
AFRL-AFOSR-JP-TR-2017-0046

Towards a Better Distributed Framework for Learning Big Data

Shou-de Lin
NATIONAL TAIWAN UNIVERSITY

Final Report
06/14/2017

DISTRIBUTION A: Distribution approved for public release.

AF Office Of Scientific Research (AFOSR)/ IOA
Arlington, Virginia 22203

Air Force Research Laboratory

Air Force Materiel Command

a. REPORT

Unclassified

b. ABSTRACT

Unclassified

c. THIS PAGE

Unclassified

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing the burden, to Department of Defense, Executive Services, Directorate (0704-0188). Respondents should be aware that
notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB
control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ORGANIZATION.
1. REPORT DATE (DD-MM-YYYY)
 14-06-2017

2. REPORT TYPE
Final

3. DATES COVERED (From - To)
14 May 2015 to 13 May 2017

4. TITLE AND SUBTITLE
Towards a Better Distributed Framework for Learning Big Data

5a. CONTRACT NUMBER

5b. GRANT NUMBER
FA2386-15-1-4013

5c. PROGRAM ELEMENT NUMBER
61102F

6. AUTHOR(S)
Shou-de Lin

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
NATIONAL TAIWAN UNIVERSITY
1, ROOSEVELT RD., SEC. 4
TAIPEI CITY, 10617 TW

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
AOARD
UNIT 45002
APO AP 96338-5002

10. SPONSOR/MONITOR'S ACRONYM(S)
AFRL/AFOSR IOA

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

AFRL-AFOSR-JP-TR-2017-0046
12. DISTRIBUTION/AVAILABILITY STATEMENT
A DISTRIBUTION UNLIMITED: PB Public Release

13. SUPPLEMENTARY NOTES

14. ABSTRACT
This work aimed at solving issues in distributed machine learning. The PI's team proposed three directions to work on. First, they designed
solutions to speed up the alternating direction method of multipliers (ADMM) for distributed data. Second, they focused on a client-server
learning scenario in which an online, semi-supervised learning approach is designed to reduce the communication load. Finally, the team
proposed the parallel least-squares policy iteration (parallel LSPI) to parallelize a reinforcement policy learning.

15. SUBJECT TERMS
Machine Learning

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

SAR

18. NUMBER
OF
PAGES

 27

19a. NAME OF RESPONSIBLE PERSON
HONG, SENG

19b. TELEPHONE NUMBER (Include area code)
315-229-3519

Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. Z39.18

Page 1 of 1FORM SF 298

6/19/2017https://livelink.ebs.afrl.af.mil/livelink/llisapi.dll

Final Report for AOARD Grant FA2386-15-1-4013

Towards a Better Distributed Framework for Learning Big Data

05/11/2017

Name of Principal Investigators (PI and Co-PIs): Shou-De Lin

- e-mail address : sdlin@csie.ntu.edu.tw
- Institution : National Taiwan University
- Mailing Address : CSIE Department, National Taiwan University, Taipei, Taiwan
- Phone : +886-2-33664888-333
- Fax : +886-2-33664898

Period of Performance: 05/14/2015 – 05/13/2017

Abstract: This work aims at solving issues in distributed machine learning. We propose three
directions to work on. First, we design solutions to speed up the alternating direction method of
multipliers (ADMM) for distributed data. Second, we focus on a client-server learning scenario
in which an online, semi-supervised learning approach is designed to reduce the
communication load. Finally, we propose the parallel least-squares policy iteration (parallel
LSPI) to parallelize a reinforcement policy learning.

Introduction:

Speeding up ADMM
We consider training a classifier given large data that are distributed. Since data are
distributed on different machines and are too big to relocated, an efficient way to train a
classifier is to develop a distributed optimization method. The alternating direction method of
multipliers (ADMM) can be exploited to solve this problem, in which each local machine
updates its learned model and the master machine tries to reach a consensus. Specifically, the
setting we consider is that there are g machines with each machine m learns a model wm from
its local data Nm. The learned models wm are required to agree with each other to form a
consensus c. Mathematically, we are interested in solving the following linear classification
problem,

(1)

DISTRIBUTION A. Approved for public release: distribution unlimited.

where li and zi is a label/feature pair of the i sample on machine m, and C controls the
regularization effect. Although squared hinge loss is shown here, the objective is in fact
general and other types of loss function can be utilized. For example, if we use squared loss,
the objective becomes a regression problem.

There exist some related works using ADMM for distributed data. For example, [Zhang et. al.
2012] have implemented ADMM to solve it. The update of w at an iteration of ADMM turns
out to be similar to standard SVM formulation. Thus, [Zhang et. al. 2012] adapted the
approach, stochastic dual coordinate assent, which is implemented in a well-known LIBSVM
toolkit to solve it. As the result, several ``inner'' iterations are required to obtain wm at each
iteration of ADMM. When the data on each local machine is also large, the computational
cost for one pass of full data drastically increases, which makes the update of wm consume a
substantial amount of time. We aim at dealing with this issue and proposed two method.

The first approach is leveraging the idea from stochastic gradient descent method (SGD)
[Bottou et al. 2010] for ADMM. SGD has shown its merits on solving large-scale
optimization problem. At each iteration, it samples an instance to compute the gradient
instead of using all the data as in the traditional gradient descent method. Several works has
shown that SGD can solve large-scale problem more efficiently comparing to gradient
descent [Bottou et al. 2010]. It is known for SGD that only a few samples are needed to
achieve sufficient descent of the objective at the beginning. To achieve similar effect in
ADMM, at the first few iterations, each local machine only uses a subset of its data instead of
using all the data to update its model. For example, at the first iteration, each machine
samples half of its data to compute wm. Then, the sample size is increased for next iteration,
and eventually each machine utilizes all of its local data. The method requires fewer
computations at the first couple iterations, and therefore has the potential to achieve faster
convergence. Since the method has cheaper iteration costs at the beginning, the method
converges faster in terms of time. More importantly, we provide a theorem that guarantees the
method to enjoy the same convergence rate in terms of the number of the iterations as the
standard ADMM.

