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Abstract

In this work, we propose a novel video representation
for activity recognition that models video dynamics with
attributes of activities. A video sequence is decomposed
into short-term segments, which are characterized by the
dynamics of their attributes. These segments are modeled
by a dictionary of attribute dynamics templates, which are
implemented by a recently introduced generative model,
the binary dynamic system (BDS). We propose methods for
learning a dictionary of BDSs from a training corpus, and
for quantizing attribute sequences extracted from videos
into these BDS codewords. This procedure produces a rep-
resentation of the video as a histogram of BDS codewords,
which is denoted the bag-of-words for attribute dynam-
ics (BoWAD). An extensive experimental evaluation reveals
that this representation outperforms other state-of-the-art
approaches in temporal structure modeling for complex ac-
tivity recognition.

1. Introduction
The recognition of human activities and events is an

important problem for computer vision. Two lines of re-

search have received substantial attention in this area. The

first, motivated by the fact that an activity is naturally de-

fined by an ordered set of short-term behaviors, aims to

model the temporal composition of activities. This is usu-

ally done with low-level video representations. In fact,

many methods have been proposed to model the temporal

structure of low-level features extracted from video, e.g.,
histograms of spatiotemporal filter responses. This includes
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Figure 1: Challenges in modeling the dynamics of attributes of

complex activities. (Top) YouTube video sequence annotated with

“tennis-serve” activity. (Bottom) associated trajectory on a 3D at-

tribute space (red for “arm-motion”, green for “foot motion” and

blue for “ball motion”). Note the complexity of the trajectory and

the fact that only a short segment (red-shaded) is a staple of the

action of interest.

both discriminative [11, 16, 7, 25] and generative mod-

els [12, 9, 4]. The second, inspired by recent advances in

image analysis, is to represent activities as collections of

semantic attributes [15, 23, 22, 6]. This entails an interme-

diate level of representation, where features are no longer

visual, but identifiers of the occurrence of semantic con-

cepts of interest, such as scene types, actions, objects, etc.

This higher level of abstraction enables better generaliza-

tion, facilitates semantic and contextual reasoning, and en-

ables knowledge transfer from well-understood examples to

unseen instances.

Advances along these two directions are complementary.

While a detailed characterization of the temporal structure

on top of low-level features is, in general, insufficient to

characterize complex activities, the representation of video

as an orderless set of attributes is incapable of fine-grained

activity discrimination (i.e., distinguishing between activi-

ties which express the same attributes in different orders).

Recently, [14] has proposed to unify the two research di-

rections, by modeling the temporal structure of the video

projection in an attribute space. This was implemented by

introducing a dynamic model, denoted binary dynamic sys-

tem (BDS), which extends classical linear dynamic systems

to binary observation spaces. While this model has been
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shown to achieve state-of-the-art performance in standard

benchmarks, it does not address two of the most significant

challenges in the recognition of complex activities. The first

is that such video rarely contains only the event of interest.

In general, video sequences are only annotated with respect

to a dominant event, or high-level subject, and not with re-

spect to the footage that either precedes or trails it. The sec-

ond is that a single model, such as the BDS, is unlikely to

provide a good fit to the complex attribute space trajectories

produced by the video. This is illustrated in Figure 1, which

presents the trajectory of a video of the “tennis serve” activ-

ity in a space spanned by three closely-related attributes.

In this work, we propose to address these limitations

with a new video representation, which is denoted the bag-
of-words for attribute dynamics (BoWAD). This is an ex-

tension of the bag-of-visual words (BoVW), which has

achieved great popularity for image classification [28]. Like

the BoVW, the BoWAD is an histogram with respect to

a dictionary of templates. However, rather than templates

of visual appearance, it relies on templates of attribute dy-
namics. These templates are in fact generative models and,

more precisely, temporally localized BDSs. In this way,

an activity is represented as a collection of characteristic

short-term behaviors, and no single BDS needs to model un-

duly complex attribute trajectories. We propose a procedure

for learning a dictionary of BDSs, and for quantizing video

with respect to this dictionary, and show that the representa-

tion achieves performance superior to that of state-of-the-art

approaches of temporal structure modeling in challenging

datasets.

