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Abstract 21 

A major advantage of DNA vaccination is the ability to induce both humoral and cellular 22 

immune responses. DNA vaccines are currently used in veterinary medicine, but have not 23 

achieved widespread acceptance for use in humans due to their low immunogenicity in early 24 

clinical studies. However, recent clinical data have re-established the value of DNA vaccines, 25 

particularly in priming high-level antigen-specific antibody responses. Several approaches have 26 

been investigated for improving DNA vaccine efficacy, including advancements in DNA vaccine 27 

vector design, the inclusion of genetically engineered cytokine adjuvants, and novel non-28 

mechanical delivery methods. These strategies have shown promise, resulting in augmented 29 

adaptive immune responses in not only mice, but also in large animal models. Here, we review 30 

advancements in each of these areas that show promise for increasing the immunogenicity of 31 

DNA vaccines.   32 
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Introduction 33 

The constant emergence, and re-emergence, of known and novel pathogens challenges 34 

researchers to develop new vaccination technologies that allow for the rapid development of safe 35 

and effective vaccines. Nucleic acid (DNA and RNA) vaccines have characteristics that meet 36 

these challenges, including ease of production, scalability, consistency between lots, storage, and 37 

safety. DNA vaccine technology usually is based on bacterial plasmids that encode the 38 

polypeptide sequence of candidate antigens. The encoded antigen is expressed under a strong 39 

eukaryotic promoter, yielding high levels of transgene expression.[1] Inclusion of transcriptional 40 

enhancers, such as Intron A, enhance the rate of polyadenylation and nuclear transport of 41 

messenger RNA (mRNA).[2] The vaccine plasmids are generally produced in bacterial culture, 42 

purified, and then used to inoculate the host.  43 

Modern DNA vaccine design generally relies on synthesis of the nucleic acid and possibly one-44 

step cloning into the plasmid vector, reducing both the cost and the time to manufacture. Plasmid 45 

DNA is also extremely stable at room temperature, reducing the need for a cold chain during 46 

transportation. Vaccination with DNA plasmid removes the necessity for protein purification 47 

from infectious pathogens, improving safety. Furthermore, DNA vaccination has an excellent 48 

safety profile in the clinic, with the most common side effect being mild inflammation at the 49 

injection site.[3] Importantly, DNA vaccines provide a safe, non-live vaccine approach to 50 

inducing balanced immune responses, as the in vivo production of antigen allows for presentation 51 

on both class I and class II major histocompatibility complex (MHC) molecules (Figure 1). This 52 

elicits antigen specific antibodies [4], as well as cytotoxic T lymphocyte responses (CTL) [5], 53 

something that remains elusive in most non-live vaccines. DNA vaccines have also demonstrated 54 
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the ability to generate follicular T helper populations [6], which are critical for the induction of 55 

high quality antigen-specific B cell responses.[7]  56 

DNA vaccination has proven successful in several animal models for preventing or treating 57 

infectious diseases, allergies, cancer, and autoimmunity.[8-12] The early success of small animal 58 

studies led to several human clinical trials. However, the protective immunity observed in small 59 

animals and non-human primates was not observed in human studies when DNA vaccines were 60 

administered alone by needle delivery. Like the more conventional protein-based vaccines, DNA 61 

can be delivered by a variety of routes, including intramuscular (IM), intradermal (ID), mucosal, 62 

or transdermal delivery. Because DNA plasmids must enter host cell nuclei in order to be 63 

transcribed into mRNA, the early failure of DNA vaccines to elicit strong responses in humans 64 

was largely due to their delivery by needle injection, which deposits the DNA in intracellular 65 

spaces, rather than within cells. Improved delivery technologies, such as intramuscular or 66 

intradermal electroporation, have been used to facilitate transport of DNA into cells, resulting in 67 

much better immunogenicity in both clinical and non-clinical studies.[13-19] In one study, 68 

electroporation-enhanced DNA vaccination resulted in increased polyfunctional antigen-specific 69 

CD8+ T cells in patients receiving a HPV DNA vaccine expressing the E6 and E7 genes of 70 

HPV16 and HPV18 respectively.[20] The majority of DNA vaccinated patients displayed 71 

complete regression of their cervical lesions, as well as viral clearance, following DNA delivery. 72 