Following the idea of sampling subset of data instead of full to update the model before each
round of communication, we convert the objective (1) to the dual domain and proposed our
second approach that performs ADMM on the dual domain. As each dual variable
corresponds to a sample, sampling a subset to update the model becomes easier and more
natural than in primal domain. The algorithm for performing ADMM on the dual of (1) turns
out to be equivalent to SDCA-ADMM [Suzuki 2014], which is originally proposed to solving
objective with complex regularizations (e.g. group lasso [Jacob et al. 2009], graph guided

DISTRIBUTION A. Approved for public release: distribution unlimited.

SVM [Ouyang et al. 2013] by combining ADMM and stochastic dual coordinate ascent
(SDCA). However, these works do not consider generalizing the method on distributed data.
We show the algorithm can solve for optimization on distributed data as well.

To summarize, our contribution are 1) proposing a simple, easy to implement, yet effective
way to accelerate the ADMM on distributed data with a theoretical guarantee, 2) proposing
running ADMM on the dual of the objective and showing the advantages of doing it, 3)
showing the effectiveness of our methods on several datasets.

Communication-Efficient Online Semi-Supervised Learning in Client-Server Settings
This work considers such a setting where a set of distributed clients each generate an ongoing
stream of data and a server seeks to learn a model of the data. We impose two practical
limitations on the setting. First, because of the costs of having humans label large quantities
of data, we assume that only a small fraction of the data are labeled. In particular, we focus on
a setting where only the first, e.g., 2% of the training data are labeled. Second, because
communication bandwidth is often expensive and battery-draining (e.g., a mobile device on a
cellular network), we seek communication-efficient solutions such that each client is limited
to sending to the server only a small fraction of the unlabeled data it generates, and limited in
how much information it receives from the server.
An elegant solution to these problems will face many challenges. First, the amount of data
generated by clients can be huge, and even potentially unlimited. As a result, the vast majority
of data on the server are unlabeled. Typically, it is not sufficient to train a model with a good
generalization ability based merely on limited labeled data. Second, when the volume and
velocity of data is high, it is very costly and impossible to store all data either on clients or the
server. Thus, traditional approaches that first store data and then train on a static collection are
not appropriate in this case. Third, transmitting massive data on the network is discouraged in
practice, especially when the network bandwidth is restricted or the communication cost is
expensive (e.g., on a cellular network). It may also be mis-classified as a denial-of-service
attack, and dropped/blocked.
By considering online, semi-supervised, and active learning jointly, our goal is to develop a
modular framework for learning from a remote partially labeled data stream while reducing
the bandwidth consumption. We present a novel framework for solving this learning problem
in an effective and communication-efficient manner (see Figure 1). On the server side, our
solution combines two diverse learners working collaboratively, yet in distinct roles, on the
partially labeled data stream. A compact, online graph-based semi-supervised learner is used
to predict labels for the unlabeled data arriving from the clients. Specifically, we adapt the
Harmonic Solution learner to online use via an incremental k-center clustering approach that
maintains the graph structure solely on a set of k centroid nodes. Random samples are then

DISTRIBUTION A. Approved for public release: distribution unlimited.

repeatedly drawn from the model according to the confidence of its prediction, and used to
train a second learner on the server, a linear classifier (specifically, a soft
confidence-weighted classifier). The second learner updates its hypothesis based on these
samples and their predicted labels. We show how these two learners can be combined in an
optimization problem. On the client side, our solution prioritizes data based on an
active-learning metric that favors instances that are more uncertain (i.e., close to the
classifier’s decision hyperplane) and yet far from each other (as measured by covariance). To
reduce communication, the server sends the classifier’s weight-vector to the client only
periodically. At any point in time, the classifier can be used as a standalone model for
predicting labels for new test data.

Parallel least-squares policy iteration

Learning an optimal policy for MDPs with large state space has gained many interests
recently. Different from previous works, our proposed method is inspired by the recent
success in distributed optimization. The goal is to parallelize an existing policy iteration
method called least-squares policy iteration. The algorithm takes advantage of the multi-core
or multi-machine architecture, where each worker (one per core or machine) individually
executes a fraction of episodes and estimates a parameter while a consen- sus is maintained
by parameter averaging. With the feedback of global consensus, each worker can access the
information learned by other workers at the previous iterations. As the result, the learning
process of each individual worker can be accelerated, as compared to learning alone.
Our work aims at answering the following question: Given multiple computational resources,
how to efficiently solve an MDP? In our problem, each worker faces the same MDP, and each
worker communicates with others about the estimated parameter during learning. Thus, our
work can be regarded as a complement to multi-agent MDP.

Our analysis on parallel LSPI shows that the correlation between the learning processes of
each individually learned model can influence the effectiveness of the method. The com-
putation gains achieved with parallel LSPI is less significant when there exists high
correlation between workers. To deal with this issue, a heuristic is proposed to encourage
each worker to explore (i.e. taking random action) more when it collects samples, which
increases the randomness and in turn reduces correlation.

To summarize, we propose parallel LSPI to efficiently solve an MDP through parallel
programming. Our method can also balance the communication overhead and required
number of iterations to find the optimal solution, which is suitable for situation when only
limited bandwidth is available. We give some analysis for the proposed method and conduct

DISTRIBUTION A. Approved for public release: distribution unlimited.

experiments to show its effectiveness on queueing networks and persistent search and track
domains.

Method/Theory/Experiment:

Speeding up ADMM

We begin by describing how to apply ADMM in a distributed data problem. The augmented
Lagrangian of objective (1) is

 (2)
The algorithm in ADMM consists of

wk+1 = argmin_w (3)
c k+1 = argmin_c (4)
λk+1 = argmin_λ (5)
where k is the iteration index, w is { w1, …, wg} and and λ is { λ1,…, λg}. Note that solving
(3) is similar to solving the objective of standard SVM. To see this, we rewrite it in explicit
form.