2. Related Work
Over the last decade, the bag-of-features (BoF) has be-

come a popular video representation for action recogni-

tion [27]. This consists of representing video as a collection

of feature vectors. Several models exploiting the temporal

structure of activities are based on this representation. For

example, Laptev et al. [11] used a spatio-temporal binning

pyramid to match vector-quantized histograms from differ-

ent video regions. Niebles et al. [16] and Gaidon et al. [7]

represented an activity with a small number of decompos-

able parts or atomic actions. Alternatives based on gener-

ative models have also been proposed. Laxton et al. [12]

integrated confidences about objects and sub-actions over

time, with dynamic Bayesian networks. Finally, dynamic

systems have been used to represent the evolution of human

activity, using different features (local binary patterns [9],

tracked parts [13], or frame-wise motion histograms [4]).

Recently, image analysis research has shown that se-
mantics or attribute-based representations can have sub-

stantial benefits over BoF, including better generalization

and support for contextual reasoning [19, 10, 18, 20]. This

has motivated the application of these representations to

action recognition. For example, Liu et al. [15] pro-

posed the use of attributes as latent variables for support

vector machines (SVMs) to recognize actions. Sadanand

and Corso [23] have shown substantial improvements over

standard benchmarks by using a bank of action detectors

sampled broadly across semantic and viewpoint spaces.

Rohrbach et al. [22] augmented video with text-script data

and modeled activities as common sets of attributes, defined

in terms of basic actions and objects. Finally, Li and Vas-

concelos [14] introduced a model (BDS) of the temporal

structure of attributes. This work suggests that the model-

ing of video trajectories in attribute space is crucial for the

fine-grained understanding of human behavior .

In this work, we expand on the idea of [14], by learn-

ing dictionaries of models for attribute dynamics. This is

related to the bag-of-systems framework of [21, 1], where a

set of dynamic textures (DTs) [5] were used to characterize

dynamic scenes. The main challenge of this dictionary lean-

ing problem is the difficulty of identifying the “centroid” of

a collection of dynamic textures, due to the non-Euclidean

nature of the space of linear dynamic systems. [21] by-

passes this problem with resort to a somewhat heuristic

combination of multi-dimensional scaling and k-means (de-

noted MDS-kM); while [1] presents a procedure to directly

average LDSs in the parameter space, the approach only

works for LDS. We propose an alternative principled solu-

tion, which is specifically designed for clustering attribute
sequences, and has a number of advantages over MDS-kM.

These are shown to result in superior recognition accuracy.

3. The Bag of Words for Attribute Dynamics
In this section, we introduce a new representation for

activity recognition, denoted the bag-of-words for attribute
dynamics (BoWADs).

3.1. Words and Attributes

A popular representation for image classification is the

bag of visual words (BoVW) [28], which has recently also

become popular for action recognition [27]. This consists of

representing an image as a BoF, learning a dictionary of rep-

resentative feature vectors, which are denoted visual words,

and using this dictionary to quantize the features extracted

from an image to classify. The BoVW is the resulting his-

togram of visual word counts. This is frequently used as a

feature vector for image or video classification. Despite the

popularity of the BoVW, several works have demonstrated

the benefits of alternative feature spaces, which encode

higher-level semantics by representing images or video as

collections of binary attributes [19, 10, 18, 20, 15, 14].

Under this representation, activities are defined with re-

spect to a set of K attributes C = {ci}Ki=1, inferred from

video frames by a bank of attribute classifiers {πi}Ki=1. Pos-

sible attributes include scene classes, objects, atomic ac-
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Ω = {A,C,Q,u,μ0, S0}

Figure 2: Learning a BDS. Video sequences (left) are encoded as trajectories in attribute space S (center). Sequences of similar semantics

span similar trajectories. The BDS Ω embeds a video trajectory into a low-dimensional space (shown in green), by binary PCA, and learns

a Gauss-Markov process that describes the corresponding trajectory in the latent state space (right).

tions, human-object interactions, etc. A video v ∈ X is

mapped into attribute space S by a mapping

π : X → S = [0, 1]K , (1)

where

π(v) = (π1(v), · · · , πK(v))T (2)

is an attribute score vector. Component πi(v) is a confi-

dence score quantifying the presence of the i-th attribute

in v. In this work, these scores are the posterior proba-
bilities πc(v) = p(c|v) of attribute c given some low-level

representation of video v, e.g., a BoF histogram of spatio-

temporal descriptors.

