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6 A. N. Jordan et al.

1 Introduction

Aharonov et al. [1] introduced the concept of a weak value as controlling an anomalously large deflection of an
atomic beam passing through a Stern–Gerlach apparatus. The deflection size is controlled by pre- and post-selected
states, as well as the size of the magnetic field gradient. In the concluding paragraph, they mention that “another
striking aspect of this experiment becomes evident when we consider it as a device for measuring a small gradient
of the magnetic field...Our choosing (of the post-selection state) yields a tremendous amplification”. The price one
pays for this amplification is the loss of a large fraction of events due to the post-selection. Nevertheless, the relevant
information about the parameter in question is concentrated into these small number of events [2]. This technique
has been adapted to optical metrology and has been successfully implemented in many experiments to precisely
estimate various parameters, such as beam deflection, phase or frequency shifts. For recent reviews of this active
area of research, see Refs. [3,4].

While still obeying the standard quantum limit, weak value amplification experiments have been shown to
be capable of extracting nearly all of the theoretically available information about the estimated parameter in a
relatively simple way. Further, it has been shown that in comparison to a standard experimental technique, and
given the presence of certain types of noise sources or technical limitations obscuring the measurement process, the
weak value-type experiment can have better precision (even when using optimal statistical estimators), even though
the detector only collects a small fraction of the light in the experiment [2]. There have also been a number of
recent advances that propose to improve the intrinsic inefficiency of the post-selection. For example, in the optical
context, it is possible to recycle the rejected photons, further improving the sensitivity of the technique [5]. This
then gathers all the photons in the experiment through repeated cycles of selection, leading to higher power on the
detector with the enhanced signal.

Quantum-enhanced metrology is based on using quantum resources, such as entanglement, to estimate a para-
meter of interest better than an analogous classical technique could do with similar resources—typically photon
number. Proposed applications of this field range from precision measurements in optical interferometry to gravity
wave detection [6]. Recently, Pang et al. [7] proposed combining the weak value technique with additional entangled
quantum degrees of freedom to further increase the weak value at the same post-selection probability, or to keep
the same weak value while boosting the post-selection probability. This technique leads to Heisenberg scaling of
the parameter estimation precision with the number of auxiliary degrees of freedom, using quantum entanglement
as a resource. These advances lead us naturally to consider how other quantum resources manifest in the context of
weak measurements, which is the subject of the present article.

An important tool in quantum-enhanced metrology is the Fisher information. Classically, this quantity indicates
howmuch information about the parameter of interest is encoded in the probability distribution of a random variable
that is being measured. It is an important quantity because it sets the (Cramér–Rao) bound for the minimum
variance of any unbiased estimator for the parameter of interest. Any estimator that achieves that bound is said to be
efficient. The quantummechanical extension of the Fisher information analogously gives the quantum Cramér–Rao
bound, which indicates the minimum variance achievable using any measurement strategy. Despite these powerful
properties, the formal expressions for the Fisher information do not necessarily provide deeper insight about the
physics of the detection method and can even obscure what are essentially simple physical effects. In this paper, we
will use both quantum Fisher information and the distinguishability of two quantum states as ways to quantify the
smallest measurable parameter. These measures are related to one another: the mean squared distance between a
quantumstate and that state slightly shifted by a classical parameter is proportional to the quantumFisher information
about the parameter in the quantum state [8]. The usefulness of weak measurements has also been considered in
the problem of state distinguishability, which is related to the current problem [9].

A conundrum involving Fisher information was recently presented by Zhang et al. [10], who considered a
coherent state of photons interacting with a spin-1/2 particle to estimate a small coupling parameter in the interaction
Hamiltonian. Notably, this example is a variation of the original weak value amplification scenario [1], but using a
different parameter regime thatmore commonly appears in cavity and circuitQED [11,12]. Even though the coherent
state used in their example is typically considered to be a classical quantity that does not provide quantum resources,
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Heisenberg scaling with weak measurement: a quantum state discrimination point of view 7

the authors showed the surprising result that the Fisher information about the coupling parameter seemed to scale at
the optimal Heisenberg limit as the average number of photons was increased, rather than at the standard quantum
limit that one would typically expect. This result raises several immediate questions: is there a simple physical
explanation of this apparent Heisenberg scaling, and can this scaling really be used to enhance the estimation of the
interaction parameter in an experiment?