Other mechanical delivery approaches use physical force such as particle bombardment (gene 73 

gun) to deliver the DNA plasmids into targeted tissues or cells, with some clinical successes.[21-74 

23]  Delivery of a Hepatitis B DNA vaccine by particle bombardment resulted in sustained 75 

antibody titers in subjects who had previously failed to respond to a licensed subunit vaccine.[23] 76 

Needle-free pneumatic or jet injectors have also shown promise in both animal and human 77 
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clinical trials [24-27], and function by injecting a high-pressure, narrow stream of injection liquid 78 

into the epidermis or muscles of test subjects. In addition to these improved mechanical delivery 79 

methods, several other approaches are being explored to increase the immunogenicity of DNA 80 

vaccines in humans. Here we review three of these approaches which show promise for 81 

advancing DNA vaccines: non-mechanical delivery, inclusion of molecular adjuvants, and 82 

improvements in DNA vaccine vectors. 83 

Non-Mechanical DNA Vaccine Delivery 84 

As already mentioned, the greatest impediment to DNA vaccination is low immunogenicity due 85 

to difficulties in delivering DNA plasmid into the host cell. The transportation of DNA vaccine 86 

plasmids into cellular nuclei requires the crossing of several barriers. Vaccine plasmid must cross 87 

the phospholipid cellular membrane through endocytosis or pinocytosis, escape degradation in 88 

endosomes and lysosomes, survive cytosolic nucleases, and translocate across the nuclear 89 

envelope. In contrast to physical delivery systems, chemical delivery approaches use 90 

biopharmaceuticals to increase DNA vaccine transfection efficiency. 91 

The use of liposomes as a carrier molecule has become a popular DNA vaccine delivery method 92 

as liposomes not only enhance transfection efficiency, but also have an adjuvant effect. 93 

Liposomes are spherical vesicles composed of phospholipids and cholesterol arranged into a 94 

lipid bilayer, allowing for fusion with cellular lipid membranes.[28] DNA plasmid can be either 95 

bound to the liposome surface, or encased within the hydrophobic core of the liposome. This 96 

facilitates delivery of the DNA vaccine plasmid into the cells. Importantly, lipid vesicles can be 97 

formulated as either unilamellar or multilamellar. Multilamellar vesicles allow for sustained 98 

delivery of vaccine over an extended period of time. While the use of liposomes for IM injection 99 

has resulted in some reactogenicity issues [29, 30], liposome/DNA vaccine complexes have 100 
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demonstrated an immunological benefit. IM injection of a liposome/influenza nucleoprotein 101 

formulation increased antibody titers 20-fold compared to vaccine alone.[31, 32] Boosting of 102 

antibody titers did not diminish the cytotoxic T cell response. Likewise, inclusion of a liposome 103 

formulation in a P. falciparum vaccine enhanced the IFN-γ production.[33, 34] An ensuing human 104 

trial involving DNA plasmids encoding the influenza H5 HA, nucleoprotein, and M2 genes 105 

reported cellular immune response rates and antibody titers comparable to that of the currently 106 

available inactivated protein-based H5 vaccines.[35] Additionally, liposomes have shown promise 107 

as a candidate for delivery of DNA vaccines to mucosal tissue.[36] A recent study demonstrated 108 

that vaccination with liposome encapsulated influenza A virus M1 induced both humoral and 109 

cellular immune responses that protected against respiratory infection.[36] Liposomes have also 110 

been shown to be an effective delivery method for intranasal DNA vaccination, conferring 111 

protective immune responses against infection.[37, 38] 112 

DNA vaccine delivery can also be accomplished through the use of biodegradable polymeric 113 

micro- and nanoparticles consisting of amphiphilic molecules between 0.5-10 micrometers in 114 

size. Similar to loading of DNA plasmid on liposomes, plasmid molecules can be either 115 

encapsulated or adsorbed onto the surface of the nanoparticles.[39-42] These particles function as a 116 

carrier system, protecting the vaccine plasmid from degradation by extracellular 117 

deoxyribonucleases. In addition to shielding plasmid DNA from nucleases, micro- and 118 

nanoparticles promote the sustained release of vaccine instead of the bolus type of delivery 119 