3.2. Attribute-based Activity Recognition

In [15] a vector of attribute scores π(v) is computed for

the whole video sequence v. This holistic attribute rep-

resentation disregards the temporal structure of the differ-

ent attributes. While it can distinguish activities that lie

on different regions of S, it cannot disambiguate activi-

ties that contain similar attributes but with different tem-

poral structure. This problem can be overcome by apply-

ing the attribute classifiers to video segments vt extracted

with a sliding window. As illustrated in Figure 2, this pro-

duces a sequence of attribute score vectors {πt}τt=1, where

πt = π(vt). In summary, a video sequence is modeled as

a trajectory in S and sequences of similar semantics span

similar trajectories.

Li and Vasconcelos proposed to model a video trajectory

in S with a binary dynamic system (BDS) [14], defined by

{
xt+1 = Axt + vt, (3a)

yt ∼ B(y;σ(Cxt + u)), (3b)

where xt ∈ R
L

(L is the dimension of the latent space) and

yt ∈ [0, 1]K are state and observation variables; u ∈ R
K

a

bias term; A ∈ R
L×L

a state transition matrix; C ∈ R
K×L

an observation matrix; vt ∼ N (0, Q) a state noise pro-

cess; x1 = μ0 + v0 ∼ N (μ0, S0) an intial condition;

B(y;p) a multivariate Bernoulli distribution of parameter

p ∈ [0, 1]K , and σ(θ) a component-wise logistic transfor-

mation, i.e., σi(θ) = (1 + e−θi)−1. The observation model

of (3b) can be interpreted as a binary principle component

analysis (binary PCA) [24] of {yt}. Binary PCA is a di-

mensionality reduction technique for binary data. Given a

matrix Y =
[
y1, · · · ,yτ

] ∈ {0, 1}K×τ , it determines a

L-dimensional (L� K) embedding of the natural parame-

ters Θ of the Bernoulli distribution, by maximizing the log-

likelihood

L = log p(Y ; Θ) = log

[∏
k,t

σ(Θkt)
Yktσ(−Θkt)

1−Ykt

]
(4)

subject to the constraint

Θ = CX + u1T , (5)

where C ∈ R
K×L

, X =
[
x1, · · · ,xτ

] ∈ R
L×τ

, u ∈ R
K

and 1 ∈ R
τ

is the vector of all ones. Each column of C is

a basis vector of a latent subspace and the t-th column of

X contains the coordinates of the yt in this basis (up to a

translation by u).

Since, in the context of attribute representations, only the

the attribute scores πt (and not the attribute variables them-

selves) are known, [14] replaced the log-likelihood of (4)

by the expected log-likelihood

EY [L] =
∑
k,t

[
πkt log σ(Θkt) + (1− πkt) log σ(−Θkt)

]
. (6)

The maximization of (6) under the constraint of (5) can be

performed with an expectation-maximization (EM) -like it-

erative algorithm [24], which produces estimates of the pa-

rameters C, u and the latent sequence X . [14] exploited this

to propose a BDS extension of the popular dynamic texture
algorithm for learning linear dynamic systems [5, 2]. Given

a sample Db = {yi}τi=1, this consists of learning the ob-

servation and state transition models in two steps. The first

is a binary PCA analysis of Db, to determine C, u, and
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the coefficients {xt}. As shown in Figure 2, {xt} is a tra-

jectory in the state space, which follows a Gauss-Markov

process. The second step determines the matrix A that pro-

vides the least squares fit to these coefficients. Note that

this matrix characterizes the state space trajectory, which

is mapped (given C and u) into the video trajectory in S.

Hence, A depicts the dynamics of the attribute sequence.

