

US Army Corps of Engineers_® Engineer Research and Development Center

Temperature Modeling of Applegate Lake Using CE-QUAL-W2

A Report on the Development, Calibration, Verification, and Application of the Model

Tammy L. Threadgill, Daniel F. Turner, Laurie A. Nicholas, Barry W. Bunch, Dorothy H. Tillman, and David L. Smith May 2017

The U.S. Army Engineer Research and Development Center (ERDC) solves the nation's toughest engineering and environmental challenges. ERDC develops innovative solutions in civil and military engineering, geospatial sciences, water resources, and environmental sciences for the Army, the Department of Defense, civilian agencies, and our nation's public good. Find out more at www.erdc.usace.army.mil.

To search for other technical reports published by ERDC, visit the ERDC online library at http://acwc.sdp.sirsi.net/client/default.

Temperature Modeling of Applegate Lake Using CE-QUAL-W2

A Report on the Development, Calibration, Verification, and Application of the Model

Tammy L. Threadgill, Dorothy H. Tillman, Barry W. Bunch, and David L. Smith

Environmental Laboratory U.S. Army Engineer Research and Development Center 3909 Halls Ferry Road; Bldg 3270; CEERD-EPW Vicksburg, MS 39180

Laurie A. Nicholas and Daniel F. Turner

U.S. Army Corps of Engineers Portland District (CENWP) 333 SW First Avenue Portland, Oregon 97208

Final report

Approved for public release; distribution is unlimited.

Prepared for U.S. Army Corps of Engineers; CENWP Portland, Oregon Under "NWP Water Management Program," Project number 113347

Abstract

The U.S. Army Corps of Engineers Engineer Research and Development Center (USACE-ERDC) Environmental Lab (EL) assisted USACE, Portland District (CENWP) in updating a CE-QUAL-W2 (W2) model of Applegate Lake based on a previous version of W2. The model was calibrated using data from calendar year (CY) 2001 and validated with data from calendar years 2003 and 2010. One set of W2 parameters was successfully applied to all calendar year types (2001 is a dry year; 2003 is a normal year; and 2010 is a wet year). This model and the corresponding results from the study provided CENWP with more refined estimates of water temperatures so that more defendable water temperature targets can be discussed with the State of Oregon. This is extremely important because the Rogue and Applegate Temperature Total Maximum Daily Loads and Rogue Spring Chinook Conservation Plan require the Corps to review the Rogue Basin Project operations to determine whether improvements can be achieved to downstream temperature for the benefit of endangered fish. This is the second of three USACE projects on the Rogue River; this work is identical to the Lost Creek Lake Model work for CENWP.

DISCLAIMER: The contents of this report are not to be used for advertising, publication, or promotional purposes. Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products. All product names and trademarks cited are the property of their respective owners. The findings of this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

DESTROY THIS REPORT WHEN NO LONGER NEEDED. DO NOT RETURN IT TO THE ORIGINATOR.

Contents

Abs	stract	ii
Fig	ures and Tables	v
Pre	face	ix
Uni	t Conversion Factors	х
Acr	onyms and Units	xi
1	Introduction	1
	Background	1
	Approach	1
	Objective	2
2	Model Selection and Development	А
2		ب ۸
	CE-QUAL-W2 Description	44
	Calibration Strategy	ب
3	Data Analysis and Model Preparation	6
	Model Geometry	6
	Bathymetry Data	6
	Model Grid Development	6
	Dam Features and Withdrawal Locations	
	Flow and Elevations	
	Model Inflow Boundaries	
	Model Outflow Boundaries	
	Temperature	15
	Model Boundaries	
	Tributaries	
	Meteorological Data	
	CE-QUAL-W2 Control File	
	Calculations, Transport Scheme, and Heat Exchange	
	Extinction Coefficients	
	Selective Withdrawal	
4	Model Calibration Results - CY01	
	Flow	22
	Temperature	23
	Water Surface Elevation	
F	Calibration Discussion	20
5		
	water Surface Elevation	

	Temperature	30
6	Model Verification Results - CY03 and CY10	35
	Flow	35
	Temperature	35
	Water Surface Elevation	
7	Verification Discussion	44
8	Predictive Port Selection Model Application	45
	USGS – W2 Predictive Port Selection	45
9	Summary and Conclusions	61
Ref	erences	62
Арр	endix A: Bathymetry File	63
Арр	endix B: W2 Control File with Detailed Modifications for the APPLM and the APPLPM	67
Арр	endix C: APPLM and APPLPM Files	80

Report Documentation Page

Figures and Tables

Figures

Figure 1. Google Earth image of the Applegate Lake project study area.	2
Figure 2. Representation of the WTC intake structures (Larson 1998).	3
Figure 3. In-lake profile monitoring stations. Site locations provided by Kinsey Friesen (NWP).	5
Figure 4. Longitudinal segments with branch configuration for the APPLM	7
Figure 5. Google Earth image with model grid overlay (produced by W2Tools) for the APPLM	8
Figure 6. Volume-elevation curve comparison for the APPLM.	9
Figure 7. Flow input data for upstream and downstream boundaries for CY01	11
Figure 8. Flow input data for upstream and downstream boundaries for CY03	11
Figure 9. Flow input data for upstream and downstream boundaries for CY10	12
Figure 10. Distributed tributary iInflow input data	13
Figure 11. Outflow input data at specified structure for CY01	14
Figure 12. Outflow input data at specified structure for CYO3.	14
Figure 13. Outflow input data at specified structure for CY10.	15
Figure 14. Temperature correlation used in calculating the inflow temperature	16
Figure 15. Temperature comparison using observed and correlated temperatures for 1986.	16
Figure 16. Temperature input data for the upstream boundary for 2001, 2003, and 2010	17
Figure 17. Schematic representation of the water temperature control port elevations	20
Figure 18. Withdrawal flow at the dam for CYO1 calibration	23
Figure 19. Temperature profiles at APP20001 in CY01 calibration	24
Figure 20. Temperature profiles at APP20002 in CY01 calibration	25
Figure 21. Temperature profiles at APP20003 in CY01 calibration	26
Figure 22. Flow linear and cumulative distribution plots at APP20001 for CY01 calibration	27
Figure 23. Flow linear and cumulative distribution plots at APP20002 for CY01 calibration	27
Figure 24. Flow linear and cumulative distribution plots at APP20003 for CY01 calibration	27
Figure 25. Withdrawal temperature at the dam for CY01 calibration	28
Figure 26. Water surface elevations at the dam for CY01 calibration	29
Figure 27. Time series and statistical plots of ELWS without the distributed tributary	31
Figure 28: Time series and statistical plots of ELWS with the distributed tributary	32
Figure 29. Profile comparison at APP20003.	32
Figure 30. Profile comparison at APP20002.	33
Figure 31. Profile comparison at APP20001	33

Figure 32. Time series comparison at the dam for CY01	34
Figure 33. Withdrawal flow at the dam for CYO3 verification	36
Figure 34. Withdrawal flow at the dam for CY10 verification	36
Figure 35. Temperature profiles at in-lake stations in CYO3 verification.	37
Figure 36. Flow linear and cumulative distribution plots at APP20003 for CY03 verification	38
Figure 37. Flow linear and cumulative distribution plots at APP20002 for CY03 verification	38
Figure 38. Flow linear and cumulative distribution plots at APP20001 for CY03 verification	38
Figure 39. Temperature profiles at the dam temperature string in CY10 verification – with bad observation values.	39
Figure 40. Temperature profiles at the dam temperature string in CY10 verification	39
Figure 41. Flow linear and cumulative distribution plots at the dam temperature string for CY10 verification.	40
Figure 42. Withdrawal temperature at the dam for CYO3 verification	40
Figure 43. Withdrawal temperature at the dam for CY10 verification	41
Figure 44. Water surface elevations at the dam for CY03 verification	42
Figure 45. Water surface elevations at the dam for CY10 verification.	43
Figure 46. W2_Selective.NPT file used for the APPLPM for CY10	48
Figure 47. dynsplit_selectiveX.npt file used for the APPLMPM	48
Figure 48. CY01 - APPLPM temperature comparison with target temperatures	49
Figure 49. CY01 - Intake 4 - temperature into tower	49
Figure 50. CY01 - Intake 5 - temperature into tower	49
Figure 51. CY01 – RO / Intake 6 - temperature into tower	50
Figure 52. CY01 - Intake 4 - flow into tower.	50
Figure 53. CY01 - Intake 5 - flow into tower	50
Figure 54. CY01 – R0 / Intake 6 - flow into tower.	51
Figure 55. CY03 - APPLPM temperature comparison with target temperatures	51
Figure 56. CY03 - Intake 1 - temperature into tower.	51
Figure 57. CY03 - Intake 2 - temperature into tower	52
Figure 58. CY03 - Intake 3 - temperature into tower	52
Figure 59. CY03 - Intake 4 - temperature into tower.	52
Figure 60. CY03 – Intake 5 - temperature into tower	53
Figure 61. CY03 – RO / Intake 6 - temperature into tower	53
Figure 62. CY03 - Intake 1 - flow into tower	53
Figure 63. CY03 - Intake 2 - flow into tower	54
Figure 64. CY03 - Intake 3 - flow into tower	54
Figure 65. CY03 - Intake 4 – flow into tower	54
Figure 66. CY03 - Intake 5 - flow into tower	55
Figure 67. CY03 – RO / Intake 6 - flow into tower	55
Figure 68. CY10 - APPLPM temperature comparison with target temperatures	55

Figure 69. CY10 - Intake 1 - temperature into tower.	56
Figure 70. CY10 - Intake 2 - temperature into tower.	56
Figure 71. CY10 - Intake 3 - temperature into tower	56
Figure 72. CY10 - Intake 4 - temperature into tower.	57
Figure 73. CY10 - Intake 5 - temperature into tower.	57
Figure 74. CY10 - R0 / Intake 6 - temperature into tower.	57
Figure 75. CY10 - Intake 1 - flow into tower.	58
Figure 76. CY10 - Intake 2 - flow into tower.	58
Figure 77. CY10 - Intake 3 - flow into tower	58
Figure 78. CY10 - Intake 4 - flow into tower.	59
Figure 79. CY10 – Intake 5 - flow into tower	59
Figure 80. CY10 - R0 / Intake 6 - flow into tower.	59
Figure 81. Average % of model temperature within the target range	60
Figure A1. Page1 from bathymetry development Excel file	64
Figure A2. Page2 from bathymetry development Excel file	65
Figure A3. Page3 from bathymetry development Excel file	66
Figure B1. Page1 from CY01 w2_con.npt file.	68
Figure B2. Page2 from CY01 w2_con.npt file.	69
Figure B3. Page3 from CY01 w2_con.npt file.	70
Figure B4. Page4 from CY01 w2_con.npt file.	71
Figure B5. Page5 from CY01 w2_con.npt file.	72
Figure B6. Page6 from CY01 w2_con.npt file.	73
Figure B7. Page7 from CY01 w2_con.npt file	74
Figure B8. Page8 from CY01 w2_con.npt file.	75
Figure B9. Page9 from CY01 w2_con.npt file.	76
Figure B10. Page10 from CY01 w2_con.npt file	77

Tables

Table 1. Geometry characteristics.	7
Table 2. Model segments of important locations.	9
Table 3. Data sources for flow and elevation at the model boundaries.	10
Table 4. Basic statistics for flow (cfs) for CYO1 calibration.	22
Table 5. Basic statistics for temperature (deg-C) for CYO1 calibration	24
Table 6. Basic statistics for water surface elevations (ft) for CYO1 calibration	28
Table 7. 1% Target for flow (cfs) for CYO3 verification	35
Table 8. Temperature stats (deg-C) for verification years	37
Table 9. Basic statistics water surface elevations (ft) for CYO3 verification.	41
Table 10. Intervals when RO is nonoperational.	46
Table A1. Initial ELWS used in bathymetry files for all simulations.	63
Table B1. Changes to Calibration w2_con.npt File for Other Runs	77

Table B2. Inventory of files needed to run the LCLM.	78
Table B3. Inventory of files needed to run the APPLPM (Predictive Model)	79
Table C1. Typical file organization	80
Table C2. Files needed to run APPL Model for each year	80

Preface

This study was conducted for the U.S. Army Corps of Engineers (CENWP), Portland, Oregon, under Project Number 113347, "NWP Water Management Program."

The work was performed by the Water Quality and Contaminant Modeling Branch (WQCMB), Environmental Processes and Engineering Division (EP), U.S. Army Engineer Research and Development Center (ERDC), Environmental Laboratory (EL). At the time of publication, Lesley Miller was Acting Chief, WQCMB; Warren P. Lorentz was Chief, EP. Dr. Al Cofrancesco, CEERD-EZT, was the Senior Science and Technology Manager. The Deputy Director of ERDC-EL was Dr. Jack E. Davis and the Director was Dr. Beth Fleming.

COL Bryan S. Green was Commander of ERDC; Dr. David W. Pittman was the ERDC Director.

Unit Conversion Factors

Multiply	Ву	To Obtain
acre-feet	1,233.5	cubic meters
cubic feet	0.02831685	cubic meters
degrees Fahrenheit	(F-32)/1.8	degrees Celsius
feet	0.3048	meters
gallons (U.S. liquid)	3.785412 E-03	cubic meters
square miles	2.589998 E+06	square meters
Langley per day	0.48	Watts per square meter

Acronyms and Units

14WS	14 th Weather Squadron
APPL	Applegate Lake
APPLM	Applegate Lake Model
APPLPM	Applegate Lake Predictive-Mode Model
BOD	Biochemical Oxygen Demand
CENWP	US Army Corps of Engineers, Portland District
СҮ	Calendar year (January 1 through December 31)
DO	Dissolved Oxygen
ELWS	Water surface elevation
ERDC	US Army Corps of Engineers Engineer Research and Development Center
ISS	Inorganic Suspended Solids
NH4	Ammonium
NO3	Nitrate
ОМ	Organic Matter
PSU	Portland State University
RO	Regulating Outlet with centerline elevation of 1776.0 ft (aka STR6)
STR1	Represents the fixed invert intake with centerline elevation of 1962.0 ft
STR2	Represents the fixed invert intake with centerline elevation of 1950.0 ft
STR3	Represents the fixed invert intake with centerline elevation of 1930.0 ft
STR4	Represents the fixed invert intake with centerline elevation of 1895.0 ft
STR5	Represents the fixed invert intake with centerline elevation of 1838.0 ft

TDS	Total Dissolved Solids
TMDL	Temperature Total Maximum Daily Load
USACE	US Army Corps of Engineers
USGS	US Geological Survey
W2	CE-QUAL-W2 model

1 Introduction

Background

Applegate Lake is part of the Rogue River Basin Project. Due to the recent implementation of a Biological Opinion on the system, the Rogue Temperature Total Maximum Daily Loads (TMDL) and Rogue Spring Chinook and Fall Chinook Conservation Plans require that all systems in the Basin be reviewed to determine whether improvements to downstream temperature targets can be achieved (ODEQ 2008)(ODFW 2007)(USACE & ODEQ 2009) (ODFW 2013).

Applegate Lake is located twenty-three miles southwest of Medford, Oregon, on the Applegate River in the Rogue River National Forest. Applegate Dam consists of an earth-filled embankment, a spillway, a multi-level withdrawal tower, a regulating outlet conduit, an outlet bypass, and a stilling basin. The embankment is about 1,300 ft long and about 242 ft high. The primary authorized purposes of the dam are flood control, fisheries enhancement, and irrigation. At maximum pool, Applegate Lake is 4.6 miles long and stores approximately 82,200 acre-ft of water (USACE 1990). Figure 1 is a Google Earth screenshot of the project study area.

The selective withdrawal water temperature control tower has five intake ports that allow water to enter one of two wet wells. The intake inverts are located at elevations of 1,962 ft, 1,950 ft, 1,930 ft, 1,895 ft, and 1,838 ft. A diagram of the multi-level intake tower can be found in Figure 2.

The upstream flows into the lake come from three creeks: Elliott Creek, Middle Fork, and Carberry Creek. The reservoir empties in to the Applegate River near RM 46.3.

Approach

In order to determine whether new temperature targets could be achieved, temperature models of key projects needed to be updated and/or created. Applegate Lake was modeled in the late 1980s and early 1990s using CE-QUAL-W2 (W2), but the model needed to be updated due to code revisions and operational changes.

Objective

The goal of this project is to develop and calibrate a current W2 model for Applegate Lake that can also be used to fully evaluate the effects of operational changes on release temperatures at Applegate Dam on the Rogue River.

Figure 2. Representation of the WTC intake structures (Larson 1998).