characteristic of larger submicrometer complexes.[39, 43] High molecular weight cationic polymers 120 

have proven significantly more effective than cationic liposomes in aggregating DNA vaccine 121 

plasmid. Plasmid DNA immobilized within biodegradable chitosan-coated polymeric 122 

microspheres (ranging from 20 to 500 μm) can induce both mucosal and systemic immune 123 
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responses.[44] Microspheres may be delivered either by the oral or intraperitoneal route, allowing 124 

for direct transfection of dendritic cells (DC), thereby increasing DC activation. The benefits of 125 

microsphere formulations have been shown in mice, non-human primates, and humans [45-49] 126 

against a wide range of diseases including hepatitis B [50], tuberculosis [51], and cancer.[52] These 127 

results suggest that microparticle-based delivery systems are capable of significantly improving 128 

DNA vaccine immunogenicity, and boosting cellular and humoral immune responses.  129 

The use of liposomes or nanoparticles appears to be safe and well tolerated in clinical studies. 130 

Microparticle-based delivery systems can increase gene expression, as well as, DNA vaccine 131 

immunogenicity. Although many of the earliest carrier formulations did not show a significant 132 

clinical benefit, more recent studies highlighted herein yielded promising clinical data. As 133 

microparticles can be prepared with significant structural diversity (size, surface charge, lipid 134 

content), they offer considerable flexibility of vaccine formulation. This allows for optimization 135 

of the vaccine based on the specific needs of the clinician. 136 

Molecular Adjuvants 137 

Another approach that has been effective in increasing DNA vaccine immunogenicity is the use 138 

of “vaccine cocktails” containing the DNA vaccine as well as plasmids encoding adjuvanting 139 

immunomodulatory proteins. Plasmid DNA contains unmethylated deoxycytidylate-phosphate-140 

deoxyguanylate (CpG) motifs that function as a “built in” adjuvant.[53-59] Molecular adjuvant 141 

plasmids expressing cytokines, chemokines, or co-stimulatory molecules may be co-142 

administered with the antigenic DNA vaccine plasmid. Cells transfected by molecular adjuvant 143 

plasmids secrete the adjuvant into the surrounding region, stimulating both local antigen 144 

presenting cells (APC) and cells in the draining lymph node. This results in durable, but low 145 

level, production of immune modulating cytokines that can tailor the immune response towards a 146 
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more desirable outcome without the concerns of a systemic cytokine storm. While human data is 147 

limited, a wide range of inflammatory and helper T cell cytokines have been studied, in 148 

conjunction with DNA vaccination, in small animal models.[60, 61] In particular, we have 149 

highlighted a few of the most prominent molecular adjuvants with demonstrated ability to 150 

increase DNA vaccine immunogenicity.[62] A more comprehensive list of molecular adjuvants is 151 

included in Table 1. 152 

Plasmid-encoded cytokines 153 

Cytokines are a class of immunoregulatory proteins that affect the behavior of other cells, and 154 

are critical for immune cell signaling. Cytokine-encoding genes can be delivered either as a 155 

separate plasmid, or as additional genes encoded within the antigen containing plasmid. The 156 

most extensively studied molecular adjuvant is Interleukin-2 (IL-2). IL-2 plays an essential role 157 

in the immune response by promoting the differentiation of naïve T cells into effector T cells, as 158 

well as driving the generation of memory T cell pools. It is also required for the proliferation of 159 

Natural Killer (NK) cells. Inclusion of IL-2 has resulted in improved immunogenicity for HIV 160 

[63-65], influenza [66], and SARS-CoV [67] anti-viral DNA vaccines. Interestingly, a therapeutic 161 

vaccine encoding for the BCR/ABL-pIRES genes of myeloid leukemia and IL-2 also 162 

demonstrated enhanced immune responses, suggesting that IL-2 molecular adjuvants have the 163 

capability of alleviating the symptoms of chronic infection.[68] 164 

Similar to IL-2, IL-15 is a cytokine that induces NK and T cell proliferation. IL-15 is necessary 165 

for the generation of primary antigen-specific CD4+ and CD8+ T cell responses. It also plays a 166 

substantial role in establishment of memory CD8+ T cell populations.[69-73] Results of small 167 

animal studies suggest that the adjuvant effect of IL-15 is most potent when delivered in tandem 168 

with other cytokines. For example, a synergistic effect was seen when IL-15 and IL-21 were co-169 