3.3. Bag of Words for Attribute Dynamics

While substantially more descriptive than the holistic at-

tribute model of [15], the BDS of [14] still has two seri-

ous limitations as a model of video dynamics. These are

illustrated in Figure 1. First, there is, in general, no guar-

antee that the whole video sequence depicts the activity

of interest. On the contrary, the segments that matter for

event recognition (e.g., a segment of “tennis-serve”) are fre-

quently surrounded by segments that are not informative for

the recognition (e.g., video of subsequent plays). Fitting a

single dynamic model to long video sequences will lead to

parameter estimates that are not representative of the event

of interest. Second, since complex activities are composed

of several atomic actions, sometimes disjoint in time, their

state trajectories are unlikely to follow the Gauss-Markov

process. Both of these limitations, however, are unlikely to

hold if the BDS is fitted to a short-term video segment.

On the other hand, most activities can be effectively in-

ferred by a characterization of the short-term segments that

compose them. For example, the characterization of the

activity “long-jump” by the attribute sequence “run-run”,

“run-jump” and “jump-land”, is sufficient to discriminate

it from the (very similar) activity “triple-jump”, if the lat-

ter is characterized by the attribute sequence “run-jump”,

“jump-jump” and “jump-land”. The presence (or absence)

of a video segment with attributes “jump-jump” is sufficient

to discriminate between the two activities. Based on these

observations, we propose to model video with an extension

of the BoVW that captures the short-term dynamics of the

attribute representation of an action.

A video sequence is first split into a collection of tem-

poral overlapping segments {s(i)}Ni=1. Segment s(i) has τi
frames, which are fed to the attribute mapping of (7). This

produces a set of attribute score vectors Π(i) = {π(i)
t }τit=1,

which is denoted the attribute sequence of segment s(i).
The video sequence is finally represented by a bag of at-
tribute sequences (BoAS), which plays the role, in the pro-

posed framework, of the BoF in image classification. A

dictionary of representative BDSs {Ω(i)}Vi=1, which are de-

noted words for attributes dynamics (WAD), learned from

a set of training BoAS, is then used to quantize the BoAS

extracted from the video sequence to classify. The resulting

histogram of WAD counts, denoted a bag of words for at-
tribute dynamics (BoWAD) is finally used as a feature vec-

tor for video classification. This representation is summa-

rized in Figure 3.

4. Learning and Recognition with BoWADs
In section 5 we will show that, when combined with stan-

dard histogram-based classifiers e.g., support vector ma-

chines (SVMs) with histogram intersection kernel (HIK),

BoWADs are a very effective representation for the recogni-

tion of complex activities. For now, we address the problem

of quantizing attribute sequences. We start with the problem

of learning a WAD dictionary.

4.1. Clustering Samples in the Model Domain

Traditional clustering (e.g., k-means) searches for proto-

types in the space of training samples (e.g., in k-means, a

cluster prototype is the centroid of the samples in the clus-

ter), using a metric suited for that space (e.g., Euclidean

distance). An extension to the clustering of BoAS is not

straightforward because 1) attribute sequences can have dif-

ferent length; 2) the space of these sequences has non-

Euclidean geometry; and 3) the search for optimal proto-

types, under this geometry, may lead to intractable non-

linear optimization. More importantly, because we are in-

terested in characterizing the appearance and dynamics of
attribute sequences, it is more desirable to find a set of pro-

totype BDSs than a set of prototype sequences.

This becomes a problem of learning a bag-of-
models (BoM) where, given a set of training samples D =
{zi}Ni=1 (zi ∈ Z, ∀i), the goal is to learn a dictionary of

representative models {Mi}NC
i=1 in a model space M. The

proposed solution is based on two mappings. The first

fM : Z ⊇ {zi} 	→M({zi}) ∈M (7)

maps a collection of examples {zi} ⊆ D into a model

M({zi}). The second,

M×M � (M1,M2) 	→ dM(M1,M2) ∈ R+ (8)

is a measure of distance between models. The mapping

of (7) is first used to produce a model M(zi) per train-

ing example zi. Training samples are then clustered, at

the model level, by alternating between two steps. In the

assignment step, each zi is assigned to the cluster whose

model is closest to M(zi), using the metric (8). In the

model refinement step, the model associated with each clus-

ter is relearned from the training samples assigned to it,

via (7). This procedure is summarized in Algorithm 1 and

denoted bag-of-models clustering (BMC).