The proposal starts with a separable state of the system |ψi 〉 (a two-state system), and a meter state |α〉 (a
macroscopic coherent state), given by

|�0〉 = [cos(θi/2)|−〉 + sin(θi/2)e
iφi |+〉]|α〉. (1)

An interaction Hamiltonian generates a unitary operation of the form

U = exp(−igσ̂z n̂), (2)

which entangles the states.1 Here, σ̂z is a Pauli operator, and n̂ is a photon number operator. This results in the
entangled state

|�〉 = cos(θi/2)|−〉|αeig〉 + sin(θi/2)e
iφi |+〉|αe−ig〉, (3)

which is often called a Schrödinger cat state because the total quantum state involves a superposition of macroscop-
ically distinct states of light.

The authors go on to look at projection of the system state onto a final state |ψ f 〉, where this state has the same
form as |ψi 〉, with the subscript i replaced by f on the parameters [10]. Specifically, a strong measurement will
project the system onto |ψ f 〉 or onto the state orthogonal to |ψ f 〉 (since the system is two dimensional, there are
no other options). The scaling of the post-selected parameter estimation is optimized when pre- and post-selected
states are parallel |ψi 〉 = |ψ f 〉 = (|−〉 + |+〉)/√2, so we focus on this case for simplicity of calculation. The
orthogonal state is then clearly |ψ⊥

f 〉 = (|−〉 − |+〉)/√2.

In the case of a projection onto |ψ f 〉, or |ψ⊥
f 〉, the resulting meter states of the light are given by

|φ±〉 = (1/2)(|αeig〉 ± |αe−ig〉), (4)

where + refers to projection onto |ψ f 〉, and − onto |ψ⊥
f 〉. These meter states must be properly renormalized, which

gives the probability p± of projecting on the parallel or perpendicular system states,

p± = 1/2 ± (1/4)(exp(|α|2(e2ig − 1)) + c.c.). (5)

Note that if g → 0, the probability to project back onto the initial system state limits to 1. Reference [10] points
out that there are three possible sources of information in the measurement: the probability of the post-selection
projection p+, and the information in the two meter states, |φ±〉 (in principle, the correlations between these
outcomes also have information in them). The Fisher information contained in these channels is then calculated,
and curiously, while the meter states have Fisher information that scales with N = |α|2 (yielding the standard
quantum limit), the probability of the post-selection has a Fisher information that scales as N 2 = |α|4, giving
Heisenberg scaling in the photon number for the precision of estimating g.

The main purpose of this paper is to give physical insight into why Heisenberg scaling for the parameter g can be
obtained at all, and further, why it comes mainly from the probability of projecting on the system state, as opposed
to mining the meter states for information, as is usually done in weak value amplification experiments [3]. Zhang,
Datta, and Walmsley write that “How this conditioning step using a classical measurement apparatus achieves a
precision beyond the standard quantum limit is therefore an interesting open question.” We answer this question
here and give a simple physical argument showing how this scaling is possible. We are primarily concerned with
the large N limit (Heisenberg scaling), rather than finding general expressions as in Ref. [10].

1 We note that the sign of g is reversed relative to Ref. [10].
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8 A. N. Jordan et al.

2 Approach

We approach the question by mapping the problem of obtaining a precise estimate for the parameter g onto a
different problem: under what conditions can one distinguish the entangled state |�〉 from the separable state |�0〉?
It is well known in quantum physics that two states can only be reliably distinguished if they are orthogonal to one
another [13]. Therefore, g must be large enough to move the initial separable state to an orthogonal state. This sets
the scale of the minimum value for g that can be reliably distinguished when using the two-state system as a probe.
Unless the states are distinguishable, no processing techniques will help in the metrological task.