2 Model Selection and Development

CE-QUAL-W2 (W2) is the code selected to develop the Applegate Lake Model (APPLM). W2 is a 2D longitudinal-vertical hydrodynamics and water quality model. It is capable of modeling basic eutrophication processes and is best-suited for long, narrow waterbodies that do not exhibit substantial lateral variation. W2 has been applied to hundreds of studies on various types of waterbodies (rivers, reservoirs, lakes, and estuaries) all over the world. For a list of the model applications, see the CE-QUAL-W2 website: <u>http://www.ce.pdx.edu/w2/</u>.

CE-QUAL-W2 Description

The numerical modeling code known as CE-QUAL-W2, version 3.7, was configured for application to Applegate Lake. W2 uses a finite difference solution of the laterally averaged equations of fluid motion (Cole and Wells 2013). It allows for application to very complex water systems because it accommodates multiple branches and multiple waterbody types. W2 allows the user to set up variable grid spacing (longitudinally and vertically), timevariable boundary conditions, multiple inflows and outflows, and timevariable concentrations for each water quality constituent being modeled. W2 (V3.7) contains a user-defined port selection algorithm, which allows the user to specify a varying number of elevations for dam structures. Although this feature is not utilized in the calibration, future scenarios may benefit. In addition to water temperature, W2 is also capable of modeling water surface elevation, flow, and twenty-eight water quality constituents such as total dissolved solids (TDS), inorganic suspended solids (ISS), ammonium (NH4), biochemical oxygen demand (BOD), nitrate (NO3), phytoplankton, dissolved oxygen (DO), and organic matter (OM). This study only modeled temperature; consequently, the other constituents will not be discussed.

Project Approach

CE-QUAL-W2 is well-suited for application to Applegate Lake for the same reasons it is well-suited for application to Lost Creek Lake (Threadgill et al. 2015).

Three in-lake monitoring stations were used for evaluating model performance during calibration. Locations with temperature data are: APGT1 (APP20001), APGT2 (APP20002), and APGT3 (APP20003). Data at the dam and downstream from the dam were also used for calibration. The locations of the sites are shown in Figure 3.

Figure 3. In-lake profile monitoring stations. Site locations provided by Kinsey Friesen (NWP).

Calibration Strategy

Several factors were used to determine which calendar years (CY) were used to calibrate and validate the model. The largest limiting factor was the availability of observed data. Since more data were available for 2001 for the in-lake stations, CY01 was used to develop a calibrated model. Once an acceptable set of calibration parameters were found, the same set of model parameters was used for CY03 and CY10. Each of the chosen years represents various water year types: 2001 was a dry year; 2003 was an average year; and 2010 was a wet year.

3 Data Analysis and Model Preparation

This section will review what data were available and how they were used to define the calibration input files. W2 has several data requirements to meet before simulations can begin:

- 1. Bathymetry of the waterbody(ies)
- 2. Flow and temperature characteristics for boundaries, major tributaries, and point sources
- 3. Dam operations and structure locations
- 4. Stage data
- 5. Meteorological conditions: air temperature, dew point temperature, wind speed, wind direction, cloud cover, and short wave solar radiation (if available)

Model Geometry

Bathymetry Data

The bathymetry file for the Applegate Lake Model (APPLM) was originally developed by Mike Schneider (USACE) for the original W2 model of Applegate Lake. Due to lack of available documentation, it is unknown where he obtained the bathymetry data (sediment range analysis, cross sections, etc.). The current model utilized the original bathymetry file, refined the grid, and modified angles of the original segments based on Google Earth imagery.

Model Grid Development

Applegate Lake was split into three branches, with Branch 1 extending from the Applegate Dam at the Applegate River upstream to the junction of Middle Fork and Elliott Creeks; Branch 2 constituting a side channel that enters the mainstem of the reservoir about 1.3 miles upstream from the dam. This side channel has inflows from Squaw Creek, but due to the lack of data, inflows are input as 0 cms in the model; Branch 3 is also a side channel that enters the reservoir about a quarter of a mile upstream from the dam. Its main inflow is the French Gulch, but again, due to the lack of data, this inflow is also input at 0 cms. The reservoir was modeled with 41 longitudinal segments, varying in length from 135.0 to 800.0 m, and 77 vertical segments of uniform 0.914 m (~3 ft) height. Figure 5 is a Google Earth image with the segments laid out as the model sees them.

Table 1 provides a description of the branches in the reservoir; the segment numbers do not include the inactive (or "null") segments that start and end each branch (required in W2). Figure 4 shows an image of the longitudinal segments used in the model along with the branch configuration. Figure 5 is a Google Earth image with the segments laid out as the model sees them.

Description	Branch	Segment Start	Segment End	# Segments	Slope
Branch 1 – Mainstem (Middle Fork and Elliott to Dam)	1	2	29	28	0.000
Branch 2 – Ungauged leg of the lake (Squaw Creek)	2	32	35	4	0.000
Branch 3 – Ungauged leg of the lake (French Gulch)	3	38	40	3	0.000

Table 1. Geometry characteristics.

Figure 4. Longitudinal segments with branch configuration for the APPLM.

Figure 5. Google Earth image with model grid overlay (produced by W2 Tools) for the APPLM.

The bathymetry of the APPLM that has been developed has been verified to replicate the observed storage-elevation curve (obtained from NWP). The storage-elevation curve obtained from NWP was dated 01/31/2006 and is titled "5% Encroachment on Rule Curve, in terms of Maximum Conservation Pool." Figure 6 shows the storage-elevation curve represented by the model compared to the observed storage-elevation curve (or volume-elevation curve). This provides the ERDC with confidence that the bathymetry is good and sufficient for the APPLM. A complete copy of the bathymetry file used can be found in Appendix A and the model input file was delivered to CENWP.

Dam Features and Withdrawal Locations

Table 2 presents an abbreviated list of segment numbers in the APPLM bathymetry along with a brief description of what site is located at the segment. For example, the in-lake monitoring site, APP1, is located at segment 28 in the APPLM bathymetry.

Figure 6. Volume-elevation curve comparison for the APPLM.

Table 2. Model segments of important locations.

Cogmont	Longth (m)	Distance Upstream from	Distance Upstream from	Identification (Location
Segment	Lengun (m)	Dam (m)	Dam (miles)	
1	0	7811.900	0.000	Boundary (Null Segment)
2	623.3	7811.900	6.621	Beginning of Branch 1
15	298.7	3274.400	3.801	In-lake Station: APP3 (APP20003)
22	274.3	1503.800	2.701	In-lake Station: APP2 (APP20002)
28	159.1	304.500	1.956	In-lake Station: APP1 (APP20001)
29	145.4	145.400	1.857	DAM
30	0	0.000	1.767	End of Branch 1
31	0	2104.400	1.767	Beginning of Branch 2
36	0	0.000	0.459	End of Branch 2
37	0	739.100	0.459	Beginning of Branch 3
41	0.000	0.000	0.000	End of Branch 3

Flow and Elevations

Model Inflow Boundaries

Upstream and Downstream Boundaries

Mean daily inflows for Applegate Dam were available only for the year 2003 and later. The observed inflows were obtained by NWP from the project site and were contained in the gate settings file spreadsheet. For 2001, however, these data were not available, so the ERDC obtained sixhourly estimated inflow via the NWPQuery site for the Applegate Dam site (APP). W2 requires that all branches require input files for flow and temperature. However, since the second and third branches are ungauged, a dummy file of zero flows was used as input for the model. These branches were included in the model only to capture the geometry of the reservoir and to maintain the volume-elevation relationship. Their inclusion will have no impact on the model. The model will fill solely using the upstream inflow. Due to the inaccuracy associated with flow estimation, a decision was made to account for any water balance issues (ungauged flows, rainfalls, etc.) by using the water balance utility (available with the W2 download).

At the downstream boundary, located at the dam, total outflows were available for all calendar years from NWP via the gate settings spreadsheet from the project site. Flow at each intake gate was recorded each day as open, closed, or the amount the gate was open. Based on that information, the gate size, the total outflow, and intake gate flow was calculated. The elevation data available at the dam were used solely for model-to-data comparison. Table 3 shows the data sources for flow and elevation for the upstream and downstream (Applegate Dam) boundaries. Figure 7-Figure 9 are plots of all flow data used as input for the model at the upstream and downstream boundary for all three calendar years.

River/Location Name	ID	Source	Variable	Calendar Year
Upstream Boundary	APP	NWP	Flow, Mean Daily	2001
(Middle Fork and Elliot)		Gate Settings Spreadsheet from Dam	Flow, Mean Daily	2003, 2010
Downstream Boundary (Applegate Dam)	APP	Gate Settings Spreadsheet from Dam	Elevation, Mean Daily	2001, 2003, 2010
Downstream Boundary (Applegate Dam)	APP	Gate Settings Spreadsheet from Dam	Flow, Mean Daily	2001, 2003, 2010

Table 3. Data sources for flow and elevation at the model boundaries.

Figure 7. Flow input data for upstream and downstream boundaries for CY01.

Figure 8. Flow input data for upstream and downstream boundaries for CY03.

Figure 9. Flow input data for upstream and downstream boundaries for CY10.

Tributaries

No gauged streams discharge to Applegate Lake. For this reason, no tributaries were defined in the model. Upon initial runs for all calendar years modeled, the model still seemed to underpredict the elevation at the dam. For this reason, a distributed tributary was added to the system to account for the flow imbalance.

To develop a distributed tributary input file, initial model output and observed elevations must be input into the Water Balance Utility developed by Portland State University for use with W2. More information on developing a distributed tributary file can be found in the "Release Notes" that accompany the full W2 download along with the Users' Manual. The water balance utility will calculate negative flows; to account for this, the ERDC averaged out the negative flows with the positive flows from the surrounding time period. Figure 10 is the total flow that was added to the system for each year to account for the water balance problems.

Figure 10. Distributed tributary Inflow input data.

Model Outflow Boundaries

The amount of flow withdrawn through each intake port is not measured; however, gate settings are recorded. Gate setting information was obtained from NWP as an Excel spreadsheet from Dam operators. These values were then used to develop the necessary input files for W2.

Figure 11-Figure 13 are plots of the outflow specified at each intake structure (intake port). The ERDC applied conditions to the total outflow based on elevations and operations procedures as detailed in the Water Control Manual (U.S. Army Corps of Engineers 1991) to apportion the total outflow to each intake port.

Figure 12. Outflow input data at specified structure for CY03.

Figure 13. Outflow input data at specified structure for CY10.

Temperature

Model Boundaries

For all calendar years, temperature at the upstream boundary was defined with calculated daily inflows. Temperature was not measured at any of the upstream sites for the years modeled in this study. The ERDC obtained period-of-record daily temperatures at the Middle Fork Applegate River (USGS 14361590), Elliott Creek (USGS 14361600), and Carberry Creek (USGS 14361700). Data were available for 10/01/1979-09/30/1987. These mean daily temperatures were then averaged and plotted against mean daily air temperature from Medford, OR, in order to define a correlation to use to estimate inflow temperature for the modeled years. Figure 14 shows the correlation between air temperature and mean water temperature. Notice the R-squared value for this correlation is 0.87, which suggests that the trendline equation (shown in the chart) represents the data fairly well. In order to determine just how well the equation would estimate the inflow temperature, the ERDC used the correlation to estimate what the temperature would have been for the air temperatures in 1986; Figure 15 shows this comparison. The blue line represents the calculated temperatures using the correlation equation. Overall, ERDC felt the equation provided a good approximation for inflow temperatures when no data were available.

Figure 14. Temperature correlation used in calculating the inflow temperature.

Figure 15. Temperature comparison using observed and correlated temperatures for 1986.

Temperature at the upstream boundary was also used as input for the second and third branches. However, since flows for those branches are input as zero, the temperature will have no impact on the model.

Temperature data at the dam were used as calibration data for the model. Figure 16 provides a time-series plot of temperature at the upstream boundary as defined in the model for all calendar years.

Figure 16. Temperature input data for the upstream boundary for 2001, 2003, and 2010.

Tributaries

Since tributaries were not monitored, there are none included in the model. However, because a distributed tributary must be used to improve the water balance, the upstream temperature input file was duplicated and used as input temperature for the distributed tributary.

Meteorological Data

The same meteorological data were used for APPLM and APPLPM that was used in the Lost Creek Lake Model. The plots of the data are shown again below as a reference. Data were obtained from Medford, OR. Please refer to pages 16-19 of the Lost Creek Lake Model Report (Threadgill et al. 2015).

CE-QUAL-W2 Control File

The control file for the model calibration (CY01) can be found in Appendix B along with a table detailing any differences for all other model simulations. In order to keep this section concise, only parameters related to temperature will be discussed.

Calculations, Transport Scheme, and Heat Exchange

Since evaporation is always considered in the W2 surface heat exchange calculations, it is important to turn EVC on if needed. According to the manual, if calculated inflows are used in setting up a model, then EVC is generally set to OFF; however, in the case of the APPLM, EVC is set to ON since we are using direct observed inflows from the project. This is true for all three years modeled, despite the fact that the inflow for 2001 was an estimated flow.

The transport solution scheme used in the APPLM is the ULTIMATE scheme. This scheme is a higher order solution scheme that reduces numerical diffusion and eliminates the over- and undershoots that the QUICKEST scheme generates near regions of shear concentration gradients (Cole & Wells 2013).

In the W2 control file, the user must specify heat exchange parameters. The first parameter specified is the approach used for computing surface heat exchange, SLHTC. For the APPLM, the ERDC chose to use SLHTC = TERM because it is more theoretically sound according to Cole and Wells (2013) and because it produced better model results than SLHTC=ET. Since the meteorological data files contain shortwave solar radiation, but the model produces better results when calculating it internally, the model setting SROC was set to OFF, which specifies that W2 does not need to read an extra column from the meteorological input file. Although the ERDC was provided with hourly meteorological data, W2 was still allowed to interpolate the input data to correspond to the model time-step by setting the parameter METIC to ON. The wind speed measurement height was set to 10 m in the APPLM as indicated by the 14WS. All other heat exchange parameters were set to the suggested manual values.

Extinction Coefficients

The extinction coefficient card contains two important coefficients for temperature calibration. When water quality constituents, other than temperature, are not being modeled, as in the APPLM, the extinction for pure water, EXH2O, is set to 0.45 m⁻¹ as recommended in the W2 manual. BETA, the fraction of incident solar radiation absorbed at the water surface, is also set to the value of 0.45 in the APPLM model. The W2 manual suggests that typical values for BETA are approximately 0.2-0.7 (Cole & Wells 2013).

Selective Withdrawal

W2 is capable of modeling a temperature control tower with selective withdrawal features. The latest version also has the added capability of dynamic port selection; however, since this was not used for the calibration model, it will not be discussed here.

The Applegate Lake Water Temperature Control tower (WTC) has six intake structures: five water temperature control ports and one regulating outlet (RO) (USACE 1990). Figure 17 is an image of where each intake port is identified in the model control file.

4 Model Calibration Results – CY01

Final calibration results are presented in this section. In all of the time series plots shown, a black solid line represents model output, a solid red circle or solid or dashed red line represents measured data. Three statistics are also presented in the charts: mean error (ME), absolute mean error (AME), and root mean square error (RMSE). These statistics are calculated as shown in Equations 1-3. The model was output every day as a daily average; when making time series comparisons to the observed data, a tolerance of 0.5 days was used for the model output so that model output and measured data were compared spatially and temporally with minimal averaging. A tolerance of 7 days was used for the model output when making profile plot comparisons. In both of the cases with the tolerance as selected, the statistical comparison is a one-to-one comparison. The authors use the closest date and the closest depth for comparing values. The tolerances used also allowed enough spacing to avoid observed data averaging.

$$ME = \frac{\sum_{1}^{n} (model - data)}{n} \tag{1}$$

$$AME = \frac{\sum_{n=1}^{n} abs(model - data)}{n}$$
(2)

$$RMSE = \sqrt{\frac{\sum_{1}^{n} (model - data)^{2}}{n}}$$
(3)

Cumulative distribution plots are also presented in this section. For these plots, the solid black line represents model output and the dashed red line represents observed data. These plots are used to indicate how the model is behaving overall when compared to the observed values. For example, at high temperatures, the model over-/underpredicts temperature by XX deg-F, where XX represents the AME value. Scatter plots are also presented to give a statistical representation of how the model is behaving.

A general rule of thumb for water quality calibration is that the absolute mean error should be within 10% of the range of monitored data (Scott Wells)¹, temperature AME should be within 1 deg-C (~1.8 deg-F), and elevations should be within 0.5 m (1.64 ft). Equation 4 is the equation used to calculate the target values for AME. These target values were calculated for each calendar year and will be presented in tabular form in the following sections. Units for these targets are consistent with the minimum and maximum values for each constituent. For example, for flow, the minimum, maximum, the AME, and 10% target are presented in cubic feet per second.