BMC generalizes k-means, where zi ∈ R
d

are feature

vectors,M is the family of Gaussians of identity covariance

M =
{
p(z;μ) = G(z;μ, Id) | μ ∈ R

d }
, (9)

(7) selects the model

M({zi}) = G(z; μ̂, I), (10)
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Figure 3: BoWAD representation of the activity “diving-springboard”. (Top) video sequence. (Middle) the holistic vector of attribute

scores is now represented as a trajectory in the attribute space (which is four dimensional, in this example, and represented as four colored

functions). The trajectory is split into overlapping sort-term segments. (Bottom) each segment is assigned to the WAD associated with the

BDS, in a learned BDS dictionary, that best explains it. Dictionary BDSs are models of short-term behaviors, such as “walk-walk-jump”,

“walk-jump-jump”, “jump-jump-somersault” and “jump-somersault-enter water”. The activity is represented by a BoWAD, which is a

histogram of assignments of segments to WADs.

Algorithm 1: Bag-of-Models Clustering

Input : a set of samples D = {zi}Ni=1 (zi ∈ Z, ∀i),
number of clusters NC , an initial set of

models {M (0)
i }NC

i=1.

set t = 0 and S
(0)
i = ∅, i = 1, · · · , NC ;

repeat
t = t+ 1;

Assignment-Step: ∀i, S(t)
i = {z ∈ D | ∀j �= i,

dM(M(z),M
(t−1)
i ) � dM(M(z),M

(t−1)
j )}

Refinement-Step: ∀i, M (t)
i = M({S(t)

i })
until ∀i, S(t)

i = S
(t−1)
i ;

Output: {M (t)
i }NC

i=1 and {S(t)
i }NC

i=1

where μ̂ is the maximum likelihood estimate of the mean

μ̂ = argmax
μ

p({zi};μ) = 1

|{zi}|
∑

i
zi, (11)

and the measure of (8) is the (symmetric) Kullback-Leibler

divergence

KL(p1||p2) + KL(p2||p1) = ||μ1 − μ2||2. (12)

It should be noted that BMC (Algorithm 1) differs from

the bag-of-systems method of [21, 1] in two ways. First,

it clusters attribute sequences rather than the models them-

selves, as is done by [21, 1]. Note that, in the model refine-

ment step of Algorithm 1, models are re-learned from exam-

ples {zi}. The refinement step of [21, 1] only considers the

parameters of the models M(zi) and not the examples zi

themselves. This usually entails loss of information. Sec-

ond, Algorithm 1 finds the optimal representative for each

cluster, according to the model fitting criterion of (7). In

[21], the difficult geometry of the manifold defined by the

LDS parameter tuple (A,C) ∈ GL(n) × ST(p, n), where

GL(i) is the set of invertible matrices of size n and ST(p, n)
the Stiefel manifold of p×n orthonormal matrices (p � n),
precludes a simple estimate of the optimal representative.

Instead, this is approximated by searching for the model

M(zi) closest to the optimal representative. Although [1]

introduce an approach to directly cluster LDSs in their pa-

rameter space, its generalization to BDS is still not quite

clear. We will show, in Section 5, that these differences can

lead to significantly improved performance by Algorithm 1.

4.2. Learning a Vocabulary of WADs

A WAD dictionary is learned by applying Algorithm 1

to a BoAS P = {Π(i)}Ni=1, as follows.

Algorithm 2: Learning a Cluster for WADs Dictionary

Input : a set of n sequences of attribute score vectors

{{π(i)
t }τit=1}ni=1, state space dimension L.

Binary PCA:

{C,X,u} = B-PCA({{π(i)
t }τit=1}ni=1, L) [24].