3 Spatial shift of independent meter states

We begin with first illustrating this principle on a system exhibiting standard quantum limit scaling. Consider a
photon prepared in a Gaussian wavefunction, of zero mean and width σ . The wavepacket interacts with a two-state
system and is shifted in position by a distance ±d/2, depending on which state the two-state system is in. This is
described by a standard von Neumann type interaction as usually found in measurement models

Uv = exp(id p̂σ̂z/h̄). (6)

Here p̂ is the momentum operator of the meter. If the system begins in the separable state |�0〉 =
(1/

√
2)(|+〉 + |−〉)|ψ0〉, the interaction results in the state 〈x |�〉 = (ψ+(x)|+〉 + ψ−(x)|−〉)/√2. Here,

ψ±(x) = (2πσ 2)−1/4 exp[−(x ± d/2)2/4σ 2], and 〈x |ψ0〉 = limd→0 ψ±(x). Taking the overlap O between state
|�〉 and the original separable state |�0〉, we find O = 〈�0|�〉 = exp[−d2/32σ 2]. For N independent photons,
this overlap is raised to the N th power because the state is simply a product of one photon states. The smallest value
of d that can be measured is when this overlap is nearly zero, which corresponds to dmin ∼ 4σ/

√
N .

This result for a minimum resolvable position can be compared with the quantum Fisher information [14] in the
state |�(g)〉 about the parameter g. The quantum Fisher information for pure states is defined as

F(g) = 4
d〈�|
dg

d|�〉
dg

− 4

∣
∣
∣
∣

d〈�|
dg

|�〉
∣
∣
∣
∣

2

. (7)

Applied to state |�〉 above with g identified with d, and generalizing to N independent photons, we find the result

F = N

4σ 2 . (8)

This Fisher information sets the minimum resolution on the detectable value of d, the quantum Cramér–Rao
bound, dmin = F−1/2 = 2σ/

√
N . This result is the same as the classical Cramér–Rao bound from the probability

distributions P±(d) = |ψ±|2, and coincides with the standard quantum limit scaling with N . We therefore see that
both the state overlap criterion and the Fisher information approach give similar results.

4 Cavity QED interaction

We now return to the situation described in the introduction, and reconsider that situation in light of the state overlap
distinguishability criterion. Computing the overlap O between |�0〉 (1) and |�〉 (3), we find
O = 〈�0|�〉 = (1/2)(exp(|α|2(eig − 1)) + c.c.). (9)

To investigate the conditions under which this expression can decay to zero, we replace |α|2 = N , the average
number of photons in the coherent state, and consider a small g ∼ 1/N : Heisenberg scaling on the precision of g.
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Heisenberg scaling with weak measurement: a quantum state discrimination point of view 9

Fig. 1 The overlap (top)
and post-selection
probability on the |+〉 state
(bottom) are plotted versus
the interaction parameter g
for different values of N ,
the mean photon number in
the coherent state. As N
increases, both quantities
oscillate more quickly with
g, permitting better
discrimination of the value
of g ∼ 1/N
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We expand the terms in the exponential in the above overlap in powers of g to obtain to leading order,

O = e−Ng2/2 cos gN . (10)

Thus, by passing g ∼ 1/N through the zero of the cosine, the state can be made orthogonal; the exponential
suppression is negligible for such a small g. We conclude that one can indeed distinguish a g of order 1/N . Plots
of the exact overlap and the projection probability are given in Fig. 1.