TR-17-139 
Distribution Statement A: Approved for public release; distribution is unlimited.



delivered with a DNA vaccine against Toxoplasma gondii infection.[74, 75] Additionally, 170 

sequential administration of IL-6, IL-7, and IL-15 genes augmented long-term CD4+ T cell 171 

memory responses to a foot and mouth disease DNA vaccine.[76] Therefore, depending on the 172 

antigen, it may be necessary to deliver IL-15 in combination with other molecular adjuvants. 173 

Notably, a study in rhesus macaques suggests that delivery of an IL-15 encoding DNA vaccine 174 

itself resulted in increased proliferation of NK and T cells, with no adverse effects.[77] Another 175 

recent study demonstrated that co-vaccination of rhesus macaques with SIV pol plasmid and 176 

HIV env plasmid plus IL-15 allowed for faster control of viremia than the group not formulated 177 

with IL-15.[78] Moreover, macaques vaccinated with IL-15 exhibited increased T cell 178 

proliferation compared to those receiving the antigen plasmid alone, suggesting that IL-15 has a 179 

robust effect on T cell memory responses. 180 

IL-12 is another pro-inflammatory cytokine secreted by both dendritic cells and monocytes. IL-181 

12 plays an integral role in shaping the innate and adaptive immune responses to infection.[79-83] 182 

IL-12 signaling supports the secondary expansion of activated T helper 1 (Th1) cells [79, 82, 84-86], 183 

resulting in high levels of antigen-specific CD8+ T cells, and the expression of cytotoxic 184 

mediators such as  interferon-γ (IFN-γ), granzyme B, and perforin.[82, 83] IL-12 was the first 185 

cytokine to be evaluated for use as a molecular adjuvant, and several studies have shown that 186 

inclusion of IL-12 expression plasmids within the vaccine formulation enhances Th1 immune 187 

responses.[87-95] Vaccination of mice with a bicistronic plasmid expressing IL-12 and Yersinia 188 

pestis resulted in increased mucosal IgA and serum IgG, providing significantly higher levels of 189 

protection against challenge than antigen-only groups.[96] Studies in rhesus macaques have 190 

shown similar increases in DNA vaccine immunogenicity. Co-vaccination with SIV gag and IL-191 

12 allowed for dose sparing [97], as well as increased breadth of T cell responses.[89, 91, 98, 99] 192 
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Additionally, multiple human clinical studies utilizing vaccines adjuvanted with IL-12 have 193 

proven safe [100] and highly immunogenic, yielding high level CD4+ and CD8+ T cell 194 

responses.[87, 101, 102] Furthermore, inclusion of IL-12 expression plasmids can improve weakly 195 

immunogenic vaccines. A recent clinical study demonstrated that addition of IL-12 improved the 196 

immunogenicity of a Hepatitis B DNA vaccine, resulting in increased vaccine immunogenicity, 197 

as well as sustained memory T cell responses.[103] 198 

The final immunomodulatory cytokine that has received considerable focus as a molecular 199 

adjuvant is granulocyte-macrophage colony stimulating factor (GM-CSF). GM-CSF recruits 200 

antigen presenting cells to the vaccination site and promotes DC maturation.[104] It has been 201 

successfully used in multiple DNA vaccines.[105-107] Plasmid-encoded GM-CSF, when co-202 

delivered with a rabies virus DNA vaccine in mice, resulted in increased CD4+ T cell responses, 203 

antibody production, and protection from lethal viral challenge.[108] Likewise, a bicistronic DNA 204 

vaccine encoding HIV-1 gp120 and GM-CSF recruited inflammatory cellular infiltrates and 205 

elicited a potent CD4+ T cell response.[109] However, the benefit of GM-CSF molecular adjuvants 206 

remains unclear. Recent studies have shown that co-administration of GM-CSF plasmid with an 207 

antigen-encoding DNA vaccine can have deleterious effects. Co-delivery of GM-CSF suppressed 208 

the response to a DNA vaccine encoding Dengue virus type 1 and type 2, and also failed to 209 

improve the response elicited by a Hepatitis C vaccine.[110] Furthermore, inclusion of plasmid 210 

