such as households or
buildings. Also shown in this figure is the different network access methods for various IEDs (controllers),
which reflect the enabling works undergoing in FREEDM center. Specifically, the SST, PHEV, PV and WT
controllers are connected to the communication network using Ethernet, the DESD controller is connected
using Zigbee, and the smart meter uses wireless to access the network.

The framework of Greenbench with its software implementation architecture is shown in Figure 56. We
briefly introduce the architecture and the functionality of each block of the framework, while leave detailed
description and design challenges to next section.

The Greenbench framework is functionally composed by two parts (simulators), the physical part (PSCAD)
and the cyber part (OMNeT++). The physical and cyber domain model shown in Figure 55 is built in their
corresponding part, and the two parts interact through two interfaces, the interactor, and the buffer files.

Figure 56: Software implementation of Greenbench.
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6.2.3 Delayed and Distorted Data-Centric Attacks

In the data-centric attack, the attacker aims at gaining advantage or cause damage by manipulate the data ex-
changed between network entities. This data-centric attack is even more dangerous in smart grid because instead
of interrupt applications and services in cyber world, it will disturb and damage the critical infrastructure, and
potentially cause disastrous loss which is not confined only in terms of economic. In order to better understand
its impact, find effective solutions as well as instructive suggestions, we hereby study the data-centric attack in
smart grid by focusing on smart meter targeted attacks.

Smart meter in AMI is one of the most vulnerable components in smart grid. For the first reason, it is physi-
cally accessible to public; For the second , it uses wireless communication which is susceptible to jamming attack
[119] and easy to be overheard [120]; For the last and most important, it is usually overlooked by manufactures
and was not designed to resist any cyber attack [121, 122]. However, a system is as strong as its weakest link, and
it remains an open question that whether the omitted security feature on smart meter is reasonable. To address
this question, we select three cases from different security aspect and study them in Greenbench, which include
a delayed data attack, a distorted data attack, and a composite attack.

The metrics usually used to observe the state of a power system is voltage, current, real power and reactive
power. For the simulated power system, the voltage on each point will remain unchanged unless an overload
happens, nut the current keeps changing with variation of load; while the trend for real power and reactive power
change follow the same pattern during our simulation. Therefore, we use current and real power to illustrate the
state change of the Green Hub hereafter.

For easy description, we divide the Green Hub shown in Figure 55(a) into 4 sections: Section 1 starts after
FID1 and includes load 1, 5, 6, 7, 8, and 9; Section 2 starts after load 10 and includes load 11, 12, 13, and 14;
Section 3 starts after FID3 and includes load 2, 3, and 4; And section 4 starts after FID4 and includes load 15,
16, and 17. Note that load 10 does not belong to either sections.

Delayed Price Information in AMI In this case study we simulate and analyze the “jamming the price signal
attack” which was proposed in [119]. Particularly, it is assumed that the power consumption at consumers is
based on the pricing information, which is a continuously changed variable. The pricing information is sent to
consumers (smart meters) by an aggregator via wireless link and the attacker is able to jam the pricing signal
within a certain area. During the jamming, the consumers will remain the power consumption amount because
they do not have the up-to-date pricing information. When there is a significant change of the pricing information,
the attacker stops jamming. The sudden change of the pricing information will cause a significant change on
power consumption in a short time, and consequently affects the power grid stability.

In this case we assume that the attacker compromised the load controller (smart meter) 11, 12, 13, and 15, 16,
17, which locate within a nearby area geographically. We also assume the extreme case that during the jamming
attack, consumers simply do not consume any power, and then operate under full load when the jamming stops
and updated pricing signal is received. As a comparison, we also analyze this scenario and simulate it in single
domain using PSCAD.

When being considered in cyber-physical cross domain, however, the single domain scenario setup is over-
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Figure 57: Jamming the Price Signal attack.

idealistic. In practice the smart meters won’t be able to communicate with the wireless aggregator exactly at the
same time, because wireless channel can only be used by one host at any time. A more realistic simulation is
deployed in the Greenbench, and the simulation setup is shown in Figure 57. Wireless aggregator 1 (WA1) is the
access point for load 15, 16, and 17, while wireless aggregator 2 (WA2) is the access point for load 11, 12, and
13. There is no interference between WA1 and WA2 area, but hosts within each area will contend to access the
wireless channel. And the physical load is assumed to be connected to the power system immediately when its
load controller gains the access to its WA and its connection request is received by the control center.