One can understand why the overlap can be made to vanish because for large N , and g of order 1/N because the
perturbation to the coherent state is effectively an N -independent phase shift of the coherent state,

|αe±ig〉 ≈ |α〉e±igN + |α⊥(±g)〉, (11)

where states |α⊥(±g)〉 are (approximately) orthogonal to |α〉 in the small g ∼ 1/N limit. When combined with the
system states in |�〉, it simply produces a limiting state of

|� ′〉 ≈ (1/
√
2)(|+〉e−igN + |−〉eigN )|α〉, (12)

+ (1/
√
2)(|−〉|α⊥(g)〉 + |+〉|α⊥(−g)〉). (13)

The fact that |α⊥(±g)〉 are orthogonal to the initial state makes them irrelevant to the orthogonality criterion. Thus,
the nonlinear interaction has the effect of just rotating the spin, while leaving the coherent state untouched, at least
in the large N limit, appropriately scaled. Since the phase rotation of the qubit that is induced by each photon
accumulates coherently, the scaling with photon number shows a quantum advantage compared to the incoherent
photon accumulations that lead to the standard quantum limit.Wenote thatwhilewe initially specialized to projecting
the system in its original basis preparation, in this limit of small g, the effect of the state rotation can be seen for
any fixed measurement basis, so long as it is in the plane of rotation.

Now we can see why the information about the parameter g is mainly found in the probability of the selection,
p± in Ref. [10]. We notice that up to factors of 2 and shifts by constant factors, the selection probability (5) has
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10 A. N. Jordan et al.

Fig. 2 Sketch of an
experiment to determine the
position of a quantum
mirror using a coherent light
beam

the same form as the overlap between entangled and initial state (9). As we see above, the main effect is the
coherent phase rotation of the system state, and consequently, this is the effect that will give a large change of the
selection probability that can be used to deduce the value of g. With this insight, it makes perfect sense that the
post-measurement meter states have relatively little information that can be extracted, and the Heisenberg scaling
appears only in the post-selection probability.

From the above analysis, the origins of the Heisenberg scaling of the estimate of the g parameter are made clear;
however, there are still important questions about the utility of this technique. For example, can this method be used
to measure information about the spin? We can put this question differently by considering the thought experiment
sketched in Fig. 2. There, a coherent state is reflected off a quantummirror (similar to a quantum beam splitter [15]).
The mirror location is located in one of two positions, separated by a distance d, and described by states |+〉, |−〉.
The interaction will give a relative phase shift to the beam of g = d/λ, where λ is the wavelength of the light.
In this Heisenberg scaling limit, the fact that the coherent state is unchanged after the interaction (13) indicates
that it contains no information about the spin (or in this case, the location of the quantum mirror). Only the mirror
states are affected because the mirror itself collects all the phases, and the quantum mirror must itself be probed
by measuring its position to find the distance d. This indicates that one cannot use the coherent state light alone to
measure the mirror’s position at this level of precision.

5 Implementations

There can be, however, other uses of this technique. In cross-phase modulation, a single photon, prepared in
a superposition of two polarizations (for example), can interact nonlinearly with a coherent beam with a large
average photon number. Depending on the polarization state of the single photon, the phase of the coherent beam is
changed by different amounts. This nonlinearity is very difficult to create optically, and single-photon “cross-Kerr”
nonlinearities have not been seen yet in the lab. However, Feizpour et al. [16] have shown that in some cases, a
single photon can be made to act like many through a weak value amplification process. In this case of cross-Kerr
interaction, the difference of rotation angle for the two polarizations is identified with the g parameter, and the
method of measuring the frequency of projection of the polarization back on the original state can estimate that
parameter. The standard error on g will scale as 1/N (the Heisenberg limit in photon number) times 1/

√
ν, where

ν is the number of projections on the two-state system (the standard quantum limit in measurement realizations).
Thus, for this technique to be useful, we need the number of photons N per projection to be large and need to be
able to repeatedly measure the single-photon polarization. Measuring the changes in the coherent state of the light
is irrelevant for the Heisenberg scaling on the precision of g. Unfortunately, linear optics is unable to realize an
interaction of the form Eq. (2) and will instead create products of coherent states. Thus, any interferometric set-ups
will be unable to create this state. To create the state, nonlinear methods are needed. We note, however, that since
we can ignore the state of the light entirely (since we know the average photon number N ), the relevant state is not
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Heisenberg scaling with weak measurement: a quantum state discrimination point of view 11

a Schrödinger cat state, since the coherent state can be traced out entirely, leaving just the phase-shifted qubit state
to work with.

