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We connect explicitly the classical O(2) model in 1 + 1 dimensions, a model sharing important features
with U(1) lattice gauge theory, to physical models potentially implementable on optical lattices and evolving
at physical time. Using the tensor renormalization-group formulation, we take the time continuum limit and
check that finite-dimensional projections used in recent proposals for quantum simulators provide controllable
approximations of the original model. We propose two-species Bose-Hubbard models corresponding to these
finite-dimensional projections at strong coupling and discuss their possible implementations on optical lattices
using a 87Rb and 41K Bose-Bose mixture.

DOI: 10.1103/PhysRevA.90.063603 PACS number(s): 03.75.Lm, 03.67.Ac, 11.15.Ha, 37.10.Jk

I. INTRODUCTION

Recently, there has been a lot of interest in the possibility
of building quantum simulators for lattice gauge theory (LGT)
using optical lattices [1–5]. The goal is to engineer many-body
systems with cold atoms that can be built experimentally and
that approximately evolve according to some given quantum
LGT Hamiltonian. Achieving this goal would allow us to go
beyond what can be done with classical computing, namely
overcoming the sign problem of quantum chromodynamics
(QCD) with a chemical potential, establishing its phase
diagram, and studying its real-time evolution. Introducing a
chemical potential in QCD is necessary to describe physical
situations in which a nonzero quark density is needed, such as
the early universe or heavy-ion collisions. Building a quantum
simulator for QCD requires that we first systematically
establish the viability of the approach by building up on simple
models sharing some of the basic features of lattice QCD.

In the context of condensed matter, a proof of principle that
quantum simulating is possible has been given in the case of
the Bose-Hubbard model. For this simple model, a remarkable
level of quantitative agreement [6] has been reached between
state-of-the-art quantum Monte Carlo calculations and their
experimental optical lattice implementations. It would be very
desirable to provide a similar proof of principle in the context
of LGT.

In this article, we propose an optical lattice setup and
accurate numerical methods to relate it to a simple model
that shares some important features (discrete imaginary time,
relativistic space-time symmetry, compact gauge variables,
and a complex action) with interesting LGT models, namely
the classical O(2) in 1 + 1 dimensions with a chemical
potential. This model is described in Sec. II. The goal of the
article is to discuss the optical lattice implementation of one of
the building blocks of the Hamiltonian formulation of gauge
theory, namely the “quantum rotors” that are described in
more detail below, rather than discussing more specific aspects
such as the implementation of Gauss’s law for LGT models
involving these building blocks.

The connection between the classical O(2) in 1 + 1 dimen-
sions and physical systems on optical lattices requires three
steps. First, we introduce computational methods based on
the tensor renormalization-group (TRG) method [7–10] to take
the time continuum limit (step 1, Sec. II) and to calculate
the effects of finite-dimensional truncations necessary for a
physical implementation (step 2, Sec. III). We then construct
a two species Bose-Hubbard model which at second order in
degenerate perturbation theory can be matched with the finite-
dimensional truncations, and we propose an experimental
implementation using a 87Rb and 41K Bose-Bose mixture
(step 3, Sec. IV). The O(2) model is very well understood
using classical computing [7–12], and our goal is not to learn
more about this model from quantum simulations but rather to
demonstrate that a quantitative correspondence is possible.

One should be aware of the fact that in contrast to the
quantum Monte Carlo treatment of condensed-matter models
where space and time are completely independent entities,
the state-of-the-art calculations in LGT are performed using
the Lagrangian formalism at discrete imaginary time where
space and time are completely interchangeable. In LGT, the
continuum limit is usually taken in a way that preserves
this relativistic symmetry between space and time. The
Hamiltonian representation provides the functional forms used
to fit correlation functions, and a slightly better resolution in the
time direction is sometimes used, however the time continuum
limit is not taken independently. Explicit Hilbert space repre-
sentations of the physical states and of their matrix elements
are mostly absent from today’s lattice QCD calculations. In our
construction, the first step will be to take the time continuum
limit using the Lagrangian formulation. Note that Lorentz
symmetry can emerge near criticality in the Hamiltonian
formulation [13] and that the classical O(2) model is often
used as an effective theory for the Bose-Hubbard model [14].

