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Abstract

Fusion of multiple features can boost the performance
of large-scale visual classification and detection tasks like
TRECVID Multimedia Event Detection (MED) competi-
tion [1]. In this paper, we propose a novel feature fusion
approach, namely Feature Weighting via Optimal Thresh-
olding (FWOT) to effectively fuse various features. FWOT
learns the weights, thresholding and smoothing parame-
ters in a joint framework to combine the decision values
obtained from all the individual features and the early fu-
sion. To the best of our knowledge, this is the first work to
consider the weight and threshold factors of fusion prob-
lem simultaneously. Compared to state-of-the-art fusion al-
gorithms, our approach achieves promising improvements
on HMDB [8] action recognition dataset and CCV [5]
video classification dataset. In addition, experiments on two
TRECVID MED 2011 collections show that our approach
outperforms the state-of-the-art fusion methods for complex
event detection.

1. Introduction

The huge number of videos uploaded and viewed on

the Internet makes video analysis a hot topic in computer

vision and multimedia communities. Videos contain rich

information which can be represented as motion features

(e.g., Space-Time Interest Points (STIP) [10], Dense Tra-

jectories [23]), shape and color features of video frames

(e.g., SIFT [12], Color SIFT [21]), and acoustic features

(e.g., Mel-Frequency Cepstral Coefficients (MFCC)). How-

ever, not any individual feature can capture the whole infor-

mation of a video. Even for a single feature, the state-of-

the-art methods usually combine multiple descriptors. For

example, STIP [10] feature combines HOG descriptor for

shape information and HOF descriptor for motion informa-

tion, Dense Trajectories feature [23] is an integration of de-

scriptors of trajectory, HOG, HOF and Motion Boundary

Histogram (MBH).

In the video action recognition and event detection tasks,

researchers have developed systems which combine multi-

ple features. While performing action recognition on large-

scale video datasets, Reddy and Shah [17] found that com-

bining scene features (e.g., Color SIFT) with motion fea-

tures (e.g., STIP) is beneficial for analyzing real-life videos

from the Internet. As for event detection tasks, reports from

teams with top performance [26, 14, 15] in TRECVID MED

competition show that fusion, either feature-level fusion or

decision-level fusion brings performance gain into the de-

tection tasks.

Fusion mechanisms can be grouped into two types which

are feature-level fusion and decision-level fusion. In the

feature-level fusion, a linear combination of kernel matri-

ces from different features is used to capture the structure

of video data [18]. One simple and effective way in the

feature-level fusion, namely average early fusion, is to av-

erage multiple kernel matrices and the average kernel ma-

trix is used as similarity measure for classifier training.

The other fusion mechanism is decision-level fusion, which

adopts classifiers to features and then fuses the results based

on the confidence scores. Lan et al. [9] find that combin-

ing the decision values obtained from the kernel matrices of

individual features and the average distances of all the fea-

tures will gain better performance than using the decision

values from each individual features only.

The most widely used decision-level fusion method is

to assign average weights to confidence scores from each

feature, which may restrain the overall performance due to

the inconsistency and incomparability of confidence scores

from different models. Intuitively, in decision-level fusion,

different features should have different weights since they

may not contribute equally to the final decision. Taking

complex events detection in TRECVID MED task as an ex-

ample. Table 1 shows the Average Precision (AP) of de-

tection results from Dense Trajectories, STIP and MFCC
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Event Name MFCC Trajectories STIP

Birthday Party 21.3% 13.1% 7.8%

Changing a vehicle tire 3.9% 21.9% 4.1%

Working a sewing project 11.8% 17.4% 11.8%
Table 1. Average Precision for three different features

respectively. In this experiment, χ2-kernel SVM is used as

the classifier. For the event “Birthday party”, the acous-

tic feature MFCC achieves the best prediction performance,

and it is much better than visual motion features. The reason

is that singing and laughing sound in a birthday party is well

captured by MFCC. Differently, for the event “Changing a

vehicle tire”, acoustic information becomes less discrimi-

native so that MFCC gets worse performance than Dense

Trajectories feature. The situation of STIP is the same as

MFCC. It achieves good performance for some events while

performs worse for others. In this example we can see that

different features do not contribute equally to the task and

therefore their weights should not be identical.

