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Abstract: This work aims at solving issues in distributed machine learning. We propose three 
directions to work on. First, we design solutions to speed up the alternating direction method of 
multipliers (ADMM) for distributed data. Second, we focus on a client-server learning scenario 
in which an online, semi-supervised learning approach is designed to reduce the 
communication load. Finally, we propose the parallel least-squares policy iteration (parallel 
LSPI) to parallelize a reinforcement policy learning. 

Introduction: 

Speeding up ADMM 
We consider training a classifier given large data that are distributed. Since data are 
distributed on different machines and are too big to relocated, an efficient way to train a 
classifier is to develop a distributed optimization method. The alternating direction method of 
multipliers (ADMM) can be exploited to solve this problem, in which each local machine 
updates its learned model and the master machine tries to reach a consensus. Specifically, the 
setting we consider is that there are g machines with each machine m learns a model wm from 
its local data Nm. The learned models wm are required to agree with each other to form a 
consensus c. Mathematically, we are interested in solving the following linear classification 
problem, 

(1) 
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where li and zi is a label/feature pair of the i sample on machine m, and C controls the 
regularization effect. Although squared hinge loss is shown here, the objective is in fact 
general and other types of loss function can be utilized. For example, if we use squared loss, 
the objective becomes a regression problem. 
 
There exist some related works using ADMM for distributed data. For example, [Zhang et. al. 
2012] have implemented ADMM to solve it. The update of w at an iteration of ADMM turns 
out to be similar to standard SVM formulation. Thus, [Zhang et. al. 2012] adapted the 
approach, stochastic dual coordinate assent, which is implemented in a well-known LIBSVM 
toolkit to solve it. As the result, several ``inner'' iterations are required to obtain wm at each 
iteration of ADMM. When the data on each local machine is also large, the computational 
cost for one pass of full data drastically increases, which makes the update of wm consume a 
substantial amount of time. We aim at dealing with this issue and proposed two method.  
 
The first approach is leveraging the idea from stochastic gradient descent method (SGD) 
[Bottou et al. 2010] for ADMM. SGD has shown its merits on solving large-scale 
optimization problem. At each iteration, it samples an instance to compute the gradient 
instead of using all the data as in the traditional gradient descent method. Several works has 
shown that SGD can solve large-scale problem more efficiently comparing to gradient 
descent [Bottou et al. 2010]. It is known for SGD that only a few samples are needed to 
achieve sufficient descent of the objective at the beginning. To achieve similar effect in 
ADMM, at the first few iterations, each local machine only uses a subset of its data instead of 
using all the data to update its model. For example, at the first iteration, each machine 
samples half of its data to compute wm. Then, the sample size is increased for next iteration, 
and eventually each machine utilizes all of its local data. The method requires fewer 
computations at the first couple iterations, and therefore has the potential to achieve faster 
convergence. Since the method has cheaper iteration costs at the beginning, the method 
converges faster in terms of time. More importantly, we provide a theorem that guarantees the 
method to enjoy the same convergence rate in terms of the number of the iterations as the 
standard ADMM.  
 
Following the idea of sampling subset of data instead of full to update the model before each 
round of communication, we convert the objective (1) to the dual domain and proposed our 
second approach that performs ADMM on the dual domain. As each dual variable 
corresponds to a sample, sampling a subset to update the model becomes easier and more 
natural than in primal domain. The algorithm for performing ADMM on the dual of (1) turns 
out to be equivalent to SDCA-ADMM [Suzuki 2014], which is originally proposed to solving 
objective with complex regularizations (e.g. group lasso [Jacob et al. 2009], graph guided 
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SVM [Ouyang et al. 2013] by combining ADMM and stochastic dual coordinate ascent 
(SDCA). However, these works do not consider generalizing the method on distributed data. 
We show the algorithm can solve for optimization on distributed data as well. 
 
To summarize, our contribution are 1) proposing a simple, easy to implement, yet effective 
way to accelerate the ADMM on distributed data with a theoretical guarantee, 2) proposing 
running ADMM on the dual of the objective and showing the advantages of doing it, 3) 
showing the effectiveness of our methods on several datasets.  
 