Because of wireless channel contention, the connection requests from those 6 loads do not arrive at control
center at the same time, and hence the physical loads also take turns to be connected to main power grid. Although
the time between each load get connected is very short, it is enough for the power grid to be prepared for
the load change, and therefore the current and real power change is much more smooth than that in wireline
communications, which indicates the system stability is unlikely to be impacted.

Remark 18. In this case, the attack causes a real load change, and the attacker’s goal is to cause an instability
to power system by the sudden load change. A similar attack named “distributed internet-based load altering
attack” [123] also follows this type, in which the attacker is assumed gained the control of smart meters over a
large area, and by turning off a large amount of household load, e.g., water heater in 1000 homes, the power
grid stability is negatively impacted. However, as shown by Greenbench simulation, this type of attack actually
bears low risk mainly because the contention period of wireless communication acts as a buffer which mitigates
the “sudden” change so that the power grid has enough time to prepare for the load change.
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Figure 58: Load Redistribution attack.

(a) Current and power flow through Meter 10 15 (b) Current and power flow through Meter 10 11

Figure 59: Load redistribution attack simulation in Greenbench.
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Distorted Load Attacks In this case the Load Redistribution (LR) attack [124] is simulated. The LR attack is
a special type of the false data injection attack [116]. The false data injection attack refers to an attack in which
carefully designed false data could be added to certain group of monitored data in power grid, however, those
false data can not be detected by the state estimation algorithm which is used to detect bad data in power grid.
This false data is accepted and used by the control center to make decision, although it is not in consistent with
real device status, and this inconsistency may cause unpredictable damage to power grid.

In the LR attack, the author put some constrains on the attackable nodes in smart grid, which makes LR
attack more practical and easier to be launched. Particularly, while in original false data injection attack the
author treat each node homogeneously, in LR attack it is assumed that only the load nodes are attackable. Note
in this attack, the attacker’s goal is not to change the real load – the power consumed by a device, but to modify
the load reading, which is the monitored value sent to the control center. And we use real load and load reading
to different the two concepts hereafter.

Same as in case I, we also assume the attacker compromised meters which provide readings for load 11, 12,
13, 15, 16, and 17. Two special constrains of the LR attack are that the overall real load consumption of the
attacked area remains the same, while the load reading changes for each specific load does not exceed 50% of its
original load. According to these constrains, we setup the attack scenario as following:

1. Assume the attacker increases the load reading at load 15, 16, and 17; and decreases it at load 11, 12, and
13. The total increased load at load 15, 16, 17 and total decreased load at load 11, 12, 13 sum to zero.

2. The attack is launched in 3 time steps with 0.1 second time-interval between each step. For each step, at
load 15, 16, and 17, the attacker increases their load reading by 15% of their original load, and at the same
time he decreases the same amount of load reading at load 11, 12, and 13. The total load reading change
for each load is 45% of its original load.

3. Note that in this simulation, our goal is different from [124]. In [124], the goal of the attack is to find
a combination of load redistribution which causes the maximum cost, while our goal is to deploy this
attack in a real cyber-physical system and study its potential physical impacts rather than its economic
cost. Therefore it is unnecessary to solve the optimization problem used in [124].

The simulation setup is shown in Figure 58. In Figure 58, the Meter 10 15 and Meter 10 11 are meters
which monitor the current and power flow on the feeder segment between load 10 - load 15, and load 10 - load
11, and their sample frequency are set to be 10 samples (messages) per second. The maximum threshold on
feeders in both section 2 and section 4 is set to be 250A. And in this simulation we collect only the meter reading
from Meter 10 15 and Meter 10 11 as it is intuitive that the feeders in segment 10 - 11 and 10 - 15 hold the
maximum current and real power value in their own branches, and thus they are the first ones to fail if there is an
over-current on these branches. The Breaker 4 represents the circuit breaker controller of FID 4.