Therefore, we can use an existing optimization methods for SVM for solving (6).

A sampling approach for fast ADMM on primal objective (1)
From the previous section, we know that ADMM requires solving the SVM-like problem (6)
at every iteration of ADMM. Each iteration requires many inner iterations to complete. When
local data is large, it will take a substantial amount of time. To deal with this, we propose a
way to alleviate the training cost. At the earlier iterations, each local machine only uses a
subset of its data instead of using all the data to update its learned model. As the algorithm
continues, each machine gradually increases the amount of data used and finally reaches the
full capacity. This method enjoys similar fast decrease of objective value as SGD does at the
first few iterations and shares the same convergence rate in the long term as using the full
dataset every iteration. Thus, for each iteration, each machine solves the following instead of
(6) .

DISTRIBUTION A. Approved for public release: distribution unlimited.

where we have replaced Nm with Nm
k, which represents the amount of data used on machine

m at the kth iteration. The amount of data used at the k+1 iteration, Nm
k+1, satisfies

where β>1 is the increasing rate. Note that Nm stands for all of the data of machine m. For
example, we can initialize Nm

1 to 0.5 Nm , and set β to 1.1, meaning the amount of data used

for training at each iteration in ADMM increases by 10 percents each iteration. The
optimization procedure of the modified algorithm is roughly the same as the traditional one; it
iterates over (3)-(5), except that the sub-problem (3) or (6) is replaced by (8), which can be
solved in a similar manner as described in the previous section.

A sampling approach for fast ADMM on dual objective of (1)
We give another method that still follows the idea of sampling subset of data on each round of
communication. This section begins by converting the primal form (1) to dual form. In order
to make the dual form compact, we relax the constraint and approximate it. As each dual
variable corresponds to a sample, sampling a subset to update the model becomes easier and
natural. We then show how to integrate the sampling idea in performing ADMM on the dual
of (1). Solving the dual of (1) by ADMM turns out to be equivalent to SDCA-ADMM. We
then propose some techniques to efficiently perform SDCA-ADMM for distributed data.
Converting primal (1) to approximated dual form
To achieve the goal, we transform each feature vector from p-dimensional feature space to
pg-dimensional features space. That is, the dimensions of augmented feature space is ,
which is g times larger than the original feature dimension p.

Let us denote the original feature vector of the i sample on the m machine as zz{i,m}.
The new feature is

the other entries in z{i,m} are set to zeros. Thus, the data matrix Z would be a block diagonal
matrix. Let us denote the diagonal blocks as Z(m), m ϵ {1,…,g}.
Note that Z(m) is the submatrix of Zm that consists of original features zz{i,m}.

We now turn to specify a matrix B that encodes the constraint in objective (1), which is

,

DISTRIBUTION A. Approved for public release: distribution unlimited.

Since the feature dimensions becomes dimensions, so does the corresponding
classifier w. Denote the subvector w(m) the mth block of w. Due to the augmented features we
design, we can view w(m) as a model learned by the local machine m. Then, we specify the
transform B to be

where 1p means the p-dimensional vector of all 1's. Thus, BTw = 0 is equal to the constraint
that encourages the model associated with each machine to agree with

each other.

To make the dual form more compact and simplified, we relax the constraint and propose to
use a regularization term Ψ so that Ψ(BTw) can have the similar effect of the constraint.
We choose Ψ to be a squared of L2 norm. Thus,Ψ(BTw) would be

where wg+1 = w1 .The regularization penalizes the difference of a machine with its neighbors
(in terms of the index m) and encourages the subvectors w (m) of w to agree with each other.
Note that the specification of the transform B is flexible. If we have a prior about the relation
between the models, we can easily encode it in the transform.

To summarize, the conversion to the approximated dual form is
minimize_w

= - minimize_{x,y} s.t. Zx + By = 0 (11)

Here f{i,m} is the loss function associated to the sample i on machine m, and the symbol * is
used to represent the corresponding conjugate function. Note that x and y here are called dual
variables in the literature.

Exploiting diagoal structures of transformed feature space
Now we directly apply the standard ADMM (e.g. (3)~(5)) to solve the dual problem (11). But,
since we have transfer the problem into the high dimensional feature space, the computations
would be high. Yet, it turns out that we can leverage the structure of transformed feature
space. In the following, we give an example about how to compute Z where Z is the

transformed data matrix in and w is the concatenated classifiers computed by each

DISTRIBUTION A. Approved for public release: distribution unlimited.

local machine whose dimensions is pg. This high-dimensional matrix-vector multiplication
apppears in the ADMM updates. The direct computation causes high computation, large
memory consumption, and very frequent communication.

Our example given is g=3 cases (i.e. data are distributed on three machines). Suppose I1, I2,
and I3 batches of dual coordinates are chosen at current iteration, so the current mini-batch
I={I1,I2,I3}. Since matrix Z is a block diagonal matrix and all the off-diagonal blocks are zeros
(which are filled with the slash lines on the graph), the computations can be decomposed into
smaller components Z(1),I_1

T w(1), Z(2),I_2
T w(2), and Z(3),I_3T w(3), each is independently

computed on the respective local machine. Thus, the unnecessary computation and
communication can be avoided.

Fig. 1. An example to illustrate the way to leveraging the structure of transformed data matrix
to improve the computing performance.

To summarize, our ADMM on the dual problem is shown in (11). The algorithm is a variant
of ADMM applied on the dual domain which we have derived and the trick we desribed
above. By variant, we mean that in each iteratoin, a batch of dual coordinates x are updated
instead of all the coordinates, which is in the spirit of SDCA.

DISTRIBUTION A. Approved for public release: distribution unlimited.