Estimate state parameters:

A = X̂τ
2 (X̂

τ−1
1 )

†
, V = X̂τ

2 −AX̂τ−1
1 ,

(where X̂τ
2 =

[
(X(1))τ12 , · · · , (X(n))τn2

]
,

X̂τ−1
1 =

[
(X(1))τ1−1

1 , · · · , (X(n))τn−1
1

]
,

and Xt2
t1 ≡

[
xt1 , · · · ,xt2

]
).

Q = 1∑
i(τi−1)V (V )T , μ0 = 1

n

∑n
i=1 x

(i)
1 ,

S0 = 1
n−1

∑n
i=1(x

(i)
1 − μ0)(x

(i)
1 − μ0)

T .

Output: Ω = {A,C,Q,u,μ0, S0}
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Refinement-Step: The mapping of (7) amounts to fit-

ting a BDS to a BoAS P ′ = {Π(i)} ⊆ P . This is done

with recourse to Algorithm 2, which extends the algorithm

of [14] for learning a BDS from a single attribute sequence.

The extension follows the two-step decomposition of BDS

learning discussed in Section 3.2. A binary PCA is first

applied to all attribute score vectors in P ′. The parame-

ters of the hidden Gauss-Markov process are then learned

by solving a least squares problem involving all latent state

sequences returned by binary PCA. In this way, the BDS

learned per cluster jointly characterizes the appearance and

dynamics of all attribute sequences in that cluster.

Assignment-Step: As a measure of distance between

two BDSs, we use the Binet-Cauchy (BC) kernel. This was

originally proposed in [26] as a measure of dissimilarity be-

tween infinite output sequences of two LDSs, and adapted

to a measure of the dissimilarity between the outputs of two

BDSs, Ωa and Ωb, in [14]. It is defined as

dBC(Ωa,Ωb)

= Ev

[ ∞∑
t=0

e−λt
(
KL(B(σ(θ

(a)
t ))||B(σ(θ

(b)
t )))

+KL(B(σ(θ
(b)
t ))||B(σ(θ

(a)
t )))

)]

= Ev

[ ∞∑
t=0

e−λt
(
σ(θ

(a)
t )− σ(θ

(b)
t )

)T (
θ
(a)
t − θ

(b)
t

) ]
,

(13)

where {σ(θ(a)
t )} and {σ(θ(b)

t )} are the parameters of the

multivariate Bernoulli distributions from which the binary

attribute vectors are sampled, for the two BDSs. While the

BC kernel between two LDSs can be computed in closed

form, the evaluation of (13) is not trivial. Like the latent

state sequence {xt}, its linear projection {θt} is a sample

from a high-dimensional Gaussian distribution. Hence, (13)

amounts to computing the expectation of a nonlinear func-

tion with respect to a multivariate Gaussian distribution, and

is intractable in general. Following [14], we resort to a nu-

meric solution which approximates the summation by a fi-

nite number of terms. This has been empirically shown to

produce good results.

4.3. Quantization

Given a WAD dictionary {Ω(i)}Vi=1, a BoAS

{{π(i)
t }τit=1}Ni=1 is quantized by assigning the i-th at-

tribute sequence to the k∗-th cluster according to

k∗ = argminj dBC

(
Ω({π(i)

t }τit=1),Ω
(j)), (14)

where Ω({π(i)
t }τit=1) is the BDS learnt from {π(i)

t }τit=1 us-

ing (7).

5. Experiments
A number of experiments were performed to compare

the BoWAD representation to previous models of temporal

Table 1: Accuracy on Weizmann Activity.

Sets BoF
BoF-TP

[11]

Attri-

bute

[15]

BDS

[14]

BoWAD

MDS-kM

[21]
BMC

Syn20×1 23.3% 36.7% 17.8% 64.4% 100% 100%
Syn10×2 28.9% 31.1% 16.7% 65.6% 98.9% 100%

activity structure. The low-level representation used in all

experiments was the BoF of [11]. A set of spatio-temporal

interest points (STIPs) were first detected, a feature vec-

tor was extracted from the support of each interest point,

and quantized into a vocabulary learnt from the training set.

Binary SVMs using histogram intersection kernel (HIK)

with probability outputs [3] were used as attribute models,

learned from annotated training video clips (see supplemen-

tary material for attribue definitions). In all experiments,

BDS and BoWADs used a 5-dimensional state space.