The simulation result is shown in Figure 59, and the attack steps are described as below:

1. t=0.5s: Attacker launches attack. Both branches operate normally and the current remains at 210A.
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2. t=0.5s-0.7s: Load reading in section 4 increases with 15% per 0.1 sec, while load reading in section 2
decreases with the same pace.

3. t=0.7s: Current at section 4 exceeds threshold by reaching 253A, and over-current message is sent to
control center. Control center sends trip message to breaker 4, and section 4 loses power.

On the other hand, as shown in Figure 59(b), because the monitored load decreases in section 2, less power
is dispatched to this branch, and consequently the current is much lower than it should be, which will also cause
abnormal behavior of power devices in this section.

Remark 19. In this case, the attack does not change any real load consumption, on the contrary, it modifies
the messages sent by meters and aims at confuse the control center of monitored load consumption and real
load consumption. As shown by the result, this type of attack is more dangerous. Because the control center is
bewildered of the real state, it makes an incorrect decision, which is more harmful than merely a sudden load
change.

Remark 20. Greenbench simulation of the two cases suggests a smart grid security solution which is instructive
for smart grid security research: relatively, a single or a set of smart meters being compromised and gained
control does not put smart grid under a high risk; as long as the attacker is unable to forge an authentic message,
the whole smart grid is safe. Therefore, compared to fortify smart meter and keep it from being compromised, we
should pay more attention on designing security policies to authenticate messages and detect a bad or inconsis-
tent message even if a meter is compromised.

Figure 60: LR attack and Man-in-the-middle attack.

Composite Attacks: Distorted Data and Man-in-the-Middle Attack The power grid is a critical infrastruc-
ture and is state-owned in many countries, thus those who sabotage power grid assumes serious crime. It is
reasonable to assume the power grid targeted attack is made by clear purpose and therefore the attacker will
explore every possibility to maximize the damage. Rather than a single attack, the attacker is highly likely to
launch multiple attacks which affects more devices.
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(a) Current and power flow through Meter trans 10 (b) Current and power flow through Meter 10 11

(c) Current and power flow through Meter 10 15 (d) Current and power flow through Meter of section 3

Figure 61: Attack combination simulation in Greenbench.
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In this case we assume a skilled attacker combines more than one attacks and tries to cause a more severe
impact to the smart grid. Specifically, we assume that at the same time an LR attack is launched, the attacker also
compromises a router and applies a Man-in-the-middle attack in which he eavesdrops messages processed by the
router, locates the “trip” message sent from control center to breaker 4, and modifies the destination address of
the “trip” message from breaker 4 to breaker 3. This scenario is shown as in Figure 60.

Figure 61 shows the current and real power values at different devices/points in the Green Hub. For example,
we use “trans 10” denote the feeder segment between substation transformer and load 10. Given that an LR
attack begins at 0.5 second, we found that at 0.7 second, the monitored current at Meter 10 15 exceeded 250A,
and the control center sent the “trip” message to breaker 4. Here we examine the subsequent events as follows:

1. Because the attacker also compromised the router, the “trip” message sent by the control center was modi-
fied, and the message destination was changed to breaker 3.

2. As a direct result of the redirected message, breaker 3 trips and causes a blackout of the whole section 3,
as shown in Figure 61(d).

3. Also, since breaker 4 did not receive the “trip” message from the control center, the circuit breaker remains
closed, which makes the feeder in section 4 run under an over-current state.

4. At time t = 1.3 second, which is 0.5 seconds after section 3 running under abnormal condition, the extra
heat caused by the over-current causes the feeder to melt and a feeder-to-ground short circuit fault happens.

5. Consequently, we can see the disastrous impact to the whole power grid, as shown in Figure 61(a), Figure
61(b) (current and power flow in Section 2, about 4 times of their normal values), and Figure 61(c) (current
and power flow in Section 4).

6. It is observed that the power values on both branches suddenly dropped to negative, which indicates a
reverse current flow.