GM-CSF provided minimal adjuvant effect when co-administered with a malaria DNA vaccine 211 

in rhesus macaques.[111] Likewise, GM-CSF had no clear effect on T cell responses in patients 212 

receiving a melanoma DNA vaccine.[112] One possible explanation for these results is that high 213 

levels of GM-CSF can expand myeloid suppressor cell populations, and suppress the generation 214 

of adaptive immune responses. Alternatively, the lack of improved immunogenicity seen in 215 
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clinical trials may be due to the relative lack of GM-CSF receptors on rhesus and human APC 216 

compared to murine cells.[113] While no specific adverse effects have been reported, the use of 217 

GM-CSF as an adjuvant may require some fine-tuning, particularly if GM-CSF expression levels 218 

must be considered with regards to immunosuppression. 219 

In addition to cytokine-encoding plasmids, several other methods for increasing DNA vaccine 220 

immunogenicity exist. The increased understanding of immune signaling pathways has led to the 221 

development of adjuvant plasmids encoding adhesion molecules, chemokines, costimulatory 222 

molecules, and Toll-like receptor (TLR) ligands. These molecular adjuvants have had some 223 

success in small animal models. For example, the innate immune signaling molecule TRIF 224 

increased the antibody response generated by a swine fever virus DNA vaccine.[114] Moreover, 225 

TRIF increased the protective activity of an influenza HA-encoding DNA vaccine.[115] Similar 226 

results were seen in studies encoding the dsRNA receptors MDA5 and RIG-I.[116, 117] 227 

Additionally, antigen-fusion constructs, whereby the antigen of interest is linked to a “carrier 228 

protein”, can increase the immune visibility of the vaccine, and enhance DNA vaccine 229 

potency.[118-120]  230 

A major advantage of DNA vaccination is the ability of multiple molecules such as molecular 231 

adjuvants to be inserted into the plasmid. Unlike the addition of recombinant cytokines, co-232 

stimulatory molecules, and TLR ligands, which have a limited duration due to the short half-life 233 

of recombinant protein in vivo, molecular adjuvant-encoding plasmids will express protein for 234 

the same duration as the antigen, stimulating the immune system for a greater length of time. 235 

This can be done without fear of eliciting a cytokine storm, as generation of the adjuvanting 236 

signal will be localized to the site of vaccination. Of note, homologous recombination between 237 

plasmid-encoded cytokines and the host gene sequence does not appear to be a significant 238 
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concern, as multiple studies have shown that only extrachromosomal plasmid DNA has been 239 

identified following intramuscular injection.[121, 122] Furthermore, many current plasmids have 240 

been-codon optimized to improve gene expression in mammalian cells. This has resulted in 241 

changes to the cytokine gene sequence, limiting the possibility for homologous recombination 242 

and/or integration. Molecular adjuvants therefore show great promise for both increasing 243 

immunogenicity and extending the longevity of the immune response. 244 

Improvements in DNA plasmid design 245 

Plasmid DNA vectors contain functional elements, such as the origin of replication and selection 246 

markers, that are only required during the prokaryotic growth process in E. coli. These “bacterial 247 

region” elements (Figure 2) are no longer needed once cell culture is halted, and may have a 248 

negative effect on vaccine stability, uptake, and efficacy. Additionally, these elements can pose 249 

safety concerns, particularly if widely used antibiotic resistance markers are horizontally 250 

transmitted to host enteric bacteria populations.[123, 124] 251 

These concerns have been addressed by development of small bacterial RNA-based antibiotic 252 

free selection markers.[124, 125] Noncoding RNA markers are preferable to protein markers since 253 

proteins, like antibiotic resistance markers, can be expressed in the host organism after vector 254 

transfection, or horizontally transmitted to host bacteria. Noncoding RNA markers are also very 255 

small (<200 basepairs) which decreases the overall vector size; this is advantageous since vector 256 

transfection efficiency is inversely related to vector size [126-128], perhaps because smaller vectors 257 

are more resistant to delivery associated shear forces [129] and may have improved nuclear 258 

localization since they are more motile in the cytoplasm.[130] Additionally, some bacterial region 259 

protein marker genes have been shown to dramatically reduce vector expression. For example, 260 

