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Abstract 

Dust storms (5 to 100 km across) often originate from multiple dust-emis-
sion sources (1 to 10 km across). Remote-sensing-based dust-source iden-
tification is a challenge. A previous study developed a subjective approach 
for mapping dust sources by using enhanced MODIS satellite imagery; 
therefore, this study conducted mapping exercises to assess the reproduci-
bility of this technique amongst multiple analysts and in different regions. 
Multiple staff members independently analyzed satellite imagery for map-
pable dust sources for Southwest Asia and the Southwest United States. 
Mapped points were considered reproducible if the location of dust emis-
sion plumes identified by all participants could be constrained to a 10 km 
buffer. Using this definition, point-source locations were 28% reproduci-
ble in Southwest Asia and 85% reproducible in the Southwest United 
States. Increasing the allotted buffer to 15 km, however, improved results 
to 71% and 100%, respectively. Mapped dust sources for Southwest Asia 
were compared to geomorphic landform maps. At the 1:750,000 map 
scale, points mapped by all analysts for a single dust plume tended to over-
lay one landform, while at the 1:100,000 map scale, points were strewn 
across several landforms. Results suggest that the methodology is repro-
ducible for certain applications but that location-uncertainty tolerance af-
fects perceived conclusions. 

DISCLAIMER: The contents of this report are not to be used for advertising, publication, or promotional purposes. Ci-
tation of trade names does not constitute an official endorsement or approval of the use of such commercial products. 
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1 Introduction 

1.1 Background 

Atmospheric soil and mineral dust can significantly influence a variety of 
global-scale processes, such as the radiation budget of the atmosphere, bi-
ogeochemical reactions that occur in the ocean, and global climate (Shinn 
et al. 2000; Mahowald et al. 2005, 2014; Ravi et al. 2011; Webb et al. 2012; 
Huang et al. 2014; Knippertz and Stuut 2014; Skiles et al. 2015; Wang et 
al. 2017). On regional and local scales, lofted dust can negatively affect vis-
ibility, mobility, communication, and human health (Rushing et al. 2005; 
Rushing and Tingle 2006; De Longueville et al. 2010; Okin et al. 2011; Al-
Hemoud et al. 2017; Middleton 2017;). As a result, understanding the pro-
cesses that control spatial and temporal patterns of atmospheric dust oc-
currence has become a priority for the research, military, operational fore-
casting, and hazard mitigation communities (e.g., Knippertz and Stuut 
2014; Sprigg et al. 2014; Shepherd et al. 2016).  

Accurate dust-source characterizations are critical for effectively modeling 
dust storms and their associated hazards. Numerous remote-sensing stud-
ies have attempted to identify dust-emission-source locations (e.g., 
Legrand et al. 1994; Torres et al. 1998; Prospero et al. 2002; Miller 2003; 
Bullard et al. 2008; Baddock et al. 2009; Walker et al. 2009; Ginoux et al. 
2012; Jafari and Malekian 2015; Moridnejad et al. 2015; Zhang et al., 
forthcoming). Historically, satellite-based approaches have struggled with 
dust-plume origin detection. This is because synoptic and mesoscale dust 
storms on the order of 5 to 100 km rarely originate from a single source 
but rather from the amalgamation of several point-source dust plumes. 
These smaller plumes stem from multiple point sources (i.e., plume heads 
1 to 10 km across) that can evade coarser-resolution satellite detection.  

Advances in satellite image resolution (1 km or better) have greatly en-
hanced the ability to detect plume heads remotely (Walker et al. 2009; 
Muhs et al. 2014). Walker et al. (2009) developed an approach to manu-
ally map plume-head point sources in a geospatial information system 
(GIS) framework using Moderate Resolution Imaging Spectroradiometer 
(MODIS) imagery processed through a dust-enhancement algorithm. With 
this technique, a location is digitized and archived if the analyst observes 
an unobscured plume head in the imagery. Although analysts are able to 
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map dust sources at the satellite-image grid scale, location analysis error is 
almost unavoidable. Airborne dust must be sufficiently elevated for over-
land dust enhancement algorithms to work; otherwise, thermal and reflec-
tance contrast signals between the dust and the underlying surface may 
not be discernable. By the time the dust has reached a sufficient altitude, it 
is likely to have traveled downstream from its deflating source. As such, 
errors in digitized source location may be on the order of 1 to 10 km 
(Walker et al. 2009). 

Even with this inherent uncertainty, the Walker et al. (2009) technique is 
a popular approach for dust-source identification and is often used as a 
proxy for dust-source observations (e.g., Lary et al. 2016). The Walker et 
al. (2009) methodology is also currently being used to incorporate dust 
sources into the Navy’s Coupled Ocean-Atmosphere Mesosphere Predic-
tion System (COAMPS; e.g., Liu et al. 2007; Walker et al. 2009), which to 
date remains the highest-resolution dust-source treatment in an opera-
tional military weather forecast model. To our knowledge, however, the 
sensitivity of the Walker et al. (2009) methodology to analyst subjectivity 
has never been formally assessed.  

1.2 Objective 

The goal of this study is to examine the role of analyst subjectivity on the 
reproducibility of the Walker et al. (2009) technique.  

1.3 Approach 

A group of analysts independently mapped plume-head point sources for 
two predetermined case-study dust events, one in the Southwest United 
States and one in Southwest Asia. Section 2 of this report provides step-
by-step instructions for an adapted version of the Walker et al. (2009) 
methodology and outlines the procedures and criteria used to determine if 
dust was present in a satellite image. It also includes the GIS mapping pro-
cedures. Section 3 outlines the two geographical regions and provides 
background information pertinent to each case study. Section 4 reviews 
the resultant plume-head point-source maps. Section 5 discusses final re-
producibility assessments and limitations of the approach, and Section 6 
identifies potential areas of future work. 
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2 Methods 

For each case-study region, a single analyst downloaded Automated Sur-
face Observing System (ASOS) weather data to identify dusty days re-
ported in local weather station records. The same analyst then downloaded 
and processed true-color and dust-enhanced MODIS satellite imagery as-
sociated with each day of interest and selected a single time period for 
each regional case study based on a perceived potential for numerous 
mappable plume-head point sources. After reviewing mapping procedures 
and techniques, a group of additional analysts then individually mapped 
plume-head point sources in the images selected for each region by using 
ArcMap 10.3 and assigned a quality score (confidence level) to each 
mapped point. Results from each analyst were subsequently aggregated to-
gether and assessed for reproducibility.  

Because of a general lack of in situ dust-emission observations, there is no 
way to definitively corroborate the precise locations of historically emitting 
dust sources on a regional scale or to verify that point sources subjectively 
identified by an analyst are actually real sources. Thus, quantitative assess-
ment is limited in nature to point-placement reproducibility amongst ana-
lysts. In other words, this report addresses the sensitivity of plume-head 
location placement to analyst interpretation. It does not attempt to quan-
tify the ability of individual group members to reproduce actual emission-
source patterns. As a result, the reproducibility assessments in this report 
are based only on the plume heads that were identified by all participating 
analysts. Of those points, a mapped plume-head point source is considered 
reproducible if all point-source markers are constrained to a 10 km buffer, 
a limit defined by the potential for advection error when using the Walker 
et al. (2009) methodology. 

In addition to mapping plume-head point sources, an overlay analysis us-
ing geomorphic landform maps was also conducted for the Southwest Asia 
case study. Certain arid-region landform types tend to be richer in dust-
sized material than others (e.g., Bullard et al. 2011; Sweeney et al. 2011, 
2016; Sweeney and Mason 2013) because processes that dictate landform 
evolution also influence soil development. As a result, some researchers 
believe that landform designations can be used as a suitable proxy for soil 
attributes like dust-emission potential (e.g., Bullard et al. 2008; Bacon and 
McDonald 2016). For example, dry lakebeds filled with unconsolidated 
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fine-grained sediments are commonly considered a significant dust-emis-
sion source globally (e.g., Prospero et al. 2002). Because of this important 
link between landform type and dust emissions, a more comprehensive 
understanding of the geomorphic controls that dictate atmospheric dust is 
necessary to enhance weather and climate models (Baddock et al. 2016). 
Thus, an overlay analysis may offer insight as to whether the Walker et al. 
(2009) technique may be a reliable option for validating various geo-
morphic-based dust-source characterization approaches.  

2.1 Satellite imagery acquisition and selection process 

All satellite images used in this study were derived from MODIS data, 
which have been collected by the Earth Observing System Terra and Aqua 
satellites since early 2000 and mid-2002, respectively (see 
https://modis.gsfc.nasa.gov/). ASOS weather station data ranging from 1 January 
2000 to 30 June 2016 was downloaded for the case-study regions and in-
spected for accounts of airborne dust to help select appropriate satellite 
imagery for the reproducibility experiments. These ASOS stations record 
sub-hourly meteorological data and are found primarily at airports across 
the globe (Nadolski 1998). Appendix A provides step-by-step instructions 
for ASOS data acquisition.   

Periods of ASOS station records with entries of “blowing dust,” “dust dev-
ils,” or “sandstorm” in the obscuration-to-vision column (i.e., the “ob-
scure” column) were noted for consideration. These data, however, re-
quired further reduction as not all dust events identified via ground-based 
sensors are detectable by satellites as previously discussed. Visibility ob-
servations greater than approximately 32 km were used to filter out iso-
lated events or dust events likely undetectable by the MODIS sensors. Via-
ble case-study options were further reduced to periods with several (five to 
ten) weather stations simultaneously reporting dust or stations reporting 
long periods (hours to days) of near continuous blowing dust, as these are 
strong indicators of widespread dust lofting through synoptic or mesoscale 
forcing mechanisms.  

For each potential period identified via the ASOS record inspection, a sin-
gle analyst downloaded MODIS Level 1B 1 km Calibrated Radiance gran-
ules. These granules were originally downloaded as HDF (hierarchical data 
format) files, post-processed, and reformatted into georeferenced TIFF 
(tagged image file format) imagery that could be directly imported into 
ArcGIS. Three unique images were then generated from each acquired 
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granule (e.g., Figure 1) using the channels listed in Table 1 and a script de-
veloped in Python (see Appendix B). The first is a true-color image, a 
bird’s eye representation of the Earth from space without the addition of 
any filtering or post processing (e.g., Figure 1a). The other two images 
were created using false-color dust-enhancement algorithms (e.g., Figures 
1b and 1c).   

The first dust-enhanced image is rendered using a technique by Miller 
(2003), which uses visible, near-infrared, thermal-infrared, and water-va-
por channels to distinguish elevated dust from the underlying background. 
The Miller (2003) approach uses different equations to set the resulting 
red color over land and water. Lofted dust appears pink, landscapes have 
blue and green hues, water and steep terrain are red, and clouds appear 
aqua or cyan (see Figure 1b). For a detailed overview of the algorithm pro-
cedure, see section 3 of Miller (2003).    