Another issue in decision-level fusion is the difference of

thresholds among confidence scores from different models.

Assume that we retrieve the top 500 videos among 32,000

testing videos according to the confidence scores. Table 2

shows that the threshold of confidence scores from different

models can be very different. For example, Dense Trajecto-

ries feature has higher threshold than others, which means

that in the prediction using Dense Trajectories feature, only

videos with very high confidence scores should be consid-

ered as positive results. If the effects of the difference of

thresholds among predictive results are ignored, it would

degrade the discriminative ability of the fusion result.

In this paper, we propose a method for feature fusion.

We name the proposed method Feature Weighting via Opti-

mal Thresholding (FWOT). As aforementioned, the weights

and thresholds of multiple features are two factors to be

considered for feature fusion. In light of this, the fusion

algorithm proposed in this paper integrates feature weight-

ing and thresholds selection into a joint framework. Our

premise is that the weight and threshold of each feature are

correlated and the joint optimization of both makes them

mutually beneficial and reciprocal. The optimal weight of

a feature is dependent on the threshold, making it not only

to accurately reflect the importance of the feature, but also

more suitable for making the classification/detection deci-

sion. Inspired by [9], we combine the early fusion result

at the decision-level fusion. To the best of our knowledge,

this is the first work which optimizes weights and thresh-

olds simultaneously for fusion. Instead of directly solving

a non-convex and time consuming problem, we preset a se-

ries of thresholds as candidates, which in turn transforms

the problem from detecting the optimal thresholds to se-

lecting the best thresholds from the candidates. Further, to

make the algorithm more flexible and robust, we addition-

Event Name MFCC Trajectories STIP

Birthday party 0.075 0.106 0.075

Changing a vehicle tire 0.059 0.085 0.075

Working a sewing project 0.046 0.091 0.086
Table 2. Thresholds for different models

ally introduce a group of smooth factors to soften the clas-

sification/detection decision from discrete values to contin-

uous domain. In this way, the algorithm is formulated as a

Mixed Integer Program (MIP) problem. As the MIP prob-

lem is NP-hard, we relax it to a convex optimization prob-

lem, which is the lower bound of the original MIP problem.

We then apply cutting plane algorithm to efficiently solve

the problem with almost linear time complexity. In that way,

the optimized weights and thresholds can be obtained.

2. Related Work

Multiple Kernel Learning (MKL) [16] is the most pop-

ular way for combining different kernels to utilize the ad-

vantages of different features in applications such as visual

object classification, object detection and video semantic

analysis. Vedaldi et al. [22] use the MKL method to learn

the optimal combination of exponential χ2-kernels of edges

features, dense and sparse visual words and feature descrip-

tors at different spatial levels. They successfully trained

and tested a detector in a reasonable time and achieved

the best performance on the PASCAL VOC 2007 and 2008

benchmarks. However, Gehler and Nowozin have recently

pointed out in [4] that MKL may be less competitive than

average combination when the individual kernels are dis-

criminative already.

Recently, Yang et al. have proposed a semi-supervised

algorithm to fuse the information from multiple features.

The experiment shows that it is beneficial to exploit the un-

labeled data for multiple feature fusion when the labeled

data are few. Ma et al. propose to use multiple features to

learn different types of video attributes for event detection.

However, the algorithms proposed in [25] and [13] assign

an equal weight to different features, even though the fea-

tures may not be equally important.