Communication-Efficient Online Semi-Supervised Learning in Client-Server Settings 
This work considers such a setting where a set of distributed clients each generate an ongoing 
stream of data and a server seeks to learn a model of the data. We impose two practical 
limitations on the setting. First, because of the costs of having humans label large quantities 
of data, we assume that only a small fraction of the data are labeled. In particular, we focus on 
a setting where only the first, e.g., 2% of the training data are labeled. Second, because 
communication bandwidth is often expensive and battery-draining (e.g., a mobile device on a 
cellular network), we seek communication-efficient solutions such that each client is limited 
to sending to the server only a small fraction of the unlabeled data it generates, and limited in 
how much information it receives from the server. 
An elegant solution to these problems will face many challenges. First, the amount of data 
generated by clients can be huge, and even potentially unlimited. As a result, the vast majority 
of data on the server are unlabeled. Typically, it is not sufficient to train a model with a good 
generalization ability based merely on limited labeled data. Second, when the volume and 
velocity of data is high, it is very costly and impossible to store all data either on clients or the 
server. Thus, traditional approaches that first store data and then train on a static collection are 
not appropriate in this case. Third, transmitting massive data on the network is discouraged in 
practice, especially when the network bandwidth is restricted or the communication cost is 
expensive (e.g., on a cellular network). It may also be mis-classified as a denial-of-service 
attack, and dropped/blocked. 
By considering online, semi-supervised, and active learning jointly, our goal is to develop a 
modular framework for learning from a remote partially labeled data stream while reducing 
the bandwidth consumption. We present a novel framework for solving this learning problem 
in an effective and communication-efficient manner (see Figure 1). On the server side, our 
solution combines two diverse learners working collaboratively, yet in distinct roles, on the 
partially labeled data stream. A compact, online graph-based semi-supervised learner is used 
to predict labels for the unlabeled data arriving from the clients. Specifically, we adapt the 
Harmonic Solution learner to online use via an incremental k-center clustering approach that 
maintains the graph structure solely on a set of k centroid nodes. Random samples are then 
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repeatedly drawn from the model according to the confidence of its prediction, and used to 
train a second learner on the server, a linear classifier (specifically, a soft 
confidence-weighted classifier). The second learner updates its hypothesis based on these 
samples and their predicted labels. We show how these two learners can be combined in an 
optimization problem. On the client side, our solution prioritizes data based on an 
active-learning metric that favors instances that are more uncertain (i.e., close to the 
classifier’s decision hyperplane) and yet far from each other (as measured by covariance). To 
reduce communication, the server sends the classifier’s weight-vector to the client only 
periodically. At any point in time, the classifier can be used as a standalone model for 
predicting labels for new test data. 
 
Parallel least-squares policy iteration 
 
Learning an optimal policy for MDPs with large state space has gained many interests 
recently. Different from previous works, our proposed method is inspired by the recent 
success in distributed optimization. The goal is to parallelize an existing policy iteration 
method called least-squares policy iteration. The algorithm takes advantage of the multi-core 
or multi-machine architecture, where each worker (one per core or machine) individually 
executes a fraction of episodes and estimates a parameter while a consen- sus is maintained 
by parameter averaging. With the feedback of global consensus, each worker can access the 
information learned by other workers at the previous iterations. As the result, the learning 
process of each individual worker can be accelerated, as compared to learning alone. 
Our work aims at answering the following question: Given multiple computational resources, 
how to efficiently solve an MDP? In our problem, each worker faces the same MDP, and each 
worker communicates with others about the estimated parameter during learning. Thus, our 
work can be regarded as a complement to multi-agent MDP. 
 
Our analysis on parallel LSPI shows that the correlation between the learning processes of 
each individually learned model can influence the effectiveness of the method. The com- 
putation gains achieved with parallel LSPI is less significant when there exists high 
correlation between workers. To deal with this issue, a heuristic is proposed to encourage 
each worker to explore (i.e. taking random action) more when it collects samples, which 
increases the randomness and in turn reduces correlation. 
 
To summarize, we propose parallel LSPI to efficiently solve an MDP through parallel 
programming. Our method can also balance the communication overhead and required 
number of iterations to find the optimal solution, which is suitable for situation when only 
limited bandwidth is available. We give some analysis for the proposed method and conduct 
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experiments to show its effectiveness on queueing networks and persistent search and track 
domains.  
 
Method/Theory/Experiment:  
 
Speeding up ADMM 
 
We begin by describing how to apply ADMM in a distributed data problem. The augmented 
Lagrangian of objective (1) is  

 

      (2) 
The algorithm in ADMM consists of 

wk+1 = argmin_w  (3) 
c k+1 = argmin_c  (4) 
λk+1 = argmin_λ  (5) 
where k is the iteration index, w is { w1, …, wg} and and λ is { λ1,…, λg}. Note that solving 
(3) is similar to solving the objective of standard SVM. To see this, we rewrite it in explicit 
form. 
   

    
Therefore, we can use an existing optimization methods for SVM for solving (6). 
 
A sampling approach for fast ADMM on primal objective (1) 
From the previous section, we know that ADMM requires solving the SVM-like problem (6) 
at every iteration of ADMM. Each iteration requires many inner iterations to complete. When 
local data is large, it will take a substantial amount of time. To deal with this, we propose a 
way to alleviate the training cost. At the earlier iterations, each local machine only uses a 
subset of its data instead of using all the data to update its learned model. As the algorithm 
continues, each machine gradually increases the amount of data used and finally reaches the 
full capacity. This method enjoys similar fast decrease of objective value as SGD does at the 
first few iterations and shares the same convergence rate in the long term as using the full 
dataset every iteration. Thus, for each iteration, each machine solves the following instead of 
(6) . 
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where we have replaced Nm with Nm
k, which represents the amount of data used on machine 

m at the kth iteration. The amount of data used at the k+1 iteration, Nm
k+1, satisfies 

where β>1 is the increasing rate. Note that Nm stands for all of the data of machine m. For 
example, we can initialize Nm

1 to 0.5 Nm , and set β to 1.1, meaning the amount of data used 

for training at each iteration in ADMM increases by 10 percents each iteration. The 
optimization procedure of the modified algorithm is roughly the same as the traditional one; it 
iterates over (3)-(5), except that the sub-problem (3) or (6) is replaced by (8), which can be 
solved in a similar manner as described in the previous section.  