The second dust-enhanced image is generated using an algorithm origi-
nally developed by the European Organization for the Exploitation of Me-
teorological Satellites (EUMETSAT) for use with their geostationary satel-
lite data. This algorithm has since been adapted for other satellite plat-
forms (e.g., Lensky and Rosenfeld 2008; Brindley et al. 2012). Unlike the 
Miller (2003) approach, the EUMETSAT technique does not require use of 
any visible channels, making it useful for both day and nighttime dust de-
tection. Lofted dust often appears hot pink against a purple landscape be-
low, and thick clouds typically appear red, which can camouflage the pink 
dust in some instances (see Figure 1c). An overview of the EUMETSAT al-
gorithm and procedures for setting imagery color palettes are available in 
section 2 of Brindley et al. (2012), and step-by-step instructions to render 
MODIS imagery are located at the end of this report in Appendix B. Im-
agery created with true-color settings, the Miller (2003) algorithm, and 
the EUMETSAT algorithm are labeled “True Color,” “MILLER,” and “EU-
METSET,” respectively, throughout this report. 
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Figure 1.  MODIS satellite imagery of the Southwest United States and Mexico. Panels A, B, 
and C depict the area outlined by the red box within the inset of Panel A. Panel A is a True 

Color image that depicts white clouds against a brown landscape; a bird’s eye representation 
of Earth. Panel B is a MILLER image that depicts aqua colored clouds against a dark 

blue/green landscape. Lofted dust appears pink while high-relief topography appears red. 
The white dashed box depicts a region that does not contain any lofted dust. Panel C is a 

EUMETSAT image that depicts red clouds against a purple landscape. Lofted dust appears 
hot pink. The white circle in each panel depicts a dust event. Note the pink dust that can be 

seen in Panels B and C is undetectable in Panel A.  
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Table 1.  MODIS channels used to generate case-study imagery. 

MODIS Channel Description Band Width (µm) 

1 Red 0.620–0.670 
2 Near Infrared 0.841–0.876 
3 Blue 0.459–0.479 
4 Green 0.545–0.565 

26 Water Vapor 1.360–1.390 
29 Water Vapor 8.400–8.700 
31 Infrared 10.780–11.280 
32 Infrared 11.770–12.270 

 
Of all the MODIS images that were downloaded for this study, only a select 
few were useful for mapping plume-head point sources. This was because 
of a variety of reasons, including but not limited to the Terra and Aqua sat-
ellites not passing over the area of interest during the time of the dust 
storm; the presence of cloud coverage obscuring the dust below; or the oc-
currence of a low-concentration, short-lived, insufficiently lofted, or 
nighttime dust storm. In addition, analysts were not able to map lofted 
dust in all imagery that coincided with an event as, in many instances, dust 
appeared as an effusive cloud without discernable point sources that could 
identified or mapped (Figure 2).  

Figure 2.  True Color (left) and MILLER (right) images depicting a dust event on the Colorado 
Plateau in northeast Arizona in the area outlined by the red box. Note that while there is a 

considerable amount of pink-colored portions of the MILLER image, discernable plume-head 
point sources are not apparent and therefore cannot be deduced or mapped. 
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Other images contained plume-head-like features that initially looked like 
mappable sources; but further inspection identified them as thin clouds, 
forest fires, or high-relief ridges. Clouds often looked deceivingly like 
lofted dust in the MILLER images, particularly when relatively thin (e.g., 
Figure 3). To ensure that the team did not mistakenly map clouds as dust, 
analysts used the True Color and EUMETSAT images to clearly define the 
location of any clouds in the region before mapping plume-head point 
sources. Large-scale forest fires and certain landforms also portrayed dust-
like characteristics in the MILLER images. Some high-relief landforms, 
such as narrow mountain ridges, appeared reddish/pink in the images, 
mimicking the appearance of a long dust-plume tail (see Figure 3). Smoke 
from forest fires appeared as a plume-like feature that emanated from a 
single point source and looked nearly identical to plume heads in the MIL-
LER and EUMETSAT images (Figure 4). To ensure that these features 
were not accidentally mapped as dust sources, the analysts used the True 
Color image to evaluate where the dust sources were coming from off the 
landscape. Narrow mountain ridges were easily identifiable in the True 
Color images and could immediately be ruled out, and smoke typically 
originated in forested terrains that were very unlikely to be large dust pro-
ducers.  

2.2 Mapping dust-plume-head point sources 

Once a single set of the True Color and dust-enhanced images was selected 
from the remaining list of options for each case-study region, the analysts 
mapped plume heads using ArcMap 10.3 software. This involved upload-
ing the processed MODIS imagery and creating and editing shapefiles of 
point markers for each region. All participating analysts then inde-
pendently mapped point sources they identified through subjective im-
agery interpretation. Each analyst also assigned a quality score to every 
mapped point as a means to communicate user confidence in plume-head 
mapping decisions. Quality scores were ranked on a qualitative scale from 
1 to 3. Users assigned a particular point a quality score of 3 only when they 
were confident in the placement of the point and felt certain dust was orig-
inating from that location. A quality score of 2 meant users were almost 
certain dust was coming from that location but were not entirely confi-
dent. A quality score of 1 meant the user was not certain in the placement 
of the point. Appendix C outlines the detailed step-by-step instructions for 
the mapping procedures and quality score assignment followed in ArcMap. 
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Figure 3.  True Color (top left), MILLER (top right), and EUMETSAT (bottom left) images for the 
region outlined by the red box over portions of the Southwest United States and Mexico. 

These images highlight the potential for high-relief terrain features to be misinterpreted as 
dust. Note the light pink colored feature to the east of the Gulf of California in the MILLER 

image that resembles the appearance of lofted dust. When compared to the True Color 
image, it is apparent that these features are clouds. The white circle in the MILLER image 

highlights high-relief terrain that has the appearance of highly concentrated lofted dust. This 
same region outlined in the EUMETSAT image, however, does not show any indication of 

lofted dust. The True Color image reveals this region is composed of mountainous terrain.  
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Figure 4.  As in Fig. 3 but for smoke. True Color (top left), MILLER (top right), and EUMETSAT 
(bottom left) images for the region outlined by the red box over portions of the Southwest 

United States and Mexico. The MILLAR and EUMETSAT images reveal a mesoscale dust event 
in the northeast corner of the domain. A single plume located south of the dust storm also 

looks as if it could be lofted dust. This same feature is apparent in the True Color image but 
very clearly originates from forested terrain, indicating that it is very likely smoke from a forest 

fire.   
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3 Case-Study Descriptions 

3.1 Southwest Asia 

The desert region of Southwest Asia is composed of several countries, in-
cluding Saudi Arabia, Oman, the United Arab Emirates, Iran, Afghanistan, 
Pakistan, and India (Figure 5). The geomorphology of this region is highly 
variable and includes mountainous terrain, river valleys, plateaus, dry 
washes, ephemeral lakes, alluvial fans, sand dunes, and salt plains (Goudie 
and Middleton 2006; Affleck et al. 2011). Vegetation is sparse but diverse 
due to the variety of unique landscapes present. Common types of vegeta-
tion include camel brush, broom grass, buckthorn, and a variety of trees in 
the mountainous regions (Khaurin 2003; Breckle 2007). 

Figure 5.  Map of Southwest Asia (as outlined by the red box) depicting western India, 
Pakistan, Iran, Afghanistan, Oman, the United Arab Emirates, and eastern Saudi Arabia. The 
white box shows the location of the Hamun dry lakes, which are an important dust source in 
the region. The enlarged image box in the top right depicts the individual lakebed boundaries 
(modified from Rashki et al. 2013). Dust is lofted from the Hamun region and transported in a 

southeasterly direction around the Chagai Hills and into Pakistan.    

  

The majority of dust storms in Southwest Asia occur at the convergence 
between the borders of Iran, Pakistan, and Afghanistan (Goudie and Mid-
dleton 2006). Other sources of dust in the region include the coast of the 
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Arabian Sea in Iran and the Indus Plains in Pakistan, and dust originating 
in the Sahara Desert is also frequently transported to the area (see Figure 
5) (Goudie and Middleton 2006). At the convergence between Iran, Paki-
stan, and Afghanistan, dust sources are located in the lowland valleys be-
tween mountain peaks. Major dust emitters in the region include alluvial 
fans and ephemeral lakes, such as the Hamun dry lakes and the deltaic fan 
associated with the Helmand River. Dense dust plumes often originate 
from these sources and are transported by strong northerly winds blowing 
to the southeast through lowland areas and around the Chagai Hills (see 
Figure 5) (Goudie and Middleton 2006; Muhs et al. 2014). This is a domi-
nant pattern often seen in the area and is representative of the specific 
dust storm that took place on 16 September 2011 and was mapped in this 
study. Images were generated from the MODIS Terra 0650 UTC* (1120 lo-
cal time in Southwest Asia) granule. 

3.2 Southwest United States 

The desert region of the Southwest United States encompasses portions of 
California, Nevada, Utah, Arizona, New Mexico, and Texas between the 
Pacific Ocean and the Rocky Mountains and is composed of four major de-
serts: the Great Basin, Mojave, Sonoran, and Chihuahuan (Figure 6). The 
regional geomorphology includes wash plains, dry lakebeds, playas, sand 
dunes, floodplains, alluvial plains, and isolated mountain ranges shaped 
by erosional processes. Vegetation in the region, though sparse, does not 
conform to the near-void vegetation patterns typically seen in other desert 
regions globally. Instead, a denser population of desert shrub, brush, 
grasses, and cacti, including plants such as cheat grass, creosote, mesquite, 
atriplex, and ironwood, cover a larger percentage of the surface. 

Dust storms occur throughout the year in the Southwest United States 
(driven by prevailing wind patterns), though seasonal fluctuations in the 
Pacific High (a semi-permanent, subtropical anticyclone located over the 
northeastern Pacific Ocean) and the Jet Stream drive variations in the 
number and intensity of dust storms observed throughout the year (Adams 
and Comrie 1997; Tong et al. 2012). During the monsoon season (July to 
mid-September), dust events are usually induced by localized thunder-
storms. The dust storm mapped in this study is associated with a weather 
front that moved across the Colorado Plateau in Arizona on 2 April 2003. 

                                                   
* Coordinated Universal Time 
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Images were generated from the MODIS Terra 2050 UTC (1250 local time 
in the Southwest United States) granule. 