the TN5 derived NPT-II kanamycin resistance marker (kanR) gene in the pVAX1 vector 261 
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bacterial region significantly reduces transgene expression. Three groups have demonstrated that 262 

pVAX1 bacterial region mediated repression of transgene expression can be alleviated by 263 

replacement of the kanR gene with either a tRNA RNA selection marker, the RNA-OUT 264 

antisense RNA selection marker, or the endogenous pUC origin RNAI antisense RNA selection 265 

marker.[131-133] Consistent with this, removal of the pVAX1 bacterial region in a minicircle vector 266 

improved humoral and cellular immune responses up to 3 fold compared to a pVAX1 vector 267 

control.[134] 268 

DNA vaccine vectors with dramatically higher transgene expression have recently been 269 

developed through identification of novel bacterial region and eukaryotic region vector 270 

configurations. Pioneering work by Mark Kay’s laboratory at Stanford University demonstrated 271 

that bacterial regions larger than 1 kilobase silenced transgene expression in quiescent tissue 272 

such as the liver, likely due to untranscribed bacterial region mediated heterochromatin 273 

formation that spreads to the eukaryotic region and inactivates the promoter.[135-137]  Minicircle 274 

vectors, in which the bacterial region is removed by the action of a phage recombinase during 275 

production, alleviated this silencing.[135, 136, 138] However, production of minicircle vectors is low 276 

yield and poorly scalable due to the required in vivo or in vitro recombination during 277 

manufacture.[139] In an effort to create alternative short bacterial region vectors that could be 278 

efficiently manufactured, the Mini-Intronic Plasmid (MIP) and NanoplasmidTM vector plasmid 279 

platforms were developed. MIP vectors incorporate a RNA-OUT selection marker-pUC origin 280 

bacterial region within a 5’ UTR intron. In this configuration the bacterial region is within the 281 

transcription unit and the downstream polyA signal is linked to the eukaryotic promoter without 282 

an intervening selection marker or replication origin. NanoplasmidTM vectors are RNA-OUT 283 

selection marker vectors in which the large pUC bacterial replication origin is replaced by a 284 
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small R6K bacterial replication origin. In this configuration, the <500 basepair (bp) bacterial 285 

region separates the polyA signal and the eukaryotic promoter. Unlike minicircles, both MIP and 286 

NanoplasmidTM RNA-OUT selection vectors can be efficiently manufactured in gram/liter yields 287 

without antibiotic selection.[140]  288 

As expected, both vector platforms alleviate gene silencing in quiescent tissues similarly to 289 

minicircle vectors.[141, 142] However, unexpectedly both MIP and NanoplasmidTM vectors 290 

dramatically improve overall gene expression up to 10 fold compared to plasmid and minicircle 291 

vectors in quiescent (liver) and non-quiescent tissues.[141, 142] The improved expression level after 292 

ID and IM delivery has application to improve DNA vaccination since increased expression level 293 

is correlative with improved humoral and cellular immune response.[62] 294 

Another approach to improve DNA vaccines is to engineer the vector to increase innate immune 295 

activation. DNA vaccines are potent triggers of innate immunity. Various studies have 296 

determined several innate immune pathways are activated by DNA vaccination (Figure 2). Most 297 

of the intrinsic adjuvant effect of DNA is mediated by cytoplasmic innate immune receptors that 298 

nonspecifically recognize B DNA and activate Sting or Inflammasome mediated signaling [53, 299 

143], but unmethylated CpG sequences specific for TLR9 activation may also be important for 300 

priming CD8 T cell responses.[144, 145] Along these lines, DNA vaccine vectors may be sequence 301 

modified to introduce immunostimulatory xxCGxx TLR9 agonists into the vector to increase 302 

innate immune activation. This approach has been used to improve DNA vaccine 303 

immunogenicity [58, 59, 146], but the results are variable. Some of the variability may be due to 304 

unintended inhibition of the eukaryotic promoter expression resulting from integration of CpG 305 

motifs into non-permissive sites in the vector.[125] As well, certain DNA delivery methods may 306 

not transfer DNA to the endosome as effectively as other deliveries (e.g. liposomes), preventing 307 
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unmethylated CpG interaction with, and activation of, TLR9. Part of the complexity is that 308 

