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Scientific Progress

3D Printed Microwave Filters

Two version of microwave filters were design, manufactured by hybrid 3D printing, and tested. These were a stepped 
impedance filter and coupled-line filter. For comparison purposes conventional PCB filters were also manufactured and tested. 
The low-pass and the bandpass filters were designed and simulated using Ansys HFSS. The low pass filter was designed to 
have a cutoff frequency of 2.5 GHz. While the bandpass filter was designed on the same platform to work at 2.4 GHz with a 
fractional bandwidth of 10%.

Filter Models

Figure 1 shows our CAD model of the microwave filter with subminiature version A (SMA) connectors attached to each end. 
This model was generated directly in Ansys HFSS.

Technology Transfer

NA
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STATEMENT OF THE PROBLEM STUDIED 

The aim of this project was to explore 3D printing for RF/microwave circuits and 

devices.  The research produced several 3D printed microwave filters, a 3D wifi radio circuit, 

and new materials for 3D printed electromagnetic devices.  The research demonstrates that 3D 

printing is capable of manufacturing circuits and high-frequency microwave systems.  Future 

work in this area should explore ways that the third dimension can be exploited to reduce size, 

weight, and power and how it can be used to incorporate physics that is not possible in three 

dimensions. 
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Layer Additive Manufacturing of a 2.45 GHz RF Front End,” in Microwave Theory and 

Techniques, IEEE Transactions on, Vol. 63, no. 12, pp. 4382-4394, Dec. 2015. 
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SUPPORTED PERSONNEL METRICS 

Support Summary 

Name    % Supported  %FTE 

Graduate Students  300%   150% 

    Edgar Bustamante  100%     50% 

    Noel Martinez  100%     50% 

    Ubaldo Robles  100%     50%  

Post Doctorates      0%       0%  

Faculty     25%     25% 

    Raymond C. Rumpf   25%     25%  

Undergraduate Students 200%   100% 

    Edgar Bustamante  100%     50% 

    Noel Martinez  100%     50%  

Other Research Staff     0%       0% 

Graduating Undergraduate Metrics 

 Category    Number 
 B.S. Degrees 

    Graduated this period    2 

     Graduated this period in STEM   2 

     Graduated and will continue through Ph.D. 2 

     Graduated with GPA 3.5 to 4.0   2 

     Funded by DoD Center of Excellence  0 

     Intend to work for DoD    2 

     Receive Scholarships or Fellowships  2 

 M.S. Degrees     0 

 Ph.D. Degrees     0 

TECHNOLOGY TRANSFER 

No technology transfer activities have yet occurred. 

SUMMARY OF THE MOST IMPORTANT RESULTS 

3D Printed Microwave Filters 

Two version of microwave filters were design, manufactured by hybrid 3D printing, and 

tested.  These were a stepped impedance filter and coupled-line filter.  For comparison purposes 

conventional PCB filters were also manufactured and tested.  The low-pass and the bandpass 

filters were designed and simulated using Ansys HFSS.  The low pass filter was designed to have 

a cutoff frequency of 2.5 GHz. While the bandpass filter was designed on the same platform to 

work at 2.4 GHz with a fractional bandwidth of 10%.  

Filter Models 

Figure 1 shows our CAD model of the microwave filter with subminiature version A 

(SMA) connectors attached to each end.  This model was generated directly in Ansys HFSS. 
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Figure 1.  Top view of CAD model of stepped-impedance microwave filter. 

 

 
Figure 2.  Bottom view of CAD model of stepped-impedance microwave filter. 

The dimensions of this devices are provided in Figure 3. Figure 4 shows the dimensions 

of the ground plane and the substrate; both of these have the same area.  It is important to note 

that the height of the microstrip line and ground plane were defined as an infinitely thin sheet to 

improve our HFSS simulation speed. Typical values for the height of the ground plane and 

microstrip on manufactured microwave filters would be around 0.10 mm.  The height of the 

substrate was set to 1.6 mm. 
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Figure 3.  Low pass filter microstrip dimensions. 

 

 
Figure 4.  Filter ground plane and substrate dimensions. 

 

Figure 5 shows the design we calculated for the bandpass filter. 

 

 
Figure 5. Bandpass filter microstrip dimensions 
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The conventional microwave filters were manufactured on FR4.  Material properties of 

copper were assigned to the microstrip line and ground plane in the Ansys HFSS simulation.  