A more realistic implementation of the interaction (2) is in the field of cavity or circuit QED. There, a supercon-
ducting quantum bit (artificial atom) interacts coherently with a microwave field inside a cavity, producing exactly
this interaction, called a light shift, or ac stark shift. See Refs. [11,12] for recent experiments using this interaction.
This name “light shift” is related to a Hamiltonian of the form

H = h̄ωrâ
†â + h̄ωaσ̂z/2 + h̄χσ̂z â

†â, (14)

where we have added in Hamiltonian terms for the qubit and the light field. This Hamiltonian is valid in the
dispersive limit, where the detuning between the cavity frequency, ωr, and the qubit frequency ωa is much larger
than the microscopic coupling constant of a Jaynes–Cummings interaction. The interaction can be interpreted as a
qubit-state-dependent shift of the cavity frequency, χσ̂z , or as an intracavity photon-number-dependent shift of the
qubit frequency, 2χ â†â. It is the later interpretation that is directly related to the effect we have been discussing.

As usual, to get the unitary development (2), the two systems are coupled impulsively in time. The shift of
the qubit frequency causes a precession in the x–y plane of the Bloch sphere that can be read out via projective
qubit measurements, following unitary rotations. In fact, this qubit frequency measurement is used routinely to
determine the average photon number in the cavity, since the parameter g = h̄χ can be independently determined
spectroscopically as the shift in resonance frequency of the coupled cavity. In our case, we are interested in the
reverse procedure: a large known photon number N in the cavity creates a finite phase shift on the qubit for an
unknown small coupling parameter g of the order 1/N . Hence,measuring the qubitwould allowone to independently
determine g without using the spectroscopy of the cavity.

The difficulty in implementing the scheme outlined above is the fact that, usually, the way to measure the qubit
state is with the cavity field itself, which we already showed becomes uncorrelated with the qubit precisely when
the qubit is most sensitive to g. Consequently, the implementation requires that we first have a weak unknown
interaction of the qubit with one cavity, followed by a strong interaction with another cavity to do the projective
measurement. This could be accomplished perhaps with two strip-line resonators, both of which are coupled to a
single transmon qubit.

Let us now make an analysis of the number of projections needed in a practical series of experiments. Suppose
there is some small, but unknown g. We know the precise average number of photons N in the coherent state. We
furthermore have calculated the probability distribution of the successful post-selection (5) that is given approxi-
mately by p+ ≈ cos2 gN for small values of g. Depending on the value of N , ranging from 0 to π/2g 
 1 the
probability will be between 0 and 1 (we assume g is sufficiently small so that the multiple solutions of the cosine
inverse are not relevant). Suppose we make ν experiments with a small interaction g, followed by a projective qubit
measurement, keeping N the same in every experiment. This will result in ν binary results of being projected into
the initial state, or the orthogonal state, from which we can estimate the probability p+ as simply the number of
times the initial state is found, divided by the total. The experiments are uncorrelated, so the uncertainty on the value

Fig. 3 Converting
uncertainty about p+ into
uncertainty about g, given a
known N = 120

50 100 150 200 250
N

0.2

0.4

0.6

0.8

1.0

p

g 0.0085

g 0.008

g 0.0075
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12 A. N. Jordan et al.

of p+ is simply σp+ = 1/
√

ν. This uncertainty on the value of p+ then sets the uncertainty σg on the estimated
value of g,