A sampling approach for fast ADMM on dual objective of (1) 
We give another method that still follows the idea of sampling subset of data on each round of 
communication. This section begins by converting the primal form (1) to dual form. In order 
to make the dual form compact, we relax the constraint and approximate it. As each dual 
variable corresponds to a sample, sampling a subset to update the model becomes easier and 
natural. We then show how to integrate the sampling idea in performing ADMM on the dual 
of (1). Solving the dual of (1) by ADMM turns out to be equivalent to SDCA-ADMM. We 
then propose some techniques to efficiently perform SDCA-ADMM for distributed data. 
Converting primal (1) to approximated dual form 
To achieve the goal, we transform each feature vector from p-dimensional feature space to 
pg-dimensional features space. That is, the dimensions of augmented feature space is , 
which is g times larger than the original feature dimension p. 

Let us denote the original feature vector of the i sample on the m machine as zz{i,m}. 
The new feature is  

the other entries in z{i,m} are set to zeros. Thus, the data matrix Z would be a block diagonal 
matrix. Let us denote the diagonal blocks as Z(m), m ϵ {1,…,g}. 
Note that Z(m) is the submatrix of Zm that consists of original features zz{i,m}. 

We now turn to specify a matrix B that encodes the constraint in objective (1), which is 

,
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Since the feature dimensions becomes  dimensions, so does the corresponding 
classifier w. Denote the subvector w(m) the mth block of w. Due to the augmented features we 
design, we can view w(m) as a model learned by the local machine m. Then, we specify the 
transform B to be 

where 1p means the p-dimensional vector of all 1's. Thus, BTw = 0 is equal to the constraint 
that encourages the model associated with each machine to agree with 

each other. 

To make the dual form more compact and simplified, we relax the constraint and propose to 
use a regularization term Ψ so that Ψ(BTw) can have the similar effect of the constraint. 
We choose Ψ to be a squared of L2 norm. Thus,Ψ(BTw) would be  

where wg+1 = w1 .The regularization penalizes the difference of a machine with its neighbors 
(in terms of the index m) and encourages the subvectors w (m) of w to agree with each other. 
Note that the specification of the transform B is flexible. If we have a prior about the relation 
between the models, we can easily encode it in the transform. 

To summarize, the conversion to the approximated dual form is 
minimize_w 

= - minimize_{x,y} s.t. Zx + By = 0 (11) 

Here f{i,m} is the loss function associated to the sample i on machine m, and the symbol * is 
used to represent the corresponding conjugate function. Note that x and y here are called dual 
variables in the literature. 

Exploiting diagoal structures of transformed feature space 
Now we directly apply the standard ADMM (e.g. (3)~(5) ) to solve the dual problem (11). But, 
since we have transfer the problem into the high dimensional feature space, the computations 
would be high. Yet, it turns out that we can leverage the structure of transformed feature 
space. In the following, we give an example about how to compute Z  where Z is the 

transformed data matrix in  and w is the concatenated classifiers computed by each 
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local machine whose dimensions is pg. This high-dimensional matrix-vector multiplication 
apppears in the ADMM updates. The direct computation causes high computation, large 
memory consumption, and very frequent communication. 

Our example given is g=3 cases (i.e. data are distributed on three machines). Suppose I1, I2, 
and I3 batches of dual coordinates are chosen at current iteration, so the current mini-batch 
I={I1,I2,I3}. Since matrix Z is a block diagonal matrix and all the off-diagonal blocks are zeros 
(which are filled with the slash lines on the graph), the computations can be decomposed into 
smaller components Z(1),I_1

T w(1), Z(2),I_2
T w(2), and Z(3),I_3T w(3), each is independently 

computed on the respective local machine. Thus, the unnecessary computation and 
communication can be avoided. 

Fig. 1. An example to illustrate the way to leveraging the structure of transformed data matrix 
to improve the computing performance. 

To summarize, our ADMM on the dual problem is shown in (11). The algorithm is a variant 
of ADMM applied on the dual domain which we have derived and the trick we desribed 
above. By variant, we mean that in each iteratoin, a batch of dual coordinates x are updated 
instead of all the coordinates, which is in the spirit of SDCA.  
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Fig. 2. Algorithm for operating on dual domain 

Communication-Efficient Online Semi-Supervised Learning in Client-Server Settings 