The substrate was assigned the FR4-Epoxy material properties available from the materials 

library in Ansys HFSS.  The SMA connectors were set to have brass material properties while 

the dielectric fill had Teflon material properties. Finally, the filters were simulated on ANSYS 

HFSS. Figure 6 shows simulation parameters for the filters that go as follow: the substrate 

chosen is FR4 with a permittivity of 4.4, the wave ports are used as feeds, and the whole 

structure is enclosed inside a radiation box. 

 

 

Figure 6. Filters use in Ansys HFSS simulations 

 

Figure 7.  Comparison of simulated and measured results for both PCB and 3D printed RF filters. 
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Figure Filter Results 

Figure 7 shows the simulated and measured scattering (i.e. S21, S21) for both filters.  The 

cutoff centered at 2.5 GHz is obvious.  This data shows that the 3D printed and conventional 

filters perform very similarly.  The primary differences were the conductivity of the metals and 

the dielectric constant of the substrate material. 

Microwave Filter Manufacturing 

Our first microwave filters were manufactured using conventional PCB technology and 

3D printing.  The devices were designed in EAGLE and sent for manufacturing outside of 

UTEP.  Figure 8(left) shows the top view of the PCB before the SMA connectors were soldered 

onto it.  Figure 8(right) shows the bottom view of the same device.  A second version of this 

microwave filter was manufactured by hybrid 3D printing.  Both were characterized in the lab. 

 
Figure 8.  Standard PCB microwave filter design.  

3D Printed Microwave Filter 

In this research we required capabilities of a hybrid system that can handle two materials 

and heat curing. We used an nScrypt Table Top 3D printer that has capabilities to print two 

different materials between filament plastics and resins with different viscosities. In addition to 

the two materials we had a need to cure with heat due to the silver ink curing requirements.  

Two material printing was necessary in this effort since we needed to fabricate the 

structure of the substrate where the filter geometry needed to rest on. The materials were 

dispensed by two processes: dispensing the silver conductive inks we used nScrypt’s second 

generation SmartPumpTM 100 system. The fuse deposition process for the ABS plastic material 

that form the substrate was built by using nScrypt’s nFD pump. The nScrypt printer has great 

capabilities, however, there are adjustments needed in order to create pristine parts. Typically, 

one needs to adjust the dispensing gaps between material pumps, the pen tips used to create the 

metallic geometries, and the speeds that the materials are being dispensed at. These adjustments 

are necessary to avoid printing mistakes, poor quality surfaces, and more importantly reliable 

devices. The high frequency filtering devices we manufactured required high reliability and very 
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precise features down to the microns. Our nScrypt 3D printing system was able to perform for us 

down to the 10 m accuracy as shown in Figure 9.  

 

 

Figure 9.  3D Printing manufacturing process compared to conventional PCB filters 

 

 
Figure 10.  Illustration of 3D microwave filter concepts made possible by 3D printing 

3D Printed Radio 

Planar Circuit Design 

The design of the radio comes from the ESP8266 system-on-a-chip (SOC) shown in 

Figure 11. This SOC serves as a Wi-Fi adapter and operates at a frequency of 2.4 GHz. We 

chose to replicate this module due to the simplicity of the circuit and the low number of circuit 

traces it contains.  Figure 12 shows the two-dimensional circuit design we designed in 

SolidWorks.  

 
Figure 11. ESP8266 Wi-Fi Module 



Final Report   

 

  Page 9 of 15 

Pioneering 21st Century 

Electromagnetics and Photonics 

 
Figure 12. SolidWorks CAD Model of ESP8266 circuit 

RF Radio Manufacturing  

To 3D print this RF device, two printing methods were used. FDM was used to print the 

substrate of the circuit out of acrylonitrile butadiene styrene (ABS) plastic, while micro-

dispensing was used to print the circuit traces out of silver conductive ink. At the time this circuit 

was manufactured, we did not have a machine that combined both of these 3D printing 

techniques so they were performed in two separate steps. First we 3D printed the circuit substrate 

from ABS. Second, we printed the circuit traces on top of and the bottom of the substrate. Figure 

13 shows photographs one of the finished 3D printed circuits.  

 
Figure 13. 3D printed radio of ESP8266 circuit. (a) Top layer of the board. (b) Bottom layer of the board.  

Populating Components 

We are currently in the process of populating the circuit boards that were printed as this 

has proved particularly challenging for us. To place the surface mount technology (SMT) 

components from the ESP8266 onto the 3D printed circuits, we designed a solder paste stencil. 

This stencil, shown in Figure 14, provides us with the precision necessary to place conductive 

silver epoxy on the contact pads without creating any shorts between adjacent circuit traces.  
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Figure 14. Solder paste stencil design. 