7. Then a more severer damage is triggered on the feeder segment from substation transformer to load 10,
which is shown in Figure 61(a). The current on this feeder surged from around 450A to 16,600A, more
than 30 times of its normal operate value.

Such a huge serge will surely cause severe damage to the connected power devices. Then the transformers and
even the substation are also very likely to be damaged, which may serve as an initial point of a larger-area
cascading failure.

Remark 21. As indicated in the simulation result, the composite attacks cause much severer impact than any of
the single attack. This result indicate another non-intuitive solution: although an attack on any single device is
unavoidable, its impact could be limited by making it difficult for the attacker to combine various attacks. The
most intuitive solution (yet always being neglected in practice) is to use different login/password for different
devices. For more sophisticated solutions, one could deploy a hierarchical security policy, in which different lev-
els of devices are protected by different security methods (physically locked and deploying surveillance camera,
using encryption algorithms such as AES, etc).
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6.2.4 Summary

We developed Greenbench, a cross-domain simulation platform which could capture the impact of cyber attacks
in power systems. Along with Greenbench, We study the data-centric attacks which target at damaging power grid
by manipulating the data exchanged between devices. The simulation results convey non-intuitive indications
and instructive suggestions to both smart grid security research and deployment. Nonetheless, Greenbench’s
capability is not confined to this, its flexibility and extensibility allows us to analysis and evaluate various smart
grid attacks, which is one of our future works. As another future work, we will integrate power grid dedicated
communication protocols such as DNP3 and IEC-61850, and evaluate attacks targeting those protocols.

6.3 Relevance to Original Goals

To facilitate classification of networks and identify anomalous networks, we introduced a generalized Markov
Graph model and its application to social network classification and social network synthesis. The main result
of the generalized Markov Graph model is that the degree distribution, the clustering coefficient distribution, and
the crowding coefficients are three fundamental statistics for characterizing generic social networks. In addition,
the generalized Markov Graph model provides a new insight into clustering coefficient: it is the result of the
dependence between higher order structures, namely the triads, in social networks.

To detect and track systematic failures in networks, We have presented a distributed algorithm to track a
systematic failure in sensor networks which is robust to random failures. The algorithm presented has a low
communication complexity, and requires a small number of local communications which makes it ideal for real
time applications. We assume neither any global coordinate information nor any capability of directly sensing the
phenomenon causing the failure. We presented precise mathematical formulations of the algorithms along with
proofs for their correctness. The simulations performed demonstrate the accuracy and robustness of our methods.

Our proposed framework, Greenbench, makes new contributions in two-fold. First of all, Greenbench is a
cross-domain simulation platform that includes an underlying power system overlayed by a communication sys-
tem. In such a way, we are able to capture the impact of cyber attacks in power systems in real-time, unlike
networking simulations as [125] or physical systems like [126, 127, 128]. Second, we aim to study the conse-
quences of data-centric attacks rather than manipulation of communication protocols like [129]. The benefits of
our efforts is that there might be many attacks or manipulation schemes to attack smart grid, however, the result-
ing of attacks and countermeasures for data integrity will be revealed in ultimate data received, which could be
delayed and/or distorted. To this end, our study is able to demonstrate the direct impact of security attacks at the
power system level, either due to compromised smart meters in AMI or DoS attacks to messages in transmission.

7 Broad Impact, Workforce Training, and Dissemination

WMD can only have an impact because it is a human initiative. This, in turn, is of course a result of some issue
a group of individuals have taken up as a a rallying point to operate for spreading fear and terror, and destruction
of infrastructure. Studying the underlying social stratum which may lead to such abject plotting and planning or
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even discussing a WMD scenario hence makes sense as a holistic approach. In particular, in this work, we have
explored fundamental and robust models of social networks which can allow us to detect specific structures. As
we will elaborate below, we have proposed a new model beyond the ”Preferential Attachment”, so that we allow
a very robust comparison and classification of social networks, as a first step of detecting suspicious activity
planning. We have also developed a mathematical framework which can model a ”propagation of belief” in a
network, and a capacity to influence this propagation, and the trend of the belief.