 $Target = 0.10^{*}((maximum observed value) - (minimum observed value))$ (4)

Flow

Since the model upstream boundary condition segment often changes based on the reservoir volume, the ERDC cannot produce flow plots to verify that the upstream boundary condition for flow is satisfied. Model output along with observed data for CY01 at the dam is shown in Figure 18. Note that this is really just a representation that the data are being read in correctly from the input outflow file. The AME for all data pairs for 2001 at the dam is 6.32 cfs, which is well less than 1.0% of the measured range of flows the calendar year. Table 4 presents several basic stats for flow. Based on Figure 18, the slope of the trendline fitted through the data pairs is 1.00 and the R-squared value is 0.99. Overall, the model only overpredicts outflow at the dam by 0.08 cfs.

SITE	Observed Minimum	Observed Maximum	AME	ME	Slope	R-Squared
Dam	51.00	1210.00	6.32	0.08	1.00	0.99

Table 4. Basic statistics for flow (cfs) for CYO1 calibration.

¹ Wells, Scott. 2008. Personal communication with Tammy Threadgill. June 15. CE-QUAL-W2 Workshop, Portland, OR

Temperature

The best hope in correctly predicting the outflow temperature is to correctly predict the in-lake temperature profiles at various locations in the reservoir. If the temperature profiles are not satisfactory, the chance of correctly predicting total outflow temperature is highly unlikely. Profile plots and statistical plots for all in-lake monitoring sites are presented in Figure 19-Figure 24. (Figure 3 shows the location of each of these sites.) A time series plot and statistical plots are presented for the dam in Figure 25. The average AME for each of the in-lake sites are within the acceptable target. Table 5 presents the calculated AME and the temperature target that ERDC attempted to reach for the in-lake sites and for the outflow temperature at the dam. Based on Figure 22-Figure 24, the average slope of the trendlines is 0.97 and the R-squared value is 0.95 for the in-lake sites. At the dam, the AME is 0.69 deg-C with a slope of 1.03 and an R-squared value of 0.99 (see Figure 25).

SITE	Observed Minimum	Observed Maximum	Target AME	AME	ME	Slope	R-Squared
APP20001 (CY AVG)	7.83	24.54	1.00	0.80	0.52	0.88	0.93
APP20002 (CY AVG)	10.29	25.44	1.00	0.57	-0.23	0.95	0.96
APP20003 (CY AVG)	19.14	22.13	1.00	0.29	0.19	1.08	0.96
Dam (Outflow)	4.20	19.80	1.00	0.70	-0.52	1.03	0.99

Table 5. Basic statistics for temperature (deg-C) for CYO1 calibration.

Figure 19. Temperature profiles at APP20001 in CY01 calibration.

Figure 20. Temperature profiles at APP20002 in CY01 calibration.

Figure 21. Temperature profiles at APP20003 in CY01 calibration.

Figure 22. Flow linear and cumulative distribution plots at APP20001 for CY01 calibration.

Figure 24. Flow linear and cumulative distribution plots at APP20003 for CY01 calibration.

Figure 25. Withdrawal temperature at the dam for CY01 calibration.

Water Surface Elevation

Model output along with observed data for water surface elevations (ELWS) in CY01 at the dam is shown in Figure 26. The AME for all data pairs for 2001 at the dam is 0.64 ft (~0.20 m). Table 6 presents the basic statistics for observed water surface elevation at the dam. The slope of the trendline fitted through the data pairs is 1.01 and the R-squared value is 1.0. Overall, the model only overpredicts ELWS at the dam by 0.55 ft.

Observed Observed Target SITE Minimum Maximum AME AME ME Slope **R-Squared** Dam 1860.35 1905.23 4.49 0.64 0.55 1.01 1.00

Table 6. Basic statistics for water surface elevations (ft) for CYO1 calibration.

Figure 26. Water surface elevations at the dam for CY01 calibration.

5 Calibration Discussion

Model calibration results and all model assumptions are discussed in this section. As stated previously, not only does this report detail graphical comparison, but the authors also present several statistical comparisons: AME, RMSE, and ME. Both the flow results and the temperature results will be discussed below.

Water Surface Elevation

As stated previously, due to the water balance instabilities in the model, a distributed tributary was added to the calibration run. This drastically improved the initial results. Figure 27 shows the impact of not using distributed tributary. Notice how the model severely underestimates the water surface elevation for ten months out of the year. By the end of the year, the model needs almost 8 ft of unaccounted for water. Once the distributed tributary was added, and before any other parameters were modified, there was definitely an improvement to the results (see Figure 28).

Temperature

Initially, before the water balance issues were corrected, the model was drastically miscalculating the temperature. However, once the distributed tributary was added, the model was still overpredicting the temperature (CY01-Run02). Upon observing the in-lake profile plots, the surface temperature was too warm. The ERDC performed two more successive simulations with the following changes:

- Decreased the shading coefficient from 1.0 to 0.85. Due to the fact that the lake is located in a valley, the ERDC has decided to reduce the amount of short wave radiation actually reaching the surface. This improved the results of the thermocline location in the profile plots at the in-lake sites. (CY01-Run07)
- 2. Changed EXH20 from 0.55 to 0.45 in order to decrease the amount of heat retained at the surface instead of letting the heat descend into the water column. Next, the team changed BETA from 0.55 to 0.45. BETA is similar to EXH20 in that it also helps to retain more heat surface. These changes had a very small positive impact on model temperature predictions. These

values are the recommended values set in the W2 manual; however, given the fact that in the Lost Creek Lake Model, these values needed to be increased, the ERDC originally decided to leave the higher values. (CY01-Runo8)

Figure 27. Time series and statistical plots of ELWS without the distributed tributary.

Figure 28: Time series and statistical plots of ELWS with the distributed tributary.

Temperature comparisons at the in-lake stations and the dam between each of the runs discussed above is seen in Figure 29-Figure 32. In all of the plots below, the red dots are observed data. The time series comparison is more indicative of the gains in temperature improvement with the above modifications than are the profile comparisons.

Figure 29. Profile comparison at APP20003.

Figure 30. Profile comparison at APP20002.

Figure 31. Profile comparison at APP20001.

Figure 32. Time series comparison at the dam for CY01.

6 Model Verification Results – CY03 and CY10

Model verification results are presented in this section. CY03 and CY10 were used because they had the same types of monitored data and similar available in-lake profile data. All of the plots and statistics presented in this section were developed in an identical manner to those in the previous section.

Flow

Model output along with observed data for CY03 and CY10 at the dam is shown in Figure 33 and Figure 34. Again, this is really just a representation that the data are being read correctly from the input outflow file. The AME for all data pairs for CY03 and CY10 at the dam is 121.05 cfs and 124.65 cfs, respectively, which is well less than 5% of the measured range of flows for the calendar year. Table 7 presents the 5% target AME and the model versus observed data statistics.

Temperature

The data available for the verification years was a little different than in CY01. For CY03, only one sample date at all stations was available (August 22). For CY10, no true in-lake stations were monitored. In order to still provide feedback on in-lake temperatures, ERDC chose to use temperatures from selected dates available from the temperature string located at the dam (in place since 2006). It is important to note that the temperature string data was only available through May. The 15th day of Jan-May was chosen as representative for each month in CY10. Having plotted the observed data from the temperature string for CY10, the plots showed obvious problems with the gauge at elevations 1851 ft and 1791 ft (see Figure 39). These values were removed from the plot and the statistical comparison (Figure 40).

SITE	Observed Minimum	Observed Maximum	Target AME	AME	ME	Slope	R-Squared
Dam - 2003	99.00	2520.00	121.05	25.44	-2.77	0.95	0.95
Dam - 2010	137.00	2630.00	124.65	14.26	3.07	1.00	0.99

Table 7. 1% Target for flow (cfs) for CY03 verification.

Figure 33. Withdrawal flow at the dam for CY03 verification.

Profile plots and statistical plots for all in-lake monitoring sites are presented in Figure 35-Figure 41. Time series plots and statistical plots are presented for the dam outflow in Figure 42 (CY03) and Figure 43 (CY10). Table 8 presents the calculated AME and the temperature target that ERDC attempted to reach along with comparison statistics for the in-lake sites and for the outflow temperature at the dam. The average AME for all of the inlake sites are within the acceptable target of 1 deg-C. And the statistical values are within typically accepted ranges. At the outlet, our best comparison site, the temperature AME is 0.80 deg-C and 0.88 deg-C for CY03 and CY10, respectively (see Figure 42 and Figure 43). The model underpredicts temperature by an average of approximately 0.36 deg-C at the dam.

SITE	Observed Minimum	Observed Maximum	Target AME	AME	ME	SLOPE	R-squared
APP20003 (CY03)	7.34	23.91	1.00	0.37	-0.01	1.05	0.99
APP20002 (CY03)	7.18	24.12	1.00	0.53	0.20	1.03	0.99
APP20001 (CY03)	7.02	23.81	1.00	0.63	-0.02	1.05	0.99
Dam Temp. String (CY10 AVG)	4.83	12.92	1.00	0.63	-0.01	1.20	0.88
Dam – Outflow Temp (CY03)	4.86	15.60	1.00	0.80	-0.35	1.09	0.96
Dam – Outflow Temp (CY10)	4.50	14.50	1.00	0.88	-0.39	1.02	0.90

Table 8. Temperature stats (deg-C) for verification years.

Figure 35. Temperature profiles at in-lake stations in CY03 verification.

Figure 36. Flow linear and cumulative distribution plots at APP20003 for CY03 verification.

Figure 37. Flow linear and cumulative distribution plots at APP20002 for CY03 verification.

Figure 39. Temperature profiles at the dam temperature string in CY10 verification – with bad observation values.

Figure 41. Flow linear and cumulative distribution plots at the dam temperature string for CY10 verification.

Figure 42. Withdrawal temperature at the dam for CY03 verification.

Water Surface Elevation

Model output along with observed data for ELWS CY03 at the dam is shown in Figure 44 and in Figure 45 for CY10. Table 9 presents several stats and lists the target AME for each verification year. In general, the ELWS AME should be within 0.5 m (1.64 ft).

SITE	Observed Minimum	Observed Maximum	Target AME	AME	ME	Slope	R-Squared
Dam (CY03)	1882.89	1987.06	1.64	0.84	0.59	1.00	1.00
Dam (CY10)	1882.18	1986.97	1.64	1.10	-0.07	0.98	1.00

Table 9. Basic statistics water surface elevations (ft) for CY03 verification.

Figure 44. Water surface elevations at the dam for CY03 verification.

Figure 45. Water surface elevations at the dam for CY10 verification.

7 Verification Discussion

This section serves to discuss the results and the impacts that changes have made on the model runs. Just as with the Lost Creek Lake Model, no changes were made to the control file for either verification year. Just as for CY01, a distributed tributary was needed for both calendar years. As stated previously (see Section 3, Tributaries), a distributed tributary is utilized in W2 when there is an inconsistent trend with the water balance and when the user can account for missing or too much flow (i.e., ungauged flows). It can be used to add or remove water from the system. In the case of the APPLM, a distributed tributary was used to add water to the system. Refer to Figure 10 for the flows added to the system for CY03 and CY10.

8 Predictive Port Selection Model Application

In order to provide NWP with the best model to use for operation modifications, the calibrated model was used as a base run to set up a fully predictive model in which the model will guide dam operations based on desired temperature targets. The temperature target presented is the biweekly target developed by Oregon Department of Fish and Wildlife for 2014 operations. Based on results from the Lost Creek Lake Model (Threadgill et al. 2015), the ERDC-EL chose to only focus on the USGS version of the W2 model. An inventory of all files used for each model simulation can be found in Appendix B (Table B3).

USGS – W2 Predictive Port Selection

Detailed information on the development and modifications to the original W2 code can be found in "Improved Algorithms in the CE–QUAL–W2 Water-Quality Model for Blending Dam Releases to Meet Downstream Water-Temperature Targets" (Rounds and Buccola 2015). Specifics relating to setup of the Applegate Lake Predictive Model (APPLPM) will be discussed here. The USGS code uses an iterative process to determine the optimal flows that will produce the desired target temperatures. Of course, this means that the run time will also increase. In the case of the APPLPM, using this code tripled the run time (from about 3-5 minutes to 10-12 minutes).

Just as with the LCLPM, There were no changes to the main control file from the calibration model (aside from output filename changes). All completed changes were made in the w2_selective.npt file, which is required when the SELECTC card in the control file is turned ON. Although the structure of the w2_selective.npt file is very similar to the PSU version, there are several new options. The new cards, not discussed in detail here, are:

1. NOUTS: For two different periods throughout the year, when total flow is less than 100 cfs, the RO is nonoperational. To specify this, NOUTS during these periods was set to 5. The specified period(s) vary between different years. The time intervals used for each year can be seen in Table 10.

YEAR - TYPE	TSTR	TEND		
2001 - DRY	100.1	335		
	32.1	115.0		
2003 - AVENAGE	325.1	340.0		
2010 W/ET	51.1	74.0		
2010 - WEI	329.1	346.0		

Table 10.	Intervals	when	RO is	nono	perationa	I.
						•••

- 2. TSSHARE: For the APPLPM, this was set to OFF. DEPTH: For the APPLPM, DEPTH was set to 0 since Applegate Dam consists of fixed ports.
- 3. MINFRAC: For the APPLPM, this was set to -2.832 cms for the RO only. The negative sign indicates that this an actual flow value instead of a percentage. This specification is made due to the minimum gate opening requirement for the RO. The minimum opening is 0.6 ft; although the exact flow will vary based on elevation, at a minimum, flow will be 100 cfs at the lowest elevations.
- PRIORITY: During various times of the year, NWP operates to use more surface water sometimes and at other times, the cold lower waters are used. Consequently, for the fall and winter months, the priority was shifted to the RO. Outside of that the period, priority was set to so that Intakes 1, 3, and 5 had the highest priority, and Intakes 2, 4, and 6 had the lowest priority.
- 5. MINHEAD: For the APPLPM, this was set to 2.0 m. There is about a 6 ft minimum head according to the WCM.
- 6. MAXHEAD: For the APPLPM, this was set to 0.0 for the top 5 intakes. For the bottom intake, the RO, the MAXHEAD was set to 34.0 m. This requires the elevation to be a conservation pool level before the RO is operational.
- 7. MAXFLOW: For the APPLPM, this was set to o.o.

In the APPLPM w2_selective.npt file, the user will find that three split times were identified. The reason these dates were identified is due to operational constraints with seasonal withdrawal depths. Specifying it this way allowed ERDC-EL to set the PRIORITY based on which ports were desired. In addition to the w2_selective.npt file, because DYNSEL = ON for each split, the user is required to have an additional file that identifies the target temperatures specified by Julian day. As stated above, only the RO had a MAXHEAD value specified. Due to operational constraints, the RO must be closed or open no less than 0.6 ft, so it cannot be operated unless the total flow is greater than 100 cfs (2.832 cms). Even with the additional USGS cards, there is no card to directly specify this requirement. What specifying this MAXHEAD condition does for the model is that if the reservoir is more than 34.0 m above the RO, the RO will not be used; in other words, the RO will typically be used when the reservoir is at the lower elevations. Based on the time constraints previously set, the RO has the lowest priority during the spring and summer already; so setting the MAXHEAD stipulation also adds an additional check on the water depth. For the most part, at Applegate Lake, the RO is not used frequently. In addition to this MAXHEAD constraint, the time intervals during which the RO is allowed to be operational varies with each year.

The user should note that in all of the following plots, the red lines represent a temperature target range. The ODFW targets are used for determining the target; however, what is represented on the following plots is a target range, which is the ODFW temperature target +/- 1 deg-C, which is a standard measuring error for temperature.

Figure 46 and Figure 47 is the w2_selective.npt file and the dynsplit_selectiveX.npt file, respectively, used for all of the APPLPM model runs. In Figure 48-Figure 80, the black line/dots represent the results from the calibration run, and the green line/dots represent the results from the predictive mode run. Figure 48-Figure 54 are plots from CY01 (dry year); they compare the results from the calibration and the results from the USGS-W2 blending algorithm. It is important to note that at no time in the calibration model were Intakes 1-4 active; during the predictive model mode, Intakes 4-6 were active, however. Figure 55-Figure 67 represent the same plots for CY03 (normal year), and Figure 68-Figure 80 represent CY10 (wet year). Figure 81 shows the average percentage of model-predicted temperatures that fall within the desired target range. As one can see, the USGS Port Prediction algorithm produces better results more often than the calibration using the gate settings observed flow data.