optimal TLR9 activating xxCGxx motifs are species-specific; different xxCGxx agonist motifs 309 

differentially modulate the immune response [147] and many xxCGxx motifs are 310 

immunosuppressive. 311 

An alternative strategy is to encode immunostimulatory RNA within the plasmid to increase 312 

innate immune activation. This approach has the potential advantage that additional innate 313 

immune pathways not normally stimulated by DNA alone are activated, resulting in polyvalent 314 

activation of multiple innate immune pathways to enhance immune activation.[148, 149] Like TLR9 315 

for DNA, several innate immune TLRs for RNA are endosomal.[150] Activation of these receptors 316 

requires motif introduction into an expressed RNA, as well as cytoplasmic RNA shuttling into 317 

the endosome by autophagy. For example, 3’UTR incorporation of a 20 bp immunostimulatory 318 

ssRNA encoding D type CpG upstream of a 28 bp hairpin dsRNA resulted in a 4 fold increase in 319 

antigen reactive IgG titers [151], and a 2 fold increase in IFN-γ secreting CD4+ and CD8+ T 320 

cells.[152] Moreover, several RNA-sensing innate immune receptors such as RIG-I, MDA5 and 321 

DDX3 are cytoplasmic.[143] DNA vaccine expressed RNA can be used to target these receptors 322 

directly, without autophagy. Of these, RIG-I is of particular interest since RIG-I agonists have 323 

demonstrated adjuvant properties to improve the humoral response [153], humoral and CD4+ T 324 

cell response [154, 155], and CD8+ T cell response [153] to co-administered antigens.[156] In addition, 325 

RIG-I is ubiquitiously expressed in most tissues (expression of TLRs typically is restricted to 326 

immune cell subtypes) and certain RIG-I agonists that can be expressed in DNA vaccines (e.g. a 327 

blunt dsRNA with a 5’ triphosphate) are structurally conserved between humans and mice. A 328 

DNA vaccine vector that co-expresses with antigen a RIG-I dsRNA agonist in a vector backbone 329 
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encoded RNA Polymerase III transcription unit (Figure 2) enhanced the humoral and CD8+ T 330 

cell response after DNA vaccination.[117] 331 

DNA vaccines encoding immunostimulatory sequences that selectively improve CTL responses 332 

to encoded antigen may have niche application in vaccines for intracellular pathogens or cancer. 333 

Innovations that increase transgene expression may be used to improve the performance of 334 

immunomodulatory molecular adjuvant plasmids, in addition to traditional antigen expressing 335 

DNA vaccine plasmids. Collectively, vector design innovations that improve transgene 336 

expression level and innate immune activation are complementary to improved mechanical and 337 

non-mechanical DNA vaccine delivery platforms. Combining improved vectors with liposome or 338 

polymeric particle non-mechanical delivery, or with needle free injector device delivery, has the 339 

potential to increase immunogenicity with these well tolerated, safe, delivery platforms. 340 

Conclusion 341 

While DNA vaccination provides several advantages over more conventional vaccination 342 

strategies, further optimization is necessary before it becomes the predominant strategy in human 343 

patients. Despite initial setbacks, significant progress has been made in overcoming the problem 344 

of low immunogenicity in humans. A clearer understanding of the immune mechanisms 345 

governing DNA vaccine immunogenicity has illuminated several pathways that may be useful in 346 

further improving DNA vaccine efficacy. A large catalogue of cytokines, chemokines, adhesion 347 

molecules, and transcription factors are in the process of being tested as molecular adjuvants, 348 

although it is likely that each will need to be carefully assessed for safety and tolerability. 349 

Likewise, continued development of vaccine delivery methods appears promising. New 350 

formulations exploiting sustained vaccine delivery methods, such as slow-releasing micropatches 351 

or multilamellar vesicles, are on the horizon. The strong appeal of needle-free injection and 352 
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mucosal delivery, the ease of design, and the recent clinical successes with DNA vaccines 353 

suggests that this approach is on the precipice of redefining the field of vaccinology. 354 