Figure 6.  Map of the Southwest United States desert regions. The boundaries of the four 
major deserts in this region, including the Great Basin, Mojave Desert, Sonoran Desert, and 

Chihuahuan Desert, are outlined (modified from EPA 2012).  
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4 Results 

4.1 Southwest Asia 

Table 2, Figure 7, and Figure 8 show the results from the reproducibility 
experiment conducted for Southwest Asia. As shown in Table 2, the num-
ber of plume-head point sources mapped by each analyst ranged from 10 
to 28, with an average of 19 ± 6.9. Mean quality scores between analysts 
ranged from 1.94 to 2.5, with an average of 2.15 ± 0.22. The analyst that 
mapped the greatest number of point sources was second to least confi-
dent in their decisions while the analyst that mapped the fewest points was 
the most confident. In total, there were seven plume heads that all five an-
alysts mapped (see Figures 7 and 8). Of these, two plume heads fell within 
a 10 km buffer while all others fell within a 15 km (three plume heads), 25 
km (one plume head), or 35 km (one plume head) buffer. Other plume 
heads depicted in the image were only mapped by a portion (four or fewer 
analysts) of the team and thus were not considered for reproducibility 
evaluation.  

Results were mapped onto a 1:100,000 and a 1:750,000 geomorphic land-
form map produced by the Desert Research Institute (see McDonald et al. 
2013 for landform map generation and attribute details). At a 1:750,000 
map scale, plume-head point sources mapped by all five analysts for a sin-
gle plume head fell within the same type of landform (alluvial plain), while 
at the 1:100,000 map scale, the same points were strewn across several 
different landform types (delta plain, playa, wet playa, and sand sheets; 
see Figure 7). 

Table 2.  Number of mapped dust sources and mean quality scores for the Southwest Asia 16 
September 2011 0650 UTC case study. 

Analyst Identification Number 
Number of Mapped Dust 

Sources Mean Quality Score 

1 28 1.96 
2 14 2.29 
3 17 1.94 
4 10 2.5 
5 26 2.04 
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Figure 7.  MILLER image (top) depicting a dust event on 16 September 2011 in Southwest 
Asia and associated dust-plume-head markers mapped by five analysts. The region in the 

white rectangle is enlarged in the bottom panels. The 1:750,000 (bottom left) and 1:100,000 
(bottom right) scale geomorphic landform maps are overlain with mapped plume-head point 
sources. The oval in each panel outlines five points placed by each analyst for single plume 

head. 
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Figure 8.  Quality scores assigned by each of the five analysts to points mapped in the 
Southwest Asia case study. Points marked with high confidence (3) are green, moderate 
confidence (2) are yellow, and low confidence (1) are red. Each panel depicts the points 
placed by an individual analyst. Note that points mapped by all analysts were assigned a 

higher quality score (and were therefore easier to identify and map) than those mapped by 
only one or two analysts.  
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4.2 Southwest United States 

Table 3, Figure 9, and Figure 10 show results from the second reproduci-
bility experiment conducted for the Southwest United States. One of the 
team analysts could not participate in the second experiment, so only four 
of the five initial analysts mapped this region. As shown in Table 3, the 
number of plume-head point sources mapped by each analyst ranged from 
13 to 29, with an average of 22 ± 6.7. Mean quality scores between analysts 
ranged from 1.23 to 2.14, with an average of 1.77 ± 0.41. In total, there 
were seven plume heads that all four analysts mapped. Mapped sources for 
six of these plume heads fell within a 10 km buffer, while the other fell 
within a 25 km buffer. Of the six plume heads mapped within a 10 km 
buffer, three were constrained to a 5 km buffer and one to a 3 km buffer. 
Several points were mapped in regions that were not dust producing areas. 
One analyst mapped several plume-head like features that were actually 
thin clouds in the region (see Figure 9). Fortunately, that analyst marked 
all of those points with a quality score of 1, indicating a low level of confi-
dence (see Figure 10). Landform maps for this region were not accessible 
at the time of the experiment, and therefore analysts did not conduct over-
lay analyses.   

Table 3.  Number of mapped dust sources and mean quality scores for the Southwest United 
States 2 December 2003 2050 UTC case study. 

Analyst Identification Number 
Number of Mapped Dust 

Sources Mean Quality Score 

1 29 1.66 
2 13 1.23 
3 22 2.14 
4 24 2.04 
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Figure 9.  MILLER image (left) depicting a dust event on 2 April 2003 in the Southwest United 
States and the associated dust-plume head markers mapped by four analysts. Points mapped 
by each analyst are represented by different colored circles. Note the five points mapped by 

analyst 1 in the southeast corner of the image that are incorrectly placed on clouds. The area 
outlined in the black rectangle is enlarged on the right: a close-up of individual plume-head 

point sources mapped by each analyst. Also, note the variability in the number of plume 
heads subjectively identified by each analyst. Buffers placed around plume heads mapped by 
all analysts show a high degree of duplicability and are constrained to 3 km (blue circle), 5 km 

(green circles), and 10 km (yellow circles) buffers. This image does not include the 25 km 
buffer.  
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Figure 10.  Quality scores assigned by each of the four analysts to points mapped in the 
Southwest United States case study (shown in Fig. 9). Points marked with high confidence (3) 

are green, moderate confidence (2) are yellow, and low confidence (1) are red. Each panel 
depicts the points placed by an individual analyst. As with the Southwest Asia study, plume 

heads marked by all analysts received a higher quality score than those mapped by just one 
or two analysts.  

  



ERDC/CRREL TR-17-8 20 

 

5 Discussion 

Following the 10 km location uncertainty assumption per Walker et al. 
(2009), this reproducibility study considers points to be reproducible if 
markers submitted by each analyst fall within a 10 km buffer. In the 
Southwest Asia case study, only two of the seven plume-head point sources 
mapped by all participating analysts (~29%) could be constrained to a 
10 km buffer. From the visual inspection of Figure 7 and from group dis-
cussions, however, the team of analysts determined that there are likely 
more than seven mappable plume-head point sources in the Southwest 
Asia imagery. In particular, the team agreed in a later group debate that 
four plume-head point sources that a fraction of the team (three or four 
analysts) mapped were indeed mappable sources. This result highlights 
the subjective nature of identifying and mapping plume-head point 
sources and suggests that analysts do not always define mappable sources 
in the same manner. It could, therefore, be beneficial to have a team of an-
alysts, rather than a single user, apply this methodology to a given region 
as point sources overlooked by some team members may be identified and 
mapped by others. 

In the Southwest United States study, six of the seven plume-head point 
sources mapped by all participating analysts (~86%) could be constrained 
to a 10 km buffer. As with the Southwest Asia experiment, group discus-
sions led to an agreement that there are likely more than seven mappable 
plume-head point sources depicted in the Southwest United States im-
agery. A thorough group discussion deemed that three plume-head point 
sources mapped by a fraction of the team (two or three analysts) were 
mappable sources, though again, there is no way to verify the accuracy of 
the group consensus.  

Our study supports the use of the Walker et al. (2009) methodology for 
global dust-emission-activity characterization as the analysts were able to 
successfully map two markedly different, regional-scale desert environ-
ments. The results from both the Southwest Asia and U.S. case studies, 
however, highlight that although the Walker et al. (2009) methodology is 
reproducible to an extent, it may not produce one-to-one results between 
multiple analysts. Our findings also demonstrate that dust-source charac-
terization products created via the Walker et al. (2009) methodology may 
not be suitable proxies for observational “truth.” If the definition of repro-
ducible was expanded to include point sources mapped to within a 15 km 



ERDC/CRREL TR-17-8 21 

 

buffer, however, five of the seven (~71%) Southwest Asia points and all 
seven (100%) of the Southwest United States points would be considered 
reproducible. Thus, aspects of the final product’s format and intended ap-
plication largely affect conclusions about the reproducibility of the Walker 
et al. (2009) technique. For example, Walker et al. (2009) applied their fi-
nal dataset to a dust transport model as a preferential dust-source region 
map interpolated to a 27 km grid. This grid spacing resolution is well out-
side the bounds of expected detection and analyst-induced location-error 
uncertainty.  

Of the 183 total points mapped by the analysts in this study, only five were 
deemed to be incorrectly placed at definitively non-dust-emission sources 
(see Figure 9). This demonstrates that users encountered minimal diffi-
culty in differentiating between plume-head point-source locations and 
false-positive “plume-head lookalikes,” like forest fires or high-relief ter-
rain. The five points that were incorrectly mapped as plume-head point 
sources (and were in fact clouds) were assigned a quality score of 1, which 
indicates that the quality score is an important aspect of this methodology 
that can be used to winnow out unusable data. Plume-head point sources 
mapped by one or two analysts typically received a quality score of 1, while 
89% (in Southwest Asia) and 79% (in the Southwest United States) of 
plume-head point sources mapped by all analysts received a quality score 
of 2 or 3 (see Figures 8 and 10). User confidence could therefore be used as 
a predictive measure to identify mapped points that are likely actual dust-
emission sources.  

Our geomorphic overlay assessment suggests that the 1 km resolution of 
MODIS imagery coupled with the mapped point-source location uncer-
tainty may prohibit use of the Walker et al. (2009) technique for linking 
dust-emission sources to a particular landform type or geographic location 
outside of very coarse-resolution scale analyses. Previous studies have 
shown that individual geomorphic landforms may not always act as homo-
geneous dust-emission sources and may consist of both erodible and un-
erodible portions (Walker et al. 2009; King et al. 2011; Sweeney et al. 
2011). Additionally, some dust-emission sources may be associated with 
individual fields or farmland (e.g., Gillette 1999). Dust plumes emitted 
from these relatively small, localized sources are likely too narrow for 
MODIS sensors to detect. 
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6 Opportunities for Future Research 

The inability of the MODIS data to display narrow dust plumes is a limit-
ing factor when characterizing dust-emission sources for highly variable 
landscapes. Newer and higher-resolution multispectral satellite capabili-
ties, such as the Visible Infrared Imager Radiometer Suite (VIIRS), may be 
able to ameliorate this issue. Future studies aiming to map dust-emission 
sources using an approach similar to the Walker et al. (2009) methodology 
should consider use of these higher-resolution satellite platforms to en-
hance dust-emission potential associations to various landscape attributes. 
Additionally, MODIS is currently operating past its initial design life of six 
years, so continued dependency on image acquisition from MODIS could 
pose a risk. The significant drawback to any new satellite capability, how-
ever, is a substantial reduction in the length of the record. VIIRS, for ex-
ample, was launched in 2011 while MODIS was launched in 2000 and can 
therefore provide a longer record of continuous data.  

A second limitation of the approach used in this study is the fact that 
MODIS visible-channel imagery can only be acquired during daylight 
hours. Satellite orbit timing could also affect dust-level estimations as di-
urnal patterns of blowing dust exist due to the heterogeneous heating of 
the atmosphere and land surface (Stout 2010). If a satellite does not pass 
over the area of interest during times with the greatest frequency of dust 
storms, it could miss the dust events (particularly if short lived) entirely. 
For example, Orgill and Sehmel (1976) examined dust storms reported in 
weather station data in the United States and determined that the majority 
of dust storms in the region occur between 1200 and 2000. This time pe-
riod only partially aligns with MODIS satellite pass over in the Southwest 
United States, which is always between 1700 and 2100 UTC.  