Fig. 2. Algorithm for operating on dual domain

Communication-Efficient Online Semi-Supervised Learning in Client-Server Settings

Our framework is designed based on the above considerations. It can be decomposed into
several components that drive different functionalities. On the client side, we per- form data
triage by selecting instances from a candidate pool, where the selection criterion is controlled
by the server. On the server side, an online semi-supervised learning algorithm is employed to
handle unlabeled submissions. The key is to maintain two learners—a graph-based
semi-supervised model and a linear classifier—and let them collaborate to exploit unlabeled
data. Specifically, incoming instances are added to the training set of the first learner, which is
represented by a graph. The nodes of the graph are instances, and the edges between nodes
reflect the similarity between the corresponding instances. Then, the first learner predicts
labels for all unlabeled instances in the graph, and randomly samples an instance according to
the confidence of its predictions in order to teach the second learner. The second learner
updates its hypothesis, and delivers a new selection criterion to the client. At any time, the
second learner can be used as a standalone model for predicting new test data.
While different machine learning algorithms can be used as a part of this framework, some
techniques lend themselves to our problem setting better than others. In this work, we use the
harmonic solution (HS) as the first learner and the soft confidence-weighted classifier (SCW)

DISTRIBUTION A. Approved for public release: distribution unlimited.

as the second leaner. Our choice offers several advantages. First, SCW is simple, fast and
enjoys state-of-the-art performance on classification. Second, SCW performs a conservative
update especially with noisy labels. Third, SCW can be parameterized by a weight vector and
a covariance matrix, allowing the server to deliver the selection criterion to the client with a
low communication cost. In this work, we simply transmit the weight vector of SCW to the
client. On the other hand, HS nicely complements SCW by providing feedback using the data
manifold. It can leverage the similarities between instances, which is something that SCW
overlooks, to deter- mine labels of unlabeled data. By peering these two models together, we
enjoy the best of both worlds, efficient learning and simple parameterization due to SCW, and
the ability to exploit manifold information disclosed by unlabeled examples due to HS.
Moreover, SCW and HS can be incorporated into a single optimization problem.
One may find it is debatable whether a two-learner structure is really a preferable choice
comparing to a single learner. For example, one of the alternatives is to train a linear classifier
using its own predicted labels without leveraging data manifold information. Unfortunately,
such an idea is not effective according to our experiments. Sometimes, the results are even
worse than not using any unlabeled data. The reason is twofold. First, a single unlabeled
instance can hardly provide any useful information. Second, most of the online linear
classifiers only return a single hypothesis on each round, precluding any other possible
hypotheses. Hence, some previous work employed Bayesian methods to update a (posterior)
distribution over the hypothesis. Unfortunately, the posterior is often complicated. It is not
known how to perform the update analytically. Therefore, the learning process can be easily
misled and stuck in a wrong direction. Another alternative is to use a graph-based method
solely. However, due to the nonparametric nature of graph-based methods, it is not
straightforward to deliver the server’s model to clients with a low communication cost (for
the same reason, nonparametric methods are not favorable in our problem setting). Moreover,
graph-based methods are also less efficient for predicting new data, as they usually involves
matrix inversion. A two- learner structure, in contrast, surmounts the above problems by
complementing each other’s drawbacks. The choice of two learners with different underlying
mechanisms is a key for good performance.
If we define the communication cost as the total number of vectors in Rd transmitted over the
network, then a straight- forward implementation of our proposed framework incurs a
cost of at most

Parallel least-squares policy iteration

DISTRIBUTION A. Approved for public release: distribution unlimited.

We propose the parallel least-squares policy iteration to handle the large-scale learning
problem. The setting is that there are M workers (cores) available (either multiple machines or
multiple cores on a single machine) for computations. To fully exploit the available
computational resources, each worker m collects samples and runs by itself, and then updates
its estimated A-1

m, bm, and θm. At some point during learning, it communicates the learned θm
with other workers.
The algorithm is shown in Algorithm 1 in [b3]. For every outer iteration t, each worker m
individually collects samples by following e-greedy over K episodes. When collecting

samples, each worker also incrementally updates and . After conducting K episodes
of learning, each worker also reuses the samples collected at previous iteration to updates
and . Then, each worker updates θm and sends it to the master. The master then averages
the models to obtain the consensus z. and broadcasts it to all the workers. The workers then
update the policy with the new consensus and proceed to the next iteration. After T iterations,
parallel-LSPI outputs the most recent consensus zT.
In parallel LSPI, each worker m communicates to the master only after updating its estimator
θm, which occurs when it has executed sufficient number of episodes. This is the strategy that
balances between communication overheads and required iterations to the optimal solution. If
the algorithm dictates each worker to communicate right after every episode, communications
overheads becomes heavy. If each worker independently runs the episodes during training and
the parameters are only averaged at the end, the communication overhead would be
minimized but it may not lead to satisfactory results as the information from other workers is
completely ignored during training. Thus, a better strategy is to strike a balance between the
two extreme. Compared to the related work of parallel TD that only allows small K (roughly
K < 5), the proposed parallel LSPI can reduce communication cost by allowing the workers to
run sufficient amount of episodes before mixing. Note that the underlying core of LSPI is
least-squares temporal difference learning (LSTD Q), which is naturally a batch method in
contrast to TD learning. Therefore, it does not need to update θ for every transition as TD
learning does. Thus, parallel LSPI naturally enjoys the benefit of parallelization without the
burden of frequent communication.

ANALYSIS

Here we analyze the sample complexity of the proposed method. As for non-parallel
LSPI did, the analysis is first performed on a version of LSTD called pathwise-LSTD
for policy evaluation. It analyzes LSTD at the states along a sampled trajectory
following a given policy. As there are M workers (and M trajectories) with parameter
averaging conducted in our case, we have to analyze the averaged estimated parameters
from the trajectories. Then, one may generalize the analysis over entire state space
under certain condition and derive the finite-sample bound of parallel LSPI in turn.