7.1 Contribution to the Body of Knowledge

Our work focused on the impact, detection, and tracking of WMDs on networks. The modern infrastructure relies
heavily on many types of networks, and their failures may be heavily consequential. In the course of our work
over the last five years, our formulation of effective strategies for timely detection and tracking of such attacks on
networks has led to several journal and conference publications listed in the references, as well as several invited
talks, including, Imperial College, University of Luxemburg, Univ. of Illinois-UC, University of Minnesota and
the Institute of Mathematics and its Applications, University of Canberra, Australia, and Chalmers University in
Sweden. Dr. Krim has also been voted on the editorial Board of the Flagship of the Signal Processing Magazine,
where he was invited to write a feature tutorial article on the mathematical and algorithmic tools developed in the
course of this DTRA-funded research. Dr. Krim has in addition, thanks to the partial support of DTRA, submitted
the first draft on an upcoming book on “Geometric Methods in Signal and Image Analysis with Cambridge Press”.

7.2 Personnel Support

Two faculty members, two post-doc, and a total of five PhD students at North Carolina State University are
supported during this study:

• Dr. Wenye Wang, Associate Professor in the Department of Electrical and Computer Engineering.

• Dr. Hamid Krim, Professor in the Department of Electrical and Computer Engineering.

• Dr. Fei Xing, a former Ph.D. student in the Department of Electrical and Computer Engineering. Graduated
in January 2010.

• Ming Zhao, Ph.D., under the supervision of Dr. Wenye Wang, December 2009

• Dr. Yi Xu, Research associate in the Department of Electrical and Computer Engineering. Graduated in
May 2010 under the supervision of Dr. Wenye Wang.

• Dr. Lei Sun, a former Ph.D. student in the Department of Electrical and Computer Engineering under the
supervision of Dr. Wenye Wang.

• Dr. Harish Chintakunta, a former student in the Department of Electrical and Computer Engineering under
the supervision of Dr. Hamid Krim.
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• Dr. Tian Wang, a former student in the Department of Electrical Engineering and graduated in Theoretical
Physics under the supervision of Dr. Hamid Krim

• Dr. Jennifer Gamble, partially supported in the Department of Electrical Engineering and graduated under
the supervision of Dr. Hamid krim

• Zhuo Lu, Ph.D. student in the Department of Electrical and Computer Engineering under the supervision
of Dr. Wenye Wang.

7.3 Social Dimension of WMD Attacks

7.3.1 Background and Rationale

As an abstract model of a social environment, a social network includes a set of nodes, which could be a set of
individuals or a set of groups of individuals, and a set of relationships among these nodes. The analysis of social
networks is important in several aspects. For example, it reflects characteristics of a social environment, so that
we can recognize important or interesting nodes, groups of nodes or even societies. It can also help us understand
how a social environment evolves so that we are able to make predictions about its impact. Moreover, we might
even learn how to control a social environment based on the prediction and recognition techniques to benefit the
people in the environment.

Social networks have been studied for decades, and several simple but fundamental models have been pro-
posed. For social network synthesis, the Barabasi-Albert model [130] successfully generates social networks
which follow a power law degree distribution based on the assumption of preferential attachment. In statistics,
the Markov Graph model[131], the p* model [132] as well as the models from Statistical Mechanics [133] are
well known for characterizing the probability distribution of networks. Other social network models were also
proposed in engineering [134, 135]. More recently, we proposed a method based on a Markov Graph model to
address the problem of social network classification [136].

The characteristics of nodes, to help identify key nodes in a social network, are of particular interest to re-
searchers. The classification of social networks, however, has hardly been addressed despite its great importance
in applications. For example, in criminal networks, the potential use of social network classification would be
to detect whether different criminal networks belong to a larger network, hence using similar tactics. In terrorist
networks, this method could, for instance, be used to detect whether a terrorist network is led by the same leader
who has a history of organizing other known terrorist plots, and hence to help identify the leader.