The team of CRREL analysts will conduct future research efforts using the 
Walker et al. (2009) methodology to better understand how temporal and 
spatial patterns of dust emissivity relate to local climate patterns and re-
gional geomorphology. The analysts who participated in this study will 
build a dust-plume-head point source database using the Walker et al. 
(2009) technique and 16 continuous years of MODIS data for U.S. and 
Mexico desert regions. Findings from this future study will help guide data 
interpretation and collaborative mapping approaches. 
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Appendix A: Obtaining ASOS Data  

To obtain weather station data for a particular area of interest, go to 
https://mesonet.agron.iastate.edu/request/download.phtml?network=AZ_ASOS. Look for “Select 
Network” at the top of the page, choose a region of interest, and click 
“Switch to Network.” Section 1, “Select Station/Network by Clicking on Lo-
cation,” shows a map of the selected area with red markers denoting the 
location of each ASOS station in the region. Above the map, each station is 
listed alphabetically under “Sort Available Stations.” From this list, choose 
several stations that cover the area of interest and click “Add Selected.” It 
is not necessary to download data from every available station, particularly 
in regions where an abundance exist; but stations both within and imme-
diately outside of the area of concern should be downloaded to obtain 
comprehensive coverage of the region. The chosen stations will appear in 
the “Selected Stations” box. In section 2, “Select from Available Data,” se-
lect “All Available” to include all measurements and observations from the 
ASOS stations. In section 3, “Specific Date Range,” select the desired range 
of interest. In section 4, “Time Zone of Observation Times,” select UTC to 
avoid potential problems with regions that span across multiple time 
zones. In section 5, “Download Options,” select tab delimited, include the 
latitude and longitude data, and change “View result data in web browser” 
to “Save result data to file on computer.” After making these selections, 
click “Get Data.” 

Once downloaded, the data will need to undergo some minor processing to 
alter the date and time stamps associated with each entry and to remove 
unwanted fields. Software engineers at Atmospheric and Environmental 
Research, Inc., developed a Python script to handle these processing steps. 
Use the Python script entitled “ASOS_Processing.py” (included below), 
and type the following command: python ASOS_Processing.py 
/path/to/directory, where /path/to/directory is replaced with the cor-
rect path name. Each processed weather station dataset produces a text 
(.txt) and a comma-separated values (.csv) file.  

  

https://mesonet.agron.iastate.edu/request/download.phtml?network=AZ_ASOS
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ASOS Processing Python Script: 
''' 
--- 
Title: ASOS_Processing.py 
Date Created: December 2015 
Updated: March 2017 
Outputs: For each weather station, a text file with all hourly reports processed --> 
<inputfile>_PROCESSED.txt 
 
For all weather stations processed in a single batch, a summary .xls file with only reports 
from "events" (defined below) included --> ASOS_STATS_events_only.xls 
--- 
 
#-------------------------------------------------------------------------------------- 
# PURPOSE 
#-------------------------------------------------------------------------------------- 
 
ASOS_Processing.py processes weather station data files downloaded from the Iowa 
Environmental Mesonet ASOS Network. The URL for the IEM ASOS archive is: 
https://mesonet.agron.iastate.edu/request/download.phtml?network=AZ_ASOS 
 
This script can process a single file or a batch of data files contained in the same 
directory. This script will produce 1) a text file of processed data for each raw data file 
it is given and 2) a summary .xls file that compiles all reports associated with decreased 
visibility or obscurations reported.  
 
#-------------------------------------------------------------------------------------- 
# SUMMARY 
#-------------------------------------------------------------------------------------- 
 
ASOS_processing.py reads data files downloaded from the IEM ASOS Network and processes them 
by scanning for missing values, changing the data type of the time stamp field, removing 
unwanted fields, and searching for the occurrence of visibility obscurations and 
thunderstorms (which are logged in a new field).  The processed data is saved in a new tab 
delimited text file with the input file name appended with the suffix _PROCESSED.txt. 
 
For each weather station data file: 
input file = my_data.txt 
output file = my_data_PROCESSED.txt 
 
 
 
Events summary file compilation: 
 
Events are defined as reports that contain decreased visibility conditions (< 7 nautical 
miles), reports of obscuration (blowing dust (BLDU), dust storm (DS), sand storm (SS), dust 
whorls or dust devils (PO), haze (HZ), fog/mist, or smoke), or a combination of the two. 
 
 
event_code  Obscuration and Visibility Condition 
 
0.0  =   no obscurations and high visibility 
1.0  =   low visibility, no obscuration reported 
2.0  =   low visibility and BLDU, DS, SS, PO  
2.1  =   high visibility and BLDU, DS, SS, PO  
3.0  =   low visibility and haze 
3.1  =   high visibility and haze 
8.0  =   low visibility and fog/mist 
8.1  =   high visibility and fog/mist 
9.0  =   low visibility and smoke 
9.1  =   high visibility and smoke 
 
All reports are assigned an event_code. All reports with an event code that is not equal to 
0.0 are compiled to remove duplicate reports of the same event on the same day. Therefore, 
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for a given station, only one report of an event is recorded per day (this is for 
calculating statistics of the occurrence of events). 
 
This compilation is saved in: ASOS_STATS_events_only.xls  
 
#-------------------------------------------------------------------------------------- 
# USAGE 
#-------------------------------------------------------------------------------------- 
 
To run this processing script, place a copy of this code in a directory with the data 
file(s) that need to be processed. In Terminal, navigate to the directory that contains the 
script and data file(s), then enter this command:   
 
python ASOS_Processing.py /path/to/directory/with/data/files 
 
Where you will replace the /path/to/directory... with the correct path name. The script 
will print updates and information to the terminal window about the processing. This script 
will create, use, and then delete a temporary file in the directory that holds the script 
and your data file to be processed.  The processed output files will be saved to this same 
working directory. 
 
 
''' 
import pandas as pd 
import os 
import sys 
import datetime 
 
print sys.argv[-1] 
directory_in = sys.argv[-1]  
# read directory path from launch command 
# check to make sure a directory was provided 
if directory_in == '*.py': 
print'' 
print 'You forgot to include the directory path in the command' 
print 'Please run again and tell me where to look for the zip files.' 
print'' 
sys.exit() 
 
files = os.listdir(directory_in)   
#store the names of all files in directory in a list "files" 
print files 
 
nfiles = len(files) 
print nfiles 
 
aa = 0 
processed = 0 
 
while aa < nfiles: 
    current_file = files[aa]  
   # grab a file in the list  
    print "The current file is: " +current_file 
    suffix = current_file[-4:]   
   # cut the last 4 characters off the file name to check the type of file 
    if suffix != '.txt': 
     print '' 
        print 'NOT A DATA FILE'   
       # if it is not a .txt, do nothing 
        print 'Move to the next one...' 
        print '' 
        aa = aa+1 
     
    else : 
number = aa+1 
print 'Data File --> Statring  To Process ' +str(number) +' of ' +str(nfiles)  
# if it is a .zip, unzip it to the current directory 
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raw_input_file = directory_in+'/'+current_file 
output_file = 'ASOS_STATS_events_only.xls'   
# generate output file name 
 
# Need to strip the first 5 lines of the input file downloaded from IEM ASOS archive  
numline=5  
# 5 lines to skip 
p="" 
o=open("temp_output.txt","a") 
f=open(raw_input_file) 
for i in range(numline): 
f.next() 
for line in f: 
if p: 
o.write(p) 
p=line 
f.close() 
o.close() 
 
# open data file with first 5 lines removed to read the data, skip spaces after tab 
delimiters 
df_in = pd.read_csv('temp_output.txt', delimiter='\t', skipinitialspace=True,)   
# read data from file into pandas Data Frame  
os.remove('temp_output.txt')   
# delete the intermediate file with the top 5 lines stripped off 
print 'Beginning Data Processing' 
 
# ****************************************************************** 
# ****************************************************************** 
 
# DATA PROCESSING - carried out in order of the parameter columns from input data file 
# Station Name --> Add "K" to station text string to match shapefile names. 
add_str = 'K' 
for i in range(0,len(df_in.index)): 
existing_str = df_in.loc[i,'station'] 
df_in.set_value(i, 'station', add_str+existing_str) 
# Time Stamp Processing --> Convert 'valid' from string to type = datetime 
 
df_in['valid'] = pd.to_datetime(df_in['valid'])  
 
 
 
# For Numeric Data -- Scan for missing values (marked with "M" by IEM ASOS data 
interpreter) and assign a value of "null" (without "") if found  
# Also add hooks for unit conversion 
 
# ************************************ 
# ************************************ 
 
# Define a function to look at columns that should have numeric values, but they are mixed 
in with strings ("M") from the IEM ASOS interpreter for missing values 
def is_number(s): 
try: 
float(s) 
return True 
except ValueError: 
return False 
 
# ************************************ 
# ************************************ 
 
# Check the Data, Replace M's from IEM ASOS interp. with '' (no data) so that ArcGIS reads 
the column in as a float and the empty cells will become <Null> values 
# 
df_in['hour'] = pd.Series(0, index=df_in.index)  
 # create the new column 
df_in['day'] = pd.Series(0, index=df_in.index)   
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# create the new column 
df_in['month'] = pd.Series(0, index=df_in.index)  
# create the new column 
df_in['year'] = pd.Series(0, index=df_in.index)   
# create the new column 
df_in['obscure'] = pd.Series('none', index=df_in.index)   
# create the new column 
df_in['Tstorm'] = pd.Series('none', index=df_in.index)   
# create the new column 
df_in['dailypre'] = pd.Series(0.0, index=df_in.index)   
# create the new column 
df_in['event'] = pd.Series('none', index=df_in.index)   
# create the new column 
df_in['event_code'] = pd.Series(0.0, index=df_in.index)   
# create the new column 
df_in['vis_check'] = pd.Series(0.0, index=df_in.index)   
# create the new column 
df_in['dup_report'] = pd.Series(0, index=df_in.index)   
# create the new column 
 
# Temperature data processing 
for i in range(0,len(df_in.index)): 
temp = df_in.loc[i,'tmpf'] 
check = is_number(temp) 
if check != True: 
df_in.set_value(i,'tmpf', '') 
 
# Dew Point data processing 
for i in range(0,len(df_in.index)): 
dewpt = df_in.loc[i,'dwpf'] 
check = is_number(dewpt) 
if check != True: 
df_in.set_value(i,'dwpf', '') 
 
# Relative Humidity data processing 
for i in range(0,len(df_in.index)): 
RH = df_in.loc[i,'relh'] 
check = is_number(RH) 
if check != True: 
df_in.set_value(i,'relh', '') 
 