DISTRIBUTION A. Approved for public release: distribution unlimited.

Thus, here we focus on parallel pathwise-LSTD as the insight on the sample
complexity can already be seen in this step.

Before explaining pathwise-LSTD, let us first describe the notations. As an MDP is
reduced to a Markov chain given a policy π, let (X1, X2,...,Xn) be a trajectory of size n
generated by the Markov chain. With abuse of notation, we denote Φ =
[φ(X1)T;...;φ(Xn)T] as the feature matrix defined along the trajectory. The estimated
value function is thus constrained on the feature space F = {Φθ, θ ∈ Rd}.
Pathwise-LSTD takes the feature matrix Φ generated by a trajectory following as input.
It builds the empirical transition matrix , and sets
the quantities A = ΦT(I− rP) Φ, and b=ΦTr. It then outputs the solution θ = A+b with
minimum norm, where A+ represents the Moore-Penrose pseudo-inverse of A.

Let us denote v as the value function and its estimated one along the trajectory, and

as the empirical norm. Moreover, let Vmax represent the

feature space, and ν be the smallest positive eigenvalue of the maximum of the value
function, Π be the projection to the feature space, and v be the smallest positive
eigenvalue of Gram matrix ΦTΦ/n. From Theorem 1, is bounded as

with high probability 1 − δ.

For parallel pathwise-LSTD, denote (X1,m,X2,m , ..., Xn,m) as the mth trajectory of the
Markov chain induced by a policy π, Φm = [φ(X1,m)T ;...;φ(Xn,m)T] as the corresponding
feature matrix, and νm as the smallest positive eigenvalue of the corresponding sample

of features. Moreover, let based Gram matrix
represent the pathwise solution of the trajectory m, andrepresent the value function
and the estimated one at the states along trajectory m respectively. Since parallel LSPI
conducts parameter averaging, we are interested in the sample complexity associated
with the averaged estimator represent the new policy at the next
iteration of parallel LSPI and be the trajectory of the Markov chain
following π with Φ being the corresponding feature matrix. Then, we want to analyze
the quantity as it would give us insight on the sample complexity. To estimate the upper
bound, we make the following assumption that connects the performance of θm

evaluated at the new trajectory to the one evaluated at the original
where θm is estimated from.

DISTRIBUTION A. Approved for public release: distribution unlimited.

Assumption There exists a constant c such that the empirical norm of the difference

between value function v and the one implied by evaluated at the trajectory
 is upper bounded as .

Notice that the empirical norms on both sides of the inequality are evaluated at
different trajectories; the left hand side is on , while the right hand side is on

for an m. Using the assumption, we can bound, which measures
the performance of the averaged estimator.

Proposition Following the above assumptions, if of each m is near
orthogonal, we have

where νmin represents the smallest of the νm, and Maxm represents the
largest of the terms. If are highly correlated, we have

The proposition suggests that, for the ideal case, parallel LSTD can estimate the

value function at an improved rate O(1/√Mn) of each worker comparing to the original

rate of O(1/√n). This implies that the effectiveness of process in which M workers

collect some n/M samples in parallel is comparable to a single worker collecting n

number of samples. Yet, the sampling is conducted in a distributed fashion in parallel

LSTD as compared to standard LSTD. At the other extreme, for the worst case scenario,

parallel LSTD has the same sample rate, O(1/√n), for each worker as that of standard

LSTD. Yet, each worker individually collects n samples meaning that the total samples

in parallel LSTD are M times larger than that of the non-paralleled one.

Proof: First, let us rewrite . Suppose, for each

 is nearly mutual orthogonal. Then, we have

DISTRIBUTION A. Approved for public release: distribution unlimited.

where

Taking square root on both sides gives us the result.

In contrast, if all are highly correlated, we have

which reduces to the case of a single worker.

To achieve better performance for parallel LSPI, according to the proposition, we
should make as less correlated to each other as possible.

However, is unknown in advance. To deal with the issue, a heuristic is
used to enforce each worker to take random actions more when collecting samples.
Since e-greedy is adopted here, a larger that encourages more exploration (i.e.
randomly choosing an action) will bring us closer to the goal. If gets close to zero, the
randomness would mostly come from the transitions P of the process. In this case,
performance of parallel LSPI may not achieve significant speedup, depending on the
underlying MDP and the feature space. Note that the degree of correlation between

is not equivalent to the degree of the correlation between Still, our
experiments reveal that such heuristic does have positive effect on the performance.

Results and Discussion:
Speeding up ADMM

We compare our methods with standard ADMM and distributed SDCA on several datasets.
We denote our first method which performs ADMM on primal objective (1) with sampling as
ADMM-P, and we denote the second method which performs distributed SDCA-ADMM on
dual objective (9) as ADMM-D.

DISTRIBUTION A. Approved for public release: distribution unlimited.

The datasets are binary classification. For dataset: delta, gamma, and ocr are available on
http://largescale.ml.tu-berlin.de/about, while for dataset: mnist, epsilon, and rcv1 are available
on http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/. Table 1 shows their statistics. For
delta, gamma, and ocr, because only the labels of original training data are available, we split
each of them by 80% as training set and the remain 20% as testing set. For mnist, we choose
classifying digit 4 against digit 7 as the recognition goal and also split the data into 80/20 split.
For epsilon, we use the pre-defined training/testing split. For rcv1, the ratio of original
training to testing data size is much less than one, so we re-split the data into 80/20 split. The
data are further distributed on four machines in our workstation. The batch size |I| is set to 100
(i.e each of four machines uses 25 samples at a time) for both SDCA and ADMM-D on all the
datasets except rcv1 where the batch size $|I|$ is set to 1000.