Our framework is designed based on the above considerations. It can be decomposed into 
several components that drive different functionalities. On the client side, we per- form data 
triage by selecting instances from a candidate pool, where the selection criterion is controlled 
by the server. On the server side, an online semi-supervised learning algorithm is employed to 
handle unlabeled submissions. The key is to maintain two learners—a graph-based 
semi-supervised model and a linear classifier—and let them collaborate to exploit unlabeled 
data. Specifically, incoming instances are added to the training set of the first learner, which is 
represented by a graph. The nodes of the graph are instances, and the edges between nodes 
reflect the similarity between the corresponding instances. Then, the first learner predicts 
labels for all unlabeled instances in the graph, and randomly samples an instance according to 
the confidence of its predictions in order to teach the second learner. The second learner 
updates its hypothesis, and delivers a new selection criterion to the client. At any time, the 
second learner can be used as a standalone model for predicting new test data. 
While different machine learning algorithms can be used as a part of this framework, some 
techniques lend themselves to our problem setting better than others. In this work, we use the 
harmonic solution (HS) as the first learner and the soft confidence-weighted classifier (SCW) 
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as the second leaner. Our choice offers several advantages. First, SCW is simple, fast and 
enjoys state-of-the-art performance on classification. Second, SCW performs a conservative 
update especially with noisy labels. Third, SCW can be parameterized by a weight vector and 
a covariance matrix, allowing the server to deliver the selection criterion to the client with a 
low communication cost. In this work, we simply transmit the weight vector of SCW to the 
client. On the other hand, HS nicely complements SCW by providing feedback using the data 
manifold. It can leverage the similarities between instances, which is something that SCW 
overlooks, to deter- mine labels of unlabeled data. By peering these two models together, we 
enjoy the best of both worlds, efficient learning and simple parameterization due to SCW, and 
the ability to exploit manifold information disclosed by unlabeled examples due to HS. 
Moreover, SCW and HS can be incorporated into a single optimization problem.  
One may find it is debatable whether a two-learner structure is really a preferable choice 
comparing to a single learner. For example, one of the alternatives is to train a linear classifier 
using its own predicted labels without leveraging data manifold information. Unfortunately, 
such an idea is not effective according to our experiments. Sometimes, the results are even 
worse than not using any unlabeled data. The reason is twofold. First, a single unlabeled 
instance can hardly provide any useful information. Second, most of the online linear 
classifiers only return a single hypothesis on each round, precluding any other possible 
hypotheses. Hence, some previous work employed Bayesian methods to update a (posterior) 
distribution over the hypothesis. Unfortunately, the posterior is often complicated. It is not 
known how to perform the update analytically. Therefore, the learning process can be easily 
misled and stuck in a wrong direction. Another alternative is to use a graph-based method 
solely. However, due to the nonparametric nature of graph-based methods, it is not 
straightforward to deliver the server’s model to clients with a low communication cost (for 
the same reason, nonparametric methods are not favorable in our problem setting). Moreover, 
graph-based methods are also less efficient for predicting new data, as they usually involves 
matrix inversion. A two- learner structure, in contrast, surmounts the above problems by 
complementing each other’s drawbacks. The choice of two learners with different underlying 
mechanisms is a key for good performance. 
If we define the communication cost as the total number of vectors in Rd transmitted over the 
network, then a straight- forward implementation of our proposed framework incurs a 
cost of at most  

Parallel least-squares policy iteration 
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We propose the parallel least-squares policy iteration to handle the large-scale learning 
problem. The setting is that there are M workers (cores) available (either multiple machines or 
multiple cores on a single machine) for computations. To fully exploit the available 
computational resources, each worker m collects samples and runs by itself, and then updates 
its estimated A-1

m, bm, and θm. At some point during learning, it communicates the learned θm 
with other workers.  
The algorithm is shown in Algorithm 1 in [b3]. For every outer iteration t, each worker m 
individually collects samples by following e-greedy over K episodes. When collecting 

samples, each worker also incrementally updates  and . After conducting K episodes 
of learning, each worker also reuses the samples collected at previous iteration to updates  
and . Then, each worker updates θm and sends it to the master. The master then averages 
the models to obtain the consensus z. and broadcasts it to all the workers. The workers then 
update the policy with the new consensus and proceed to the next iteration. After T iterations, 
parallel-LSPI outputs the most recent consensus zT. 
In parallel LSPI, each worker m communicates to the master only after updating its estimator 
θm, which occurs when it has executed sufficient number of episodes. This is the strategy that 
balances between communication overheads and required iterations to the optimal solution. If 
the algorithm dictates each worker to communicate right after every episode, communications 
overheads becomes heavy. If each worker independently runs the episodes during training and 
the parameters are only averaged at the end, the communication overhead would be 
minimized but it may not lead to satisfactory results as the information from other workers is 
completely ignored during training. Thus, a better strategy is to strike a balance between the 
two extreme. Compared to the related work of parallel TD that only allows small K (roughly 
K < 5), the proposed parallel LSPI can reduce communication cost by allowing the workers to 
run sufficient amount of episodes before mixing. Note that the underlying core of LSPI is 
least-squares temporal difference learning (LSTD Q), which is naturally a batch method in 
contrast to TD learning. Therefore, it does not need to update θ for every transition as TD 
learning does. Thus, parallel LSPI naturally enjoys the benefit of parallelization without the 
burden of frequent communication. 

ANALYSIS 

Here we analyze the sample complexity of the proposed method. As for non-parallel 
LSPI did, the analysis is first performed on a version of LSTD called pathwise-LSTD 
for policy evaluation. It analyzes LSTD at the states along a sampled trajectory 
following a given policy. As there are M workers (and M trajectories) with parameter 
averaging conducted in our case, we have to analyze the averaged estimated parameters 
from the trajectories. Then, one may generalize the analysis over entire state space 
under certain condition and derive the finite-sample bound of parallel LSPI in turn. 
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Thus, here we focus on parallel pathwise-LSTD as the insight on the sample 
complexity can already be seen in this step. 

Before explaining pathwise-LSTD, let us first describe the notations. As an MDP is 
reduced to a Markov chain given a policy π, let (X1, X2,...,Xn) be a trajectory of size n 
generated by the Markov chain. With abuse of notation, we denote Φ = 
[φ(X1)T;...;φ(Xn)T] as the feature matrix defined along the trajectory. The estimated 
value function is thus constrained on the feature space F = {Φθ, θ ∈ Rd}. 
Pathwise-LSTD takes the feature matrix Φ generated by a trajectory following as input. 
It builds the empirical transition matrix , and sets 
the quantities A = ΦT(I− rP) Φ, and b=ΦTr. It then outputs the solution θ = A+b with 
minimum norm, where A+ represents the Moore-Penrose pseudo-inverse of A.  