Natarajan et al. [14, 15] propose a decision-level fu-

sion method particularly for event detection. The algorithm

adaptively fuses multiple features, which assigns videos

with the weights based on the detection thresholds. The

adaptive decision-level fusion assigns lower weights to spe-

cific scores if the confidence scores are near the threshold

while assigns higher weights to videos if the confidence

scores are very far away from the threshold. Thresholds

are set before the fusion stage. Though it is a reasonable

way to assign weights to features according to the detection

threshold, this method highly depends on the preset detec-

tion threshold.
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Figure 1. An illustration of our Feature Weighting via Optimal Thresholding (FWOT) fusion method
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Figure 2. f(x) = tanh x

a
of different parameters

3. The Proposed Approach
In this section, we first elaborate the formulation of the

proposed approach. Then we show the detailed steps to ob-

tain the optimal fusion function. Figure 1 is the illustration

of our FWOT method.

3.1. Problem Formulation

Suppose there are n training videos, we denote each

video as a variable xm ∈ R
d(1 ≤ m ≤ n), and its la-

bel as ym ∈ {−1,+1}, where ym = +1 indicates xm is

a positive exemplar and ym = −1 indicates xm is a neg-

ative one. Assuming that we have t features, we can train

classifiers f1(x), f2(x), . . . , ft(x) according to features of

videos. One simple function to combine the confidence

scores is

f(x) =
t∑

i=1

wi sgn(fi(x)− bi), (1)

where wi and bi are the weight and the threshold for confi-

dence scores of the i-th feature respectively. The function

in (1) indicates that for the i-th feature, if the confidence

score is above the threshold bi, the video would be labeled

as +1; otherwise −1, and then we combine the label values

according to weights wi. However, the sgn(·) function here

makes the fusion process inflexible, since videos with much

higher confidence scores than the threshold and those with

confidence scores a little bit higher than the threshold would

contribute equally to the fusion result. Instead of using the

hard label function sgn(·), we adopt the tanh(·) function

with a smoothing parameter a to generate soft labels. Fig-

ure 2 shows the curves of tanh(·) when the parameter a is

set to different values. It can be seen that when a is getting

smaller, tanh(·) tends to provide hard labels as sgn(·). To

make the model more appropriate to the data distribution

and utilize the training videos adaptively, we take ai as an

optimization variable. Thus the final fusion function can be

formulated as,

f(x) =

t∑
i=1

wi tanh
fi(x)− bi

ai
. (2)

As the smoothing parameters a are tightly correlated to

the thresholds, we formulate the problem as selecting the

most appropriate combination of thresholds b and smooth-

ing parameters a, based on which the optimal weights w
are learned. In particular, after we get the confidence

scores for the i-th feature, we can uniformly sample s con-

fidence scores as threshold candidates, which are denoted

as bi1, bi2, . . . , bis. We also preset r smoothing parameters

ai1, ai2, . . . , air for each feature. Then we learn the weights

w simultaneously based on (2).

To step further, we define a function Ψ : Rt×s×r → R
t

as [Ψ(X)]i =
∑

j,k Xijk, and introduce an indicator matrix

D ∈ {0, 1}t×s×r with
∑

j,k Dijk = 1, where Dijk = 1
indicates that the j-th threshold bij and the k-th smooth-

ing parameter aik are selected for i-th feature’s confidence

scores. Furthermore, we define a function gD : Rd → R
t

as:

gD(x) = Ψ(D � F (x)), (3)

where Fijk(x) = tanh
fi(x)−bij

aik
and � is the Hadamard

product. Denoting the fusion classifier as f(x) =

34353442



wT gD(x), to learn weights for different features, a straight-

forward way is to minimize the following risk function:

Ω(‖w‖p) + C
n∑

m=1

�oss(−ymwT gD(xm)), (4)

where Ω(‖w‖p) is the regularizer, �oss(·) is a convex loss

function, and C > 0 is a regularization parameter. Here we

use squared hinge loss and Ω(‖w‖p) = 1
2‖w‖2, then the

objective function can be formulated as follows:

min
D∈Ω

min
w,ρ,ξ

1
2‖w‖2 + C

2

n∑
m=1

ξ2m − ρ (5)

s.t. ymwT gD(xm) ≥ ρ− ξm, ∀m = 1, . . . , n

where Ω = {D|D ∈ {0, 1}t×s×r,
∑

j,k Dijk = 1} is the

feasible set of indicator matrix D. Denoting Lagrange mul-

tipliers λm for the inequality constraint of inner optimiza-

tion problem as a vector λ, where λ = [λ1, λ2, . . . , λn]
T ,

(5) can be solved by its dual:

min
D∈Ω

max
λ∈Λ

−1

2

n∑
m=1

n∑
q=1

λmλqymyqkD(xm, xq)− 1

2C
λTλ, (6)

where kD(xm, xq) = [gD(xm)]T gD(xq), and Λ =
{λ|λm ≥ 0,

∑n
m=1 λm = 1} is the domain of the vector

λ.

Noting that (6) is a Mixed Integer Program (MIP), in

which λ has exponential size. Following [11, 20], we re-

lax (6) to a convex optimization problem. Next, we show

that (6) is lower-bounded by

min
μ∈M

max
λ∈Λ

−1

2
(λ� y)T

⎛
⎝ ∑

p:Dp∈Ω
μpK

p +
1

C
I

⎞
⎠ (λ� y)

(7)

where Kp
mq = kDp(xm, xq), M = {μ|∑p μp = 1, μp ≥

0}, and Λ = {λ|∑m λm = 1, λm ≥ 0}.
According to the minimax inequality stated in [7], prob-

lem (6) is lower-bounded by interchanging maxλ∈Λ and

minD∈Ω, as

max
λ∈Λ

min
D∈Ω

−1

2

n∑
m=1

n∑
q=1

λmλqymyqkD(xm, xq)− 1

2C
λTλ.

(8)

By introducing a variable θ, this can be simplified as fol-

lows,

max
λ∈Λ,θ

−θ : θ ≥ −S(λ,Dp), ∀Dp ∈ Ω, (9)

where S(λ,Dp) = − 1
2

∑n
m=1

∑n
q=1 λmλqymyqkDp(xm, xq).

By setting the derivative of the Lagrangian of (9) w.r.t. θ

to zero, we have the condition for Lagrange multipliers

μp ≥ 0 of inequality constraint in (9) as
∑

p μp = 1. Let

μ = [μ1, μ2, . . . , μP ]
T be the vector for μp, (9) can be

further rewritten as

max
λ∈Λ

min
μ∈M

∑
Dp∈Ω

μpS(λ,D
p) (10)

where M = {μ|μp ≥ 0,
∑

p μp = 1} is the domain of

Lagrange multipliers vector μ. Substituting S(λ,Dp), and

noting that the objective function is concave w.r.t. λ and

convex w.r.t. μ, we can get the objective function as follows.

min
μ∈M

max
λ∈Λ

−1

2
(λ� y)T

⎛
⎝ ∑

p:Dp∈Ω
μpK

p +
1

C
I

⎞
⎠ (λ� y)

(11)

where Kp
mq = kDp(xm, xq), M = {μ|∑p μp = 1, μp ≥

0}, and Λ = {λ|∑m λm = 1, λm ≥ 0}, then we can see

that (11) is equivalent to (7).

3.2. Cutting Plane Algorithm for Optimization

In (7),
∑

p:Dp∈Ω μpK
p can be learned from the convex

combination of |Ω| base matrices. Each base matrix Kp is

generated from the indicator matrix Dp, which selects the

threshold-smoothing parameter pairs from the preset can-

didates. We use the cutting plane algorithm [6] to solve

this problem efficiently. Our approach generates a pool of

threshold-smoothing parameter candidates iteratively with

the cutting plane algorithm, which makes the number of

base matrices in each iteration much smaller than the orig-

inal problem. Thus, we can solve the sub-problem in each

iteration efficiently.