Verification Plan 

To verify that our Wi-Fi circuits were printed successfully, we created a computer 

program that uses an Arduino UNO board to toggle a LED through a web page interface. We 

intend to connect the Arduino to the internet using our 3D printed Wi-Fi radio. Once connected, 

the Arduino will wait for a signal from the web page to toggle the LED on or off and send back 

the status of the LED. 

References 

 

[1] Espressif Systems, “Espressif Smart Connectivity Platform: ESP8266,” ESP8266 

datasheet, Oct. 2013. 

 

Materials Development 

Advanced Materials for Digital Manufacturing 

Summary – A systematic approach has been adopted to develop flexible high-k and low-loss 

polymer-ceramic composites, by dispersing high-permittivity nano/microparticles into the 

Sylgard 184 PDMS silicone elastomer with volume loading concentration up to 49%. The 

microwave composites were characterized up to 20 GHz using cavity resonators. The composite 

material is currently being used for 3D printing of microwave electronics. 

3D additive manufacturing (3D AM) has received tremendous attention from research 

communities in several scientific disciplines and industry due to the great potential as versatile 

and accurate rapid prototyping technology [9]. For instance, 3D AM of antennas and other RF 

and microwave devices when compared to conventional processes, provides additional design 

freedom by taking advantage of the z-plane that can be leveraged for microwave circuit and 

antenna miniaturization [1]. In recent years several RF devices have been successfully 

demonstrated as reported previously [1]-[4], which makes the 3D AM technology a promising 

enabler for the next generation of RF and microwave devices. However, there are important 

challenges to be overcome to fully adopt the technology for RF/microwave applications. In 

particular, the lack of high-permittivity (high-k) and low-loss 3D printable materials at 

microwave and millimeter wave frequencies seriously hinders the ability for AM technology to 

be adopted in RF and microwave electronics, which it will be addressed in this research. 

This work has focused on development of high-k polymer-ceramic composites using 

Sylgard 184 PDMS as the host polymer. The preparation of nanocomposites starts with mixing 
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of the two components of the PDMS in a 10:1 ratio by using a planetary centrifugal mixer (ARE-

310), followed by a deaeration (also known as “degassing”) step for removing any trapped air 

bubbles. The second step is to determine the volume ratio between the co-fired ceramic fillers 

and the host polymer based on the powder density. The planetary centrifugal mixer is used to 

mix the ceramic powders and the PDMS host matrix at the desired volume concentration while 

ensuring homogenous dispersion. The resultant polymer-ceramic composites are then poured 

into a custom-designed hot compression mold followed by a careful degassing step at 22 in-Hg 

using an isotemp vacuum oven (model 281A) to remove the air bubbles. A degassing time more 

than 2 hours is needed for high filler loading beyond 20% in volume including purging steps 

every 10 minutes. The sample is then compression molded and cured at 100C for 1 hour. The 

ceramic powders were fully analyzed with XRD and SEM for morphology and crystallinity 

before and after a high temperature co-firing process was applied. This high temperature co-

firing process is a critical step for enhancing the dielectric and loss properties of the ceramic 

powders.  

The dielectric properties of composite substrates at microwave frequencies were 

evaluated through the cavity resonator method by using Agilent 8720ES network analyzer (50 

MHz to 20GHz) and two different commercial thin dielectric sheet testers from Damaskos, Inc. 

One test fixture is for the low frequency band of 0.4 to 4.4 GHz and the other covers the high 

frequency band of 6.2 to 19.4 GHz. The cavity resonator testers work under the cavity 

perturbation technique. It is well known that the complex permittivity can be found from the 

resonant frequency shift and variation of Q factor of a rectangular cavity inserted with a small 

sample as explained in [5]-[7]. 

In our experiments, it was observed that the primary loss of the polymer-ceramic 

composites arises from the PDMS host polymer matrix as shown in Figure 15. From the high-

frequency performance, the best balance between high permittivity and low loss was achieved 

with the PDMS-MgCaTiO2 based composite sample, while both composite materials have shown 

fairly frequency-independent high dielectric permittivity and slightly lower loss tangent as 

compared to prior works [8]-[10]. The measured microwave dielectric and loss properties of both 

composite elastomer substrates are superior to that of the widely-used FR-4 printed circuit 

boards in terms of relative permittivity and dielectric losses, while almost approaching the 

characteristics of some rigid fiberglass-based  high-end microwave laminates (e.g., TMM10, 

TMM10i and TMM13i from Rogers Corp.)   