Let us denote v as the value function and its estimated one along the trajectory, and 

as the empirical norm. Moreover, let Vmax represent the 

feature space, and ν be the smallest positive eigenvalue of the maximum of the value 
function, Π be the projection to the feature space, and v be the smallest positive 
eigenvalue of Gram matrix ΦTΦ/n. From Theorem 1,              is bounded as 

 

with high probability 1 − δ. 

For parallel pathwise-LSTD, denote (X1,m,X2,m , ..., Xn,m) as the mth trajectory of the 
Markov chain induced by a policy π, Φm = [φ(X1,m)T ;...;φ(Xn,m)T] as the corresponding 
feature matrix, and νm as the smallest positive eigenvalue of the corresponding sample 

of features. Moreover, let  based Gram matrix 
represent the pathwise solution of the trajectory m, andrepresent the value function 
and the estimated one at the states along trajectory m respectively. Since parallel LSPI 
conducts parameter averaging, we are interested in the sample complexity associated 
with the averaged estimator represent the new policy at the next 
iteration of parallel LSPI and  be the trajectory of the Markov chain 
following π with Φ being the corresponding feature matrix. Then, we want to analyze 
the quantity as it would give us insight on the sample complexity. To estimate the upper 
bound, we make the following assumption that connects the performance of θm 

evaluated at the new trajectory  to the one evaluated at the original  
where θm is estimated from. 
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Assumption There exists a constant c such that the empirical norm of the difference 

between value function v and the one implied by evaluated at the trajectory 
 is upper bounded as . 

Notice that the empirical norms on both sides of the inequality are evaluated at 
different trajectories; the left hand side is on , while the right hand side is on 

for an m. Using the assumption, we can bound, which measures 
the performance of the averaged estimator. 

Proposition Following the above assumptions, if of each m is near 
orthogonal, we have  

 

 
where νmin represents the smallest of the νm, and Maxm represents the 
largest  of the terms. If  are highly correlated, we have 

 

The proposition suggests that, for the ideal case, parallel LSTD can estimate the 

value function at an improved rate O(1/√Mn ) of each worker comparing to the original 

rate of O(1/√n). This implies that the effectiveness of process in which M workers 

collect some n/M samples in parallel is comparable to a single worker collecting n 

number of samples. Yet, the sampling is conducted in a distributed fashion in parallel 

LSTD as compared to standard LSTD. At the other extreme, for the worst case scenario, 

parallel LSTD has the same sample rate, O(1/√n), for each worker as that of standard 

LSTD. Yet, each worker individually collects n samples meaning that the total samples 

in parallel LSTD are M times larger than that of the non-paralleled one. 

Proof: First, let us rewrite . Suppose, for each 

 is nearly mutual orthogonal. Then, we have 
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where 

 
Taking square root on both sides gives us the result. 

In contrast, if all  are highly correlated, we have  

 
which reduces to the case of a single worker. 

To achieve better performance for parallel LSPI, according to the proposition, we 
should make as less correlated to each other as possible. 

 
However, is unknown in advance. To deal with the issue, a heuristic is 
used to enforce each worker to take random actions more when collecting samples. 
Since e-greedy is adopted here, a larger that encourages more exploration (i.e. 
randomly choosing an action) will bring us closer to the goal. If gets close to zero, the 
randomness would mostly come from the transitions P of the process. In this case, 
performance of parallel LSPI may not achieve significant speedup, depending on the 
underlying MDP and the feature space. Note that the degree of correlation between 

is not equivalent to the degree of the correlation between              Still, our 
experiments reveal that such heuristic does have positive effect on the performance. 

 
Results and Discussion:  
Speeding up ADMM 
 
We compare our methods with standard ADMM  and distributed SDCA on several datasets. 
We denote our first method which performs ADMM on primal objective (1) with sampling as 
ADMM-P, and we denote the second method which performs distributed SDCA-ADMM on 
dual objective (9) as ADMM-D.  
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The datasets are binary classification. For dataset: delta, gamma, and ocr are available on 
http://largescale.ml.tu-berlin.de/about, while for dataset: mnist, epsilon, and rcv1 are available 
on http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/. Table 1 shows their statistics. For 
delta, gamma, and ocr, because only the labels of original training data are available, we split 
each of them by 80% as training set and the remain 20% as testing set. For mnist, we choose 
classifying digit 4 against digit 7 as the recognition goal and also split the data into 80/20 split. 
For epsilon, we use the pre-defined training/testing split. For rcv1, the ratio of original 
training to testing data size is much less than one, so we re-split the data into 80/20 split. The 
data are further distributed on four machines in our workstation. The batch size |I| is set to 100 
(i.e each of four machines uses 25 samples at a time) for both SDCA and ADMM-D on all the 
datasets except rcv1 where the batch size $|I|$ is set to 1000. 