7.3.2 Our Contributions

We were the first to propose a method based on a Markov Graph model to classify different types of social
networks [136]. The classification method makes use of two features, the degree list and the number of triads,
to determine the probability distribution of networks in a Markov Graph model and to use them as the crucial
features for classification of social networks. As we demonstrate later, this simple model is insufficient to provide
the classification performance improvement which we seek.
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In the research area of social network synthesis, Barabasi-Albert model as well as many other related models
enable the synthesis of the evolution of simple social networks whose degree distributions obey the power law.
The algorithms for these models are clear and efficient. The open question, however, and in light of these
models’ shortfall of fully capturing the probabilistic structure of a social network, is about the statistical behavior
of the required additional features, namely the clustering and crowding coefficients, where the former reveals
the information between a node’s neighbours, and the latter describes the neighboring environment of a triad of
people in a social network.

To this end, we proposed a model which provides answers to both of these questions. In some sense, the
preferential attachment algorithm by Barabasi-Albert is closely related to the simple Markov Graph model. In
the preferential attachment algorithm, the probability of a new edge attaching to a node depends on the number of
edges attached to the node, which is the degree of the node. And in a Markov Graph model, the basic assumption
is that the probability of a new edge being formed, depends on a function whose variables are the states of the
relationships between the nodes in this new edge and all of the other nodes.

Towards addressing all these questions, we proposed a so called generalized Markov Graph model [137].
The characteristics of this new model include the dependences on the relationships between pairs of nodes in the
network, as well as the relationships between triplets of nodes. On this basis, we also build a new algorithm for
social network synthesis. The main result of the model is shown next :

Theorem 22. Any simple network graph G with an associated dependence graph DGM has a probability mass
function:

P (G) =z−1exp(
∑
n

sn(G)θn +
∑
i

ci(G)γi

+
∑
j

tj(G)τj),
(72)

where z is a normalization factor, sn(G) stands for the number of nth k-stars in network G, θn is the associated
coefficient, ci(G) is the number of ith cluster-stars, γi is the associated coefficient, tj(G) is the number of jth

tri-stars and τj is the associated coefficient. Subscripts n, i and j count from the first to the last structures they
correspond to.

In light of this new model, we have discovered that the probability distribution of generic social networks will
depend on not only the degree list, but also on the clustering coefficient list as well as the crowding coefficient list.
These features can subsequently be applied to the classification of social networks, as well as to the validation of
the generalized preferential attachment algorithm.

To further validate the models and reveal more potential applications of the models, we test the probability
density function of the elements in the adjacency matrix as a direct test of the basic assumptions of the model.
Such a result is then directly applied to a belief control mechanism in information flow models [138, 139].
We first propose an information flow model (IFM) of belief that captures how interactions among members
affect the diffusion and eventual convergence of a belief. The IFM model reveals that the diffusion of beliefs
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heavily depends on two characteristics of the social network structure, namely degree centralities and clustering
coefficients. We apply IFM to both analyze and control the convergence of a belief. We capture the structure of
the social network using two different techniques, namely the preferential attachment and the generalized Markov
Graph model. We evaluate our models via experiments with published real social network data. The flow chart
of the IMF model is showed as below.

Figure 62: Flow Chart for Information Flow Model.

With the real network data, the experimental results show that the generalized Markov Graph model correctly
generated the converged beliefs in information flow models. In addition, the control strategy of beliefs derived
from a generalized Markov Graph model outperformed the state-of-art social network models.

We also explored the relationship between a variation on a generalized Markov Graph model (GMGV) and
high dimensional Laplace operators, which are also called the edge Laplacians. The reason these two concepts
are related is that they both are based on the idea that networks are partitioned into different units, i.e. simplices,
and the dependence graph of the GMGV is very closely related with the Laplacian operator. In addition, we have
observed that the eigen-space of a Laplacian operator has very unique properties, including integer eigenvalues
and corresponding sparse eigenvectors. The GMGV could give a reasonable explanation to such phenomena
because cliques in its dependence graph do correspond to the non-zero elements in the sparse eigenvectors with
integer eigenvalues. This is also a novel way of identifying high dense subgroups with symmetry in a social
network.

