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1. Introduction  

Consider a finite chunk of ferrofluid exposed to a uniform magnetic field as shown 
in Fig. 1.The shape is very close to the shape of a spheroid. Several authors claimed 
that this fact can be established on the basis of a rigorous theory, like it was done 
for the equilibrium shape of rotating self-gravitating uniform incompressible liquid 
(see Chandrasekhar’s classics1 and multiple references therein). To learn more 
about the magnetic ferrofluids in the uniform magnetic fields, interested readers 
can find the approaches and further references in the monograph.2 Other references, 
relating to ellipsoidal solutions in the problems of electromagnetism, can be found 
in the works of Stratton,3 Landau and Lifshitz,4 and Akhiezer et al.5  

 

Fig. 1 The equilibrium shape of a ferrofluid inside the Helmholtz coil takes on a shape close 
to an elongated spheroid co-axial with the field 

Despite all these remarkable efforts and progress, the problem of equilibrium shape 
of ferrofluids is far from being exhaustively explored. There are several reasons for 
further mandatory improvements. For instance, the master systems, describing the 
dynamics of ferrofluid, face various objections.6,7 The problem of equations of 
state—which will be the object of hot debates for a long time—also needs further 
study. From that standpoint it seems reasonable to limit ourselves to static 
(thermodynamic) approaches, especially when the problem under study is of a static 
(equilibrium) nature up front. 

There are several fundamental problems relating to the static and thermodynamic 
aspects of the ponderomotive forces in substances with polar interaction: the 
authors’ vision of those problems has been presented in the works of Michael and 
Pavel Grinfeld.8–11 Despite all the existing controversies, the “static” approaches 
are much older and face less objections than the “dynamics” of electromagnetic 
media. This report will analyze the problem of equilibrium shape by directly using 
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the static approach (i.e., not deriving the static system from the more questionable 
dynamic system of magnetohydrodynamics). When considering the ellipsoidal 
configurations of ferrofluid we follow the method suggested by Eshelby in the 
1950s,12 instead of the classical approaches of Chandrasekhar,1 Bashtovoy et al.,2 
Stratton,3 Landau and Lifshitz,4 or Akhiezer et al.5  

2. The Boundary Value Problem to be Solved 

We assume that the ferrofluid is maintained at a fixed temperature, and let ψ  be 
the free-energy density at this temperature. Because the fluid is assumed 
incompressible, the free-energy density is the function of the polarization vector 
P


, only ( )Pψ ψ=


.  

Our suggested approach to this problem is based on the minimization of the total 
energy of the system totalW . The total energy includes 3 ingredients: the total free 
energy totalΨ , the total magnetic energy Emag , and the total surface energy surfE  

 magtotal total surfW E E= Ψ + + , (1) 

where the energy ingredients are chosen to be the following: 

 

( )
( )

2
/ 8, ,

.

magtotal
Body Space

surf

d M E d H

E d N

πψ

σ
Ξ

Ψ = Ω = Ω∫ ∫

= Ω∫

 



 

(2)

 

 
In Eq. 2, H


 is the magnetic field, M


is the magnetization vector, and ( )Nσ


is the 

dependence of the surface energy density upon the orientation of the unit normal 
unit. 

In the beginning we postulate the classical equations of magnetostatics (when there 
is no current of free charges, the system of electrostatics and of magnetostatics are 
the same4).  

The variational problem under study is the symbiosis of 2 classical problems: the 
first is the classical problem of magnetostatics and the second is the problem of the 
equilibrium shape of liquid or crystal. For our situation it is essential that the 
magnetostatic problem with the given shape of the boundary is essentially linear if 
the constitutive relationship between the field and inductance is linear. At the same 
time, the second problem is essentially nonlinear, even when the surface energy σ
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is just a constant. The linear electrostatics and magnetostatics can be addressed by 
various algorithms that have already been developed. Because of its nonlinearity, 
the problem of the equilibrium shape is treated in the suggested approach as the 
more difficult. This fact dictates our iterative approach, and we concentrate on this 
problem in the following paragraphs.  

In the first step, we fix the current position of the boundary Ξ  and solve the 
magnetostatic problem for the fixed current domain. This allows us to determine 
all the current fields , ,P H

 
 and B


. Afterwards, we transition to solving the second 

problem. Namely, we slightly update the current location of the boundary Ξ  in such 
a way that the total energy totalW  in the updated domain is smaller than in the current 
domain. In Eqs. 7–10 we formulate explicitly what should be done to that end. 
Then, for the updated boundary we return to the first step and repeat the procedure 
iteratively.     

The linear boundary value in the first problem can be solved differently (see the 
variational approach in Bossavit and Mayergoyz’s work13). Analytically, it reduces 
to solving the following system of linear equations and boundary conditions: within 
the fluid (Eq. 3), within vacuum (Eq.4), at the interface liquid-vacuum (Eq.5) at 
infinity (Eq. 6), or at a given boundary.  