 

Table 1. Dataset Statistics 
 
There are some parameters needed to be specified in ADMM-D: ρ,γ,η{Z,I}, and ηB. For γ, we 
set it as γ=1/n. For ηB, due to the choice of transform B, simple calculation would show that it 
should be at least gp (i.e. the value no less than the multiplication of number of machines g 
and feature dimensions p). For η{Z,I}, it should be larger than the largest eigenvalue of ZT

I ZI 
associated with the mini-batch I. But it is time consuming to compute it for each mini-batch at 
the augmented feature space. Instead, before running the optimization, we just sample a 
mini-batch, say I, and calculate the largest eigenvalue of ZT

I ZI at the original feature space. 
Denote the computed value as η{tmp}. We set every η{Z,I} to the same value: η{Z,I} = θ, where θ= 
5 x 10d with the smallest power d such thatθ>η{tmp}. For ρ, it is set to 10d' with d' chosen to 
satisfy ρ x η{Z,I} = 5. We found the heuristic work well. 
 
The parameters for standard distributed ADMM is set to the default setting, while for the 
ADMM-P, we set the additional parameter k to 1.5, which means that samples used is 
increased by 1.5 times at subsequent iterations (we did not find any value that significantly 
leads to better results.). Since the objective of each method is not the same (i.e. for ADMM-D, 
the objective is shown on (9); for standard ADMM and ADMM-P, the objective is shown on 
(1); for parallel-SDCA, the objective is hinge loss with L2 regularization without any 
constraint as compared to the others.), we tune the regularization parameter C such that each 
method can achieve to the best accuracy on each dataset.  
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Fig. 2 shows the results, which are about training accuracy vs. time. Each curve represents a 
different method. For ADMM or ADMM-P, each point on a curve is the classification result 
of a model at a corresponding iteration, while for distributed SDCA or ADMM-D, each point 
is the result at every the-number-of-batches iterations (which is roughly equivalent to a full 
pass of data.). We run the distributed SDCA and ADMM-D ten times for each dataset so the 
results are the averaged ones. 
 

 

Fig 2. Training accuracy vs. time for each method on different datasets. 
 
From the figures, we see that ADMM-D converges the fastest on most of the datasets except 
rcv1 among the methods. The figure also shows that ADMM-D and distributed SDCA 
outperform standard ADMM and ADMM-P on most of the cases, while ADMM-D is better 
than distributed SDCA on gamma and epsilon. On other data, ADMM-D is comparable or 
slightly better than distributed SDCA. This indicates that ADMM-D (distributed 
SDCA-ADMM) can enjoy the merits of SDCA and ADMM and outperform them as a 
consequence. The figure also shows ADMM-P is at least comparable to standard ADMM. On 
rcv1, standard ADMM seems to be better than ADMM-D and distributed SDCA. Note that 
the feature dimensions of rcv1 data is much larger than the other datasets. As the dimensions 
increases, computations such as matrix-vector product also scales with the dimensions. For 
standard ADMM, the algorithm follows a strategy used in LIBSVM, where it maintains and 
updates a active set such that the dual variables associated with samples outside the active set 
do need to be updated anymore. This means that the computational time is decreased through 
iterations of standard ADMM, which alleviates the suffer of high dimension. While in SDCA 
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or ADMM-D, at each iteration, it still samples a pre-determined batch size of data. Thus, an 
interesting future work is exploiting the active set strategy into distributed SDCA and 
ADMM-D. To summarize, ADMM-D is a effective method on medium feature size data. If 
frequent communication is admissible (as in our setup), we suggest to use ADMM-D, 
otherwise use ADMM-P. 
 
We propose sampling-based ADMM approaches for learning from distributed data. We 
integrate the idea from stochastic gradient descent into ADMM. Our first method uses subset 
of data on early rounds of communication, which can reduce the cost on early stage while 
enjoy the similar convergence rate as the standard one. We also transform the primal 
objective into the approximated dual form and propose a distributed variant of the recently 
proposed SDCA-ADMM to solve it. 
 

Communication-Efficient Online Semi-Supervised Learning i 
Experiments were conducted on seven data sets downloaded from either the UCI ML 
repository (wearable, skin) or the LIBSVM website (mushroom, mnist, webspam, gisette, 
ijcnn1). The motion recognition data set wearable and digit recognition data set mnist were 
converted into a set of bi- nary problems, respectively, where each class is discriminated 
against every other class. Totally, we produced 10 problems from wearable and 45 from mnist. 
For each data set, we balanced the number of instances of each class and linearly rescaled the 
feature values into the range [−1, 1]. 
We evaluated the algorithms using a set of trials with different partitions of the training and 
test data. In each trial, we randomly held out half of the data for testing; all instances in the 
test set were labeled by the algorithms. The remaining data was used for training, of which 
only a small amount was labeled. Both training and test sets were class- balanced. Next, we 
randomly permuted the training data and kept labeled data always at the beginning. All 
algorithms were then incrementally trained with the same permutation in each trial. For 
evaluation, we paused the training at regular intervals, computed the output hypothesis so far, 
and calculated its test accuracy. 
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Comparison of Server’s Model 

Fig 3. shows the results. It can be observed that proposed hs+scw and hs+scw+cut enjoy 
superior performance on 8 out of 10 problems comparing to other partial label competitors. 
On 45 mnist problems, hs+scw and hs+scw+cut yielded on average 0.966 and 0.971 accuracy, 
respectively. On 20 wearable problems, hs+scw and hs+scw+cut gave 0.699 and 0.714 
accuracy, respectively. They are consistently better than the single-learner counterpart scw on 
all data sets. This indicates the effectiveness of leveraging manifold information of the graph. 
In fact, on webspam, ijcnn1 and wearable, scw is even worse than none. On webspam, its test 
accuracy starts with 0.658, decreasing over time and finally yielded 0.637. This is due to the 
fact that scw completely relies on its own prediction for learning. When the labeling rate is 
small, the initial hypothesis constructed by labeled data may not be accurate enough. As a 
consequence, the prediction of scw on 
 