σg =
∣
∣
∣
∣

∂p+
∂g

∣
∣
∣
∣

−1

σp+ = 1

aN
√

ν
, (15)

where a = sin(2 cos−1 √
p+) is typically of order 1. This is the scaling discussed in Ref. [10]. The procedure

discussed above is graphically represented in Fig. 3.
One might wonder if the two-state system could be dispensed with entirely since the effect comes from the

coherent state |αe±ig〉. We can see this is not so from two perspectives. In the first approach, the orthogonality
criterion gives

〈α|αe±ig〉 = exp[|α|2(e±ig − 1)]. (16)

Making an expansion for small g, e±ig − 1 ≈ ±ig − g2/2 + . . ., we see the first term is just an overall phase
shift on the coherent state which is not distinguishable on measurements on the state of light. We must go to the
second-order terms to obtain orthogonality, which corresponds to gmin ∼ 1/

√
N , recovering the standard quantum

limit for the photon number scaling in the light states.
In the second approach, we can find the quantum Fisher information (7) about g in the light state |αe±ig〉. We

find the result F = 4N , so the quantum Cramér–Rao bound is gmin = F−1/2 = 1/
√
4N , which is consistent with

the approach above, as well as the standard quantum limit scaling expected from a coherent state.

6 Effects of dephasing

One outstanding challenge to quantum metrology is the fact that in the presence of small amounts of dephasing
noise, the Heisenberg scaling rapidly changes to standard quantum limit scaling. Here, there is some advantage in
the sense that photon loss will not have much effect on the coherent state (other than simply lessening the overall
magnitude, N = |α|2). However, as we already showed, the Heisenberg scaling occurs by measuring the two-state
system, so this is not really helpful. The important effect is how the scaling depends on fluctuations on the phase
shift that is being measured, g. Phase fluctuations (or other dephasing mechanisms) will then be the most serious
detriment to this method, rendering it useless for estimating g better than the standard quantum limit. Similar
difficulties can be seen with N00N states [17].

We can see this effect by considering the possibility of also acquiring a small, random, phase shift φ that will
be averaged over, so we have g → g + φ. We take for simplicity that φ is a Gaussian random variable with zero
mean and variance 〈φ2〉. The averages involved for the general cat state (3) are needlessly complicated, so we
focus instead on the approximate state after scaling, Eq. (12). To carry out the averaging, we need a density matrix
representation

ρ ≈ 1

2
(|+〉〈+| + |−〉〈−| + e−2igN−2i Nφ |+〉〈−| + e2igN+2i Nφ |−〉〈+|). (17)

Here, we have neglected entirely the coherent state since it is effectively separable in the Heisenberg scaling regime.
We also neglected the orthogonal contributions since they do not contribute to the overlap. Taking averages over φ,
we are left with a mixed state

ρ′ ≈ 1

2
(|+〉〈+| + |−〉〈−| + e−2igN−2N2〈φ2〉|+〉〈−| + e2igN−2N2〈φ2〉|−〉〈+|). (18)

We can now compute the overlap of this mixed density matrix with the original state |ψi 〉 = (|+〉 + |−〉)/√2,
giving the square overlap, O2 = 〈ψi |ρ′|ψi 〉. We find

O2 = (1/2)
(

1 + cos(2gN )e−2N2〈φ2〉) . (19)

In the limit of no noise, we recover (10) to leading order, after using the half-angle formula.
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In contrast to the noiseless case, we now see that even a small amount of phase noise can destroy the Heisenberg
scaling due to the exponential damping that scales as N 2—eliminating the oscillatory behavior that permitted us to
estimate g. The same effect that leads to sensitive estimation of g—namely the coherence of the phase rotations of
the qubit—is also the source of fragility of the technique. We can explore this effect from another point of view by
calculating the quantum Fisher information F in the state (18). This sets the minimum uncertainty on the parameter
gmin ≥ 1/

√
F , the quantum Cramér–Rao bound. Defining L as the logarithmic derivative of the density matrix ρ′

with respect to g, F for mixed states is defined as

F = Tr(ρ′L2) = 4N 2e−4N2〈φ2〉. (20)

Thus,we see that the N 2 contribution to the Fisher information is quickly degraded in the presence of finite dephasing
noise, even for moderate values of N . The Fisher information perspective gives a complementary point of view to
the state distinguishability criterion discussed above.