# Wind Direction data processing 
for i in range(0,len(df_in.index)): 
win_dir = df_in.loc[i,'drct'] 
check = is_number(win_dir) 
if check != True: 
df_in.set_value(i,'drct', '') 
 
# Wind Speed data processing 
for i in range(0,len(df_in.index)): 
win_spd = df_in.loc[i,'sknt'] 
check = is_number(win_spd) 
if check != True: 
df_in.set_value(i,'sknt', '') 
 
# 1 Hour Precipitation data processing 
for i in range(0,len(df_in.index)): 
precip1hr = df_in.loc[i,'p01i'] 
check = is_number(precip1hr) 
if check != True: 
df_in.set_value(i,'p01i', '') 
 
print '...  Making Progress' 
 
 
 
# Pressure Altimeter data processing 
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for i in range(0,len(df_in.index)): 
test_val = df_in.loc[i,'alti'] 
check = is_number(test_val) 
if check != True: 
df_in.set_value(i,'alti', '') 
 
# Sea Level Pressure data processing 
for i in range(0,len(df_in.index)): 
test_val = df_in.loc[i,'mslp'] 
check = is_number(test_val) 
if check != True: 
df_in.set_value(i,'mslp', '') 
 
# Visibility data processing 
for i in range(0,len(df_in.index)): 
vis = df_in.loc[i,'vsby'] 
check = is_number(vis) 
if check != True: 
df_in.set_value(i,'vis_check', 99.0) 
else: 
df_in.set_value(i,'vis_check', vis) 
 
# Gust Wind Speed data processing 
for i in range(0,len(df_in.index)): 
gust_val = df_in.loc[i,'gust'] 
#print gust_val 
check = is_number(gust_val) 
if check != True: 
df_in.set_value(i,'gust', '') 
 
print '... ... Almost Done' 
print '' 
 
# search METAR string for different obscuration codes and store them in a new column called 
"obscure" 
 
for i in range(0,len(df_in.index)): 
input = df_in.loc[i,'valid'] 
year = input.year 
month = input.month 
day = input.day 
hour = input.hour 
df_in.set_value(i,'year', year) 
df_in.set_value(i,'month', month) 
df_in.set_value(i,'day', day) 
df_in.set_value(i,'hour', hour) 
 
 
# Loop through the METAR strings, ask if any of the obscuration or storm codes are in each  
# Individual METAR string, if so, change the value in the "obscure" or "Tstorm" fields 
for i in range(0,len(df_in.index)): 
metar = df_in.loc[i,'metar']   
# Get row i of METAR 
BLDU = metar.find('BLDU')  
# Search for "BLDU” and log the location  
DSNT =  metar.find('DSNT') 
DS = metar.find('DS') 
ALQDS = metar.find('ALQDS') 
RMK = metar.find('RMK') 
PO = metar.find('PO') 
HZ = metar.find('HZ') 
fog = metar.find('FG') 
smoke = metar.find('FU') 
SA = metar.find('SA') 
mist = metar.find('BR') 
tstorm = metar.find('TS') 
zap = metar.find('LTG') 
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fropa = metar.find('FROPA') 
dp = metar.find(' 70') 
 
if BLDU != -1:        
df_in.set_value(i,'obscure', 'Blowing Dust') 
df_in.set_value(i,'event', 'dust/sand obs')   
# Continue adding the text strings 
elif PO != -1: 
df_in.set_value(i,'obscure', 'Dust Devils') 
df_in.set_value(i,'event', 'dust/sand obs') 
elif HZ != -1: 
df_in.set_value(i,'obscure', 'Haze') 
df_in.set_value(i,'event', 'haze') 
elif fog != -1: 
df_in.set_value(i,'obscure', 'Fog') 
df_in.set_value(i,'event', 'fog/mist') 
elif smoke != -1: 
df_in.set_value(i,'obscure', 'Smoke') 
df_in.set_value(i,'event', 'smoke') 
elif SA != -1: 
df_in.set_value(i,'obscure', 'Sandstorm') 
df_in.set_value(i,'event', 'dust/sand obs') 
 
elif mist != -1: 
df_in.set_value(i,'obscure', 'Mist') 
df_in.set_value(i,'event', 'fog/mist') 
# The dust storms code (DS) looks the same as other codes when searched for this way. Check 
#the location of DS and the things around it to see if it is actually a    
#dust storm or just a part of another code statement. 
elif DS != -1: 
if DS < RMK:   
# DS is a part of DSNT --> ignore! 
df_in.set_value(i,'obscure', 'Duststorm') 
df_in.set_value(i,'event', 'dust/sand obs') 
# Now look for info on thunderstorms and lightning 
if tstorm != -1: 
df_in.set_value(i,'Tstorm', 'Thunderstorm 0-10 miles') 
elif zap != -1 and tstorm == -1: 
df_in.set_value(i,'Tstorm', 'Thunderstorm 10-30 miles') 
# Look for a remark about a passing front 
if fropa != -1: 
if tstorm == -1 and zap == -1: 
df_in.set_value(i,'Tstorm', 'Frontal Passage no Tstorm') 
else: 
df_in.set_value(i,'Tstorm', 'Frontal Passage with Tstorm') 
# get the 24 hour precipitation total 
if dp != -1: 
if dp > RMK:     
# Check to make sure it is in the remarks section 
a = metar[dp+2:dp+6]  
# Grab the daily precipitation data in 1/100th of an inch 
if is_number(a) == True:   
# Make sure you have 4 numbers in the string 
b = float(a) 
c = b/100 
df_in.set_value(i,'dailypre', c) 
 
# Define new column "event_code" to make it easy to sort the data based on observations of 
vision, dust, fog, etc. 
# Code for different combinations of low visibility (< 7 nautical miles) and obscurations 
 
# 0 = no obscurations and high visibility 
# 1.0 = low visibility, no obscuration reported 
# 2.0 = low visibility and BLDU, DS, SS, PO  
# 2.1 = high visibility and BLDU, DS, SS, PO  
# 3.0 = low visibility and haze 
# 3.1 = high visibility and haze 
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# 8.0 = low visibility and fog/mist 
# 8.1 = high visibility and fog/mist 
# 9.0 = low visibility and smoke 
# 9.1 = high visibility and smoke 
 
 
for i in range(0,len(df_in.index)): 
event_str = df_in.loc[i,'event'] 
vis = df_in.loc[i,'vis_check'] 
if vis > 7.0: 
if event_str == 'none': 
df_in.set_value(i,'event_code', 0.0) 
elif event_str == 'dust/sand obs': 
df_in.set_value(i,'event_code', 2.1) 
elif event_str == 'haze': 
df_in.set_value(i,'event_code', 3.1) 
elif event_str == 'fog/mist': 
df_in.set_value(i,'event_code', 8.1) 
elif event_str == 'smoke': 
df_in.set_value(i,'event_code', 9.1) 
elif vis <= 7.0:  
if event_str == 'none': 
df_in.set_value(i,'event_code', 1.0)  
elif event_str == 'dust/sand obs': 
df_in.set_value(i,'event_code', 2.0) 
elif event_str == 'haze': 
df_in.set_value(i,'event_code', 3.0) 
elif event_str == 'fog/mist': 
df_in.set_value(i,'event_code', 8.0) 
elif event_str == 'smoke': 
df_in.set_value(i,'event_code', 9.0) 
 
print ''  
print 'Data Processed --> Saving File' 
print '' 
 
# Clean Up Processing – A search for mistaken obscurations 
 
for i in range(0,len(df_in.index)): 
#index = df_in.index[i]     
# Create an index  
metar = df_in.loc[i,'metar']    
# Get row i of METAR 
PO = metar.find('PO')     
# Look for Dust Devil reports 
POINT = metar.find('POINT')   
# Look for PO occurring as part of DEWPOINT 
PORAI = metar.find('PORAI')   
# Look for PO occurring as part of TEMPORARIRILY 
 
if PO != -1:      
# Scan for PO being part of a different report, if so, set event_code to zero 
if PO == POINT: 
df_in.set_value(i,'event_code', 0.0) 
df_in.set_value(i,'event', 'station down') 
print metar 
elif PO == PORAI: 
df_in.set_value(i,'event_code', 0.0) 
df_in.set_value(i,'event', 'station down') 
print metar 
 
# OUTPUT Individual Station File -------------------- 
df_station = df_in 
df_station = df_station.drop(df_station.columns[[13, 14, 15, 16, 17, 18, 19, 20]], axis=1)   
# Remove the unwanted/unnecessary columns from the data  
output_station_file = current_file[:-4]+'_PROCESSED.txt'    
# generate output file name 
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df_station.to_csv(output_station_file, sep='\t', index=False)      
# Save station data to individual _PROCESSED.xls file 
# ---------------------------------------------------- 
 
# Prepare compiled events only output  
 
# Trim the output to the reports with Events only (i.e. event_code != to 0) 
df_in = df_in[df_in.event_code != 0] 
 
# Remove multiple reports of same day events  
 
for i in range(0,len(df_in.index)-1): 
index1 = df_in.index[i] 
index2 = df_in.index[i+1] 
day1 = df_in.loc[index1,'day'] 
day2 = df_in.loc[index2,'day'] 
month1 = df_in.loc[index1,'month'] 
month2 = df_in.loc[index2,'month'] 
event1 = df_in.loc[index1,'event_code'] 
event2 = df_in.loc[index2,'event_code'] 
 
if day1 == day2: 
if month1 == month2: 
if event1 == event2: 
df_in.set_value(index1,'dup_report', 1) 
 
df_out = df_in 
df_out = df_out.drop(df_out.columns[[13, 14, 15, 16, 17, 18, 19, 20]], axis=1)   
# Remove the unwanted/unnecessary columns from the data  
df_out = df_out[df_out.dup_report != 1] 
 
event_counter = len(df_out.index) 
 
print '%d Events Observed' %event_counter 
print '' 
df_out.to_csv(output_file, sep='\t', index=False, mode='a', header=False)     
# save the data frame to a tab delimited text file 
print '' 
print 'File Saved.  !'  
print '' 
aa = aa + 1 # increment the counter to grab the next file 
 
print '-------------- FINISHED ----------------' 
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Appendix B: Creating MODIS Imagery 

To download MODIS imagery, create a folder that contains the Python 
script entitled “MODIS_Dust_Detection.py” (included below). All down-
loaded images will automatically save to this folder. Type the following 
command: python MODIS_Dust_Detection.py. A prompt will appear asking 
for the southern latitude, northern latitude, western longitude, and eastern 
longitude boundaries of the area of interest. Note, a negative latitude re-
fers to the Southern Hemisphere while a negative longitude refers to the 
Western Hemisphere. A second prompt will ask for a start and end date 
for which the satellite imagery will be downloaded. Using the list of dates 
generated through inspecting the ASOS weather station data, enter a date 
(in yyyy/mm/dd format) associated with a single dust event. Downloading 
MODIS images can be time consuming, so users should not download im-
ages for a period greater than three days at one time. Instead, break up 
longer multiday dust events into two separate downloads. Finally, a 
prompt to create an output file name will be displayed. A single day may 
contain several MODIS images, so files should be named according to the 
dates they are associated with. An example of user input is shown below. 