 
Figure 15.  Measured EM properties including: (a) a photo of the measurement setup; (b) measured 

permittivities; and (c) loss tangents for samples of PDMS, 25% PDMS-NdTiO3 with NdTiO3 powders co-
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fired at 960C, PDMS-MgCaTiO2 with 25% of MgCaTiO2 powders co-fired at 1100C and Rogers 

TMM10i Laminate[2]. 
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Materials Characterization using Non-Contact Near-Field Microwave Microscopy (NFMM) 

Summary – Traditional techniques for determining the high frequency, complex permittivity of 

materials include the use of cavity resonators, dielectric probes or printed transmission line 

structures (e.g. resonators). These methods are generally not compatible with testing materials 

such as un-cured pastes, which are common to the digital printing domain. Microwave 

microscopy itself is not a new technique, but to the best of our knowledge this is the first 

demonstration of accurate printed electronics characterization. 

Conductive inks are key materials that are being used in Direct Digital Manufacturing 

(DDM) for the fabrication of circuits and devices. The implementation of Ag thick film 

conductive ink has been reported for more than 30 years [1]. One of the advantages that this 

material offers is that it can be easily printed over a 3D surface while requiring a relatively low 

curing temperature (160° C for CB028) [2]. Previous works [3-5] characterized the curing 

process, electrical and surface properties of the material, using the conductivity calculated using 

DC measurements such as four-point probe, serpentine pattern, or Van der Paw technique. The 

use of this material in the realization of antennas [6], and more recently in the fabrication of 

microwave circuits [7]-[8] show the need of a characterization method at RF frequencies which 

provides localized material properties, rather than a averaged value. Typical techniques used to 

measure electrical conductivity of printed traces provide an averaged value of the electrical 

resistivity and do not show localized variations of the resistivity over the sample’s surface, which 

can affect the performance of the printed structures, particularly for high frequency applications.  

The fact that DDM technology generates highly rough surfaces and the sintering process 

of the ink results in an inhomogeneous particle distribution in the micron scale, escalates the 
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importance of a measurement that provides conductivity with high spatial resolution, while at the 

same time resolving the surface relief.  NFMM is a non-contact, non-destructive technique used 

to measure the electromagnetic properties of materials such as dielectric constant, electrical 

conductivity and permeability on length scales shorter than the wavelength at the operation 

frequency [9].  

In this work, we measure the localized electrical conductivity of several conductive 

printed traces using a non-contact NFMM operating at 5.73 GHz. The conductive traces are 

made using CB028 silver ink, and a micro-dispense pump system.  

A SEM image over an area of 12 m x12 m of the surface of the ink after the curing 

process is shown in Figure 16(a). The SEM image was acquired using a Hitachi SU-70. The 

particle size of the ink after the curing process ranged between 0.5 m to 4m, with an average 

size of 2 m, in agreement with [3]. A 200 m profile across the sample was also measured 

using a Veeco Dektak 150 profilometer and is shown in Figure 16(b).  

 

 
 

(a)                                                 (b) 

Figure 16.  Properties of the cured silver ink. (a) SEM image of the surface of a 25.2 um (average) thick 

sample. (b) Segment of profile of the same sample. 

A photograph of the NFMM used in this work is shown in Figure 17. It consists of an 

8753 vector network analyzer (VNA) which is used as microwave source and detection system, a 

dielectric resonator (DR) -based microwave probe and a XYZ positioning system. The DR-based 

microwave probe operates at 5.73 GHz and consists of a dielectric resonator mounted on a 

RO4350B substrate and magnetically coupled to two 50  microstrip lines. A commercially 

available gold-coated tungsten tip with radius of 25 µm is attached to a microstrip line 3/4 long. 

The resonant probe is enclosed in an aluminum cavity in order to prevent radiation and 

degradation of the resonator quality factor. The tungsten tip protrudes beyond one of the walls of 

the cavity through a hole with diameter of 5 mm.   
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Figure 17.  Photograph of the 5.73 GHz scanning near-field microwave microscope. 

The imaging capability of the NFMM was studied by scanning a sample over an area of 

100 m x 100 m in steps of 2 m. At each point of the scan, Q and topography were 

simultaneously acquired. Then Q data were converted to electrical conductivity using a 

calibration curve.  Figure 18(a) and (b) show the electrical conductivity and topography images 

obtained, respectively. The conductivity distribution in Figure 18(a) indicates that the 

conductivity is not constant but varies between 0.6e6 S/m - 2e6S/m. Higher conductivity regions 

are observed over lower areas in the topography.  

                        

Figure 18.  Conductivity and topography images over an area of 100 m x100 m obtained using the 

NFMM. 
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