It is important to understand the similarity between the
infinite-dimensional Hilbert spaces of the O(2) model and
U(1) LGT in the Hamiltonian formulation. In the mid-1970s,
LGTs were developed in the Hamiltonian formalism [15–18]
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using local gauge variables that live on bonds connecting
neighboring sites. For continuous and compact symmetry
groups, these gauge links are operators that live on an
infinite Hilbert space and in the appropriate basis look like
classical group elements. In U(1) LGT [16], gauge links are
phases eiθ , which, when considered as operators, live in an
infinite-dimensional Hilbert space spanned by the eigenstates
|n〉 of the “angular momentum” operator L = −i∂/∂θ with
all positive and negative integer eigenvalues n. The same
“quantum rotors” appear in the Hamiltonian formulation of
the O(2) model [17,18].

For realistic implementations with cold atoms, it is neces-
sary to consider Hamiltonians where gauge links are quantum
operators that live in a finite rather than infinite Hilbert
space [19,20]. In the U(1) example, this would mean the
eigenvalues of L only take a finite range of values. For this to
occur naturally, one restricts the Hilbert space to be in a spin-
s representation, i.e., n = −s,−(s − 1), . . . 0, . . . (s − 1),s.
Finite-dimensional projections and quantum link variables
have played an important role in recent proposals to simulate
dynamical gauge fields [1–3,21,22].

The common features of the O(2) model considered here
and the U(1) gauge model can be understood by comparing
the TRG formulations of the two models [8]. In both cases,
the Fourier expansion of exp [β cos(θ )] is used, which leads
to the labeling of states by (positive and negative) integers.
However, the quantum numbers are associated with plaquettes
in the gauge case rather than links in the spin case. The physics
of the models is also quite different. For instance, in 2 + 1
dimensions, the O(2) spin model has a second-order phase
transition while the U(1) gauge model has none.

II. THE MODEL AND ITS TIME CONTINUUM LIMIT

The simplest model involving the quantum rotors described
above is the O(2) model in 1 + 1 dimensions. Its partition
function reads

Z =
∫ ∏

(x,t)

dθ(x,t)

2π
e−S, (1)

with action

S = −βτ

∑
(x,t)

cos(θ(x,t+1) − θ(x,t) − iμ)

−βs

∑
(x,t)

cos(θ(x+1,t) − θ(x,t)). (2)

The meaning of the chemical potential μ [23] appears clearly
in the limit where βs is zero and we have decoupled quantum
rotors with a discrete spectrum labeled by nx at each site x [see
Eq. (5)]. Using these labels, the chemical potential generates a
contribution −μnx to the energy at each site. The sites of the
rectangular Ns × Nτ lattice are labeled as (x,t) and we assume
periodic boundary conditions in space and time.

When βτ � βs , we obtain the time continuum
limit [17,18,24] with a Hamiltonian connecting quantum rotors
on a lattice with βs acting as the coupling between the spatial

sites. In the ⊗x |nx〉 basis, it reads

Ĥ = Ũ

2

∑
x

L̂2
x − μ̃

∑
x

L̂x − J̃
∑
〈xy〉

cos(θ̂x − θ̂y), (3)

with Ũ = 1/(βτa), μ̃ = μ/a, and J̃ = βs/a, the sum extend-
ing over sites x and nearest neighbors 〈xy〉 of the space lattice,
and a is a lattice spacing.

The commutation relations [L,e±iθ̂ ] = ±e±iθ̂ show that
e±iθ̂ act like creation and annihilation operators. However,
there is no eigenstate of L annihilated by e−iθ̂ . At large μ, there
is an effective truncation [25,26] that makes the eigenstates
with negative eigenvalues irrelevant. For small values of μ,
we will consider the quantum link inspired truncation where
the original operator algebra is approximated by a spin-s
representation with |n| � s.

Remembering the role played by the differential operator
L = −i∂/∂θ in the construction of the spherical harmonics,
we replace L by L3, the third component of the angular
momentum in the SU(2) Lie algebra. Pursuing the analogy,
we replace e±iθ̂ by an operator proportional to the raising
and lowering operators L± in the spin-s representation. In the
case of spin-1, a comparison of the matrix elements shows
that the correspondence between the two representations
can be accomplished by properly choosing the constant of
proportionality.