Python Script Prompts    Example User Inputs 
Enter Southern Latitude Bound     30 
Enter Northern Latitude Bound    40 
Enter Western Latitude Bound    -120 
Enter Eastern Latitude Bound    -105 
Enter Beginning Date (e.g. 2003/12/31)   2016/02/01 
Enter Ending Date (e.g. 2003/12/31)   2016/02/03 
Enter Name for Output File   February_1-3_2016 
 
There are two known processing issues that exist when downloading 
MODIS imagery. The first involves an error message that states that the 
download has “Timed Out,” which is likely a result of downloading images 
for a date range that is too long. When this error occurs, split any timed 
out multiday events into two separate downloads. Alternatively, if a single-
day event times out, try downloading it a second time. A second error mes-
sage, “Too Many Users,” is a result of too many individuals downloading 
MODIS data from NASA (National Aeronautics and Space Administration) 
at one time. This error message is rare; but when encountered, users 
should try to redownload the images later. 
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MODIS Dust Detection Python Script 

# -*- coding: utf-8 -*- 
# modis_dust_detection.py is a script built to download, process, and  
# resample MODIS imagery for a specified area of interest and period of time. 
# The immediate purpose being for the detection of dust in the atmosphere. 
# The final result of the script are a true color composite and dust specific 
# two false color composites, using the EU-METSAT and Navy Research Labora- 
# tory (Miller 2003) algorithms. The output is stored in GeoTIFF format. 
# 
# Instructions: 
#-Execute script from target directory for output files 
#-User will be prompted for desired Latitude/Longitude bounds, start/end  
# dates (year/month/day), and a name for the scene. 
# 
# Jeff Picton 
# jpicton@aer.com 
# Atmospheric and Environmental Research Inc. 
# 2015 

from ftplib import FTP 
from shapely.geometry import Polygon 
import datetime 
from pyhdf import SD 
from scipy.interpolate import griddata 
import numpy as np 
import gdal 
import osr 
import sys 
import os 

np.seterr(invalid='ignore') 

# define granule class 
class granule: 
  def __init__(self,file03,file02,starttime,arc,orbit,daynight,lon,lat): 
      self.File03    = file03 
      self.File02    = file02 
      self.StartTime = starttime 
      self.Archive   = arc 
      self.Orbit     = orbit 
      self.DayNight  = daynight 
      self.Lon       = lon 
      self.Lat       = lat 

# get user inputs  
def getuserinput(): 
    # get input parameters 
    # Hard wire a working window that produces a google earth-able 
    # size image by commenting out[#] the raw_input() statements 

  lat1 = raw_input('Enter Southern Latitude bound:  ') 
    #lat1 = '30' 
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    lat2 = raw_input('Enter Northern Latitude bound:  ') 
    #lat2 = '40' 
    lon1 = raw_input('Enter Western Longitude bound:  ') 
    #lon1 = '-120' 
    lon2 = raw_input('Enter Eastern Longitude bound:  ') 
    #lon2 = '-105' 
    date1 = raw_input('Enter beginning date (e.g. 2003/12/31):  ') 
    date2 = raw_input('Enter ending date (e.g. 2003/12/31):  ') 
    aoi = raw_input('Enter name for output files:  ') 
     
     
    # save imagery info to log file  
    ff = open('imagery_log.txt', 'ab')    
    # open existing file to append or create a new file 
    ff.write(lat1+'\t')   # write the data and end with a tab 
    ff.write(lat2+'\t') 
    ff.write(lon1+'\t') 
    ff.write(lon2+'\t') 
    ff.write(date1+'\t') 
    ff.write(date2+'\t') 
    ff.write(aoi+'\n')       
    ff.close()   # close the file  
     
    # convert to correct data types 
    try: 
        latbnds = [float(lat1), float(lat2)] 
        lonbnds = [float(lon1), float(lon2)] 
        date1 = datetime.datetime.strptime(date1,'%Y/%m/%d') 
        date2 = datetime.datetime.strptime(date2,'%Y/%m/%d') 
    except: 
        print('Invalid input found - Please try again') 
        sys.exit() 
    if latbnds[0]>latbnds[1]: 
        print('Upper Latitude bound must be greater than lower ') 
        sys.exit() 
    if latbnds[0]>latbnds[1]: 
        print('Upper Longitude bound must be greater than lower') 
        sys.exit() 
    if date1>date2: 
        print('End date cannot be before start date') 
    return latbnds,lonbnds,date1,date2,aoi 
 
# return list of granules that cover aoi 
def findgranules(latbnds,lonbnds,date1,date2): 
    # enumerate dates 
    days = [date1 + datetime.timedelta(n) for n in range((date2-
date1).days+1)] 
    # define platform variables 
     
    # -----  Modified because TERRA satellite in safe mode starting 2/19/2016 
     
    TERRA_down_date = '2016/02/19' 
    TERRA_down_date = datetime.datetime.strptime(TERRA_down_date,'%Y/%m/%d') 
    AQUA_start_date = '2002/08/13' 
    AQUA_start_date = datetime.datetime.strptime(AQUA_start_date,'%Y/%m/%d') 
    test_TERRA = (date1-TERRA_down_date).days 
    test_AQUA = (date1-AQUA_start_date).days 
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    if test_TERRA > 0:    
        platforms = ['AQUA'] 
        prefixes = {'AQUA':'MYD'} 
        print '' 
        print 'Only Use AQUA because TERRA is down.' 
        print '' 
    elif test_AQUA < 0: 
        platforms = ['TERRA'] 
        prefixes = {'TERRA':'MOD'} 
        print '' 
        print 'Only Use TERRA because AQUA was not operational yet.' 
        print '' 
    else: 
        platforms = ['TERRA','AQUA'] 
        prefixes = {'TERRA':'MOD','AQUA':'MYD'} 
        print '' 
        print 'Use both TERRA and AQUA Satellites' 
        print '' 
     
    #platforms = ['TERRA','AQUA'] 
    #prefixes = {'TERRA':'MOD','AQUA':'MYD'} 
     
    # ----- End modification  
     
     
    granules = [] 
    # get geodata files and extract relevant info 
    for platform in platforms: 
        print('Searching imagery from ' +  platform + '...') 
        for day in days: 
            print('Acquiring metadata...') 
            filename = getgeodatatxt(platform,prefixes[platform],day) 
            print('Searching metadata to identify granules...') 
            granules = parsegeodata(granules,filename,latbnds,lonbnds)     
    # remove night passes 
    print('Ignoring imagery aquired during non-daylight hours') 
    granules = [x for x in granules if x.DayNight=='D']     
    return granules 
 
# retrieval of geodata text file 
def getgeodatatxt(platform,prefix,day): 
  filename = prefix + '03_' +  day.strftime('%Y-%m-%d') + '.txt' 
  #connecting ftp 
  print('Connecting to ladsftp.nascom.nasa.gov') 
  ftp = FTP('ladsftp.nascom.nasa.gov') 
  ftp.login() 
  # changing directory 
  ftp.cwd('/'.join(['geoMeta','6',platform,day.strftime('%Y')])) 
  print('Downloading: ' + filename) 
  with open(filename,'wb') as f: 
    ftp.retrbinary('RETR ' + filename, f.write) 
  print('Closing connection') 
  ftp.close() 
  return filename 
   
# parse files and return granules of interest 
def parsegeodata(granules,geofile,latbnds,lonbnds): 
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    eventLat = [latbnds[0],latbnds[1],latbnds[1],latbnds[0]] 
    eventLon = [lonbnds[0],lonbnds[0],lonbnds[1],lonbnds[1]] 
    eventPoly = Polygon(zip(eventLon,eventLat)) 
    with open(geofile,'r') as f: 
        for line in f: 
            if line[0]=='#' and len(line)>0: 
                continue 
            line = line.split(',') 
            lon = map(float,line[9:13]) 
            lat = map(float,line[13:17]) 
            granulePoly = Polygon(zip(lon,lat)) 
            eastbound = float(line[5]) 
            westbound = float(line[8]) 
            # record if granule intersects aoi (and doesn't cross date line) 
            if eventPoly.intersects(granulePoly) and eastbound>westbound: 
                print('>' + line[0]) 
                starttime = datetime.datetime.strptime(line[1],'%Y-%m-%d 
%H:%M') 
                granules.append(granule(line[0],'',starttime,line[2],\ 
                    float(line[3]),line[4],lon,lat)) 
    print('Removing ' + geofile + ' from disk') 
    os.remove(geofile) 
    return granules 
     
# download modis files 
def downloadmodis(file03,modTime,archive): 
    #connecting ftp 
    print('Connecting to ladsftp.nascom.nasa.gov') 
    ftp = FTP('ladsftp.nascom.nasa.gov') 
    ftp.login() 
    # download 03 product 
    print('Downloading geolocation info...') 
    path03 = '/'.join(['allData',archive,file03[0:5],modTime.strftime('%Y'),\ 
        modTime.strftime('%j')]) 
    ftp.cwd(path03) 
    with open(file03,'wb') as f: 
        ftp.retrbinary('RETR ' + file03, f.write) 
    # download 021KM product (find file in directory that matches time) 
    print('Downloading imagery...') 
    path02 = '/'.join(['/allData',archive,file03[0:3]+'021KM',\ 
        modTime.strftime('%Y'),modTime.strftime('%j')]) 
    ftp.cwd(path02) 
    filelist = ftp.nlst() 
     
    ''' 
    # modification 
    print filelist 
    print len(filelist) 
    print '' 
    print file03 
    print len(file03) 
    print file03.split('.')[2] 
    # end modification 
    ''' 
     
    file02 = [x for x in filelist if x.split('.')[2] == 
file03.split('.')[2]][0] 
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    with open(file02,'wb') as f: 
        ftp.retrbinary('RETR ' + file02, f.write) 
    print('Disconnecting') 
    ftp.close() 
    return file02 

# set flags to appropriate values or nan 
def removeflags(A): 
    A = A.astype('float64') 
    A[A==65533] = 32767 #saturated 
    A[A==65532] = 0 #zero point 
    A[A==65530] = 0 #below valid range 
    A[A==65529] = 32787 #above valid range 
    A[A>32787] = np.nan #all other flags 
    return A 

# convert radiance to brightness temperatures 
def rad2tb(rad,wavelength): 
    planck = 6.626176E-34 # J sec 
    boltz  = 1.380662E-23 # J/K 
    cLight = 2.99792458E+8 # m/sec 
    c1 = 2 * planck * cLight**2 
   c2 = planck * cLight / boltz 