The detailed steps to solve problem (7) are described as

follows. Denoting the current active set as C ⊂ Ω, we first

initialize the Lagrange multiplier vector λ to be 1
n1, where

1 indicates a vector of n ones, and find the most violated

indicator matrix D̂ ∈ Ω. In the first iteration, we let the ini-

tial active set be C = {D̂}, then transform problem (7) into

its primal form and get a new solution of λ. We continue to

find the most violated D̂ and add it into the active set C. We

repeat finding Lagrangian multipliers vector λ and the most

violated indicator matrix D̂ until it converges.

Assuming that in the P -th iteration of the cutting plane

algorithm, the current active set C = {D1, D2, . . . , DP },
and the problem in (7) corresponds to the following primal

optimization problem:

min
μ∈M,ŵ,ρ,ξ

1
2

P∑
p=1

1

μp
‖ŵp‖2 + C

2

n∑
m=1

ξ2m − ρ (12)

s.t.

P∑
p=1

ŵT
p g

T
Dp(xm) ≥ ρ− ξm, ∀m = 1, . . . , n,
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which can be solved following [16] as: 1) fix μ and solve

the dual of SVM to update λ, 2) fix λ, use the reduced gra-

dient method to update μ. The complete illustration of the

method to solve problem (7) is shown in Algorithm 1. The
complexity of our algorithm is the same as Liblinear [3],
which is very efficient for large-scale data.

Algorithm 1: Feature Weighting via Optimal Thresh-

olding

1 Initialize λ = 1
n1, find most violated D̂, let C = {D̂};

2 repeat
3 Initialize μ = [1]T , P ← 1;

4 repeat
5 Fix μ, solve the dual of SVM as follows to

update λ

max
λ∈Λ

−1

2
(λ�y)T

(
P∑

p=1

μpK
p +

1

C
I

)
(λ�y);

6 Fix λ, use the reduced gradient method to

update μ;

7 P ← P + 1 ;

8 until convergence;

9 Find the most violated indicator matrix D̂ and

make C = C ∪ {D̂} ;

10 until convergence;

3.3. Finding the Most Violated Indicator Matrix D̂

After updating λ and μ in each iteration, we need to solve

the following optimization problem to find the most vio-

lated D̂,

max
D∈Ω

n∑
m=1

n∑
q=1

λmλqymyqkD(xm, xq)

⇒max
D∈Ω

n∑
m=1

n∑
q=1

λmλqymyq[Ψ(D � F (xm))]TΨ(D � F (xq))

⇒max
D∈Ω

n∑
m=1

n∑
q=1

Ψ [(λmymF (xm))� (λqyqF (xq))�D]

(13)

Defining a matrix Θ =

n∑
m=1

n∑
q=1

λmλqymyq(Fm � Fq), we

can get the global optimal solution of (13) by setting Dijk

to 1 if Θijk is the element with the largest value in the i-th
row of Θ. Otherwise, we set Dijk to 0.

4. Experiments
We test our approach on three publicly available datasets:

HMDB action dataset [8], Columbia Consumer Video

(CCV) dataset [5] and TRECVID MED 2011 dataset [1]

(including DEV-T and DEV-O collections). In the exper-

iments, we use the same pipeline as described in [24] to

evaluate the performance of the proposed method on ac-

tion recognition, video classification and event detection.

In CCV dataset, we use all the acoustic and visual fea-

tures provided by the authors in [5]. In MED datasets,

we generate the BoWs representation as follows. For vi-

sual features, e.g., MoSIFT [2], STIP [10], Dense Trajecto-

ries [23] and SIFT [12], we use the same setting as we did in

[13, 26] to generate the 32,768 dimensional BoWs. In ad-

dition to visual features, we use 4,096 dimensional MFCC

BoWs [26, 15, 19] as the acoustic feature in the event de-

tection experiment.