Beleficie inst. control. file - AUB-CVU-US-GRO-PortBall respectature colles Control Enequency of outputs for temperature OV. FROM CONTROL CONTROL CONTROL OF A CONTROL OF	W2_SELEC	TIVE.NPT													
Structure ALLOW Difference Differen	Selectiv Temperat OUT FREQ	e input Sure outl TFRQTMP	control et contr	file - Al ol - frec	MP-CY10- quency o	-USGS-Po: E output	rtRun11 for temp	perature							
DINITIZ ST./ND BS./NM VARUALY TITA THAD	Structur DYNSTR1	CONTROL OFF	control NUM 1	based or FREO 0.50	n time a	nd tempe:	rature an	nd brand	h						
NUMBER LEAR UNMERCINATION 1 CARTON LOC ISSE ELENC DIPOL SPLIT1 CARTON LOC ISSE ESTEND SPLIT2 ST.740 JB YEALUY TER DOWN SPLIT2 ST.740 JB YEALUY TER DOWN St.0 TEARCET SPLIT2 ST.740 JB YEALUY TER DOWN St.0 TEARCET NOTES TESSIMPE SPLIT2 ST.740 JB YEALUY TER DOWN St.0 NOTES TESSIMPE SPLIT2 ST.740 JB YEALUY St.0 TEARCET NOTES TESSIMPE SPLIT2 ST.740 JB YEALUY St.0 TEARCET NOTES TESSIMPE SPLIT2 JB St.0 St.0 St.0 NOTES TESSIMPE SPLIT2 JB St.0 St.0 <td< td=""><td>DYNSTR2 1</td><td>ST/WD ST</td><td>JB 1</td><td>JS/NW 1</td><td>YEARLY ON</td><td>TSTR 1.0</td><td>TEND 46.0</td><td>TEMP 3.3</td><td>NELEV 6</td><td>ELEV1 598.02</td><td>ELEV2 594.36</td><td>ELEV3 588.26</td><td>ELEV4 577.60</td><td>ELEV5 560.22</td><td>ELEV6 541.32</td></td<>	DYNSTR2 1	ST/WD ST	JB 1	JS/NW 1	YEARLY ON	TSTR 1.0	TEND 46.0	TEMP 3.3	NELEV 6	ELEV1 598.02	ELEV2 594.36	ELEV3 588.26	ELEV4 577.60	ELEV5 560.22	ELEV6 541.32
ATTO ELENCONTROL 1 ONE STERED 50.005 STERED 50.005 SPLIT1 ONE NUM STERED 50.005 ST.0005 SPLIT2 ST.740 JE YEAUX TITA TAMET DUNET ELCONT NUTE TSSIMPE 1 ON ST.11 ON ST.0 TITAGET DUNET ELCONT NUTE TSSIMPE 2 ST.11 ON ST.11 ON ST.0 TITAGET DUNET ELCONT NUTE TSSIMPE 3 ON ST.11 ON ST.11 ON ST.0 ST.00 ON OTT E OTT SPLITO JENNIN	MONITOR 1	LOC ISEG	ELEV -1.0	DYNCEL OFF											
SPLIT1 CHT2 NTM TSFEED SECONF SPLIT2 ST/MD JB YEALY ST/MD JB	AUTO ELE 1	VCONTROL ON													
SPLIT2 SF./ME JB YAALY TST. TSD. TABLET LONT INUTS ISSNE 1 ST. 1 ON 5.0 S. ON OFFF 6 OFF 4 ST. 1 ON SI. SI. ON OFFF 6 OFF 5 ST. 1 ON SI. SI. ON OFF 6 OFF 5 ST. 1 ON SI. SI. ON OFF 6 OFF 5 ST. SI. SI. SI. SI. SI. SI. ON OFF 6 OFF 5 1 2 SI. SI	SPLIT1	CNTR ON	NUM 5	TSFREO 0.250	TSCONV 0.005										
SPLITOT JEL/ANI 192/ANI 323/ANI 334/ANI 355/ANI 356/ANI 357/ANI 357/ANI 359/ANI	SPLIT2 1 2 3 4 5	ST/WD ST ST ST ST ST	JB 1 1 1 1	YEARLY ON ON ON ON	TSTR 1.0 51.1 74.1 329.1 346.1	TEND 51.0 74.0 329.0 346.0 366.0	TTARGET 3.0 3.0 13.3 3.0 3.0 3.0	DYNSEL ON ON ON ON ON	ELCONT OFF OFF OFF OFF	NOUTS 6 5 6 5 6	TSSHARE OFF OFF OFF OFF OFF				
INTERIAL DEFTHS DEFTHS <thdefths< th=""> <thdefths< th=""> <thdefths< <="" td=""><td>SPLITOUT 1 2 3 4 5</td><td>JS1/NW1 1 1 1</td><td>JS2/NW2 2 2 2 2 2</td><td>JS3/NW3 3 3 3 3 3</td><td>JS4/NW4 4 4 4 4</td><td>JS5/NW5 5 5 5 5</td><td>JS6/NW6 6 6</td><td>JS7/NW7</td><td>JS8/NW8</td><td>JS9/NW9</td><td>JS0/NWO</td><td></td><td></td><td></td><td></td></thdefths<></thdefths<></thdefths<>	SPLITOUT 1 2 3 4 5	JS1/NW1 1 1 1	JS2/NW2 2 2 2 2 2	JS3/NW3 3 3 3 3 3	JS4/NW4 4 4 4 4	JS5/NW5 5 5 5 5	JS6/NW6 6 6	JS7/NW7	JS8/NW8	JS9/NW9	JS0/NWO				
NUMERC: MINERCS MINECS MINERCS MINECS	DE PTH 1 2 3 4 5	DEPTH1 0 0 0 0 0 0 0	DE PTH2 0 0 0 0 0 0 0	DE PTH3 0 0 0 0 0 0	DEPTH4 0 0 0 0 0 0	DEPTHS 0 0 0 0 0 0	DEPTH6 0 0	DEPTH7	DEPTHB	DEPTH9	DE PTH10				
PRIORITY PRIOR2 PRIOR3 PRIOR3 PRIOR5 PRIOR	MINFRAC 1 2 3 4 5	MINFRC1 0 0 0 0 0 0	MINFRC2 0 0 0 0 0	MINFRC3 0 0 0 0 0	MINFRC4 0 0 0 0 0	MINFRC5 0 0 0 0 0	MINFRC6 -2.832 -2.832 -2.832	MINFRC7	MINFRCB	MINFRC9	MNFRC10				
NINEEAD MINEDA	PRIORITY 1 2 3 4 5	PRIOR1 2 1 2 1 2 2	PRIOR2 2 2 2 2 2 2	PRIOR3 2 1 2 1 2	PRIOR4 2 2 2 2 2 2	PRIOR5 2 1 2 1 2	PRIOR6 1 1	PRIOR7	PRIORS	PRIOR9	PRIOR10				
MAXHELD MAXHED	MINHEAD 1 2 3 4 5	MINHD1 2 2 2 2 2 2	MINHD2 2 2 2 2 2 2	MINHD3 2 2 2 2 2 2	MINHD4 2 2 2 2 2 2	MINHD5 2 2 2 2 2 2	MINHD6 2 2 2	MINHD7	MINHDS	MINHD9	MINHD10				
NAXFLON MAXFLO2 MAXFLO2 MAXFLO4 MAXFLO5 MAXFLO7 MAXFLO8 MAXFLO9 MAXFLO9 MAXFLO1 2 0 0 0 0 0 3 0 0 0 0 0 4 0 0 0 0 0 0 5 0 0 0 0 0 0 THRESH1 TEMPONIT 12 THRESH2 TEMPORIT 1 3.33 3 4.57 4 10.00 5 13.33 9 13.33 9 13.33 9 13.33 9 13.33 9 13.33 9 13.33	MAXHEAD 1 2 3 4 5	MAXHD1 0 0 0 0 0	MAXHD2 0 0 0 0 0	MAXHD3 0 0 0 0 0	MAXHD4 0 0 0 0 0	MAXHD5 0 0 0 0 0	MAXHD6 34 34 34	MAXHD7	MAXHDS	MAXHD9	MAXHD10				
THRESHI TEMON 12 THRESHI TEMOCRIT 1 3.33 2 3.67 4 10.00 5 12.96 6 13.33 7 13.33 8 13.33 9 13.33 9 13.33 9 13.33	MAXFLOW 1 2 3 4 5	MAXFLO1 0 0 0 0 0 0	MAX FLO2 0 0 0 0 0 0	MAXFLO3 0 0 0 0 0	MAXFLO4 0 0 0 0 0	MAXFLO5 0 0 0 0 0	MAXFLO6 0 0	MAXFLO7	MAXFLOS	MAXFLO9	MKFLO10				
THEREP: TEMOCRIT 1 3.33 2 3.52 3 6.67 4 10.00 5 12.96 6 13.33 7 13.33 8 13.33 8 13.33 9 13.33 9 13.33	THRESH1	TEMPN 12													
11 7.22	THRESH2 1 2 3 4 5 6 7 8 9 10 11	TEMPCRIT 3.33 3.52 6.67 10.00 12.96 13.33 13.33 13.33 13.33 11.48 7.22													

Figure 46. W2_Selective.NPT file used for the APPLPM for CY10.

(**NOTE: ELEV7-10 are cut off for better image clarity. These values are blank since there are only 6 ports.)

Figure 17 dynenlit	selectiveX not file	o used for the	
rigure 47. uyrispiit	_selectives.hpt hi	e useu ior the	AFFLIVIFIVI.

NOTE :	See G:\Pr	ojects15\NW	-Portland\ALM-PortPre	diction\ERDC-Data\TEMP TARGETS Applegate	.xlsx
Identi	cal to mea	n values in	'TEMP TARGETS Applega	te.xlsx'	
JD.	AY MEAN				
1.	3.33				
11.	DO 3.33				
21.	3.33 3				
32.	3.33 3				
42.	3.33 3				
52.	3.89				
60.	00 5.56				
70.	00 6.67				
80.	00 7.78				
91.	00 8.89				
101.	00 10.00				
111.	0 11.11				
121.	00 12.22				
127.	00 13.33				
141.	00 13.33				
152.	00 13.33				
162.	00 13.33				
172.	00 13.33				
182.	00 13.33				
192.	00 13.33				
202.	00 13.33				
213.	00 13.33				
223.	30 13.33				
233.	30 13.33				
244.	30 13.33				
254.	13.33				
264.	JU 13.33				
2/4.	JU 13.33				
284.	JU 11.11				
294.	JU 10.00				
305.	JU 8.89				
315.	00 7.22 00 EEG				
323.	0 5.50				
335.	JU 3.33 NA 3.33				
345.	JU 3.33				
355.					
305.	JU 3.33				

Figure 48. CY01 - APPLPM temperature comparison with target temperatures.

Figure 51. CY01 - R0 / Intake 6 - temperature into tower.

Figure 53. CY01 - Intake 5 - flow into tower.

Figure 56. CY03 - Intake 1 - temperature into tower.

Figure 57. CY03 - Intake 2 - temperature into tower.

Figure 59. CY03 - Intake 4 - temperature into tower.

Figure 60. CY03 - Intake 5 - temperature into tower.

Figure 62. CY03 - Intake 1 - flow into tower.

Figure 65. CY03 - Intake 4 – flow into tower.

Figure 66. CY03 - Intake 5 - flow into tower.

Figure 69. CY10 - Intake 1 - temperature into tower.

Figure 71. CY10 - Intake 3 - temperature into tower.

Figure 74. CY10 - R0 / Intake 6 - temperature into tower.

Figure 77. CY10 - Intake 3 - flow into tower.

Figure 80. CY10 - RO / Intake 6 - flow into tower.

Figure 81. Average % of model temperature within the target range.

9 Summary and Conclusions

The USACE-ERDC-EL assisted CENWP in updating a W2 model of Applegate Lake based on inputs from an existing model of the reservoir. The model was calibrated and verified using data from calendar year (CY) 2001 (dry), 2003 (normal), and 2010 (wet). Across all calendar years, the model captured the quantitative and qualitative trends for temperature and flow. Quantitatively, the model predicted temperatures within 1.0 deg-C for most of the calibration sites (in-lake sites and at the dam), which is far better than many other temperature studies (Arhonditsis and Brett 2004). Qualitatively, trends were consistent with measured data. Model performance statistics were closely paired temporally and spatially with the measured data.

In addition to a fully updated calibrated model, the ERDC-EL also developed an application of the model using modified W2 code from the USGS that allows for a better functioning blending algorithm between multiple ports. The same version of the W2 model was also used for a similar application of Lost Creek Lake (Threadgill et al. 2015).

This model and the corresponding results from the study provide NWP with a fully capable model that helps users determine how operational changes will impact downstream water temperature. This is extremely important because the Rogue and Applegate Temperature Total Maximum Daily Loads (TMDL), Rogue Spring Chinook Conservation Plan, and possibly the Rogue Fall Chinook Conservation Plan require the Corps to review operations to determine whether improvements can be achieved to downstream temperature for the benefit of endangered fish.

Additional work to consider is a deeper investigation of the actual attainability of the target temperatures and the impacts of these temperatures on fish with respect to egg emergence data. Based on the current study, there will be times during the year when reaching the desired temperature target is simply not attainable given the dam operation criteria. This model, coupled with an in depth fish analysis, would provide NWP with invaluable information regarding dam operations and the impacts to fish.

References

- Arhonditsis, G. B., and M. T. Brett. 2004. Evaluation of the current state of mechanistic aquatic biogeochemical modeling. *Marine Ecology Progress Series* 271: 13–26. doi:10.3354/meps271013
- Cole, T. M., and S. A. Wells. 2013. *CE-QUAL-W2: A two-dimensional, laterally averaged, hydrodynamic and water quality model, version 3.71.* Washington, D.C.
- Larson, D. W. 1998. Applegate Lake: Limnological and water-quality studies 1981-1997. Portland, OR.
- Oregon Department of Environmental Quality. 2008. Rogue River Basin TMDL, (December).
- Oregon Department of Fish and Wildlife. 2007. *Rogue Spring Chinook Salmon Conservation Plan.* Salem, Oregon.

_____. 2013. Conservation Plan for Fall Chinook Salmon in the Rogue Species Management Unit (Vol. Adopted Ja). Salem, Oregon.

- Rounds, S. A., and N. L. Buccola. 2015. Improved algorithms in the CE–QUAL–W2 water-quality model for blending dam releases to meet downstream water-temperature targets: U.S. Geological Survey Open-File Report. http://dx.doi.org/10.3133/ofr20151027.
- Threadgill, T. L., D. H. Tillman, B. W. Bunch, D. L. Smith, L. A. Nicholas, and D. F. Turner. 2017. Temperature modeling of Lost Creek Lake using temperature modeling of Lost Creek Lake using CE-QUAL-W2. ERDC/EL TR-17-4. Vicksburg, MS: U.S. Army Engineer Research and Development Center.
- U.S. Army Corps of Engineers. 1990. *Water Control Manual for Applegate Lake*. Portland, OR.
 - _____. 1991. *Water control manual for Lost Creek Lake*. Portland, OR.
- U.S. Army Corps of Engineers, & Oregon Department of Environmental Quality. 2009. Reservoir management strategies at Lost Creek Lake in relation to implementation of the Rogue River Spring Chinook Salmon Conservation Plan. Portland, OR.

Appendix A: Bathymetry File

This section contains an image of the bathymetry file used for the APPLM. The only difference between calendar years was the initial water surface elevation used in creating the bathymetry file. W2 V3.7 now has the capability to use a csv file developed in Excel. The images below (Figure A1-Figure A3) are pages from the Excel file used to develop the csv file. Table A1 is the initial water surface (ELWS) used in the development of the bathymetry files for each of the model simulations.

Calendar Year	ELWS (m)	ELWS (ft)
Calibration-2001	569.585	1868.72
Verification-2003	576.187	1890.38
Verification-2010	577.044	1893.19

Table A1. Initial ELWS used in bathymetry files for all simulations.