    V = 1/wavelength # 1/m 
    R = rad*1e6 # 1e6 micron/m 
    TB = c2*V/np.log(c1*V**5/R + 1.0) 
    return TB 

# scale data gamma correction 
def scaledata(vals,minin,maxin,minout,maxout,gamma): 
    vals = vals - minin 

  vals = vals/(maxin-minin) 
    vals[np.isnan(vals)] = 0 
    vals[vals<0] = 0 
    vals[vals>1] = 1 
    if not gamma == 1.0: 
        vals = vals**gamma 
    if not (minout == 0 and maxout == 1): 
        vals = vals*(maxout-minout) + minout 
    return vals 

# 
def readdata(hdfDataFile,hdfGeoFile,latbnds,lonbnds,dlon,dlat): 
    # read lat/lon grid  
    print('Reading geolocation data...') 
    hdfGeo = SD.SD(hdfGeoFile) 
    sds = hdfGeo.select('Longitude') 
    lon = sds.get() 
    sds = hdfGeo.select('Latitude') 
    lat = sds.get() 

    # read land/sea mask 
    print('Reading land/sea mask..') 
    sds = hdfGeo.select('Land/SeaMask') 
    landSeaMask = sds.get() 

    # read data - emissive 
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    print('Reading emissive data...') 
    i29 = 8 
    i31 = 10 
    i32 = 11 
    hdf = SD.SD(hdfDataFile) 
    sds = hdf.select('EV_1KM_Emissive') 
    attr = sds.attributes() 
    dimdata = sds.info()[2] 
    band29 = sds.get(start =(i29,0,0),count=(1,dimdata[1],dimdata[2])) 
    band31 = sds.get(start =(i31,0,0),count=(1,dimdata[1],dimdata[2])) 
    band32 = sds.get(start =(i32,0,0),count=(1,dimdata[1],dimdata[2])) 
    band29 = np.squeeze(band29) 
    band31 = np.squeeze(band31) 
    band32 = np.squeeze(band32) 
    offsetsEmissive = attr['radiance_offsets'] 
    scalesEmissive  = attr['radiance_scales'] 
     
    # read data - band 26 
    ('Reading band 26...') 
    sds = hdf.select('EV_Band26') 
    attr = sds.attributes() 
    band26 = sds.get() 
    offsetBand26 = attr['reflectance_offsets'] 
    scaleBand26  = attr['reflectance_scales']     
     
    # read data - reflective (250m aggregated) 
    print('Reading reflective data...') 
    i1 = 0 
    i2 = 1 
    sds = hdf.select('EV_250_Aggr1km_RefSB') 
    attr = sds.attributes() 
    band1 = sds.get(start =(i1,0,0),count=(1,dimdata[1],dimdata[2])) 
    band2 = sds.get(start =(i2,0,0),count=(1,dimdata[1],dimdata[2])) 
    band1 = np.squeeze(band1) 
    band2 = np.squeeze(band2) 
    offsetsRef250 = attr['reflectance_offsets'] 
    scalesRef250  = attr['reflectance_scales'] 
     
    # read data - reflective (500m aggregated) 
    i3 = 0 
    i4 = 1 
    sds = hdf.select('EV_500_Aggr1km_RefSB') 
    attr = sds.attributes() 
    band3 = sds.get(start =(i3,0,0),count=(1,dimdata[1],dimdata[2])) 
    band4 = sds.get(start =(i4,0,0),count=(1,dimdata[1],dimdata[2])) 
    band3 = np.squeeze(band3) 
    band4 = np.squeeze(band4) 
    offsetsRef500 = attr['reflectance_offsets'] 
    scalesRef500  = attr['reflectance_scales'] 
     
    # trim data to AOI 
    print('Trimming data to area of interest') 
    iAOI = np.logical_and(np.logical_and(lon>=lonbnds[0]     
dlon,lon<=lonbnds[1]+dlon),\ 
            np.logical_and(lat>=latbnds[0]-dlat,lat<=latbnds[1]+dlat)) 
    lat = lat[iAOI] 
    lon = lon[iAOI] 
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    band29 = band29[iAOI] 
    band31 = band31[iAOI] 
    band32 = band32[iAOI] 
    band1  = band1[iAOI] 
    band2  = band2[iAOI] 
    band3  = band3[iAOI] 
    band4  = band4[iAOI] 
    band26 = band26[iAOI] 
    landSeaMask = landSeaMask[iAOI] 
     
    return lon,lat,landSeaMask,band1,band2,band3,band4,band26,band29,band31,\ 
        band32,offsetsEmissive,scalesEmissive,offsetsRef250,scalesRef250,\ 
        offsetsRef500,scalesRef500,offsetBand26,scaleBand26,\ 
        i1,i2,i3,i4,i29,i31,i32     
     
# convert data from digital numbers to physical values of interest 
def convertdata(band1,band2,band3,band4,band26,band29,band31,band32,\ 
        offsetsEmissive,scalesEmissive,offsetsRef250,scalesRef250,\ 
        offsetsRef500,scalesRef500,offsetBand26,scaleBand26,\ 
        i1,i2,i3,i4,i29,i31,i32): 
    # set missing values to min/max as appropriate or mark as nan 
    print('Cleaning up missing values') 
    band29 = removeflags(band29) 
    band31 = removeflags(band31) 
    band32 = removeflags(band32) 
    band1  = removeflags(band1) 
    band2  = removeflags(band2) 
    band3  = removeflags(band3) 
    band4  = removeflags(band4) 
    band26 = removeflags(band26) 
     
    # convert data to radiance/reflectance 
    print('Converting digital numbers to radiance/reflectance') 
    band29 = (band29-offsetsEmissive[i29])*scalesEmissive[i29] 
    band31 = (band31-offsetsEmissive[i31])*scalesEmissive[i31] 
    band32 = (band32-offsetsEmissive[i32])*scalesEmissive[i32] 
    band1  = (band1-offsetsRef250[i1])*scalesRef250[i1] 
    band2  = (band2-offsetsRef250[i2])*scalesRef250[i2] 
    band3  = (band3-offsetsRef500[i3])*scalesRef500[i3] 
    band4  = (band4-offsetsRef500[i4])*scalesRef500[i4] 
    band26 = (band26-offsetBand26)*scaleBand26 
     
    # convert emissive data to brightness temperatures 
    print('Converting radiance to brightness temperature for emissive bands') 
    band29 = rad2tb(band29,8.55E-6) 
    band31 = rad2tb(band31,11.03E-6) 
    band32 = rad2tb(band32,12.02E-6) 
 
    return band1,band2,band3,band4,band26,band29,band31,band32 
 
def readandpreprocessdata(hdfDataFile,hdfGeoFile,latbnds,lonbnds,dlon,dlat): 
     
    lon,lat,landSeaMask,band1,band2,band3,band4,band26,band29,band31,band32,\ 
        offsetsEmissive,scalesEmissive,offsetsRef250,scalesRef250,\ 
        offsetsRef500,scalesRef500,offsetBand26,scaleBand26,\ 
        i1,i2,i3,i4,i29,i31,i32 = \ 
            readdata(hdfDataFile,hdfGeoFile,latbnds,lonbnds,dlon,dlat) 
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    band1,band2,band3,band4,band26,band29,band31,band32 = \ 
        convertdata(band1,band2,band3,band4,band26,band29,band31,band32,\ 
            offsetsEmissive,scalesEmissive,offsetsRef250,scalesRef250,\ 
            offsetsRef500,scalesRef500,offsetBand26,scaleBand26,\ 
            i1,i2,i3,i4,i29,i31,i32) 
     
    return lon,lat,band1,band2,band3,band4,band26,band29,band31,band32, 
landSeaMask 
   
# write data to geotiff 
def writeGeoTIFF(R,G,B,lonbnds,latbnds,dlon,dlat,outfile): 
    # write data to geotiff 
    driver = gdal.GetDriverByName('GTiff') 
    gtiff = driver.Create(outfile,R.shape[0],R.shape[1],3,gdal.GDT_Byte) 
    gtiff.GetRasterBand(1).WriteArray(np.transpose(R)) 
    gtiff.GetRasterBand(2).WriteArray(np.transpose(G)) 
    gtiff.GetRasterBand(3).WriteArray(np.transpose(B)) 
     
    # set projection information 
    gtiff.SetGeoTransform([lonbnds[0],dlon,0,latbnds[1],0,-dlat]) 
    srs = osr.SpatialReference() 
    srs.SetWellKnownGeogCS('WGS84') 
    gtiff.SetProjection(srs.ExportToWkt()) 
 
# true color composite 
def truecolor(band1,band3,band4): 
    Rmin = 0.1 
    Rmax = 0.67 
    Rgamma = 0.5 
    R = scaledata(band1,Rmin,Rmax,0,255,Rgamma) 
    Gmin = 0.1 
    Gmax = 0.67 
    Ggamma = 0.5 
    G = scaledata(band4,Gmin,Gmax,0,255,Ggamma) 
    Bmin = 0.1 
    Bmax = 0.67 
    Bgamma = 0.5 
    B = scaledata(band3,Bmin,Bmax,0,255,Bgamma) 
    return R,G,B 
 
# EU-METSAT False color algorithm 
def falsecolorEUMETSAT(band29,band31,band32): 
    Rmin = -4 
    Rmax = 2 
    R = scaledata(band32-band31,Rmin,Rmax,0,255,1.0) 
    Gmin = 0 
    Gmax = 15 
    Ggamma = 2.5 
    G = scaledata(band31-band29,Gmin,Gmax,0,255,Ggamma) 
    Bmin = -12 
    Bmax = 16 
    B = scaledata(band31-273.15,Bmin,Bmax,0,255,1.0) 
    return R,G,B 
     
# NRL False color algorithm (Miller, 2003; GRL) 
def falsecolorNRL(band1,band2,band3,band4,band26,band31,band32,landSeaMask): 
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# compute NRL false color dust composite  
Gmin = -1.45 
Gmax = 0 
G = scaledata(np.log10(band3),Gmin,Gmax,0,255,1) 
Bmin = -1.45 
Bmax = 0 
B = scaledata(np.log10(band4),Bmin,Bmax,0,255,1) 
Rmin = -0.4 
Rmax = 0.15 
normdiff = (band2-band3)/(band2+band3) 
R = scaledata(np.log10(normdiff),Rmin,Rmax,0,255,1) 

# set to < 6 to use over water algorithm 
# set to < 221 to use over land algorithm everywhere 
iland = landSeaMask < 221 