Table 1. Dataset Statistics

There are some parameters needed to be specified in ADMM-D: ρ,γ,η{Z,I}, and ηB. For γ, we
set it as γ=1/n. For ηB, due to the choice of transform B, simple calculation would show that it
should be at least gp (i.e. the value no less than the multiplication of number of machines g
and feature dimensions p). For η{Z,I}, it should be larger than the largest eigenvalue of ZT

I ZI
associated with the mini-batch I. But it is time consuming to compute it for each mini-batch at
the augmented feature space. Instead, before running the optimization, we just sample a
mini-batch, say I, and calculate the largest eigenvalue of ZT

I ZI at the original feature space.
Denote the computed value as η{tmp}. We set every η{Z,I} to the same value: η{Z,I} = θ, where θ=
5 x 10d with the smallest power d such thatθ>η{tmp}. For ρ, it is set to 10d' with d' chosen to
satisfy ρ x η{Z,I} = 5. We found the heuristic work well.

The parameters for standard distributed ADMM is set to the default setting, while for the
ADMM-P, we set the additional parameter k to 1.5, which means that samples used is
increased by 1.5 times at subsequent iterations (we did not find any value that significantly
leads to better results.). Since the objective of each method is not the same (i.e. for ADMM-D,
the objective is shown on (9); for standard ADMM and ADMM-P, the objective is shown on
(1); for parallel-SDCA, the objective is hinge loss with L2 regularization without any
constraint as compared to the others.), we tune the regularization parameter C such that each
method can achieve to the best accuracy on each dataset.

DISTRIBUTION A. Approved for public release: distribution unlimited.

http://largescale.ml.tu-berlin.de/about
http://www.csie.ntu.edu.tw/%7Ecjlin/libsvmtools/datasets/

Fig. 2 shows the results, which are about training accuracy vs. time. Each curve represents a
different method. For ADMM or ADMM-P, each point on a curve is the classification result
of a model at a corresponding iteration, while for distributed SDCA or ADMM-D, each point
is the result at every the-number-of-batches iterations (which is roughly equivalent to a full
pass of data.). We run the distributed SDCA and ADMM-D ten times for each dataset so the
results are the averaged ones.

Fig 2. Training accuracy vs. time for each method on different datasets.

From the figures, we see that ADMM-D converges the fastest on most of the datasets except
rcv1 among the methods. The figure also shows that ADMM-D and distributed SDCA
outperform standard ADMM and ADMM-P on most of the cases, while ADMM-D is better
than distributed SDCA on gamma and epsilon. On other data, ADMM-D is comparable or
slightly better than distributed SDCA. This indicates that ADMM-D (distributed
SDCA-ADMM) can enjoy the merits of SDCA and ADMM and outperform them as a
consequence. The figure also shows ADMM-P is at least comparable to standard ADMM. On
rcv1, standard ADMM seems to be better than ADMM-D and distributed SDCA. Note that
the feature dimensions of rcv1 data is much larger than the other datasets. As the dimensions
increases, computations such as matrix-vector product also scales with the dimensions. For
standard ADMM, the algorithm follows a strategy used in LIBSVM, where it maintains and
updates a active set such that the dual variables associated with samples outside the active set
do need to be updated anymore. This means that the computational time is decreased through
iterations of standard ADMM, which alleviates the suffer of high dimension. While in SDCA

DISTRIBUTION A. Approved for public release: distribution unlimited.

or ADMM-D, at each iteration, it still samples a pre-determined batch size of data. Thus, an
interesting future work is exploiting the active set strategy into distributed SDCA and
ADMM-D. To summarize, ADMM-D is a effective method on medium feature size data. If
frequent communication is admissible (as in our setup), we suggest to use ADMM-D,
otherwise use ADMM-P.

We propose sampling-based ADMM approaches for learning from distributed data. We
integrate the idea from stochastic gradient descent into ADMM. Our first method uses subset
of data on early rounds of communication, which can reduce the cost on early stage while
enjoy the similar convergence rate as the standard one. We also transform the primal
objective into the approximated dual form and propose a distributed variant of the recently
proposed SDCA-ADMM to solve it.

Communication-Efficient Online Semi-Supervised Learning i
Experiments were conducted on seven data sets downloaded from either the UCI ML
repository (wearable, skin) or the LIBSVM website (mushroom, mnist, webspam, gisette,
ijcnn1). The motion recognition data set wearable and digit recognition data set mnist were
converted into a set of bi- nary problems, respectively, where each class is discriminated
against every other class. Totally, we produced 10 problems from wearable and 45 from mnist.
For each data set, we balanced the number of instances of each class and linearly rescaled the
feature values into the range [−1, 1].
We evaluated the algorithms using a set of trials with different partitions of the training and
test data. In each trial, we randomly held out half of the data for testing; all instances in the
test set were labeled by the algorithms. The remaining data was used for training, of which
only a small amount was labeled. Both training and test sets were class- balanced. Next, we
randomly permuted the training data and kept labeled data always at the beginning. All
algorithms were then incrementally trained with the same permutation in each trial. For
evaluation, we paused the training at regular intervals, computed the output hypothesis so far,
and calculated its test accuracy.

DISTRIBUTION A. Approved for public release: distribution unlimited.

Comparison of Server’s Model

Fig 3. shows the results. It can be observed that proposed hs+scw and hs+scw+cut enjoy
superior performance on 8 out of 10 problems comparing to other partial label competitors.
On 45 mnist problems, hs+scw and hs+scw+cut yielded on average 0.966 and 0.971 accuracy,
respectively. On 20 wearable problems, hs+scw and hs+scw+cut gave 0.699 and 0.714
accuracy, respectively. They are consistently better than the single-learner counterpart scw on
all data sets. This indicates the effectiveness of leveraging manifold information of the graph.
In fact, on webspam, ijcnn1 and wearable, scw is even worse than none. On webspam, its test
accuracy starts with 0.658, decreasing over time and finally yielded 0.637. This is due to the
fact that scw completely relies on its own prediction for learning. When the labeling rate is
small, the initial hypothesis constructed by labeled data may not be accurate enough. As a
consequence, the prediction of scw on

Comparison of Selection Strategy

Fixing the model on the server as hs+scw+cut, we study the following strategies on the client
side.
All, All unlabeled instances are uploaded without selection. This incurs 5x the
communication costs versus other approaches.
rand Randomly selects instances for uploading.
certain The most certain instances according to the current server model

uncertain The most uncertain instances are uploaded.
submod Selection is done by optimizing the submodular function described in Section VI. It
simultaneously considers the uncertainty and redundancy.