\$ Applegate L	Lake Bathy	metry - Upd	ated from "ł	oth-apg2-90).npt" to nev	csv version							
SEG: I	1	2 523 3	3 536 4	4	5	6 3871	2353	8 345 9	9 298 7	10	11 265.2	12 301.8	13 202 7
ELWS	569.585	569.585	569.585	413.0	569.585	569.585	569.585	569.585	569.585	569.585	569.585	569.585	569.585
PHIO	0.000	3.992593	2.24	2.362	3.2215927	4.4415927	4.5735927	3.6415927	3.5535927	3.2345927	3.2365927	3.3415927	3.6435927
FRICT	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025
LAYERH 0.914	0.000	BR1 0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0 000	0.000	0.000
0.914	0.000	65.100	132.400	173.900	400.700	343.700	415.000	354.800	436.800	489.400	475.000	409.000	340.300
0.914	0.000	54.100	126.800	169.300	394.500	330.000	410.700	351.400	431.500	488.500	469.000	403.700	335.700
0.914	0.000	43.800	119.700	162.100	384.400	323.000	400.600	347.100	426.800	483.300	463.100	398.100	331.000
0.914	0.000	35.600	112.800	154.700	373.900	316.100	391.800	343.000	422.400	478.400	457.500	392.700	326.300
0.914	0.000	28.600	106.000 99.200	147.100	362.900	309.100	384.300	339.000	418.200	473.800	452.000	387.500	321.900
0.914	0.000	17.600	92.200	129.300	338.600	294.400	370.800	330.900	409.200	469.200	440.400	376.700	312.600
0.914	0.000	13.500	85.300	119.200	324.700	286.600	364.600	326.600	404.200	465.200	434.100	371.000	307.600
0.914	0.000	10.700	78.300	108.300	309.500	278.600	358.600	322.100	399.100	461.400	432.400	369.100	302.500
0.914	0.000	9.200	68.000 40.200	97.200 99.700	291.300	252.400	353.800 250.100	318.900 213.100	395.400	452.100	428.800	365.800	302.100
0.914	0.000	0.000	25,900	81,900	200.500	187.800	344,100	302,200	384.600	445.000	416,700	355,100	293.500
0.914	0.000	0.000	0.000	73.300	220.000	172.800	336.900	290.200	375.900	441.700	413.200	351.800	293.400
0.914	0.000	0.000	0.000	64.000	193.200	158.500	328.500	277.500	366.300	438.300	413.000	350.400	289.000
0.914	0.000	0.000	0.000	54.300	165.700	144.600	319.200	264.500	356.000	437.000	407.100	344.300	283.800
0.914	0.000	0.000	0.000	38.100	128.800	131.900	306.800	251.500	351.100	435.800	405.100	341.900	282.000
0.914	0.000	0.000	0.000	24.000	84,200	103.100	287.100	232.500	345.000	430.100	398.200	333.600	2771.000
0.914	0.000	0.000	0.000	0.000	64.300	89.400	240.100	196.300	323.700	413.900	379.600	320.400	264.100
0.914	0.000	0.000	0.000	0.000	45.000	76.800	211.300	179.500	313.400	405.500	370.200	312.700	257.300
0.914	0.000	0.000	0.000	0.000	26.100	65.300	184.000	161.300	302.900	402.000	364.300	308.200	252.900
0.914	0.000	0.000	0.000	0.000	14.500	55.700	162.000	145.300	300.500	393.900	357.100	302.000	247.900
0.914	0.000	0.000	0.000	0.000	0.000	41.000 29.700	98.700	90,900	2/1.900	372.900	335.200	284.500	233.200
0.914	0.000	0.000	0.000	0.000	0.000	22.000	65.300	70.200	238.600	358.800	327.100	276.100	226.600
0.914	0.000	0.000	0.000	0.000	0.000	15.300	32.400	51.300	215.100	343.900	319.900	273.900	225.400
0.914	0.000	0.000	0.000	0.000	0.000	0.000	9.100	34.100	190.100	325.500	311.200	267.300	220.400
0.914	0.000	0.000	0.000	0.000	0.000	0.000	0.000	19.300	163.700	304.600	301.800	260.000	215.000
0.914	0.000	0.000	0.000	0.000	0.000	0.000	0.000	13.900	136.300	281.300	291.800	252.100	209.100
0.914	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	82.700	228.800	270.400	235.000	195.800
0.914	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	57.600	200.200	259.100	225.900	188.400
0.914	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	36.600	170.800	247.900	216.800	181.100
0.914	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	16.900	140.300	236.700	207.600	173.600
0.914	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	75,900	225.200	198.000	158,100
0.914	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	24.100	177.900	174.300	148.100
0.914	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	82.700	135.500	131.100
0.914	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	19.100	90.300	111.800
0.914	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	46.100	90.700
0.914	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	20.800	68.900 46.700
0.914	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	25.000
0.914	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	14.900
0.914	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0.914	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0.914	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0.914	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0.914	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0.914	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0.914	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0.914	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0.914	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0.914	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0.914	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0.914	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0.914	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0.914	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0.914	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0.914	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0.914	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0.914	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0.914	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0.914	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0.914	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0.914	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0.914	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0.914	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0.914	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0.914	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0.914	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000

Figure A1. Page 1 from bathymetry development Excel file.

14	15	16	17	10	10	20	21	22	12	24	25	26
274.2	13	10	274.2	10	19	20	21	22	25	24	23	20
274.3	298.7	297.2	2/1.3	218.2	222.8	226.2	236.2	274.3	147.2	241.7	135.3	196.3
569.585	569.585	569.585	569.585	569.585	569.585	569.585	569.585	569.585	569.585	569.585	569.585	569.585
4.0915927	4.4415927	4.3415927	4.2415927	4.0195927	3.4415927	3.3415927	3.6025927	4.0555927	3.9475927	4.0415927	3.8935927	4.0575927
0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025
0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
366 500	435 700	704 700	698 100	351 700	406 400	326 500	539 700	705 200	307 900	715 700	708 900	545 700
260.000	439.600	704.700	670 100	244 700	405.400	222.200	535.700	703.200	207.200	705 600	700.500	543,700
360.400	428.600	704.200	679.100	344.700	405.500	323.300	536.100	702.700	307.200	706.600	704.900	545.700
355.800	422.800	697.500	669.700	344.400	404.400	320.100	529.200	692.200	300.700	696.600	702.300	541.600
351.300	417.100	691.100	660.700	340.000	403.200	316.900	522.800	682.200	294.200	686.800	700.400	539.400
347.100	411.600	684.900	652.000	335.800	402.000	310.600	516.700	672.700	287.500	677.600	699.000	537.400
342 700	406.000	678 100	642 700	331 400	400.800	310 500	510 300	662 900	280.400	667 900	697 800	535.600
228,200	400.400	671.200	622.000	227.000	200.800	207.200	510.500	652.300	272 100	659,400	606 800	533.000
336.300	400.400	671.200	633.600	527.000	399.600	307.200	304.100	633.200	275.100	638.400	090.800	555.900
333.600	394.400	670.600	623.700	322.300	398.800	307.000	497.500	643.100	265.200	648.200	695.800	532.200
332.400	392.800	665.300	619.900	321.300	397.700	304.800	497.000	639.200	257.800	637.700	694.700	530.500
329.700	389.600	660.700	614.400	318.900	389.700	302.900	493.700	633.600	255.800	637.300	693.300	528.700
327.200	386.400	656.100	608.700	316.500	388.700	301.000	490.600	628.000	251.800	631.900	691.800	526.900
324 300	378 600	643 000	596 600	313 900	387 700	298.900	487 100	615 400	248 800	625 700	689 900	516 300
317.000	375.000	638.500	501.000	307.000	305.500	205.000	407.100	610,100	243.300	613,300	603.300	510.500
317.800	375.600	638.500	591.200	307.600	386.600	296.800	485.000	610.100	243.300	613.200	687.700	514.500
315.100	375.300	634.100	589.500	305.100	385.300	290.900	479.400	609.300	236.500	610.400	685.200	512.600
314.000	369.500	633.300	579.800	304.200	383.900	288.900	469.800	600.000	228.700	599.700	682.400	510.600
309.700	366.400	620.900	562.800	303.100	382.300	286.900	466.400	592.900	220.100	593.200	679.300	508.500
304.000	360.300	612.600	553,300	298,400	380,400	286.100	465.900	584,100	202,900	582,400	676.100	506.200
296.900	352 400	601 200	540.900	292 300	378 200	279.800	456 500	572 500	197 700	568 800	672 900	504.000
200.000	312,900	5001.200	540.000	252.500	375.200	273.000	+30.500	572.500	157.700	565.600	672.500	504.000
289.400	343.900	588.700	527.300	285.600	375.600	273.300	446.500	560.000	191.800	554.200	669.700	501.800
282.100	335.500	576.200	513.900	279.100	373.800	266.700	436.600	547.700	185.700	539.800	666.600	500.100
277.800	330.700	570.400	505.100	275.500	373.500	263.400	431.800	541.700	180.300	530.700	663.600	498.900
272.200	324.100	559.000	495.000	270.000	366.000	258.100	423.200	530,900	175.300	520.100	660.800	494.900
256 200	306 600	531 800	464 500	256.000	359.000	244 900	400 400	503 700	175 200	487 700	658 200	491 900
250.200	205.200	531.000	467.000	250.000	257,200	244.300	207,700	505.700	163,400	495.700	655.200	400.000
234.600	303.300	550.700	462.400	255.200	337.200	244.500	397.700	501.700	165.400	465.400	633.800	490.600
252.600	302.900	527.700	459.200	253.500	355.500	242.800	389.800	497.900	162.700	483.000	642.700	489.500
247.600	296.800	522.700	450.100	248.500	353.400	238.000	389.700	488.000	161.400	479.300	640.400	487.900
246.400	295.400	512.300	449.500	248.100	346.300	237.800	382.700	486.600	158.200	474.500	638.200	486.000
241.500	289.500	509.500	441.600	243,700	344.300	233,200	374,700	477.600	157,400	465.000	636.200	483,900
236.000	282 900	500.000	432 600	238 600	341 900	228 300	366,000	467 500	154 200	462 900	634 300	481 500
230.000	232.300	480.000	432.000	233.000	240.400	223.500	256,600	456.300	159.200	455.300	634.500	470.100
230.000	275.700	469.000	422.600	255.200	540.400	225.000	330.000	456.700	150.700	455.200	032.000	479.100
223.400	267.900	477.800	411.900	227.200	334.300	217.100	346.400	444.700	146.700	446.500	630.900	476.800
216.400	259.700	465.200	400.400	220.600	327.500	210.900	335.700	432.100	142.600	436.800	629.200	474.500
209.300	251.300	452.500	388.800	214.100	320.400	204.700	325.000	419.400	138.200	427.200	627.600	472.500
202.100	242,800	439.500	376.900	207.300	313.000	198.300	314,100	406.500	133,800	417.200	626.000	470.800
194 500	233 800	425 800	364 400	200.200	304 900	191.600	302 900	393 000	129.400	411 700	624 400	461 400
196, 700	233.300	411 700	351.700	103.000	201.000	194,000	301.400	285.000	124 700	400.700	624.400	450.700
186.700	224.700	411.700	551.700	192.900	301.000	164.900	291.400	363.400	124.700	409.700	623.000	439.700
178.100	219.300	398.300	340.000	192.800	299.800	184.600	290.400	384.900	121.800	409.100	621.700	458.200
167.600	213.500	383.100	331.600	191.600	298.600	182.900	288.000	384.600	121.600	409.000	620.600	456.900
155.200	203.100	364.300	320.700	190.300	297.700	179.200	282.200	384.100	121.600	408.900	619.600	455.700
140,100	190.000	342,200	305,700	188,900	296.700	176.700	279.100	376,400	121.500	400.700	618.600	454.600
123 300	175 400	318 300	288.000	185 100	290.800	175 500	278 800	376.000	119.000	400 600	617 300	453 400
105 900	165.000	306.400	200.000	193,900	290.000	173,500	270.000	375.300	119.000	400.000	617.500	451.900
105.600	165.000	296.400	279.600	165.600	269.900	175.600	276.500	375.500	116.900	400.500	015.500	431.600
91.200	163.400	290.500	278.900	182.500	289.000	1/0.400	271.000	374.000	118.800	399.900	613.000	449.800
89.400	160.100	288.600	273.400	181.100	288.100	168.800	268.800	372.000	118.400	398.500	609.900	447.400
35.400	94.600	170.100	174.100	132.900	212.800	121.300	207.800	330.100	117.800	349.200	560.300	396.500
34,700	93.800	166.700	170.600	132.200	211.600	121.200	206.800	328.500	105.600	347.300	558.000	396.200
21.000	91 900	165,000	170 400	131 400	207 300	121 100	202 700	326 900	105 100	346.000	555 600	394 300
13 600	79,000	144 500	156 100	120,000	205,200	120,400	201 700	225 400	104 600	244 200	5351000	396 400
15.600	78.900	144.500	156.100	130.600	206.200	120.400	201.700	323.400	104.600	544.500	544.500	366.400
0.000	64.800	119.800	136.000	128.000	200.000	119.700	200.600	323.800	104.100	342.500	542.200	384.600
0.000	47.400	88.100	115.900	127.200	195.700	119.100	199.600	317.300	103.600	340.800	539.800	375.500
0.000	0.000	36.200	81.200	126.400	191.700	118.500	199.500	315.700	101.500	339.200	539.100	309.500
0.000	0.000	36.200	48.200	108.800	176.800	118.100	199.500	314.200	101.000	332.400	534.400	294.300
0.000	0.000	0.000	23.100	79.600	155.900	115.700	199.100	312.700	100.500	330.900	523.700	291.500
0.000	0.000	0.000	0.000	61 000	152 700	115 200	198 200	311 100	100.000	320 100	510 200	285 700
0.000	0.000	0.000	5.000	12 200	132.700	71 200	100.200	207.200	100.000	310 300	272.000	103.400
0.000	0.000	0.000	0.000	13.300	62.500	/1.200	168.700	297.300	99.500	Z19.300	372.600	192.400
0.000	0.000	0.000	0.000	0.000	52.600	69.800	167.600	296.100	95.900	214.900	368.900	188.500
0.000	0.000	0.000	0.000	0.000	29.300	62.600	164.200	295.100	95.200	214.900	361.500	188.100
0.000	0.000	0.000	0.000	0.000	0.000	47.000	163.200	289.200	93.300	190.500	344.000	176.400
0.000	0.000	0.000	0.000	0.000	0.000	30.800	149.600	272.400	92.600	168.100	299.000	158.100
0.000	0.000	0.000	0.000	0.000	0.000	26 800	137 000	252 /00	89.100	146 400	256 700	142 100
0.000	0.000	0.000	0.000	0.000	0.000	20.000	131.000	232.400	03.100	133 100	212.200	174.000
0.000	0.000	0.000	0.000	0.000	0.000	0.000	121.900	228.100	83.200	122.100	212.300	124.900
0.000	0.000	0.000	0.000	0.000	0.000	0.000	107.000	203.900	/5.800	100.600	163.800	107.600
0.000	0.000	0.000	0.000	0.000	0.000	0.000	93.300	182.000	68.800	79.100	117.300	94.600
0.000	0.000	0.000	0.000	0.000	0.000	0.000	43.200	138.900	65.000	77.000	109.800	93.800
0.000	0.000	0,000	0.000	0.000	0,000	0,000	0,000	87,100	64,700	75,500	109.200	91.900
0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	36 400	63 400	73 500	107 100	91 200
0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	30.400	53.400	13.300	107.100	31.200
0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	16.100	57.800	65.100	99.600	85.400
0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	46.700	54.200	86.700	74.200
0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	33.300	44.300	75.000	64.500
0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	27.700	33.200	60.800	52.600
0.000	0.000	0.000	0.000	0.000	0,000	0.000	0.000	0.000	0.000	22,300	49,000	42,700
0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	12 200	20.000	35 200
0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	12.200	37.000	16 000
0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	25.100	16.900
0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000

Figure A2. Page 2 from bathymetry development Excel file.