Comparison of Selection Strategy 

Fixing the model on the server as hs+scw+cut, we study the following strategies on the client 
side.  
All, All unlabeled instances are uploaded without selection. This incurs 5x the 
communication costs versus other approaches.  
rand Randomly selects instances for uploading. 
certain The most certain instances according to the current server model 

uncertain The most uncertain instances are uploaded.  
submod Selection is done by optimizing the submodular function described in Section VI. It 
simultaneously considers the uncertainty and redundancy. 
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The results are shown in Table 2. It is interesting to see that All, which transmits all unlabeled 
data, does not lead to a better performance. In fact, on mnist, mushroom, and gisette, All 
yields worse test accuracy compared to selective transmission. This confirms the intuition that 
not all unlabeled instances are useful. It also suggests the necessity of using a selective 
sampling strategy on the client. Not only the communication costs can be saved, but also a 
better model might be learned.  

2
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Parallel least-squares policy iteration 

We conduct the experiments on two domains. One is the discrete-time four-dimensional 

queuing network. Figure 4 illustrates the network, which includes four queues, each with 

buffer size B. Here server 1 can only serve queue 1 or 4, and server 2 can only serves queue 2 

or 3 one at a time but not simultaneously. Each server can only handle one customer at a time 

at most. Moreover, neither server can be idle. Let the tuple {a1,a2,a3,a4} represents an action 

combination which the servers take by considering conditions in the queues {q1,q2,q3,q4}, 

where ai = {1,0} indicates whether qi is currently being served or not. Then, there are total 

four actions {1,1,0,0} {0,1,0,1} {1,0,1,0} {0,0,1,1} the servers can take. As the result, the 

number of states is (1+B)4×4, which means that a modest B will result in a huge state space. 

The dynamics of the network are defined by the rate parameters μ1,μ3,d1,d2,d3,d4 ∈ (0,1), 
all follow Bernoulli distribution. μ1 and μ3 are coming rates of new customers. At each time 
step, with probability μi, a new customer comes to queue i. di is defined as follows: if ai = 1, 
which indicates queue i is being served, the server would succeed in handling a customer with 
probability di before the next time step, and fail with probability 1 − di. Starting with empty 
queues, each 

Fig. 4. The discrete-time four dimensional queuing network. Customers can arrive at q1 or q3. 
The customer that is served and finished by q1/q3 is then referred to q2/q4. 

episode spans a fixed number of time steps, T. The goal is to minimize the average of total 
waiting (unserved) customers in the network during an episode. The loss for a state-action 
pair is defined as l(s,a) = l(s) = |X|, which is the total number of unserved customers in all the 
queues. After an episode, the network is reset to empty and a new episode begins. 

We consider four types of networks: 

1) μ1 = 0.5,μ3 = 0.5,d1 = 0.5,d2 = 0.8,d3 = 0.8,d4 = 0.5, episode duration T = 50, and
buffer size B = 5, which results in 5,184 state-action pairs. 

2) μ1 = 0.5,μ3 = 0.8,d1 = 0.5,d2 = 0.1,d3 = 0.8,d4 = 0.8, episode duration T = 100, and
buffer size B = 10, which results in 58,564 state-action pairs. 

3) μ1 = 0.4,μ3 = 0.4,d1 = 0.5,d2 = 0.8,d3 = 0.3,d4 = 0.3, episode duration T = 200, and
buffer size B = 15, which results in 262,144 state-action pairs. 

DISTRIBUTION A. Approved for public release: distribution unlimited.



4) μ1 = 0.4,μ3 = 0.4,d1 = 0.4,d2 = 0.8,d3 = 0.8,d4 = 0.4, episode duration T = 200, and
buffer size B = 15, which results in 262,144 state-action pairs. 

We design 340-dimensional sparse binary feature for type 1 network and 1048-dimensional 
features for the others. In our design, only two entries in the feature are non-zeros for each 
state-action pair. 

Another domain is the persistent search and track. The scenario is that there are three 
Unmanned Aerial Vehicles (UAV) to corporate for a mission. There are three available 
actions for each UAV: {advance,retreat,loiter}, resulting in 27 total possible action 
combinations. The current state of a UAV is described by : location, fuel, actuator status, and 
camera status. The goal is to fly to the target site and perform surveillance, while ensuring 
that there is a UAV with a working actuator loitering at the intermediary site to transfer the 
information of the targets to the base. 