# compute NRL red values over land 
L1min = -2 
L1max = 2 
L1 = scaledata( band32[iland]-band31[iland],L1min,L1max,0,1,1) 
L2max = np.nanmax(band31) 
if L2max < 301: 
L2min = L2max - 21 
else: 
L2min = (L2max-273)/4+273 
L2 = scaledata( band31[iland],L2min,L2max,0,1,1) 
L3min = -1.5 
L3max = 0.25 
L3 = scaledata( 2*band1[iland]-band3[iland]-band4[iland]-
L2,L3min,L3max,0,1,1) 
L4 = band26[iland] > 0.05 
Rmin = 1.3 
Rmax = 2.7 
R[iland] = scaledata(L1+L3-L4+1-L2,Rmin,Rmax,0,255,1)    
return R, G, B 

def createfalsecolor(latbnds,lonbnds,hdfGeoFiles,hdfDataFiles,start-
time,aoitag): 
    # resampling resolution 
    dlat = 0.01 
    dlon = 0.01 

    # read data from hdf file and convert to desired units 
    for i in range(len(hdfGeoFiles)): 
        if i == 0: 

lon,lat,band1,band2,band3,band4,band26,band29,band31,band32,landSeaMask = \ 
readandpreprocessdata(hdfDataFiles[i],hdfGeoFiles[i],lat-

bnds,lonbnds,dlon,dlat) 
        else: 

loni,lati,band1i,band2i,band3i,band4i,band26i,band29i,band31i,band32i,landSea
Maski = \ 
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                readandpreprocessdata(hdfDataFiles[i],hdfGeoFiles[i],lat-
bnds,lonbnds,dlon,dlat) 
            lon = np.append(lon,loni) 
            lat = np.append(lat,lati) 
            band1 = np.append(band1,band1i) 
            band2 = np.append(band2,band2i) 
            band3 = np.append(band3,band3i) 
            band4 = np.append(band4,band4i) 
            band26 = np.append(band26,band26i) 
            band29 = np.append(band29,band29i) 
            band31 = np.append(band31,band31i) 
            band32 = np.append(band32,band32i) 
            landSeaMask = np.append(landSeaMask,landSeaMaski) 
 
 
     
    #delete hdf files 
    print('Removing raw imagery and geolocation data from disk') 
    for f in hdfDataFiles: 
        os.remove(f) 
    for f in hdfGeoFiles: 
        os.remove(f) 
             
    # true color image 
    print('Creating true color composite') 
    Rtrue,Gtrue,Btrue = truecolor(band1,band3,band4) 
     
    # compute EU-METSAT false color dust composite 
    print('Creating EU-METSAT false color dust composite') 
    Reumetsat,Geumetsat,Beumetsat = falsecolorEUMETSAT(band29,band31,band32) 
 
 
 
    # compute NRL false color dust composite 
    print('Creating NRL false color dust composite') 
    Rnrl,Gnrl,Bnrl = \ 
        falsecolorNRL(band1,band2,band3,band4,band26,band31,band32,landSea-
Mask) 
 
 
    # reshape/concat lat/lon data for interpolation (not a regular grid) 
    latlon = np.concatenate((lon.reshape((-1,1)),lat.reshape((-1,1))),axis=1) 
     
    # output coordinates 
    longrid, latgrid = np.mgrid[lonbnds[0]:lonbnds[1]:dlon,latbnds[1]:lat-
bnds[0]:-dlat] 
     
     
    # resample 
    print('Resampling true color composite...') 
    RtrueGrid    = griddata(latlon,Rtrue,(longrid, latgrid), method='linear') 
    GtrueGrid    = griddata(latlon,Gtrue,(longrid, latgrid), method='linear') 
    BtrueGrid    = griddata(latlon,Btrue,(longrid, latgrid), method='linear') 
    print('Resampling EU-METSAT false color dust composite...') 
    ReumetsatGrid = griddata(latlon,Reumetsat,(longrid, latgrid), 
method='linear') 
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    GeumetsatGrid = griddata(latlon,Geumetsat,(longrid, latgrid), 
method='linear') 
    BeumetsatGrid = griddata(latlon,Beumetsat,(longrid, latgrid), 
method='linear') 

    print('Resampling NRL false color dust composite...') 
    RnrlGrid      = griddata(latlon,Rnrl,(longrid, latgrid), method='linear') 
    GnrlGrid      = griddata(latlon,Gnrl,(longrid, latgrid), method='linear') 
    BnrlGrid      = griddata(latlon,Bnrl,(longrid, latgrid), method='linear') 

    # write data to GeoTIFF 
    print('Saving output to GeoTIFF...') 
    outfilebase = '.'.join(['./' + aoitag,starttime.strftime('%Y%m%d'),\ 
        starttime.strftime('%H%M'),'MODIS']) 
    writeGeoTIFF(ReumetsatGrid,GeumetsatGrid,BeumetsatGrid,\ 

        lonbnds,latbnds,dlon,dlat,'.'.join([outfilebase,'EU-
METSAT','tif'])) 

    writeGeoTIFF(RnrlGrid,GnrlGrid,BnrlGrid,\ 
lonbnds,latbnds,dlon,dlat,'.'.join([out-

filebase,'NRL','tif'])) 

    writeGeoTIFF(RtrueGrid,GtrueGrid,BtrueGrid,\ 
lonbnds,latbnds,dlon,dlat,'.'.join([outfilebase,'TrueCol-

or','tif'])) 

# create geotiffs 
def processdata(granules,latbnds,lonbnds,aoi): 
    # (granules from the same platform during the same orbit are combined) 
    geoFiles   = [granules[0].File03] 
    dataFiles  = [granules[0].File02] 
    startTime  = granules[0].StartTime 
    searchTime = granules[0].StartTime 
    for i in range(1,len(granules)): 
        searchTime = searchTime + datetime.timedelta(minutes=5) 
        # if next granule is in continuous set, add on 
        if granules[i].StartTime == searchTime: 

geoFiles.append(granules[i].File03) 
dataFiles.append(granules[i].File02) 

        # otherwise, create geotiffs and start new set 
       else: 

if len(geoFiles) == 1: 
print('Processing granule ' + str(i) + ' of ' \ 

+ str(len(granules)) + '...') 
else: 

print('Processing granules ' + str(i-len(geoFiles)+1) + \ 
' through ' + str(i) + 'of' + str(len(granules)) + '...') 

createfalsecolor(latbnds,lonbnds,geoFiles,dataFiles,start-
Time,aoi) 

geoFiles   = [granules[i].File03] 
dataFiles  = [granules[i].File02] 

   startTime  = granules[i].StartTime 
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            searchTime = granules[i].StartTime 
    if len(geoFiles) == 1: 
        print('Processing granule ' + str(i+1) + ' of ' \ 
            + str(len(granules)) + '...') 
    else: 
        print('Processing granules ' + str(i-len(geoFiles)+2) + \ 
            ' through ' + str(i+1) + ' of ' + str(len(granules)) + '...') 
    createfalsecolor(latbnds,lonbnds,geoFiles,dataFiles,startTime,aoi) 
 
 
# get user defined inputs 
latbnds,lonbnds,date1,date2,aoi = getuserinput() 
 
 
 
 
# find MODIS granules that cover AOI 
print('Searching for MODIS granules that cover scene...') 
granules = findgranules(latbnds,lonbnds,date1,date2) 
 
# download files 
print('Downloading data...') 
for i in range(len(granules)): 
    print('Granule ' + str(i+1) + ' of ' + str(len(granules)) + ':') 
    granules[i].File02 = downloadmodis(granules[i].File03,\ 
                            granules[i].StartTime,granules[i].Archive) 
 
# create GeoTIFFs 
print('Processing data...') 
processdata(granules,latbnds,lonbnds,aoi) 
 
print('') 
print('-------finished-------') 
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Appendix C: ArcMap Mapping Procedures 

Create a folder entitled “Plume_Head_Mapping”; and within it, create 
“MODIS Imagery” and “Shapefiles” folders. Place all MODIS imagery 
deemed suitable for mapping into the MODIS Imagery folder. Open 
ArcMap and select the “Blank Map” template to open a new project file. To 
begin building the project file, add a basemap by clicking on the downward 
facing arrow on the right side of the “Add Data” button (Figure C-1). From 
the drop down menu, select “Add Basemap” and select “Imagery.” High-
resolution (1 m) satellite imagery of the globe will load into the project file 
and will be listed under the Table of Contents on the left-hand side of the 
screen (see Figure C-1). To add MODIS imagery, click on the Arc Catalog 
button (see Figure C-1). Right click “Folder Connections,” select “Connect 
to Folder,” navigate to the “Plume_Head_Mapping” folder, and press 
“OK.” The “Plume_Head_Mapping” folder will appear under “Folder Con-
nections” and can be expanded by clicking the small plus sign to the left of 
the folder name. Open the MODIS Imagery folder located within 
Plume_Head_Mapping, and all of the images within that folder will ap-
pear in the Arc Catalog (see Figure C-1). To add an image to the project 
file, simply click on it in the Arc Catalog and drag it over to the Table of 
Contents.  

Mapping is conducted by creating and editing point shapefiles. Shapefiles 
are spatially oriented points, lines, or polygons that are representative of 
other data (e.g., features on a map). To create a new shapefile, open Arc 
Catalog; and navigate to the Shapefiles folder, right click on it, and select 
“New,” then “Shapefile,” and a “Create New Shapefile” window will appear. 
Enter a name, and select “Point” under “Feature Type.” Under “Descrip-
tion,” click “Edit,” and a “Spatial Reference Properties” window will open. 
A commonly used coordinate system is WGS 1984, or the World Geodetic 
System 1984. To navigate to this system, click the “Geographic Coordinate 
System” folder, click the “World” folder, highlight “WGS 1984,” and click 
“OK.”  
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Figure C-1.  A screenshot of an ArcMap project file. The top panel 
shows an enlarged version of the top left corner of the project file. 

Within the top panel, the red oval depicts the location of the Add Data 
button while the blue oval highlights the location of the Table of 
Contents. The green oval depicts the location of the Arc Catalog, 

which, when selected, opens a catalog on the right-hand side of the 
project file. The pink oval shows the location of the Editor Toolbar. The 
expanded Arc Catalog is shown in the lower panel, and the contents of 

the MODIS Imagery folder are enlarged.  

To map plume heads, click “Customize” at the top of the screen, select 
“Toolbars,” and click on “Editor.” The Editor Toolbar will appear in the 
project file (see Figure C-1). In the Editor Toolbar, click “Editor” and then 
“Start Editing.” To the right of the screen, a “Create Features” window will 
appear. If this window is not visible, click on the pull-down menu on the 
Editor Toolbar, expand “Editing Windows,” and select “Create Features.” 
In the “Create Features” window, click on the name of the shapefile that 
will be edited to activate the tool that allows users to place new points. 
Once activated, a new point will be placed on the map anywhere a user 
clicks. If unwanted points are accidentally placed, remove them by select-
ing the black arrow in the Editor Toolbar, highlighting the unwanted 
point, and pressing delete. To save any edits, click “Editor” on the Editor 
Toolbar, and select “Save Edits.”  
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