III. NUMERICAL CALCULATION OF THE
PHASE DIAGRAM

We now discuss the phase diagram, the finite spin projec-
tion, and the time continuum limit by using the TRG method.
Following the procedure described in Refs. [8–10], we can
write

Z = Tr
∏
(x,t)

T
(x,t)
nxn′

xnt n
′
t
, (4)

with the local tensor expressed in terms of the modified Bessel
functions:

T (x,t)
nxnx′ntnt ′ =

√
Int

(βτ )Int ′ (βτ ) exp[μ(nt + n′
t )]

×√
Inx

(βs)Inx′ (βs)δnx+nt ,nx′ +nt ′ . (5)

The indices nx, n′
x, nt , and n′

t label the four links coming out
of (x,t) in the x and t direction, and the trace Tr refers to the
sum over all these link indices. A transfer matrix T can be
constructed by taking the spatial traces in a time slice:

T(n1,n2,...,nNs )(n′
1,n

′
2,...,n

′
Ns

) =
∑

nx1nx2,...,nNs

T
(1,t)
nxNs nx1n1n

′
1
T

(2,t)
nx1nx2n2n

′
2,...

· · · T (Ns,t)
nx(Ns−1)nxNs nNs n

′
Ns

. (6)

The indices (n1,n2, . . . ,nNs
) represent the past and

(n′
1,n

′
2, . . . ,n

′
Ns

) the future.
In view of the rapid decay of the In(β) when |n| increases at

fixed β, good approximations can be obtained by replacing the
infinite sums by sums restricted to −nmax to nmax. We denote
the number of states Dst = 2nmax + 1. With this truncation,
the transfer matrix is a D

Ns

st × D
Ns

st matrix. It is possible to
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TABLE I. 〈N〉 for the worm algorithm and the HOTRG for βs =
βτ = β.

β μ 〈N〉 (worm) 〈N〉 (HOTRG)

1.12 0.01 0.00726(1) 0.00728(8)
0.46 1.8 0.98929(1) 0.9892(3)
0.28 2.85 1.98980(2) 1.989(2)
0.2 3.53 2.96646(3) 2.967(1)
0.12 4.3 3.96206(4) 3.965(1)

coarse grain the transfer matrix efficiently by using a higher-
order singular value decomposition (HOTRG) described in
Ref. [7]. This procedure then reduces the two-site transfer
matrix to a Dst × Dst matrix and thus accomplishes the
blocking from two sites to a single site. Note that in the spin-1
projection we keep Dst much larger than 3 as we keep blocking.
In other words, the spin projection represents a microscopic
modification of the model, while we need to keep Dst as large
as possible in order to maintain good macroscopic accuracy.
The same numerical method is used in all cases, the only
difference being the initial tensor.

An important advantage of the TRG method is that it
allows us to reach exponentially large volumes. However, it is
important to check the results at small volume where sampling
methods are feasible and accurate. We have used the TRG and
the worm algorithm [11,12] to calculate the particle number
density [12]

〈N〉 ≡ 1/(Ns × Nτ )∂ ln Z/∂μ. (7)

The partition function Z can be calculated by taking the trace
of TNτ or by using the methods described in Refs. [7–10].
The numerical values on a 16 × 16 lattice, for values of βs =
βτ and μ slightly below the tips of the regions with 〈N〉 =
0,1, . . . ,4 of the phase diagram described below, are shown in
Table I.

Small discrepancies between the two methods appear
typically in the fourth significant digit. The errors for the
worm algorithm are purely statistical, and to the best of our
knowledge, there are no systematic errors associated with it.
On the other hand, for the TRG method, the limit Dst → ∞
shows very small variations, which will be documented and
analyzed in a separate publication [27] but do not affect the
results presented here.

By increasing μ at fixed β, we go through successive
Mott insulating (MI) phases characterized by a fixed integer
value of 〈N〉 increasing with μ and alternating with superfluid
(SF) phases where 〈N〉 interpolates continuously between the
successive integers. The phase boundaries are clearly visible
from the steps in 〈N〉 as a function of μ, as shown in Fig. 1.
The phase boundaries can also be obtained by looking at the
two largest eigenvalues of the transfer matrix. In a given MI
phase, one would expect that the largest value of the transfer
matrix is unique and corresponds to an eigenstate with fixed
integer particle density. On the other hand, in the SF phase, the
two largest eigenvalues of the transfer matrix are expected to
be degenerate and the corresponding eigenstates are expected
to have particle density corresponding to the two neighboring
MI regions. Figure 1 shows that these expectations are verified