7.3.3 Summary

In summary, we introduced a generalized Markov Graph model. The main result of the model is that the degree
distribution, the clustering coefficient distribution, and the crowding coefficients are shown to be three funda-
mental statistics for characterizing generic social networks. In order to validate the assumptions of the model,
experiments on the probability distribution of all adjacency matrix elements are performed. In addition, classifica-
tion experiments are carried out to show that the three resulting statistics in the model do effectively characterize
social networks. To further verify the model as well as show its potential application, we apply the generalized
Markov Graph model in the information flow problems. All experimental results and applications show that the
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generalized Markov Graph model outperformed the state-of-art models. To further explore the model and give
a direction in the future research, we investigated the relationship between a variation on a generalized Markov
Graph model and the eigen-space of Laplacians of a network.

7.4 Potential Applications

The new works are proposed to enhance and extend our earlier efforts in the past three years. In the scope of
the original project, we focused on modeling node behaviors, such as being cooperative, faulty, destructive, and
dead, and analyzing network responses to a multitude of node failures, in terms of network survivability and
connectivity, and design of protocols and algorithms for network robustness. While, in this extended period, we
are still pursuing the fundamental study of network responses to WMD attacks, we, however, aim to explore
the impact of failures in temporal and spatial domains, e.g., when a failure occurs, how far-away nodes will be
affected, and how long it takes to notice such a failure, instead of just probabilistic estimation and connectivity
analysis. The proposed works are clearly more challenging, given the limited existing theoretical knowledge of
these issues. As a result, our efforts will advance the knowledge and fundamental understanding of the of WMD
attacks, and the resulting failures in the infrastructure networks which form the backbone of civilian and military
capabilities. Further, our results, we believe, will provide significant insights on the scope of damage due to
cascading and correlated failures, including catastrophic loss of connectivity, unsuccessful missions, slow-down
of the Internet, and damage to the economy and society at large. All together, the proposed research will leverage
DoD capability in response to attacks from WMD/WME.

Failure Prevention via Inter-Cooperation: For a large-scale network, a more and more promising solution is to en-
able inter-operation of communication systems using different access technologies, including wired and wireless,
on licensed and unlicensed frequency bands. The objectives can be two-fold in general: improving bandwidth
utilization and improving communication capacity. While the former one is more for offering better services to
civilian world, the latter one is more for offering critical communications in emergency, disaster rescure, and
even opportunistic communications. Therefore, our results provide insights on two fronts. First, we have found
that the latency for failure in communication networks may propagate with an upper bound, depending on the
scales of the network, while there exists a lower bound for the information to be delivered to other nodes. Second,
our results suggest useful parameters, such as node density, mobility range, and transmission power etc toward
design objectives, respectively.

Failure Containment: Our results on the spreading of correlated failures provide the conditions to contain failures.
We can hence sample and test a subset of nodes in the network infrastructure to evaluate the network robustness
through a detailed examination on the failure correlations among these nodes. If the failure correlations are in
the percolation regime, we are alarmed to take actions to reduce the failure dependence in the network and hence
improve the network resilience. Our findings are also useful at the network planning and construction phases by
providing the failure resistance guidelines.

Radio Resource Recycling: Our analysis of the performance limits in cognitive radio networks demonstrates the
feasibility of information delivery through recycling the temporarily unused radio resources in the recovery net-
work. Since the recovery network is limited in the availability of radio resources, the cognitive radio technology
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is important to supplement the scheduling schemes to make the full network utilization. Our results further pro-
vide the essential information in dimensioning the cognitive radio networks that achieve the information delivery
goals. Additionally, our findings provide the theoretical foundation for the cognitive radio network deployment
in multiple phases and predict the network performance in accordance to each deployment phase.