7 Von Neumann measurement revisited

Before concluding, we point out that the effects described with the cavity QED-type interaction (2) can also be seen
more easily with the von Neumann interaction (6). Rather than using a meter wavefunction that is Gaussian as is
usually considered to extract information about the qubit state, we consider a meter wavefunction of the form of
a plane wave of wavelength λ, that is 〈x |ψ〉 = ψ(x) = exp(2π i x/λ). Of course, this plane wave should as usual
be normalized, either by putting on a slowly decaying envelop function or with box normalization. Nevertheless,
for this discussion, it is simpler to keep it unnormalized, and this will not change the main conclusions. We can
equivalently write this state inmomentum space as 〈p|φ〉 = φ(p) = δ(p− p0), where themomentum p0 = 2π h̄/λ.

Starting with the separable state |�′
0〉 = (1/

√
2)(|+〉 + |−〉)|φ〉, the interaction (6) develops the state (in

momentum space) into

〈p|�′〉 = eidpσz/h̄δ(p − p0)
|+〉 + |−〉√

2
, (21)

= δ(p − p0)
eidp0/h̄ |+〉 + e−idp0/h̄ |−〉√

2
. (22)

If a momentum measurement is now made on the meter state, post-interaction, we will of course find it in exactly
the state we put it in, with momentum p0, giving precisely no information about the state of the qubit. However,
as before, the interaction has rotated the qubit by a phase shift dp0/h̄. This procedure may now be repeated for N
independent photons, all prepared in state |p0〉. The interaction will develop the state in precisely the same way,
and the phase shift will simply add, giving a new phase shift of N times the single particle phase shift. Projecting
the qubit back on its original state will find that state with probability

P+,N = cos2(dp0N/h̄) = cos2(2πdN/λ). (23)

In contrast to the Gaussian meter case, we can now distinguish the distance dmin ∼ λ/N , provided we add in the
projective measurement possibility on the qubit following the interaction. It is instructive to see that in this case,
the weak measurement is actually no measurement at all, but only a weak interaction affecting the qubit only. The
same is true in the case of the interaction (2), provided g is sufficiently small.

Given this insight, could this scheme could be implemented in the optical experiments demonstrating weak
value amplification by simply monitoring the post-selection probability? A von Neumann-type interaction has been
shown using both polarization [18] or which-path [19] degrees of freedom. The answer is that those experiments
use a single photon as both the meter (transverse deflection) and system (polarization or which-path), so the number
of meter photons per system projection is 1.
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8 Conclusions

We have considered the weak measurement metrology model proposed by Zhang et al. [10] and have given a simple
interpretation of the Heisenberg scaling of the Fisher information with photon number shown there: the coherent
state interacting nonlinearly with a spin 1/2 particle imparts a coherent phase shift to the spin that can rotate the spin
to an orthogonal state for g ∼ 1/N . The coherent state carries only information about g that scales with the standard
quantum limit, and the spin (or pseudo-spin) must be measured directly to obtain Heisenberg scaling precision.
We have further investigated dephasing effects on the scheme and shown a rapid degradation to the measurement
precision, emphasizing that it is the fragile quantum coherence of the spin that leads to the enhanced scaling. This
behavior has been argued to be generic to all Heisenberg scaling schemes (see Refs. [20–23]), so it is not surprising
that we also find this behavior here as well. We also showed that the von Neumann measurement interaction also
has the phase accumulation effect, provided we prepared the meter states in momentum eigenstates. In that case,
there is no entanglement, and therefore, strictly no measurement of the spin by the meter states.
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