27	28	29	30	31	32	33	34	35	36	37	38	39	40	41
204.5	159.1	145.4	0	0	792.5	457.8	582.8	271.3	0	0	310.3	167.6	261.2	0.000
569.585	569.585	569.585	569.585	569.585	569.585	569.585	569.585	569.585	569.585	569.585	569.585	569.585	569.585	569.585
3.9415927	3.7685927	3.5345927	0	0	1.954	1.665	2.305	2.362	0	0	2.212	2.192	2.536	0
0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025
0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
549.700	386.100	493.900	0.000	0.000	146.200	346.600	422.500	459.500	0.000	0.000	316.300	169.000	181.900	0.000
547.100	385.500	488.100	0.000	0.000	130.700	340.600	413.700	446.800	0.000	0.000	248.200	165.300	178.300	0.000
545.600	379.500	474.500	0.000	0.000	121.900	333.100	404.200	438.200	0.000	0.000	210.000	162.100	177.000	0.000
544.700	373.800	461.100	0.000	0.000	114.000	325.800	395.200	430.000	0.000	0.000	178.700	158.900	174.100	0.000
544.000	368.400	447.900	0.000	0.000	106.500	318.800	386.700	422.400	0.000	0.000	153.300	155.700	171.200	0.000
543.600	362.800	434.700	0.000	0.000	100.000	311.600	378.100	414.500	0.000	0.000	132.300	152.500	168.100	0.000
543.300	357.500	421.500	0.000	0.000	93.500	297.400	365.800	200 200	0.000	0.000	101.000	149.300	165.100	0.000
542.300	354 400	397 200	0.000	0.000	80 500	290.100	352 800	391 700	0.000	0.000	89 100	142 800	158 500	0.000
541.600	352,300	389.400	0.000	0.000	74.000	284,400	346.200	386.300	0.000	0.000	65,600	139.000	155,900	0.000
540.700	350.400	386.800	0.000	0.000	67.500	281.200	344.400	386.200	0.000	0.000	30.700	120.400	155.100	0.000
539.600	348.400	380.500	0.000	0.000	61.000	274.400	339.300	382.600	0.000	0.000	0.000	94.800	152.500	0.000
538.100	346.200	372.800	0.000	0.000	54.500	266.000	333.200	377.700	0.000	0.000	0.000	69.200	149.200	0.000
536.500	344.200	363.900	0.000	0.000	48.000	256.500	326.000	371.500	0.000	0.000	0.000	46.400	145.300	0.000
534.600	337.300	354.100	0.000	0.000	41.500	245.900	318.100	364.300	0.000	0.000	0.000	31.000	140.800	0.000
530,300	333 500	335,900	0.000	0.000	28 500	237.000	301.800	346.800	0.000	0.000	0.000	15 700	129 700	0.000
528.000	333,300	324.000	0.000	0.000	22.000	216.300	292.100	337,400	0.000	0.000	0.000	15,400	122.000	0.000
525.700	327.200	311.500	0.000	0.000	22.000	205.100	282.000	327.700	0.000	0.000	0.000	15.200	113.800	0.000
523.400	321.200	298.600	0.000	0.000	0.000	194.000	271.900	318.500	0.000	0.000	0.000	12.500	105.500	0.000
521.200	319.800	285.000	0.000	0.000	0.000	182.800	261.700	309.400	0.000	0.000	0.000	10.800	97.000	0.000
519.000	313.400	279.600	0.000	0.000	0.000	176.800	258.900	309.400	0.000	0.000	0.000	9.500	90.900	0.000
516.900	304.400	250.300	0.000	0.000	0.000	155.800	233.700	288.100	0.000	0.000	0.000	8.200	77.300	0.000
514.800	303.100	247.300	0.000	0.000	0.000	134.800	227.800	285.700	0.000	0.000	0.000	7.600	72.600	0.000
502,500	300.200	218.600	0.000	0.000	0.000	71.900	206.200	278.300	0.000	0.000	0.000	6.200	61.800	0.000
500.500	297.800	202.800	0.000	0.000	0.000	54.100	194.400	272.100	0.000	0.000	0.000	6.100	56.500	0.000
498.500	291.900	195.100	0.000	0.000	0.000	40.000	182.200	265.200	0.000	0.000	0.000	5.400	51.400	0.000
496.600	289.600	187.100	0.000	0.000	0.000	27.700	169.700	257.700	0.000	0.000	0.000	5.000	46.600	0.000
494.600	288.200	179.100	0.000	0.000	0.000	17.800	157.300	249.700	0.000	0.000	0.000	5.000	42.000	0.000
492.600	283.000	170.900	0.000	0.000	0.000	17.000	144.700	241.300	0.000	0.000	0.000	5.000	37.900	0.000
490.600	277.400	154,600	0.000	0.000	0.000	0.000	110 700	232.500	0.000	0.000	0.000	5.000	34.000	0.000
486.500	269 300	146.800	0.000	0.000	0.000	0.000	107 500	223.700	0.000	0.000	0.000	5.000	27 300	0.000
484.400	267.800	139.000	0.000	0.000	0.000	0.000	95.800	205.700	0.000	0.000	0.000	5.000	24.300	0.000
482.500	266.700	131.300	0.000	0.000	0.000	0.000	85.200	196.600	0.000	0.000	0.000	5.000	21.600	0.000
480.600	265.700	127.100	0.000	0.000	0.000	0.000	63.800	185.600	0.000	0.000	0.000	5.000	18.600	0.000
478.900	264.800	126.300	0.000	0.000	0.000	0.000	41.600	176.400	0.000	0.000	0.000	5.000	15.600	0.000
477.200	263.900	123.600	0.000	0.000	0.000	0.000	29.800	166.200	0.000	0.000	0.000	5.000	14.900	0.000
475.500	258.600	119.300	0.000	0.000	0.000	0.000	23.300	153.500	0.000	0.000	0.000	5.000	14.800	0.000
475.700	256.800	113.500	0.000	0.000	0.000	0.000	16.300	124 900	0.000	0.000	0.000	5.000	5 000	0.000
469,700	255.800	113.000	0.000	0.000	0.000	0.000	15.800	120.500	0.000	0.000	0.000	5.000	5.000	0.000
467.600	254.600	112.100	0.000	0.000	0.000	0.000	12.000	118.100	0.000	0.000	0.000	5.000	5.000	0.000
407.000	244.500	76.900	0.000	0.000	0.000	0.000	6.300	62.100	0.000	0.000	0.000	5.000	5.000	0.000
405.800	243.300	76.600	0.000	0.000	0.000	0.000	6.100	60.900	0.000	0.000	0.000	5.000	5.000	0.000
403.300	242.100	76.400	0.000	0.000	0.000	0.000	5.600	55.300	0.000	0.000	0.000	5.000	5.000	0.000
395.200	237.300	74.800	0.000	0.000	0.000	0.000	5.000	42.200	0.000	0.000	0.000	5.000	5.000	0.000
345 800	236.200	72.100	0.000	0.000	0.000	0.000	5,000	15,900	0.000	0.000	0.000	5.000	5.000	0.000
216.900	234,300	70.600	0.000	0.000	0.000	0.000	5.000	5.000	0.000	0.000	0.000	5.000	5.000	0.000
215.100	233.900	68.800	0.000	0.000	0.000	0.000	5.000	5.000	0.000	0.000	0.000	5.000	5.000	0.000
210.800	233.100	68.300	0.000	0.000	0.000	0.000	5.000	5.000	0.000	0.000	0.000	5.000	5.000	0.000
209.000	231.900	66.900	0.000	0.000	0.000	0.000	5.000	5.000	0.000	0.000	0.000	5.000	5.000	0.000
152.700	198.700	41.100	0.000	0.000	0.000	0.000	5.000	5.000	0.000	0.000	0.000	5.000	5.000	0.000
151.400	197.000	40.700	0.000	0.000	0.000	0.000	5.000	5.000	0.000	0.000	0.000	5.000	5.000	0.000
146.400	195.000	35,600	0.000	0.000	0.000	0.000	5.000	5.000	0.000	0.000	0.000	0.000	5.000	0.000
132,500	168,200	31.300	0.000	0.000	0.000	0.000	5.000	5.000	0.000	0.000	0.000	0.000	5.000	0.000
122.100	149.200	27.800	0.000	0.000	0.000	0.000	5.000	5.000	0.000	0.000	0.000	0.000	5.000	0.000
109.500	128.700	24.300	0.000	0.000	0.000	0.000	5.000	5.000	0.000	0.000	0.000	0.000	5.000	0.000
97.700	108.100	21.100	0.000	0.000	0.000	0.000	5.000	5.000	0.000	0.000	0.000	0.000	5.000	0.000
94.600	93.200	19.900	0.000	0.000	0.000	0.000	5.000	5.000	0.000	0.000	0.000	0.000	5.000	0.000
94.400	92.900	19.800	0.000	0.000	0.000	0.000	5.000	5.000	0.000	0.000	0.000	0.000	5.000	0.000
92.500 97.700	90 200	19300	0.000	0.000	0.000	0.000	5,000	5,000	0.000	0.000	0.000	0.000	5,000	0.000
87.000	88.900	19.200	0.000	0.000	0.000	0.000	5.000	5.000	0.000	0.000	0.000	0.000	5.000	0.000
75.700	79.700	19.100	0.000	0.000	0.000	0.000	5.000	5.000	0.000	0.000	0.000	0.000	5.000	0.000
65.900	71.800	19.100	0.000	0.000	0.000	0.000	5.000	5.000	0.000	0.000	0.000	0.000	5.000	0.000
54.000	61.400	19.000	0.000	0.000	0.000	0.000	5.000	5.000	0.000	0.000	0.000	0.000	5.000	0.000
44.400	53.100	18.900	0.000	0.000	0.000	0.000	5.000	5.000	0.000	0.000	0.000	0.000	5.000	0.000
39.500	52.400	15.000	0.000	0.000	0.000	0.000	5.000	5.000	0.000	0.000	0.000	0.000	5.000	0.000
38.700	50,900	15,000	0.000	0.000	0.000	0.000	5.000	5.000	0.000	0.000	0.000	0.000	5.000	0.000
0.000	29.400	15.000	0.000	0.000	0.000	0.000	5.000	5.000	0.000	0.000	0.000	0.000	5.000	0.000
0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000

Figure A3. Page 3 from bathymetry development Excel file.

Appendix B: W2 Control File with Detailed Modifications for the APPLM and the APPLPM

This appendix serves to present the control file (w2_con.npt) used for the calibration of the model (see Figure B1-Figure B10) along with a table of changes for every model run simulated (see Tables B1-B3). All other model simulations will be compared to the Calibration w2_selective.npt file from CY01. Discussions of all modifications are made in the main report text.

W2 Moo	lel Versi	on 3.7							
TITLE C	Version (Model Ru	3.7 Apple n from	egate Dan January 1	m Model 1-Dec 31,	TLE				
	CY01-Run(Tammy Th	08 - CY01 the: - * 1 - ** 1 readgil1	1-Run07 refore d Thermocl Decrease to penet - USACE	improved ecreasing ine regio light e: rate. -ERDC-E1.	surface g model p on was to stinction	temp, bu performan po cool. n coeffi	ut worsen nce cients to	ned the o allow n	thermocline more light
	· · · · · · · · · · · · · · · · · · ·								
GRID	NWB 1	NBR 3	IMX 41	КМХ 77	NPROC 1	CLOSEC OFF			
IN/OUTFI	J NTR 0	NST 6	NIW O	NWD O	NGT 0	NS P O	NPI 0	NPU O	
CONSTITU	J NGC 0	NSS 0	NAL 0	NEP O	NBOD 0	NMC 0	NZP 0		
MISCELL	NDAY 1000	SELECTC OFF	HABTATC OFF	ENVIRPC OFF	AERATEC OFF	INITUWL OFF			
TIME CON	J TMSTRT 1	TMEND 365	YEAR 2001						
DLT CON	NDT 1	DLTMIN 0.10000	DLTINTR OFF						
DLT DATE	DLTD 1.00000	DLTD	DLTD	DLTD	DLTD	DLTD	DLTD	DLTD	DLTD
DLT MAX	DLTMAX 3600.00	DLTMAX	DLTMAX	DLTMAX	DLTMAX	DLTMAX	DLTMAX	DLTMAX	DLTMAX
DLT FRN	DLTF 0.90	DLTF	DLTF	DLTF	DLTF	DLTF	DLTF	DLTF	DLTF
DLT LIMI WB 1	VISC ON	CELC ON							
BRANCH G BR1 BR2	5 US	DS 29	UHS 0	DHS	UQB 0	DQB 0	NLMIN 1	SLOPE 0.00000	SLOPEC 0.00000
BR3	32 38	35 40	0	19 27	0	0	1	0.00000	0.00000
LOCATION WB 1	1 LAT 42.0565	LONG 123.115	EBOT 539.667	BS 1	BE 3	JBDN 1			
INIT CNI WB 1) T2I 4.90	ICEI 0.00000	WTYPEC FRESH	GRIDC RECT					
CALCULAT WB 1	VBC OFF	EBC OFF	MBC OFF	PQC ON	EVC ON	PRC OFF			
DEAD SEA WB 1	A WINDC ON	QINC ON	QOUTC ON	HEATC ON					
INTERPOI BR1 BR2 BR3	J QINIC ON ON ON	DTRIC ON ON ON	HDIC ON ON ON						
HEAT EXO WB 1	CH SLHTC TERM	SROC OFF	RHE VAP OFF	METIC ON	FETCHC OFF	AFW 9.20000	BFW 0.46000	CFW 2.00000	WINDH 10.0000
ICE COVE WB 1	ICEC OFF	SLICEC DETAIL	ALBEDO 0.25000	HWICE 10.0000	BICE 0.60000	GICE 0.07000	ICEMIN 0.05000	ICET2 3.00000	
TRANSPOF WB 1	SLTRC ULTIMATE	THETA 0.55							
HYD COEF WB 1	AX AX	DX 1.00000	CBHE 0.30000	TSED 11.984	FI 0.01000	TSEDF 1.00000	FRICC MANN	Z0 0.00100	
EDDY VIS WB 1	SC AZC W2	AZSLC IMP	AZMAX 1.000	FBC	E	ARODI	STRCKLR	BOUNDFR	TKECAL
N STRUC BR1 BR2 BR3	NSTR 6 0 0								
STR INT BR 1 BR 2 BR 3	STRIC ON	STRIC ON	STRIC ON	STRIC ON	STRIC ON	STRIC ON	STRIC	STRIC	STRIC
STR TOP	KTSTR	KTSTR	KTSTR	KTSTR	KTSTR	KTSTR	KTSTR	KTSTR	KTSTR

Figure B1. Page 1 from CY01 w2_con.npt file.

BR1 BR2 BR3	2	2	2	2	2	2				
STR BOT BR 1 BR 2 BR 3	KBSTR 76	KBSTR 76	KBSTR 76	KBSTR 76	KBSTR 76	KBSTR 76	KBSTR	KBSTR	KBSTR	
STR SINK BR1 BR2 BR3	SINKC POINT	SINKC POINT	SINKC POINT	SINKC POINT	SINKC POINT	SINKC POINT	SINKC	SINKC	SINKC	
STR ELEV BR1 BR2 BR3	ESTR 598.02	ESTR 594.36	ESTR 588.26	ESTR 577.60	ESTR 560.22	ESTR 541.32	ESTR	ESTR	ESTR	
STR WIDT BR1 BR2 BR3	WSTR	WSTR	WSTR	WSTR	WSTR	WSTR	WSTR	WSTR	WSTR	
PIPES	IUPI	IDPI	EUPI	EDPI	WPI	DLXPI	FPI	FMINPI	WTHLC	
PIPE UP	PUPIC	ETUPI	EBUPI	KTUPI	KBUPI					
PIPE DOWN	PDPIC	ETDPI	EBDPI	KTDPI	KBDPI					
SPILLWAY	IUSP	IDSP	ESP	Alsp	BlSP	A2SP	B2SP	WTHLC		
SPILL UP	PUSPC	ETUSP	EBUSP	KTUSP	KBUSP					
SPILL DOWN	1 PDSPC	ETUSP	EBUSP	KTDSP	KBDSP					
SPILL GAS	GASSPC	EQSP	AGASSP	BGASSP	CGASSP					
GATES	IUGT	IDGT	EGT	AlGT	BlGT	G1GT	A2GT	B2GT	G2GT	WTHLC
GATE WEIR	GTA1	GTB1	GTA2	GTB2	DYNVAR	GTIC				
GATE UP	PUGTC	ETUGT	EBUGT	KTUGT	KBUGT					
GATE DOWN	PDGTC	ETDGT	EBDGT	KTDGT	KBDGT					
GATE GAS	GASGTC	EQGT	AGASGT	BGASGT	CGASGT					
PUMPS 1	IUPU	IDPU	EPU	STRTPU	ENDPU	EONPU	EOFFPU	QPU	WTHLC	DYNPUMP
PUMPS 2	PPUC	ETPU	EBPU	KTPU	KB PU					
WEIR SEG	IWR	IWR	IWR	IWR	IWR	IWR	IWR	IWR	IWR	
WEIR TOP	KTWR	KTWR	KTWR	KTWR	KTWR	KTWR	KTWR	KTWR	KTWR	
WEIR BOT	KBWR	KBWR	KBWR	KBWR	KBWR	KBWR	KBWR	KBWR	KBWR	
WD INT	WDIC	WDIC	WDIC	WDIC	WDIC	WDIC	WDIC	WDIC	WDIC	
WD SEG	IWD	IWD	IWD	IWD	IWD	IWD	IWD	IWD	IWD	
WD ELEV	EWD	EWD	EWD	EWD	EWD	EWD	EWD	EWD	EWD	
WD TOP	KTWD	KTWD	KTWD	KTWD	KTWD	KTWD	KTWD	KTWD	KTWD	
WD BOT	KBWD	KBWD	KBWD	KBWD	KBWD	KBWD	KBWD	KBWD	KBWD	
TRIB PLA	PTRC	PTRC	PTRC	PTRC	PTRC	PTRC	PTRC	PTRC	PTRC	

Figure B2. Page 2 from CY01 w2_con.npt file.