In the classification process, we adopt LIBSVM to gen-

erate the confidence scores from the probability outputs,

and χ2-kernel is applied to each type of features. We cal-

culate the χ2-kernel for each feature as described in [24].

Except for the confidence scores from basic features, we

also use the predictive scores on average of kernel matrices

to enhance the performance.

We compare the result with state-of-the-art fusion algo-

rithms, including Early Kernel Fusion (EKF) [18], Multi-

ple Kernel Learning (MKL) [16], and LPBoost [4]. Other

late fusion method like linear SVM on top of normalized

decision scores from all the different features has similar

optimization goal and consistent performance with the LP-

Boost. Thus in the late fusion comparison algorithms, we

only report the result of LPBoost. In the multi-class classi-

fication task (HMDB), we use LP-β [4], a variant of LP-

Boost, which is designed particularly for feature combi-

nation problem in multi-class classification. In TRECVID

MED DEV-T and DEV-O collections, we additionally com-

pare the result with Adaptive Late Fusion (ALF) [15], which

is particularly designed for event detection.

In the stage of presetting threshold-smoothing parame-

ter candidates, we sample every 10 confidence scores as

threshold candidates and empirically set smoothing param-

eter candidates as {0.5, 0.6, . . . , 0.9}. All the parameters in

our proposed method and compared algorithms are selected

from {10−4, 10−2, . . . , 104} according to cross-validation

except the parameter v in LPBoost and LP-β, which is cho-

sen from {0.5, 0.6,. . . , 0.9} as suggested by [4].

4.1. Experiment on HMDB dataset

HMDB [8] is a large action recognition dataset, which

has been recently collected by Kuehne et al. There are 6,766

videos in total from 51 distinct action categories in HMDB.

Each category contains at least 101 clips. It is claimed in [8]

that it is the largest and perhaps the most realistic available

dataset for human action recognition. The huge diversity

in visible body parts, camera motion, camera viewpoint,

number of people in the action and video quality makes it a

very difficult benchmark dataset for the state-of-the-art ac-
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Method Mean Accuracy(%)

Dense Trajectories [23] 46.6

EKF [18] 46.8

MKL [16] 46.9

LPBoost [4] 47.2

FWOT 48.9
Table 3. Recognition accuracies on the HMDB dataset [8]. The

top row shows the performance of the best individual feature, and

others indicate performance of fusion methods.

tion recognition algorithms. The recognition accuracy base-

line given in [8] is only 20.44% for the HOG/HOF system

and 22.83% for the C2 system.

In our experiment, we use the official three standard

training/testing splits identified by [8], which contain 70

videos for training and 30 videos for testing in each action.

We use four features as basic features, namely MoSIFT,

STIP, Dense Trajectories and SIFT. Before the fusion stage,

we train a multi-class SVM classifier for each visual fea-

ture with one-vs-all approach. Confidence scores for train-

ing videos are obtained by 5-fold cross-validation. After

weighted fusion, we choose the action category with high-

est confidence score as the predicted result. Results are

shown in Table 3, in which we list the performance of the

best individual feature Dense Trajectories to show the im-

provement of the fusion methods over the individual fea-

ture. Comparison in Table 3 shows that for action recog-

nition in unconstrained videos using the HMDB dataset,

our proposed method outperforms the state-of-the-art fusion

methods by appropriately assigning optimal weights to mul-

tiple features.

4.2. Experiment on Columbia Consumer Video
dataset

For the video classification task , we use Columbia Con-

sumer Video dataset (CCV) [5] to compare the performance

of different fusion methods. In the CCV dataset, there are

totally 9,317 videos with 20 semantic categories, in which

4,659 videos are used as training data and 4,658 videos are

used as testing data. The semantic categories contain events

like “baseball” and “parade”, scenes like “beach”, and ob-

jects like “cat”. Consumer videos contain very diverse con-

tent and have much fewer textual tags and descriptions,

which motivates the content analysis based on both acoustic

and visual features. Since the authors have not provided the

original videos of the dataset, we use the three features pro-

vided by [5]: STIP features with 5,000 dimensional BoWs

representation, SIFT features extracted every two seconds

with 5,000 dimensional BoWs representation, and MFCC

features with 4,000 dimensional BoWs representation.