Network Synthesis and Failure Detection: Significant damage to network infrastructures will cause devastating
consequences and may cascade onto many other systems. Crucial information distributed in a surveillance net-
work may be lost. In our work, we develop a distributed and localized algorithm to accurately detect and track
systematic failures in sensor networks which may indicate the deployment of WMD in the region the network is
deployed. By distributed, we mean, we do not gather the data at any central processing location, and by localized,
we mean that only the information of local neighborhood is sufficient for a node to determine if it is on the front
of a propagating systematic failure. Over the past year, we have made significant progress in precisely charac-
terizing networks in general probabilistically and have run extensive experimentation. A journal paper is under
review and a conference paper has been published. We have also made significant progress in WMD impact on
failing sensor networks with localization, evolution of failures and their complete characterizations, together with
techniques to mitigate and overcome failed regions.

Failures and Vulnerability in Physical Networks: Smart grid is an emerging cyber-physical system which is ex-
pected to replace traditional power grid in near future. Traditional power grid has been running for decades
without significant changes on its infrastructure and begins to show its inability as the demand for power delivery
and consumption boosts in recent years. One main reason which causes the inefficiency of traditional power grid
is the lack of a full-fledged communication infrastructure. Although there exists a control and monitor network
which is built above the traditional power grid, most power devices still operate in an isolated manner and their
operation is based on electrical properties rather than information exchange. For example, a relay makes the
decision to open a circuit breaker only when it detects the current on a feeder exceeds the threshold, it neither
tells other relays its own status nor takes information from other relays to help itself make a decision. The lack
of information exchange makes traditional power grid fragile because in many situations it is too late to take
action when there is a noticeable physical change. The integration of communication networks with power grid,
however, brings a new host of vulnerabilities stem from Internet and opens the door for potential adversaries to
tear down a physical system through a cyber attack, which is clearly relevant to DTRA missions.

7.5 Participation and Presentations

Our recent presentations include:

• Harish Chintakunta and Hamid Krim, “Distributed boundary tracking using alpha and delaunay-cech
shapes,” demonstrated at the 17th International Conference on Discrete Geometry for Computer Imagery
(DGCI), 2013.

• Harish Chintakunta and Hamid Krim, “A Distributed Collapse of a Network’s Dimensionality,” IEEE
Global Conference on Signal and Information Processing, pp. IPN.PB.4, 2013.

• Chintakunta, H.; Krim, H. , “Detection and tracking of systematic time-evolving failures in sensor net-
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works,” Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), 2011 4th IEEE Inter-
national Workshop on , vol., no., pp.373-376, 13-16 Dec. 2011 doi: 10.1109/CAMSAP.2011.6136029

• Gamble, J.; Chintakunta, H.; Krim, H.;, “Applied topology in static and dynamic sensor networks,” Inter-
national Conference on Signal Processing and Communication (SPCOM), 2012.

• Wang, T.; Krim, H.;, “Statistical Classification of Social Networks”, IEEE International Conference on
Acoustics, Speech, and Signal Processing (ICASSP), 2012.

• Lei Sun and Wenye Wang, “On Latency Distribution and Scaling: From Finite to Large Cognitive Radio
Networks under General Mobility,” presented by Lei Sun at IEEE INFOCOM 2012, Orlando, April 2012.

• Lei Sun and Wenye Wang, “Understanding the Tempo-spatial Limits of Information Dissemination in
Multi-channel Cognitive Radio Networks,” presented by Lei Sun at IEEE INFOCOM 2012, Orlando, April
2012.

• Yi Xu and Wenye Wang, “Scheduling Partition for Order Optimal Capacity in Large-Scale Wireless Net-
works,” presented by Yi Xu at ACM MobiCom 2009, Beijing, China, September 2009.

• Yi Xu and Wenye Wang, “Characterizing the Spread of Correlated Failures in Large Wireless Networks,”
presented by Yi Xu at IEEE INFOCOM 2010, San Diego, CA, March 2010.

• Lei Sun and Wenye Wang, “On Study of Achievable Capacity with Hybrid Relay in Cognitive Radio
Networks,” presented by Lei Sun at IEEE GLOBECOM 2009, Honolulu, Hawaii, November 2009.

• Harish Chintakunta and Hamid Krim, “Divide and Conquer: Localizing Coverage Holes in Sensor Net-
works,” presented by Harish Chintakunta at IEEE SECON 2010, Boston, MA, June 2010.
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