 4 , 0, MB H M B Hπ ψ= + ∇ ⋅ = = 

    
, (3) 

 0H∇ ⋅ =


, (4) 

 
[ ] 0, 0B Nϕ

++
= ⋅ =− −

  
 

,
 

(5)
 

 H H→ ∞
 

. (6) 

In the combined system (Eqs. 3–6), ϕ  is the scalar field potential and B


 is the 
induction vector, respectively. The symbolic thermodynamic relationship MH ψ= 


 

in Eq. 3 has the following index counterpart: ( ) /k i
iH M Mψ= ∂ ∂ .  

In fact, solving the system (Eqs. 3–6) is equivalent to minimizing the energy totalW

at fixed boundary Ξ  with respect to the distribution of the magnetization  
vector M


.  

The problem of minimizing the total energy totalW possess one more essential degree 
of freedom: it is the position of the boundaryΞ . Theoretical analysis of this 
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variational problem leads to the boundary equation (presented in the component 
form) 

 ijT N Ni j R
σψ 

  
+

+ − = Λ
−

, (7) 

where R is the mean curvature of the boundary, [ ]a +
−  symbolizes a jump of the 

function a  across the interface, Λ  is an unknown constant (the Lagrange multiplier, 
which can be determined from the condition of a given total mass of the ferrofluid), 
and the tensor ijT  is defined as follows:  

 1 1

8 4
ij ij jk k iT H H H B B Hk k δ

π π
= − +
 
 
 

. (8) 

In the empty space, the tensor ijT reduces to the celebrated Maxwell stress tensor. 

In the absence of the polarization associated terms, the boundary in Eq. 6 reduces 
to the classical Laplace condition of a constant mean curvature of the liquid drop 
under the action of surface tension.  

3. A 2-Step Iteration Algorithm 

The following statements, established in Ferroelectrics,9 play the key role in the 
suggested computational algorithm. To formulate them explicitly, consider the 
current distribution of the magnetization vector M


 satisfying the bulk and boundary 

equations of magnetostatics (Eqs. 3–6). If we insert this field into the left-hand side 
of the relationship in Eq. 7 we get a certain function χ , defined on the current 
surface Ξ . Generally speaking, this function is not constant. If we move each point 
of the surface in the direction of the local unit normal N


on the distance ∆  such that 

 ( )meanτ χ χ∆ = − − , (9) 

 
then τ  is a sufficiently small positive number and meanχ  is the mean value of the 
of the function χ  over the surface Ξ  

 1
mean area

dχ
Ξ Ξ

= Ω∫ . (10) 

We call this new surface an upgraded surface *Ξ  and the domain *B  inside it an 
upgraded domain. Let us solve the magnetostatic problem (Eqs. 3–6) for the 
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upgraded domain and calculate the upgraded total energy *
totalW . The following 2 

relationships are valid: 

 
*

totalW Wtotal <  (11) 

and 

 *B B≅ , (12) 

 
where the symbol ≅  means the equality to within the first order of smallness in τ . 

4. Toward Verification of the Ellipsoidal Shape 

The solution for ellipsoid is of importance for 2 reasons. First, theorists claim2 that 
the isolated chunk of ferrofluid in a uniform (at infinity) field takes on the shape of 
an ellipsoid. Second, this solution being very simple inside the ellipsoid is a 
convenient tool for quick verification of the computational code. Following 
Eshelby’s research,12 we will get the presentation of the Cartesian component of 
the magnetic field outside the ellipsoid as 

 kH A Hi i k iω ∞= − ∇ ∇ + , (13) 

whereω is the Newtonian potential of the same ellipsoid having the mass density 
equal to 1, and kA  has to be determined by the boundary conditions. 

The Newtonian potential inside the ellipsoid is very simple: 

 0
1
2

ji
ijC Y z zω = −  , (14) 

where 0C  and ijY  are the constant scalar and symmetric tensor satisfying the 

conditions 

 .
. 4i
iY π=  . (15) 

Using Eq. 13, we arrive at the very simple relationship of the magnetostatic field 
inside the ellipsoid as the following: 

 k
i ik iH A Y H∞= + . (16) 
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The field outside the ellipsoid is much more complex. Tensor ijY  can be easily 

expressed in terms of the ellipsoid’s semi-axis and orientation and vice versa. When 
the tensor ijY is known we can determine the geometry of the ellipsoid. 

5. Conclusion 

Ferrofluids keep finding more and more applications in engineering practice and 
academic research. From a scientific point of view, ferrofluids raise many novel 
and exciting problems in mathematical, theoretical, computational, and applied 
physics. Many simple fundamental problems of the discipline remain unanswered. 
Among those is the particularly appealing problem of the equilibrium shape of an 
isolated chunk of ferrofluid exposed to a static uniform magnetic field. In the 
suggested approach, this problem is treated as the problem of multidimensional 
calculus of variation with free (i.e., unknown) boundary. The presence of the 
unknown boundary makes the problem deeply nonlinear even when the constitutive 
relationships between the magnetic field and induction are linear.  

To solve this and similar problems computationally, we suggested an algorithm 
similar to the method of steepest descent. The algorithm is based on splitting the 
solution into 2 steps. The first step consists of solving the linear problem of 
magnetostatics within the a priori known domain. The second step reduces to 
updating the current domain in such a way that the total volume of the domain 
remains unchanged and, at the same time, the total accumulated energy becomes 
smaller. This step is described by the relationships in Eqs. 7–10. The 
implementation of this algorithm is currently under development. 
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