Similarly to the experiment on HMDB, we use χ2-kernel

to train non-linear SVMs and use 5-fold cross-validation to

Method Mean AP (%)

SIFT [12] 52.8

EKF [18] 52.9

MKL [16] 57.1

LPBoost [4] 56.8

FWOT 60.3
Table 4. Mean AP on the CCV dataset [5]. The top row shows

the performance of the best individual feature, and others indicate

performance of fusion methods.

Method Mean AP Mean Pmiss

Dense Trajectories [23] 0.354 0.399

EKF [18] 0.414 0.358

MKL [16] 0.412 0.357

LPBoost [4] 0.415 0.365

ALF [15] 0.437 0.346

FWOT 0.442 0.338
Table 5. Comparison of Mean Average Precision (AP) and Mean

Pmiss@TER=12.5 (Pmiss) of different methods on MED 2011

DEV-T collection [1]. LOWER Mean Pmiss indicates BETTER
performance. Top row shows the performance of the best individ-

ual feature.

get the decision values for the training data. Mean Aver-

age Precision is used as evaluation metric as in [5]. In Ta-

ble 4, we report the experiment results of different fusion

methods, and the performance of the best individual fea-

ture SIFT is reported as well. Since in CCV dataset, the

semantic concept is more complex than the simple action

in HMDB dataset, fusing the scene information (e.g. SIFT)

and acoustic information (e.g. MFCC) improves the perfor-

mance of classification. We can see from the table that our

proposed method could discriminate features in different

situation, and achieve significant improvement over other

fusion methods.

4.3. Experiment on TRECVID MED 2011 dataset

Multimedia Event Detection (MED) [1] is a part of the

TRECVID tasks. MED raises a question in communities

of multimedia and computer vision: given some descrip-

tions of an event and a set of illustrative video exemplars,

could a system detect the occurrence of an event using

acoustic and visual information (individually or together)?

In 2011, NIST collected a dataset which consists of about

32,000 testing videos from various Internet video hosting

sites, namely the DEV-O collection. Then a dataset which

consists of about 9,700 training videos, namely DEV-T col-

lection, is used as development dataset for the participants

in TRECVID 2011. Detailed information about DEV-T

and DEV-O collections can be referred to [1]. MED 11
DEV-O collection: 10 events are used in the DEV-O col-

lection to test the performance of multimedia event detec-

tion system. These events include “Birthday party (BP)”,
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“Changing a vehicle tire (CaVT)”, “Flash mob gathering

(FMG)”, “Getting a vehicle unstuck (GaVU)”, “Grooming

an animal (GaA)”, “Making a sandwich (MaS)”, “Parade

(PR)”, “Parkour (PK)”, “Repairing an appliance (RaA)”,

and “Working on a sewing project (WaSP)”. For each event,

111 to 173 video exemplars are provided. The total duration

of the DEV-O collection is about 1,200 hours, which makes

it possibly the largest available dataset with meaningful la-

bels for video analysis.

MED 11 DEV-T collection: In DEV-T collection, there

are totally 18 events. In addition to the 10 events in DEV-O,

there are another 8 events in the DEV-T collection, includ-

ing “Attempting a board trick (AaBT)”, “Feeding an ani-

mal (FaA)”, “Landing a fish (LaF)”, “Wedding ceremony

(WC)”, “Working on a woodworking project (WoaWP)”,

“Making a cake (MaC)”, “Batting a run (BaR)”, and “As-

sembling a shelter (AaS)”.