Figure B3. Page 3 from CY01 w2_con.npt file.

TRIB INT	TRIC	TRIC	TRIC	TRIC	TRIC	TRIC	TRIC	TRIC	TRIC
FRIB SEG	ITR 5	ITR	ITR	ITR	ITR	ITR	ITR	ITR	ITR
FRIB TOP	ELTRT	ELTRT	ELTRT	ELTRT	ELTRT	ELTRT	ELTRT	ELTRT	ELTRT
TRIB BOT	ELTRB	ELTRB	ELTRB	ELTRB	ELTRB	ELTRB	ELTRB	ELTRB	ELTRB
DST TRIB 3R 1 3R 2 3R 3	DTRC ON OFF OFF	DTRC	DTRC	DTRC	DTRC	DTRC	DTRC	DTRC	DTRC
HYD PRIN VVIOL J F SHEAR ST SHEAR ST SD ADMX DM HDG ADMZ HPG GRAV	HPRWBC OFF ON OFF OFF OFF OFF OFF OFF OFF OFF	HPRWBC	HPRWBC	HPRWBC	HPRWBC	HPRWBC	HPRWBC	HPRWBC	HPRWBC
SNP PRINT WB 1	SNPC ON	NSNP 1	NISNP 5						
SNP DATE VB 1	SNPD 1.00000	SNPD	SNPD	SNPD	SNPD	SNPD	SNPD	SNPD	SNPD
SNP FREQ WB 1	SNPF 1.00000	SNPF	SNPF	SNPF	SNPF	SNPF	SNPF	SNPF	SNPF
SNP SEG WB 1	ISNP 2	ISNP 15	ISNP 22	ISNP 28	ISNP 29	ISNP	ISNP	ISNP	ISNP
SCR PRINT WB 1	SCRC ON	NSCR 1							
SCR DATE NB 1	SCRD 1.00000	SCRD	SCRD	SCRD	SCRD	SCRD	SCRD	SCRD	SCRD
SCR FREQ NB 1	SCRF 0.10000	SCRF	SCRF	SCRF	SCRF	SCRF	SCRF	SCRF	SCRF
PRF PLOT VB 1	PRFC OFF	NPRF	NIPRF						
PRF DATE	PRFD	PRFD	PRFD	PRFD	PRFD	PRFD	PRFD	PRFD	PRFD
PRF FREQ	PRFF	PRFF	PRFF	PRFF	PRFF	PRFF	PRFF	PRFF	PRFF
PRF SEG	IPRF	IPRF	IPRF	IPRF	IPRF	IPRF	IPRF	IPRF	IPRF
SPR PLOT WB 1	SPRC ON	NSPR 1	NISPR 28						
SPR DATE NB 1	SPRD 0.500	SPRD 365	SPRD	SPRD	SPRD	SPRD	SPRD	SPRD	SPRD
SPR FREQ WB 1	SPRF 1.000	SPRF	SPRF	SPRF	SPRF	SPRF	SPRF	SPRF	SPRF
SPR SEG	ISPR	ISPR	ISPR	ISPR	ISPR	ISPR	ISPR	ISPR	ISPR
WB 1	2	3	4	5	6	7	8	9	10
	11 20 29	12 21	13 22	14 23	15 24	16 25	17 26	18 27	19 28
VPL PLOT WB 1	VPLC ON	NVPL 1							
VPL DATE WB 1	VPLD 0.5	VPLD	VPLD	VPLD	VPLD	VPLD	VPLD	VPLD	VPLD
VPL FREQ WB 1	VPLF 1.0	VPLF	VPLF	VPLF	VPLF	VPLF	VPLF	VPLF	VPLF

CPL PLOT WB 1	CPLC OFF	NCPL 2	TECPLOT						
CPL DATE	CPLD	CPLD	CPLD	CPLD	CPLD	CPLD	CPLD	CPLD	CPLD
CPL FREQ	CPLF	CPLF	CPLF	CPLF	CPLF	CPLF	CPLF	CPLF	CPLF
FLUXES WB 1	FLXC	NFLX 0							
FLX DATE	FLXD	FLXD	FLXD	FLXD	FLXD	FLXD	FLXD	FLXD	FLXD
FLX FREQ WB 1	FLXF	FLXF	FLXF	FLXF	FLXF	FLXF	FLXF	FLXF	FLXF
TSR PLOT	TSRC ON	NTSR 1	NITSR 5						
TSR DATE	TSRD 0.5	TSRD	TSRD	TSRD	TSRD	TSRD	TSRD	TSRD	TSRD
TSR FREQ	TSRF 1.0	TSRF	TSRF	TSRF	TSRF	TSRF	TSRF	TSRF	TSRF
TSR SEG	ITSR 2	ITSR 15	ITSR 22	ITSR 28	ITSR 29	ITSR	ITSR	ITSR	ITSR
TSR LAYE	ETSR 0.00	ETSR 00.0	ETSR 0.0	ETSR 0.00	ETSR 0.0	ETSR	ETSR	ETSR	ETSR
WITH OUT	WDOC ON	NWDO 1	NIWDO 1						
WITH DAT	WDOD 0.5	WDOD	WDOD	WDOD	WDOD	WDOD	WDOD	WDOD	WDOD
WITH FRE	WDOF 1.00	WDOF	WDOF	WDOF	WDOF	WDOF	WDOF	WDOF	WDO F
WITH SEG WB 1	IWDO 29	IWDO	IWDO	IWDO	IWDO	IWDO	IWDO	IWDO	IWDO
RESTART	RSOC OFF	NRSO 0	RSIC OFF						
rso date	RSOD	RSOD	RSOD	RSOD	RSOD	RSOD	RSOD	RSOD	RSOD
RSO FREQ	RSOF	RSOF	RSOF	RSOF	RSOF	RSOF	RSOF	RSOF	RSOF
CST COMP	CCC OFF	LIMC OFF	CUF 10						
CST ACTIVE TDS PC4 NH4 VG3 DS1 PS1 PS1 FE LDOM RDOM LDOM RDOM DO TIC ALK LDOM-P RDOM-P LPOM-P LPOM-P LDOM-N RDOM-N RDOM-N LPOM-N	CAC OFF OFF OFF OFF OFF OFF OFF OFF OFF OF								
CST DERI DOC POC TOC DON PON TON TKN TN DOP POP	CDWBC OFF OFF OFF OFF OFF OFF OFF OFF	CDWBC OFF OFF OFF OFF OFF OFF OFF	CDWBC	CDWBC	CDWBC	CDWBC	CDWBC	CDWBC	CDWBC

Figure B4. Page 4 from CY01 w2_con.npt file.

TOP TP APR CHLA ATOT %DO TSS TISS CBOD PH CO2 HCO3 CO3	OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF	OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF							
CST FLUX TISSIN TISSOUT POAAR POAAR POAAR POAAR POAAR POASIN POASO PSIDK FESED PSIDK FESED POASO POASO POASO POASO POASO PSIDK FESED POASO POASO POASO POASO POASO POASO POASO PSIDK FESED POASO POASO POASO POASO POASO POASO POASO PSIDK FESED POASO	CFWBC OFF OFF OFF OFF OFF OFF OFF OFF OFF OF	CFWBC OFF OFF OFF OFF OFF OFF OFF OFF OFF OF	CFWEC	CEWBC	CEWBC	CFWBC	CFWBC	CFWBC	CIWBC
TDS PO4	0.00000 0.00200	0.0000 0.0020					2		

Figure B5. Page 5 from CY01 w2_con.npt file.

1 3 5 6 7 7 7 7 7 7 7 7 7 7 7 7 7	0.00500 0.04000 0.00000 0.00000 0.10000 0.10000 0.10000 0.10000 0.10000 0.00050 0.00500 0.00500000000	0.0050 0.0400 0.0000 0.0000 0.1000 0.1000 0.1000 12.0000 19.8000 19.8000 19.8000 EFF OFF OFF OFF OFF OFF OFF OFF	CPRWBC	CPRWBC	CPRWBC	CPRWBC	CPRWBC	CPRWBC	CPRWBC
POM O IC LK DOM-P POM-P POM-P DOM-N DOM-N POM-N POM-N	OFF OFF OFF OFF OFF OFF OFF OFF OFF	OFF OFF OFF OFF							
IN CON DS O4 H4 S3 S1 S1 E DOM POM POM POM DOM-P POM-P POM-P POM-P DOM-N DOM-N DOM-N POM-N POM-N POM-N POM-N	CINBRC OFF OFF OFF OFF OFF OFF OFF OFF OFF OF	CINBRC OFF OFF OFF OFF OFF OFF OFF OFF OFF OF	CINBRC OFF OFF OFF OFF OFF OFF OFF OFF OFF OF	CINBRC OFF OFF OFF OFF OFF OFF OFF OFF OFF OF	CINBRC OFF OFF OFF OFF OFF OFF OFF OFF OFF OF	CINBRC OFF OFF OFF OFF OFF OFF OFF OFF OFF OF	CINBRC OFF OFF OFF OFF OFF OFF OFF OFF OFF OF	CINBRC OFF OFF OFF OFF OFF OFF OFF OFF OFF OF	CINBRC
TR CON DS O4 H4 C3 SI SI SI DOM POM POM POM DOM-P DOM-P DOM-P POM-P DOM-P DOM-N DOM-N POM-N SPOM-N	CTRTRC OFF OFF OFF OFF OFF OFF OFF OFF OFF OF	CTRTRC OFF OFF OFF OFF OFF OFF OFF OFF OFF OF	CTRTRC OFF OFF OFF OFF OFF OFF OFF OFF OFF OF	CTRTRC OFF OFF OFF OFF OFF OFF OFF OFF OFF OF	CTRTRC OFF OFF OFF OFF OFF OFF OFF OFF OFF OF	CTRTRC OFF OFF OFF OFF OFF OFF OFF OFF OFF OF	CTRTRC OFF OFF OFF OFF OFF OFF OFF OFF OFF OF	CTRTRC OFF OFF OFF OFF OFF OFF OFF OFF OFF OF	CTRTRC OFF OFF OFF OFF OFF OFF OFF OFF OFF

Figure B6. Page 6 from CY01 w2_con.npt file.

CDT CON TDS PO4 NH4 NO3 DSI PSI FE LDOM RDOM LPOM DO TIC ALK LDOM-P RDOM-P RDOM-P RDOM-P RDOM-P RDOM-P RDOM-P RDOM-P RDOM-P RDOM-P RDOM-N RDOM-N RDOM-N	CDTBRC OFF OFF OFF OFF OFF OFF OFF OFF OFF OF	CDTERC							
CPR CON TDS PO4 NH4 DSI PSI FE LDOM RPOM LPOM PO TIC RPOM LDOM-P LDOM-P LDOM-P LDOM-P RPOM-P LDOM-N RDOM-N RDOM-N RDOM-N RPOM-N	CPRBRC OFF OFF OFF OFF OFF OFF OFF OFF OFF OF	CPRBRC OFF OFF OFF OFF OFF OFF OFF OFF OFF OF	CPRBRC OFF OFF OFF OFF OFF OFF OFF OFF OFF OF	CPRBRC OFF OFF OFF OFF OFF OFF OFF OFF OFF OF	CPRBRC OFF OFF OFF OFF OFF OFF OFF OFF OFF OF	CPRBRC OFF OFF OFF OFF OFF OFF OFF OFF OFF OF	CPRBRC OFF OFF OFF OFF OFF OFF OFF OFF OFF	CPRBRC OFF OFF OFF OFF OFF OFF OFF OFF OFF	CPRERC
EX COEF WB 1	EXH20 0.450	EXSS 0.1000	EXOM 0.10000	ВЕТА 0.45	EXC OFF	EXIC OFF			
ALG EX	EXA	EXA	EXA	EXA	EXA	EXA			
zoo ex	EXZ	EXZ	EXZ	EXZ	EXZ	EXZ			
MACRO EX	EXM	EXM	EXM	EXM	EXM	EXM			
GENERIC	CGQ10	CGODK	CG1DK	CGS					
S SOLIDS	SSS	SEDRC	TAUCR						
ALGAL RATE	AG	AR	AE	AM	AS	AHS P	AHSN	AHSSI	ASAT
ALGAL TEMP	AT1	AT2	AT3	AT4	AK1	AK2	AK3	AK4	
ALG STOI	ALGP	ALGN	ALGC	ALGSI	ACHLA	ALPOM	ANEQN	ANPR	
EPIPHYTE EPI1	EPIC OFF	EPIC	EPIC						
EPI PRIN EPI1	EPRC OFF	EPRC	EPRC						
EPI INIT	EPICI	EPICI							
EPI RATE	EG	ER	EE	EM	EB	EHSP	EHSN	EHSSI	
EPI HALF	ESAT	EHS	ENEQN	ENPR					
EPI TEMP	ET1	ET2	ET3	ET4	EK1	EK2	EK3	EK4	

Figure B7. Page 7 from CY01 w2_con.npt file.

EPI STOI ΕP EN ЕC ESI ECHLA EPOM ZOOP RATE ΖG ZR ZM ZEFF PREFP ZOOMIN ZS2P ZOOP ALGP PREFA PREFA PREFA PREFA PREFA PREFA PREFA PREFA PREFA ZOOP ZOOP PREFZ PREFZ PREFZ PREFZ PREFZ PREFZ PREFZ PREFZ PREFZ ZOOP TEMP ZT1 ZT2 ZT3 ZT4 ZK1 ZK2 2K3 ZK4 ZOOP STOI ZP ZN ZC MAGROPHYT MACWBC MACWBC MACWBC MACWBC MACWBC MACWBC MACWBC MACWBC Macl OFF MAC PRINT MPRWBC MPRWBC MPRWBC MPRWBC MPRWBC MPRWBC MPRWBC MPRWBC Macl OFF MAC INI MACWBCI MACWBCI MACWBCI MACWBCI MACWBCI MACWBCI MACWBCI MACWBCI MAC RATE MG MR MM MSAT MHSP MHSN MHSC MPOM LRPMAC MAC SED PSED NSED MAC DIST MBMP MMAX MAC DRAG CDDRAG DWV DWSA ANORM MAC TEMP MT1 MT2 MT3 MT4 MK1 MK2 МКЗ MK4 MAC STOICH MP MN MCDOM LDOMDK RDOMDK LRDDK POM LPOMDK RPOMDK LRPDK POMS OM STOIC ORGP ORGN ORGC ORGSI OM RATE OMT1 OMT 2 OMK1 OMK2 CBOD KBOD TROD RBOD CBOD STOIC BODP BODN BODC PHOSPHOR PO4R PARTP AMMONIUM NH4R NH4DK NH4 RATE NH4T1 NH4T2 NH4K1 NH4K2 NITRATE NO3DK NO3S NO3 RATE NO3T1 NO3T2 NO3K1 NO3K2 SILICA DSIR PSIDK PARTSI PSIS IRON FER FES

SED CO2

STOICH 1 O2NH4

CO2R

020M

Figure B8. Page 8 from CY01 w2_con.npt file.

STOICH 2	02AR	02AG							
STOICH 3	02ER	02EG							
STOICH 4	02ZR								
STOICH 5	02MR	02MG							
O2 LIMIT	O2LIM								
SEDIMENT WB 1	SEDC OFF	SEDPRC OFF	SEDCI 0.00000	SEDK 0.10000	SEDS 0.1	FSOD 1.00000	FSED 1.00000	SEDB 0.0	DYNSEDK OFF
SOD RATE WB 1	SODT1 4.00000	SODT2 30.0000	SODK1 0.10000	SODK2 0.99000					
s demand	SOD 0.10000 0.10000 0.10000 0.10000 0.10000								
REAERATI(WB 1	ON TYPE LAKE	EQN# 6	COEF1 0.00000	COEF2 0.00000	COEF3 0.00000	COEF4 0.00000			
RSI FILE	rsi.npt				RSIFN.				
QWD FILE	qwd.npt				QWDFN.				
QGT FILE	qgt.npt -	- not use	ed.		QGTFN.				
WSC FILE	APP-WSC.1	NPT			WSCFN.				
SHD FILE	APP-SHD-2	2.NPT			SHDFN.				
BTH FILE WB 1 A	APP-BTH-1	FINAL-200	01.NPT		BTHFN.				
MET FILE WB 1 i	APP-MET-2	2001.NPT			METFN.				
EXT FILE WB 1 (ext_wbl.r	npt - not	used		EXTFN.				
VPR FILE WB 1 y	vpr_wbl.1	npt - not	used		VPRFN.				
LPR FILE WB 1 :	lpr_wbl.r	apt - not	used		LPRFN.				
QIN FILE BR1 i BR2 i BR3 i	APP-QIN-2 APP-BR2-(APP-BR3-(2001.NPT QIN.NPT QIN.NPT			QINFN.				
TIN FILE BR1 i BR2 i BR3 i	APP-TIN-2 APP-BR2-7 APP-BR3-7	2001-CORF FIN.NPT FIN.NPT	R.NPT		TINFN.				
CIN FILE BR1 (BR2 (BR3 (Cin brl.r Cin br2.r Cin_br3.r	npt - not npt - not npt - not	t used used used		CINFN.				
QOT FILE BR1 i BR2 (BR3 (APP-QOUT- qout-br2. qout-br3.	-2001.NP1 .npt - no .npt - no	r ot used ot used		QOTFN.				
QTR FILE TR1 o	qtr_trl.n	npt - not	used		QTRFN.				
TTR FILE TR1	ttr_tr1.	npt - not	used		TTRFN.				
CTR FILE TR1	ctr_trl.r	npt - not	used		CTRFN.				
QDT FILE BR1 i	APP-QDT-2	2001-ADJU	JST NPT	·····	QDTFN.				