We modify the scenario because the reported performance of LSPI is not good in the original 
setting. Each UAV starts from the base with 6 units of fuels. The camera and actuator of each 
UAV can may with a 3% probability at each time step. The camera cannot function under 
failed actuator, so a UAV with a failed actuator cannot perform surveillance. Yet, a UAV can 
perform communication even its camera malfunctions. A successful surveillance mission 
must have at least one UAV with working actuator at the intermediary site, and at least one 
UAV with working actuator and camera at the surveillance site. At each time step, each UAV 
loses 1 unit of fuel except when it “loiters” at the base or at the intermediary site. When a 
UAV “loiters” at the base, the failed camera and actuator are fixed, and the fuels are 
recharged fully. When a UAV with working actuator “loiters” at the intermediary site, the 
messages is transmitted to the base 

Fig. 5. Persistent search and track. 

and UAV’s fuel tank is recharged by 2 units (the fuel cannot exceed the capacity, which is 6 
units). If a UAV “retreats” at the base, then it may “advance” to the intermediary site or 
“loiter” at the base with equal probability. Executing “advance” action at the surveillance site 
has similar effect. The reward for each state-action pair is defined as r(s,a) = 15×Icomm × 
Isurv−10×Icrash−(18−total remained fuels), where Icomm indicates whether there is a UAV 
with working actuator at the intermediary site, Isurv indicates whether there is a UAV with 
working actuator and camera at the surveillance site, and Icrash represents whether a UAV 
crashes. If a UAV runs out of fuel, which means it crashes, the episode is terminated. In total, 
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the state-action pair has the size of about 1.6×106, and about 2000-dimensional sparse binary 
feature including fixed sparse representation. 

B. Setup and Results 

We compare parallel LSPI with standard LSPI on the two domains. Both methods are 
implemented in C and the communication in parallel LSPI is implemented with MPI. For 
parallel LSPI, we report the performance of M = 4 and M = 8 workers. In our implementation, 
parallel LSPI uses single core machines, yet the shared-memory architecture (i.e. multi-core 
on a single machine) is also applicable. For the queuing network domain, LSPI and 
parallel-LSPI update their policies every 100 episodes, and both of them terminate after 
learning 1000 episodes, which corresponds to K = 100 and T = 10 in the algorithm. For 
persistent search and track, both LSPI and parallel-LSPI update their policies every 1000 
episodes, and terminate after 10,000 episodes. We set γ = 0.95 for both domains. All the 
experiments are repeated 50 runs with the averaged results and standard deviations reported. 

We also try different -greedy policy. Higher means each worker takes random action 
with higher probability, which could reduce the correlation between workers. The results for 
the queuing network are shown in Figure 6, and results for persistent search and track are 
shown in Figure 7. The learned parameter θ is recorded when it is updated, so each point on 
the line represents the performance of learned parameter at the end of an iteration of the 
corresponding algorithm. For parallel LSPI, we record the consensus as the the learned 
parameter. The performance of a learned parameter in the queuing network domain is 
measured by the average of losses (where loss of an episode is defined as the average of all 
waiting customers in the network during an episode) over additional 500 episodes, which are 
conducted by following the deterministic policy implied by the learned parameter. In 
persistent search and track domain, the performance is measured by cumulated discounted 
rewards, with the same evaluation procedure as the queueing network. 

Figure 6 suggests for queueing network, higher e yields better parallelization since the 

correlation between workers is smaller. At higher (left column), which encourages 
taking random action more during learning, parallel LSPI can significantly 

accelerate the learning process comparing to taking action more greedily with 
respect to the current estimated state action value (right column). For 

parallel-LSPI with 0.7 or 0.5greedy, after running three or four iterations, it 

already reaches the point where the standard LSPI needs to take ten iterations or 
more. For 0.2-greedy in network 3 and 4, parallel LSPI has no advantage while 

consumes more computation resources than non-parallelized one each iteration. 
For persistent and search domain, parallel-LSPI with -greedy already  
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achieves significant speedup than its non-parallel counterpart, increasing can 

accelerate further but not much more. This reflects the limitation of the proposed 

(a) 0.7-greedy in type 1 network (b) 0.5-greedy in type 1 network (c) 0.2-greedy in type 1 network 

(d) 0.7-greedy in type 2 network (e) 0.5-greedy in type 2 network(f) 0.2-greedy in type 2 network 

(g) 0.7-greedy in type 3 network (h) 0.5-greedy in type 3 network(i) 0.2-greedy in type 3 network 

(j) 0.7-greedy in type 4 network (k) 0.5-greedy in type 4 network(l) 0.2-greedy in type 4 network 

Fig. 6. Losses of the learned parameter versus learning time. Each row corresponds to a network, while 
each column corresponds to different. Star marker represents LSPI, circle marker represents parallel 
LSPI with four workers, and square marker represents parallel LSPI with eight workers. The 0.5 s.e. 
error bars are also plotted. 
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heuristic, yet parallelLSPI still shows the benefit of parallelization. The overhead 

of parallelization can also be seen on the figures. We can see that parallel LSPI 
requires slightly more time to finish the same amount of iterations than standard 

LSPI does due to communication overhead. Yet, this overhead is tolerable since 

parallel LSPI usually reaches at the same level of performance as standard LSPI 
with much fewer iterations. 

From the figures, we also observe that the advantage of parallelization decreases as 
the number of workers increases (4 workers vs. 8 workers). The acceleration by 
doubling the workers is incremental in most of the cases. A possible 

A possible explanation is that the correlation between workers is likely to increase with 
more workers being added. Similar to the parallel TD, the degree of parallelization of 
our method still has some room for improvement. This limitation is not explicitly 
implied in our analysis since we just show the ideal case and the worst case. That says, 
the connection between the degree of possible parallelization and the properties of 
underlying MDPs and feature space needs to be further explored. We leave it as a future 
work. 
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Fig. 7. Rewards of the learned parameter in persistent search and track domain versus 
learning time. The 0.5 s.e. error bars are also plotted. 
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