DISTRIBUTION A. Approved for public release: distribution unlimited.

The results are shown in Table 2. It is interesting to see that All, which transmits all unlabeled
data, does not lead to a better performance. In fact, on mnist, mushroom, and gisette, All
yields worse test accuracy compared to selective transmission. This confirms the intuition that
not all unlabeled instances are useful. It also suggests the necessity of using a selective
sampling strategy on the client. Not only the communication costs can be saved, but also a
better model might be learned.

2

DISTRIBUTION A. Approved for public release: distribution unlimited.

motoda
長方形

Parallel least-squares policy iteration

We conduct the experiments on two domains. One is the discrete-time four-dimensional

queuing network. Figure 4 illustrates the network, which includes four queues, each with

buffer size B. Here server 1 can only serve queue 1 or 4, and server 2 can only serves queue 2

or 3 one at a time but not simultaneously. Each server can only handle one customer at a time

at most. Moreover, neither server can be idle. Let the tuple {a1,a2,a3,a4} represents an action

combination which the servers take by considering conditions in the queues {q1,q2,q3,q4},

where ai = {1,0} indicates whether qi is currently being served or not. Then, there are total

four actions {1,1,0,0} {0,1,0,1} {1,0,1,0} {0,0,1,1} the servers can take. As the result, the

number of states is (1+B)4×4, which means that a modest B will result in a huge state space.

The dynamics of the network are defined by the rate parameters μ1,μ3,d1,d2,d3,d4 ∈ (0,1),
all follow Bernoulli distribution. μ1 and μ3 are coming rates of new customers. At each time
step, with probability μi, a new customer comes to queue i. di is defined as follows: if ai = 1,
which indicates queue i is being served, the server would succeed in handling a customer with
probability di before the next time step, and fail with probability 1 − di. Starting with empty
queues, each

Fig. 4. The discrete-time four dimensional queuing network. Customers can arrive at q1 or q3.
The customer that is served and finished by q1/q3 is then referred to q2/q4.

episode spans a fixed number of time steps, T. The goal is to minimize the average of total
waiting (unserved) customers in the network during an episode. The loss for a state-action
pair is defined as l(s,a) = l(s) = |X|, which is the total number of unserved customers in all the
queues. After an episode, the network is reset to empty and a new episode begins.

We consider four types of networks:

1) μ1 = 0.5,μ3 = 0.5,d1 = 0.5,d2 = 0.8,d3 = 0.8,d4 = 0.5, episode duration T = 50, and
buffer size B = 5, which results in 5,184 state-action pairs.

2) μ1 = 0.5,μ3 = 0.8,d1 = 0.5,d2 = 0.1,d3 = 0.8,d4 = 0.8, episode duration T = 100, and
buffer size B = 10, which results in 58,564 state-action pairs.

3) μ1 = 0.4,μ3 = 0.4,d1 = 0.5,d2 = 0.8,d3 = 0.3,d4 = 0.3, episode duration T = 200, and
buffer size B = 15, which results in 262,144 state-action pairs.

DISTRIBUTION A. Approved for public release: distribution unlimited.

4) μ1 = 0.4,μ3 = 0.4,d1 = 0.4,d2 = 0.8,d3 = 0.8,d4 = 0.4, episode duration T = 200, and
buffer size B = 15, which results in 262,144 state-action pairs.

We design 340-dimensional sparse binary feature for type 1 network and 1048-dimensional
features for the others. In our design, only two entries in the feature are non-zeros for each
state-action pair.

Another domain is the persistent search and track. The scenario is that there are three
Unmanned Aerial Vehicles (UAV) to corporate for a mission. There are three available
actions for each UAV: {advance,retreat,loiter}, resulting in 27 total possible action
combinations. The current state of a UAV is described by : location, fuel, actuator status, and
camera status. The goal is to fly to the target site and perform surveillance, while ensuring
that there is a UAV with a working actuator loitering at the intermediary site to transfer the
information of the targets to the base.

We modify the scenario because the reported performance of LSPI is not good in the original
setting. Each UAV starts from the base with 6 units of fuels. The camera and actuator of each
UAV can may with a 3% probability at each time step. The camera cannot function under
failed actuator, so a UAV with a failed actuator cannot perform surveillance. Yet, a UAV can
perform communication even its camera malfunctions. A successful surveillance mission
must have at least one UAV with working actuator at the intermediary site, and at least one
UAV with working actuator and camera at the surveillance site. At each time step, each UAV
loses 1 unit of fuel except when it “loiters” at the base or at the intermediary site. When a
UAV “loiters” at the base, the failed camera and actuator are fixed, and the fuels are
recharged fully. When a UAV with working actuator “loiters” at the intermediary site, the
messages is transmitted to the base

Fig. 5. Persistent search and track.

and UAV’s fuel tank is recharged by 2 units (the fuel cannot exceed the capacity, which is 6
units). If a UAV “retreats” at the base, then it may “advance” to the intermediary site or
“loiter” at the base with equal probability. Executing “advance” action at the surveillance site
has similar effect. The reward for each state-action pair is defined as r(s,a) = 15×Icomm ×
Isurv−10×Icrash−(18−total remained fuels), where Icomm indicates whether there is a UAV
with working actuator at the intermediary site, Isurv indicates whether there is a UAV with
working actuator and camera at the surveillance site, and Icrash represents whether a UAV
crashes. If a UAV runs out of fuel, which means it crashes, the episode is terminated. In total,

DISTRIBUTION A. Approved for public release: distribution unlimited.

the state-action pair has the size of about 1.6×106, and about 2000-dimensional sparse binary
feature including fixed sparse representation.