FIG. 1. (Color online) The ratio (λ2/λ1) of the first two eigenval-
ues of the transfer matrix and the particle number density 〈N〉 for the
βτ = βs = 0.06 from the HOTRG calculation with Dst = 15. The
particle number density 〈N〉3 and the second normalized eigenvalues
(λ2/λ1)3, where a lower index 3 denotes the spin-1 projection
(three-state), are also shown.

quite precisely. The system reaches the superfluid (SF) phase
when λ2/λ1 = 1, and when μ is increased further, this ratio
remains 1 while there is an increase in the particle number
density between two adjacent integers, which stand for two
different MI phases.

The alternation between the MI and SF phases in the
β-μ plane is shown in Fig. 2. The pointy shape of the MI
phase region is also observed in other (1 + 1)-dimensional
Bose-Hubbard models [28,29]. The spin-1 projection is also
shown in these figures. When μ is not too large, only small

FIG. 2. (Color online) The phase diagram in the β-μ plane for
the isotropic (βs = βτ = β) case.

063603-3
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differences with the original, unprojected model are observed.
However, when μ becomes large enough to have 〈N〉 > 1, the
truncation prevents such a large occupation and 〈N〉 saturates
to 1 as expected, and there is no 〈N〉 = 2 MI phase. The phase
boundary in Fig. 2 between the MI 〈N〉 = 0 phase from the SF
phase coincides approximately with the line for the model with
an infinite number of states. Similarly, the spin-2 projection
(not shown on the graph) reproduces well the 〈N〉 = 0 and 1
boundaries while discrepancies appear for 〈N〉 = 2.

Figure 2 shows that when β is small, the boundary between
the MI and SF phase appears to be at large values of μ. It is
useful to recall that so far we have only considered the phase
diagram in the isotropic case β = βs = βτ . When β → 0,
the interaction along the space links is small, but if μ is
sufficiently large, the interactions along the time links are not
small. In the limit where the interactions among the space
links are negligible, the problem reduces to a collection of
independent one-site problems (simple quantum mechanics)
as in mean-field theory [14]. In this limit, Eq. (5) shows that
the transfer matrix becomes diagonal because In(0) = 0 except
for n = 0 [I0(0) = 1], and by the conservation law the same
index nx characterizes the interaction along the time direction.
In other words, there is no quantum number flowing in the
space direction, and the flow in the time direction at each site
is constant. In this limit, the eigenvalues of the transfer matrix
are just

λ(n1,n2,...,nNs ) =
∏
x

Inx
(β)enxμ. (8)

The largest eigenvalue is then

λmax = {maxn[In(β)enμ]}Ns . (9)

Finding the value of n corresponding to the maximum
eigenvalue gives the particle density 〈N〉 in the MI phase.

The maximization of An = In(β)enμ can be achieved by
considering the ratios rn = An+1/An. Note that we assume
μ > 0, and given that In(β) = I−n(β), we only need to
consider n � 0. When rn−1 > 1 and rn < 1, An is a maximum.
It can be shown in the limit of small and large β that rn

decreases when n increases. If this remains true for arbitrary
β and if rn 
= 1, then the problem has a unique solution.
The interesting case is rn = 1, which implies An = An+1 and
should be at the boundary between two MI phases with particle
density n and n + 1. In the small-β limit, In(β) � βn/(2nn!)
and the condition rn = 1 implies that

βeμ/2 = n + 1 (10)

in that approximation. The sudden transition in particle density
occurs at integer values of βeμ/2. This prediction is confirmed
by plotting the phase diagram in the β-βeμ/2 plane as shown
in Fig. 3. We see that by changing the vertical coordinate to
μ → βeμ/2, the shape of the phase diagram of the isotropic
system looks like the cuspy shapes found for the Bose-Hubbard
model in one spatial dimension [28,29]. Keeping in mind that
we are working in the limit of small β, Eq. (10) implies that
the phase boundaries of the SF phase between the n and n + 1
MI phases diverge like ln[2(n + 1)/β] when β → 0, which is
consistent with Fig. 2.