Different from the recognition datasets, many videos in

the MED 2011 DEV-T and DEV-O collections do not be-

long to any events, which are called null data. The videos in

DEV-T and DEV-O collections have huge variance in terms

of quality, duration, scene and so forth [1], which makes the

MED a great challenge for content based video analysis.

In our experiment, all of the positive video exemplars for

each event are used in the training data. In DEV-T collec-

tion, we use all the null videos as negative exemplars. In

DEV-O collection, we sample 1,000 videos, which do not

belong to any event, as negative exemplars. As for video

representation, we use Dense Trajectories, STIP, TCH [21]

and MFCC as the basic features. When detecting one event,

we train a binary χ2-kernel SVM classifier for each fea-

ture to obtain the confidence scores. 5-fold cross-validation

is used to get the confidence scores for training data. In

the evaluation of DEV-T and DEV-O collections, we use

two evaluation metrics. One is the Average Precision (AP),

which is popularly used as the evaluation metric in imbal-

anced binary classification problems. The other is Prob-
ability of Miss-Detection based on the Detection Thresh-
old 12.5, which is the standard evaluation metric used by

NIST [1] in MED to evaluate the performance of a detec-

tion system. We denote the second evaluation metric as

Pmiss@TER=12.5 for short. Different from AP metric,

lower Pmiss@TER=12.5 indicates better performance.

We show the comparison of Mean AP and Mean

Pmiss@TER=12.5 of different methods on DEV-T collec-

tion and DEV-O collection in Table 5 and Table 6. We ad-

ditionally compare our algorithm to Adaptive Late Fusion

(ALF), which was proposed in [15] particularly for event

detection. Our method achieves the best performance in

both collections. Note that in the Adaptive Late Fusion

(ALF) algorithm, thresholds are set before the fusion pro-

cess, and bad thresholds would lead to weak performance of

ALF method. Different performance in DEV-T and DEV-

Method Mean AP Mean Pmiss

Dense Trajectories [23] 0.240 0.367

EKF [18] 0.310 0.318

MKL [16] 0.310 0.307

LPBoost [4] 0.322 0.310

ALF [15] 0.210 0.359

FWOT 0.336 0.294
Table 6. Comparison of Mean Average Precision (AP) and Mean

Pmiss@TER=12.5 (Pmiss) of different methods on MED 2011

DEV-O collection [1]. LOWER Mean Pmiss indicates BETTER
performance. Top row shows the performance of the best individ-

ual feature.

O collections shows that ALF may suffer from the difficulty

of getting a good detection threshold and show unstable per-

formance in the fusion stage. On the contrary, our method

learns proper thresholds in the process of weighting fusion,

which makes the fusion method more robust in the event

detection system. In Figure 3 we show the comparison of

Average Precision and Pmiss@TER=12.5 of different fu-

sion methods on every event in TRECVID MED 11 DEV-O

collection. We can see that our fusion method outperforms

other state-of-the-art fusion algorithms in 8 out of 10 events

in TRECVID MED 11 DEV-O collection.

5. Conclusion
In this paper, we have introduced an approach to leverage

multiple features by decision-level fusion, which optimizes

the weights and thresholds for features in the confidence

scores simultaneously. We formulate the problem as se-

lecting the most appropriate combination of thresholds and

smoothing parameters, based on which the optimal weights

are learned. We first preset lots of thresholds and smoothing

parameter candidates, then we use the cutting plane algo-

rithm to obtain the optimal weights and thresholds, which

is very efficient even in a large-scale problem. Experiments

on HMDB dataset and CCV dataset show that our approach

outperforms other state-of-the-art methods on action recog-

nition and consumer video classification. In addition, we

achieve the best performance among different fusion meth-

ods on a large-scale video dataset TRECVID MED 2011

(including DEV-T and DEV-O collections) using both Av-

erage Precision and Pmiss@TER=12.5 metrics. The exper-

imental results confirm that our method is superior to other

fusion methods for different video analysis tasks.
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