B. Setup and Results

We compare parallel LSPI with standard LSPI on the two domains. Both methods are
implemented in C and the communication in parallel LSPI is implemented with MPI. For
parallel LSPI, we report the performance of M = 4 and M = 8 workers. In our implementation,
parallel LSPI uses single core machines, yet the shared-memory architecture (i.e. multi-core
on a single machine) is also applicable. For the queuing network domain, LSPI and
parallel-LSPI update their policies every 100 episodes, and both of them terminate after
learning 1000 episodes, which corresponds to K = 100 and T = 10 in the algorithm. For
persistent search and track, both LSPI and parallel-LSPI update their policies every 1000
episodes, and terminate after 10,000 episodes. We set γ = 0.95 for both domains. All the
experiments are repeated 50 runs with the averaged results and standard deviations reported.

We also try different -greedy policy. Higher means each worker takes random action
with higher probability, which could reduce the correlation between workers. The results for
the queuing network are shown in Figure 6, and results for persistent search and track are
shown in Figure 7. The learned parameter θ is recorded when it is updated, so each point on
the line represents the performance of learned parameter at the end of an iteration of the
corresponding algorithm. For parallel LSPI, we record the consensus as the the learned
parameter. The performance of a learned parameter in the queuing network domain is
measured by the average of losses (where loss of an episode is defined as the average of all
waiting customers in the network during an episode) over additional 500 episodes, which are
conducted by following the deterministic policy implied by the learned parameter. In
persistent search and track domain, the performance is measured by cumulated discounted
rewards, with the same evaluation procedure as the queueing network.

Figure 6 suggests for queueing network, higher e yields better parallelization since the

correlation between workers is smaller. At higher (left column), which encourages
taking random action more during learning, parallel LSPI can significantly

accelerate the learning process comparing to taking action more greedily with
respect to the current estimated state action value (right column). For

parallel-LSPI with 0.7 or 0.5greedy, after running three or four iterations, it

already reaches the point where the standard LSPI needs to take ten iterations or
more. For 0.2-greedy in network 3 and 4, parallel LSPI has no advantage while

consumes more computation resources than non-parallelized one each iteration.
For persistent and search domain, parallel-LSPI with -greedy already

DISTRIBUTION A. Approved for public release: distribution unlimited.

achieves significant speedup than its non-parallel counterpart, increasing can

accelerate further but not much more. This reflects the limitation of the proposed

(a) 0.7-greedy in type 1 network (b) 0.5-greedy in type 1 network (c) 0.2-greedy in type 1 network

(d) 0.7-greedy in type 2 network (e) 0.5-greedy in type 2 network(f) 0.2-greedy in type 2 network

(g) 0.7-greedy in type 3 network (h) 0.5-greedy in type 3 network(i) 0.2-greedy in type 3 network

(j) 0.7-greedy in type 4 network (k) 0.5-greedy in type 4 network(l) 0.2-greedy in type 4 network

Fig. 6. Losses of the learned parameter versus learning time. Each row corresponds to a network, while
each column corresponds to different. Star marker represents LSPI, circle marker represents parallel
LSPI with four workers, and square marker represents parallel LSPI with eight workers. The 0.5 s.e.
error bars are also plotted.

DISTRIBUTION A. Approved for public release: distribution unlimited.

heuristic, yet parallelLSPI still shows the benefit of parallelization. The overhead

of parallelization can also be seen on the figures. We can see that parallel LSPI
requires slightly more time to finish the same amount of iterations than standard

LSPI does due to communication overhead. Yet, this overhead is tolerable since

parallel LSPI usually reaches at the same level of performance as standard LSPI
with much fewer iterations.

From the figures, we also observe that the advantage of parallelization decreases as
the number of workers increases (4 workers vs. 8 workers). The acceleration by
doubling the workers is incremental in most of the cases. A possible

A possible explanation is that the correlation between workers is likely to increase with
more workers being added. Similar to the parallel TD, the degree of parallelization of
our method still has some room for improvement. This limitation is not explicitly
implied in our analysis since we just show the ideal case and the worst case. That says,
the connection between the degree of possible parallelization and the properties of
underlying MDPs and feature space needs to be further explored. We leave it as a future
work.

List of Publications and Significant Collaborations that resulted from your AOARD
supported project: In standard format showing authors, title, journal, issue, pages, and date,
for each category list the following:
a) papers published in peer-reviewed journals,
b) papers published in peer-reviewed conference proceedings,

(a) 0.1-greedy (b) 0.2-greedy (c) 0.35-greedy

Fig. 7. Rewards of the learned parameter in persistent search and track domain versus
learning time. The 0.5 s.e. error bars are also plotted.

DISTRIBUTION A. Approved for public release: distribution unlimited.

1 Han Xiao , Shou-De Lin , Mi-Yen Yeh , Phillip B. Gibbons and Claudia Eckert ”Learning

better while sending less: Communication-efficient online semi-supervised learning in

client-server settings” DSAA 2015

2 Jun-Kun Wang, Shou-De Lin “Efficient Sampling-based ADMM for Distributed Data”,

DSAA 2016.

3 Jun-Kun Wang, Shou-De Lin “Parallel Least-Squares Policy Iteration”, DSAA 2016.

c) papers published in non-peer-reviewed journals and conference proceedings,
d) conference presentations without papers,
e) manuscripts submitted but not yet published, and
f) provide a list any interactions with industry or with Air Force Research Laboratory scientists

or significant collaborations that resulted from this work.

Attachments: Publications a), b) and c) listed above if possible.

As attached

DISTRIBUTION A. Approved for public release: distribution unlimited.

	ANALYSIS
	B. Setup and Results