We now depart from the isotropic βτ = βs situation
and consider the case βτ � βs corresponding to the time

FIG. 3. (Color online) The phase diagram in the β-βeμ/2 plane
for the isotropic case. 〈N〉 = 0 (μ = 0) line in the SF phase is the
Kosterlitz-Thouless phase in the 1 + 1D O(2) model at μ = 0. The
lines labeled by “3s” stand for the phase boundaries of the spin-1
(three-state) system.

continuum limit. If we neglect βs , we obtain the one-site
approximation described above. The particle density can be
obtained from the ratio analysis in the large-βτ limit. Using
In+1(βτ )/In(βτ ) � 1 − (n + 1/2)/βτ in this limit, we find
that the degeneracy occurs for integer values of μβτ − 1/2.
Defining the effective chemical potential μe = μβτ − 1/2 and
effective coupling βe = βsβτ , we find that the same MI-SF
pattern appears in the βe-μe plane (Fig. 4).

Having computed the phase diagram in the βτ = βs and
βτ � βs cases, we learned that they have very similar shapes
in suitable systems of coordinates. From this we expect that

FIG. 4. (Color online) The phase diagram for the 1 + 1D O(2)
model at βτ = 10 in the βe-μe plane is shown. The lines labeled by
“3s” stand for the phase boundaries of the spin-1 (three-state) system.
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they can be smoothly deformed into each other and that nothing
special happens in the intermediate situations.

IV. OPTICAL LATTICE IMPLEMENTATION

To incorporate the positive and negative eigenvalues of L,
we will consider a two-species Bose-Hubbard Hamiltonian on
a lattice:

H = −
∑
〈xy〉

(taa
†
xay + tbb

†
xby + H.c.) −

∑
x,α

(μ + 
α)nα
x

+
∑
x,α

Uα

2
nα

x

(
nα

x − 1
) + W

∑
x

na
xn

b
x +

∑
〈xy〉,α

Vαnα
xnα

y

(11)

with α = a,b indicating the two different species, na
x = a

†
xax

and nb
x = b

†
xbx the number operators, and |na

x,n
b
x〉 the corre-

sponding on-site basis. This class of models has been studied
extensively [30–33]. It is possible to adjust the chemical
potentials in order to set 〈nx〉 = 〈na

x + nb
x〉 = 2. In the limit

where Ua = Ub = W are very large and positive, the on-site
Hilbert space can then be restricted to the states satisfying
nx = 2 at each site. All the other states (with nx 
= 2) belong to
high-energy sectors that are separated from this one by energies
of order U . The three states |2,0〉, |1,1〉, and |0,2〉 correspond
to the three states of the spin-1 projection considered above.

It is useful to visualize the minima of the on-site Hamilto-
nian obtained in the limit t → 0. It can be written as a quadratic
form and a linear term in na and nb. If UaUb > W 2, there is
a unique minimum, |1,1〉, which corresponds to a miscible
phase where the two species need to be present at the same
place. Since in the spin-1 approximation, |1,1〉 corresponds
to a rotor with angular momentum zero, this is the correct
situation for the O(2) model we try to simulate. On the other
hand, if UaUb < W 2, the extremum is a saddle point. As we
will discuss later, the unstable direction coming out of the
extremum is limited by the positivity of the occupation number.
There are two vacua |2,0〉 and |0,2〉, which corresponds to
immiscible phases. The limiting case UaUb = W corresponds
to our Ua = Ub = W = U0 lowest-order approximation. If in
addition we have μ = (3/2)U0 and 
α = 0, we have a flat
direction along the line nx = 2 where we have three states
of energy −2U0, while the degenerate lines with nx = 1 or
3 have energy −(3/2)U0, which is considered much larger
in the strong-coupling approximation. Small changes in the
parameters will break the degeneracy of the ground state but
preserve a significant difference between these states and the
excited states. Decreasing W lowers the energy of the |1,1〉
state linearly in the difference with U0. Similarly, increasing
W raises the energy of the |1,1〉, the flat direction curves
down at both ends, but the positivity of the occupation number
prevents the energy from being unbounded from below. When
species-dependent chemical potentials are turned on, the flat
direction becomes slanted linearly in the variation of the
chemical potential 
α . The overall shape of the trap will
typically create small variations in a space-dependent manner.
In summary, as long as the variations of the parameters
are small compared to U0, the features departing from the
degenerate case can be treated as perturbations.