  355 
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adjuvants. J Med Primatol 28:214-23.  906 
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Figure 1: Induction of antigen-specific, adaptive immunity by DNA vaccination. Optimized 909 

gene sequences are inserted into a plasmid backbone and then delivered to the host via one of 910 

several delivery methods. Vaccine plasmid enters the nucleus of host myocytes and antigen 911 

presenting cells by using host cellular machinery. The plasmid components are transcribed and 912 

protein is produced. The cell provides endogenous post-translational modifications to antigens, 913 

producing native protein conformations. Vaccine-derived endogenous peptides are presented on 914 

MHC class I molecules. Engulfment of apoptotic or necrotic cells by APC also allows for cross-915 

presentation of cell-associated exogenous antigens. Secreted antigen is captured and processed 916 

by antigen presenting cells, and presented on MHC class II. Antigen experienced APC migrate to 917 

the draining lymph node to stimulate CD4+ and CD8+ T cell populations. In addition, shed 918 

antigen can be captured by antigen-specific high affinity immunoglobulins on the B cell surface 919 

for presentation to CD4+ T cells, driving B cell responses. 920 

 921 

Figure 2:  Molecular mechanisms of DNA vaccines. Transfected double stranded B DNA 922 

(dsDNA) is sensed by cytoplasmic DNA receptors such as interferon-inducible protein 16 (IFI16), 923 

DEAD (Asp-Glu-Ala-Asp) box polypeptide 41 (DDX41) and the cGAMP synthase (cGAS), 924 

each of which can activate the STING►TBK1►IRF3 pathway to induce type 1 interferon 925 

production.[143] An additional cytoplasmic innate immune pathway activated nonspecifically by 926 

transfected dsDNA is the cytoplasmic AIM2 inflammasome.[157] Other dsDNA receptors and 927 

innate immune activation pathways exist [143], including a recently identified STING/IRF7 928 

signaling pathway required for DNA vaccine immunogenicity.[158] By contrast, the endosomal 929 

innate immune receptor TLR9 recognizes specific unmethylated CpG DNA motifs in DNA 930 

vaccines. To improve innate immune activation, addition of optimized immunostimulatory CpG 931 
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motifs in the vector backbone may be used to increase TLR9 activation. Immunostimulatory 932 

RNA expressed from the vector may be utilized to activate alternative RNA sensing innate 933 

immune receptors such as RIG-I using an additional RNA Polymerase III RNA expression 934 

cassette [117] (plasmid backbone adjuvant) or incorporation of RNA recognizing TLR agonist 935 

motifs such as CpG RNA into the 3’ UTR.[152] Due to limited transgene expression after DNA 936 

vaccination in large animals, vector modifications (e.g. <500 bp bacterial region NanoplasmidTM 937 

vectors; intronic bacterial region MIP vectors) and deliveries (e.g. Electroporation) that improve 938 

transgene expression also improve adaptive immunity.[62, 125, 159] Adapted under a Creative 939 

Commons Attribution license from Williams, 2013.[160] 940 

 941 
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Table 1: Molecular adjuvants tested in vivo. 943 

Molecular 
Adjuvant 

Molecule Type Animal 
Model 

Adaptive 
Response 

Effect 

References 

CD40L  Co-Stimulatory  Mice Cellular [161] 

CD80/86  Co-Stimulatory  Mice, NHP Cellular [162] 

GM-CSF Cytokine Mice Humoral [163] 

ICAM-1 Co-Stimulatory  Mice Cellular [164] 

IFN-γ Cytokine Mice, NHP Cellular [165] 

IL-2 Cytokine Mice Cellular, 
Humoral 

[165, 166] 

IL-4 Cytokine Mice, NHP Humoral [166, 167] 

IL-7 Cytokine Mice Cellular, 
Humoral 

[168] 

IL-8 Chemokine Mice Cellular, 
Humoral 

[169, 170] 

IL-10 Cytokine Mice Cellular [166] 

IL-12 Cytokine Mice, NHP Cellular [98, 171] 

IL-15 Cytokine Mice, NHP Cytokine [98, 172] 

IL-18 Cytokine Mice, NHP Cytokine [166, 173] 

MCP-1 Chemokine Mice Humoral [169] 

M-CSF Cytokine Mice Cellular [163] 

MIP-1α Chemokine Mice Humoral [169] 

RANTES Chemokine Mice Cellular [169, 170] 
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