Figure B9. Page 9 from CY01 w2_con.npt file.

TDT FILE
CDT FILECDTFN. BR1 cdt_bfl.npt - not used BR2 cdt_bf2.npt - not used BR3 cdt_br3.npt - not used PRE FILE
PRE FILE. PREFN. BR1 pre br1.npt - not used BR3 pre_br3.npt - not used BR3 pre_br3.npt - not used TPR FILE. TPRFN. BR1 tpr br1.npt - not used BR2 tpr br2.npt - not used BR3 tpr_br3.npt - not used BR4 tpr_br1.npt - not used BR5 tpr_br3.npt - not used BR4 cpr_br1.npt - not used BR5 cpr_br2.npt - not used BR3 cpr_br2.npt - not used BR4 cpr_br2.npt - not used BR5 euh_br1.npt - not used BR4 euh_br2.npt - not used BR5 euh_br3.npt - not used BR6 tuh br2.npt - not used BR7 tuh br1.npt - not used BR4 tuh br1.npt - not used BR5 cuh br2.npt - not used BR6 cuh br1.npt - not used BR7 cuh br1.npt - not used BR8 cuh br1.npt - not used BR7 cuh br1.npt - not used BR8 cuh br1.npt - not used BR8 edh br1.npt - not used
TPR FILE.
CPR FILECPRFN BR1 cpr br1.npt - not used BR2 cpr br2.npt - not used BR3 cpr_br3.npt - not used EUH FILEEUHFN BR1 euh_br1.npt - not used BR3 euh_br3.npt - not used BR4 tuh br1.npt - not used BR5 tuh_br3.npt - not used BR5 tuh_br3.npt - not used BR6 tuh_br3.npt - not used BR7 tuh_br3.npt - not used BR8 tuh_br3.npt - not used BR9 tuh_br3.npt - not used BR1 cuh br1.npt - not used BR2 cuh_br3.npt - not used BR3 cuh_br3.npt - not used BR4 cuh_br3.npt - not used BR5 cuh_br3.npt - not used BR5 cuh_br3.npt - not used BR6 cuh_br3.npt - not used BR7 tuh_br1.npt - not used BR8 edh_br3.npt - not used BR8 tuh_br3.npt - not used BR9 tuh_br3.
EUH FILEEUHFN BR1 euh br1.npt - not used BR2 euh_br3.npt - not used BR3 euh_br3.npt - not used TUH FILE
TUH FILE. BR1 tuh br1.npt - not used BR2 tuh br2.npt - not used BR3 tuh_br3.npt - not used CUH FILE. BR1 cuh br1.npt - not used BR2 cuh br2.npt - not used BR3 cuh_br3.npt - not used EDH FILE. BR1 edh br1.npt - not used BR2 edh br2.npt - not used BR3 edh_br3.npt - not used BR3 edh_br3.npt - not used BR3 tuh_br1.npt - not used BR4 tuh_br1.npt - not used BR5 tuh_br1.npt - not used
CUH FILECUHFN BR1 cuh br1.npt - not used BR2 cuh br2.npt - not used BR3 cuh_br3.npt - not used EDH FILE
EDH FILEEDHFN BR1 edh br1.npt - not used BR2 edh br2.npt - not used BR3 edh_br3.npt - not used TDH FILE
TDH FILE
BR3 tdh_br3.npt - not used
CDH FILECDHFN BR1 cdh_br1.npt - not used BR2 cdh_br2.npt - not used BR3 cdh_br3.npt - not used
SNP FILESNPFN WB 1 APP-CY01-Run08-snp.opt
PRF FILEPRFFN WB 1 APP-CY01-Run08-prf.opt
VPL FILEVPLFN
CPL FILECPLFN
SPR FILESPRFN
FLX FILEFLXFN
TSR FILE
WDO FILEWDOFN

Figure B10. Page 10 from CY01 w2_con.npt file.

Table B1. Changes to Calibration w2_con.npt File for Other Runs.

RUN	YEAR	TEMPI	TSED
Calibration-2001	2001	4.90	11.984
Verification-2003	2003	6.20	12.513
Verification-2010	2010	4.70	11.743

Run Name	CY01_Ru	un08	CY03-Run02		CY10-Run02		
File Type	Calibration - 2001	Date Stamp	Verification - 2003	Date Stamp	Verification - 2010	Date Stamp	
W2_CON.NPT	-	10/26/15 2:10 PM		01/09/15 10:57 AM		10/26/15 3:57 pm	
GRAPH.NPT	-	10/22/12 5:01 PM		10/22/12 5:01 PM		10/22/12 5:01 PM	
WSC File	APP-WSC.NPT	12/23/14 2:30 PM	APP-WSC.NPT	12/23/14 2:30 PM	APP-WSC.NPT	12/23/14 2:30 PM	
SHD File	APP-SHD-2.NPT	01/05/15 10:49 AM	APP-SHD-2.NPT	01/05/15 10:49 AM	APP-SHD-2.NPT	01/05/15 10:49 AM	
BTH File	APP-BATH-FINAL- 2001.NPT	12/04/15 2:21 PM	APP-BATH- FINAL- 2003.NPT	01/14/15 12:41 PM	APP-BATH- FINAL- 2010.NPT	01/08/15 1:06 PM	
MET File	APP-MET-	01/27/14	APP-MET-	02/03/14	APP-MET-	01/14/15	
	2001.NPT	10:53 AM	2003.NPT	2:06 PM	2010.NPT	2:54 PM	
	APP-QIN- 2001.NPT	12/04/14 1:44 PM	APP-QIN- fromGates- 2003.NPT	03/04/14 2:29 PM	APP-QIN- fromGates- 2010.NPT	01/14/15 2:49 PM	
QIN File	APP-BR2-	12/17/12	APP-BR2-	12/17/12	APP-BR2-	12/17/12	
	QIN.NPT	4:18 PM	QIN.NPT	4:18 PM	QIN.NPT	4:18 PM	
	APP-BR3-	12/17/12	APP-BR3-	12/17/12	APP-BR3-	12/17/12	
	QIN.NPT	4:18 PM	QIN.NPT	4:18 PM	QIN.NPT	4:18 PM	
	APP-TIN-2001-	07/03/14	APP-TIN-2003-	07/03/14	APP-TIN-2010-	07/03/14	
	CORR.NPT	10:53 AM	CORR.NPT	10:52 AM	CORR.NPT	10:54 AM	
TIN File	APP-BR2-	02/24/14	APP-BR2-	02/24/14	APP-BR2-	02/24/14	
	TIN.NPT	3:35 PM	TIN.NPT	3:35 PM	TIN.NPT	3:35 PM	
	APP-BR3-	02/24/14	APP-BR3-	02/24/14	APP-BR3-	02/24/14	
	TIN.NPT	3:35 PM	TIN.NPT	3:35 PM	TIN.NPT	3:35 PM	
QOT File	APP-QOUT-	02/25/14	APP-QOUT-	02/25/14	APP-QOUT-	05/25/14	
	2001.NPT	1:33 PM	2003.NPT	1:33 PM	2010.NPT	1:33 PM	
QDT File	APP-QDT-2001-	12/23/14	APP-QDT-2003-	01/14/15	APP-QDT-2010-	01/20/15	
	ADJUST.NPT	2:11 PM	ADJUST.NPT	2:10 PM	ADJUST.NPT	10:29 PM	
TDT File	APP-TDT-	07/03/14	APP-TDT-	07/03/14	APP-TDT-	07/03/14	
	2001.NPT	10:53 AM	2003.NPT	10:52 AM	2010.NPT	10:54 AM	

	Table E	2. Inventory	of files	needed to	o run t	he LCLM.
--	---------	--------------	----------	-----------	---------	----------

Run Name	CY01-USGS-P	ortRun10	CY03-USGS-P	ortRun13	CY10-USGS-PortRun07		
File Type	Calibration - 2001	Date Stamp	Verification – 2003	Date Stamp	Verification - 2010	Date Stamp	
W2_CON.NPT		10/26/15 2:10 PM		01/09/15 10:57 AM		10/26/15 3:57 pm	
QOT File	APP-QOUT- 2001- PortRun01.NPT	05/05/15 9:41 AM	APP-QOUT- 2003- PortRun01.NPT		APP-QOUT- 2010- PortRun01.NPT		
W2_SELECTIVE.NPT		08/03/15 2:10 PM		08/03/15 2:10 PM		08/03/15 2:10 PM	
DYNSPLIT_SELECTIVE1.NPT		05/05/15 1:37 PM		05/05/15 1:37 PM		05/05/15 1:37 PM	
DYNSPLIT_SELECTIVE2.NPT		05/05/15 1:37 PM		05/05/15 1:37 PM		05/05/15 1:37 PM	
DYNSPLIT_SELECTIVE3.NPT		05/05/15 1:37 PM		05/05/15 1:38 PM		05/05/15 1:37 PM	

Table B3. Inventory of files need	ed to run the APPLPM	(Predictive Model).
-----------------------------------	----------------------	---------------------

**Note: The same w2_selective.npt AND dynsplit* files are used for all 3 cases. Unless noted above, the files used in Table B2 apply to the Predictive Model.

Appendix C: APPLM and APPLPM Files

This appendix serves to provide a description of each file needed to run the model. The files are grouped by year. The ERDC typically has the following file organization system (see Table C1).

CY01		Main folder for year identification for the particular model. Most models will be designed to run with multiple years.
	Results	Upon running the model, the results are moved out of the executables folder and into their own folder; typically, these folders are named something like CYXX_RunXX. NOTE: Always copy the control file used for the run into the results folder so that you can duplicate the run in the future if necessary.
	Executables	This is where all of the necessary files needed to run the model are located: W2 executables, Inflows, Outflows, Temperature/Concentration files, Met files, Bathymetry, etc.

Table C2. Files needed to run APPL Model for each year.

File Description	CY01	CY03	CY10
Graph File	graph.npt	graph.npt	graph.npt
Control File	w2_con.npt	w2_con.npt	w2_con.npt
Bathymetry File	APP-BATH-FINAL- 2001.NPT	APP-BATH-FINAL- 2003.NPT	APP-BATH-FINAL- 2010.NPT
Meteorology File	APP-MET-2001.NPT	APP-MET-2003.NPT	APP-MET-2010.NPT
Wind Sheltering Coefficient File	APP-WSC.NPT	APP-WSC.NPT	APP-WSC.NPT
Shade File	APP-SHD-2.NPT	APP-SHD-2.NPT	APP-SHD-2.NPT
Upstream Inflow File	APP-QIN-2001.NPT	APP-QIN-fromGates- 2003.NPT	APP-QIN-fromGates- 2010.NPT
Upstream Temperature File	APP-TIN-2001- CORR.NPT	APP-TIN-2003-CORR.NPT	APP-TIN-2010-CORR.NPT
Branch 2 Inflow File (zero)	APP-BR2-QIN.NPT	APP-BR2-QIN.NPT	APP-BR2-QIN.NPT
Branch 2 Temperature File (placeholder)	APP-BR2-TIN.NPT	APP-BR2-TIN.NPT	APP-BR2-TIN.NPT
Dam Outflow File	APP-QOUT-2001.NPT	APP-QOUT-2003.NPT	APP-QOUT-2010.NPT
Distributed Tributary Inflow File	APP-QDT-2001- ADJUST.NPT	APP-QDT-2003- ADJUST.NPT	APP-QDT-2010- ADJUST.NPT
Distributed Tributary Temperature File (duplicated upstream temps)	APP-TDT-2001.NPT	APP-TDT-2003.NPT	APP-TDT-2010.NPT

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

The public reporting sources, gathering aspect of this collec Operations and Re provision of law, no PLEASE DO NOT F	g burden for this coll- and maintaining the ction of information, ir ports (0704-0188), 1 person shall be subje RETURN YOUR FOR	ection of information data needed, and on neluding suggestion 215 Jefferson Dav ect to any penalty for IM TO THE ABOVE	n is estimated to average 1 completing and reviewing th s for reducing the burden, t is Highway, Suite 1204, A r failing to comply with a co ADDRESS.	I hour per response, ind ne collection of informa to Department of Defens rlington, VA 22202-430 llection of information if	cluding the tion. Send o se, Washing 2. Respond it does not o	time for reviewing instructions, searching existing data comments regarding this burden estimate or any other gton Headquarters Services, Directorate for Information dents should be aware that notwithstanding any other display a currently valid OMB control number.
1. REPORT DA May 2017	TE	2. REPORT Final	ТҮРЕ			3. DATES COVERED (From - To)
4. TITLE AND S	UBTITLE				5a. (CONTRACT NUMBER
Temperature N A Report on th	Modeling of Lost te Development,	Creek Lake Us Calibration, Vo	sing CE-QUAL-W2: erification, and Appli	cation of the Mode	el 5b. (GRANT NUMBER
					5c. I	PROGRAM ELEMENT NUMBER
6. AUTHOR(S)					5d. I	PROJECT NUMBER
Tammy L. Threadgill, Daniel F. Turner, Laurie A. Nicholas, Barry W. Bunch, Dorothy H. Tillman, and David L. Smith			1133 5e. 1	113347 5e. TASK NUMBER		
					5f. V	VORK UNIT NUMBER
7. PERFORMIN U.S. Army Eng Environmental 3909 Halls Ferr Vicksburg, MS	G ORGANIZATIO gineer Research a Laboratory ry Road 39180	N NAME(S) AND and Developme	ADDRESS(ES) ent Center		8. PI Ri ER	ERFORMING ORGANIZATION EPORT NUMBER 2DC/EL TR-17-6
9. SPONSORIN U.S. Army Cor Portland Distric	G/MONITORING A ps of Engineers ct (CENWP)	AGENCY NAME(S) AND ADDRESS(ES)		10. S	PONSOR/MONITOR'S ACRONYM(S)
333 SW First Avenue Portland, Oregon 97208			11. S N NOT	11. SPONSOR/MONITOR'S REPORT NUMBER(S) NOT APPLICABLE TO EVERY REPORT.		
12. DISTRIBUT Approved for J	ION/AVAILABILIT public release; di	Y STATEMENT stribution is un	limited.			
13. SUPPLEME	NTARY NOTES					
14. ABSTRACT						
The U.S. Arm USACE, Port The model wa of W2 parame This model ar defendable wa Applegate Te Rogue Basin endangered fi work for CEN	ny Corps of Engi land District (CI as calibrated usin eters was success and the correspon- ater temperature mperature Total Project operation sh. This is the set WP.	neers Engineer ENWP) in upda ag data from ca sfully applied to ding results fro targets can be Maximum Dai as to determine econd of three U	Research and Develo ting a CE-QUAL-W2 lendar year (CY) 200 o all calendar year typ m the study provided discussed with the Sta ly Loads and Rogue S whether improvemer JSACE projects on th	opment Center (US 2 (W2) model of A 1 and validated wi bes (2001 is a dry y NWP with more r ate of Oregon. This Spring Chinook Co this can be achieved the Rogue River; this	SACE-EF pplegate ith data fi year; 200 efined es s is extremonservation l to down is work is	RDC) Environmental Lab (EL) assisted Lake based on a previous version of W2. rom calendar years 2003 and 2010. One set 3 is a normal year; and 2010 is a wet year). timates of water temperatures so that more mely important because the Rogue and on Plan require the Corps to review the istream temperature for the benefit of s identical to the Lost Creek Lake Model
15. SUBJECT T	ERMS					
CE-QUAL-W2	, eutrophication	processes, App	legate Lake, longitud	inal-vertical hydro	odynamic	s model, water quality model, W2
a. REPORT	ABSTRACT	THIS PAGE	ABSTRACT	PAGES		
Unlimited	Unlimited Unlimited Unlimited Unlimited 93 19b. TELEPHONE NUMBER (Include area code)					