FIG. 5. (Color online) Two species (green and red) of bosons on
species-dependent optical lattices (with the same color). The nearest-
neighbor interaction is coming from the overlap of Wannier Gaussian
wave functions. We assume the difference between intraspecies
interactions are small U � δ.

Going back to the general Hamiltonian [Eq. (11)], we write
Ua(b) = U ± δ and assume U � δ,(U − W ),V ,tα,
α and do
degenerate perturbation theory. Virtual processes exchanging
particles between neighboring sites are allowed at second order
with contributions proportional to −tαtα′/U . The hopping
amplitude is tunable, and when chosen to be tα = √

VαU/2,
the final result is that the effective Hamiltonian up to second
order in degenerate perturbation theory corresponds to the
spin-1 projection of the rotor Hamiltonian of Eq. (3) with
J̃ = √

VaVb, Ũ = 2(U − W ), and μ̃ = (
a − Va) − (
b −
Vb). Similarly, by increasing the chemical potentials, it is
possible to restrict the Hilbert space to na

x + nb
x = 2s, which

corresponds to a spin-s projection in the O(2) model.
This two-species Bose-Hubbard model can be realized in

a 87Rb and 41K Bose-Bose mixture where an interspecies
Feshbach resonance is accessible [34,35]. Due to the physical
nature of the different atoms, the hopping amplitudes (ta,tb) are
different to begin with, as well as the intraspecies interactions.
In addition, species-dependent optical lattices [36–40] are
widely used in boson systems, which allows the hopping
amplitudes of each individual species to be further tuned to the
desired value. As mentioned above, the interspecies interaction
(W ) can be controlled by an external magnetic field [35].
Finally, the extended repulsion, Vα , is present and small when
we consider Wannier Gaussian wave functions centered on
nearby lattice sites according to previous study [41]. This
is schematically illustrated in Fig. 5. This may be the most
difficult parameter to achieve, but other proposals may be
explored, such as by using dipolar bosons [42], or by pumping
bosons to higher Bloch bands [43] in order to engineer the
nearest-neighbor interaction. It is also important to have U

significantly larger than the temperature. For the mixture
considered here, the temperature and recoil energies are of
the order of 100 nK, and values of U 10–20 times larger can
typically be reached [35,44,45].

V. CONCLUSIONS

In summary, we have used recently developed numerical
methods to connect the O(2) model in 1 + 1 dimensions to
an optical lattice setup. A first test of the correspondence
would be to check that the optical lattice system reproduces
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the phase diagram of Fig. 4, which corresponds to the time
continuum limit βτ � βs of the classical model and where
the microscopic parameters can be approximately connected
to those of the two-species Hubbard model.

The TRG method presented here allows reliable calcula-
tions of the eigenvalues λi of the transfer matrix. In the time
continuum limit, we have

λi/λ1 ∝ e−a(Ei−E0), (12)

with Ei the corresponding energies and a ∝ 1/βτ the lattice
spacing. Recently developed experimental techniques, e.g.,
momentum-resolved Bragg spectroscopy [46], could in prin-
ciple allow detailed comparisons.

We have shown that for low enough μ, the effect of the
truncation to spin-1 or -2 of the original O(2) model had small
effects on the phase boundaries. In the TRG formulation, this
truncation only affects the initial values of the tensor, which
can be compared with the initial tensor of other spin models
with a finite number of states in configuration space (clock
and Potts models). Understanding how the symmetries of this
initial tensor affect the universality class is under study.

The O(2) model has an exact conservation law that is made
clear by the Kronecker δ in Eq. (5). The states kept in the TRG
calculation have a well-defined quantum number associated
with this conservation law, and it can monitored and put into
histograms [27]. This provides detailed information about the

average occupation and its fluctuations. It could give better
insight into the validity of the Gutzwiller ansatz or mean-field
calculations such as the ones discussed in Ref. [14], or the
validity of the finite spin projection discussed here.

In LGT calculations, important information regarding the
spectrum and matrix elements can be extracted from the two-
and three-point functions obtained by introducing localized
sources in the Lagrangian formulations. Techniques to gather
related information from an optical lattice system have yet to
be developed. Generalizing the work done here for the O(3)
model, which has physics more similar to lattice QCD, seems
possible and interesting.
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