5.1. Weizmann Activity

The first set of experiments was based on composite se-

quences synthesized from the Weizmann dataset [8], which

contains 10 atomic action classes, performed by 9 people,

for a total of 90 samples. BoWAD was compared to the

vanilla BoF, BoF with t3 temporal pyramids [11] (denoted

“BoF-TP”), holistic attributes [15] (denoted “Attribute”)

and BDS [14]. Attribute sequences were computed over 30-

frame sliding video windows of 10-frame step. As in [14],

30 low-level attributes were defined for the original 10 ac-

tions. To compute BoWADs, each short-term attribute se-

quence consisted of the attribute vectors from 12 consecu-

tive windows, extracted with a step of 3 windows. WAD

dictionaries were learned with both BMC and the MDS-kM

algorithm of [21] . One-v.s.-all SVMs with HIK were used

in all histogram-based methods (BoF, BoF-TP, BoWAD,

attribute models), where STIP features used a 1000-word

vocabulary. For BDS, we used the kernel K(Ωa,Ωb) =
exp(− 1

γ d
2
BC(Ωa,Ωb)) (same for the rest of experiments).

Two datasets were created. The first, “Syn20×1”, aimed

to test the ability of the different approaches to detect activ-

ity classes of large variability. An activity was defined as a

sequence of 20 consecutive atomic actions from Weizmann.

This sequence was inserted at a random temporal location

of a larger sequence of 40 atomic actions. The remaining 20

actions in the larger sequence were randomly selected from

Weizmann. The second, “Syn10×2”, tested the ability of

the different approaches to detect discontinuous activities.

In this case, each activity was defined by two subsequences,

each with 10 consecutive atomic actions. The two subse-

quences were randomly inserted at non-overlapping loca-

tions of the larger (40 atomic action) sequence.

Table 1 summarizes the performance of the different

methods. The very weak performance of BoF, BoF-TP, and
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Table 2: Average Precisions for Activity Recognition on Olympic Sports Dataset.

Activity
Laptev

et al. [11]

(BoF-TP)

Niebles

et al.
[16]

Tang

et al.
[25]

Attri-

bute

[15]

BDS

[14]

BoWAD

MDS-kM

[21]
BMC

high-jump 52.4% 68.9% 18.4% 93.2% 82.2% 86.8% 83.9%

long-jump 66.8% 74.8% 81.8% 82.6% 92.5% 83.9% 91.9%

triple-jump 36.1% 52.3% 16.1% 48.3% 52.1% 64.2% 75.7%
pole-vault 47.8% 82.0% 84.9% 74.4% 79.4% 68.0% 76.5%

gym. vault 88.6% 86.1% 85.7% 86.7% 83.4% 86.7% 91.4%
shot-put 56.2% 62.1% 43.3% 76.2% 70.3% 58.0% 79.4%
snatch 41.8% 69.2% 88.6% 71.6% 72.7% 56.4% 73.4%

clean-jerk 83.2% 84.1% 78.2% 79.4% 85.1% 78.2% 85.4%
javelin throw 61.1% 74.6% 79.5% 62.1% 87.5% 56.6% 76.7%

ham. throw 65.1% 77.5% 70.5% 65.5% 74.0% 71.3% 79.2%
discus throw 37.4% 58.5% 48.9% 68.9% 57.0% 62.6% 66.9%

diving-plat. 91.5% 87.2% 93.7% 77.5% 86.0% 85.2% 82.0%

diving-sp. bd. 80.7% 77.2% 79.3% 65.2% 78.3% 75.2% 82.3%
bask. layup 75.8% 77.9% 85.5% 66.7% 78.1% 66.6% 60.8%

bowling 66.7% 72.7% 64.3% 72.0% 52.5% 64.4% 73.0%
tennis-serve 39.6% 49.1% 49.6% 55.2% 38.7% 68.1% 73.2%

mean AP 62.0% 72.1% 66.8% 71.6% 73.2% 70.8% 78.2%
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Figure 4: Mean average precision (mAP)

v.s. size of BDS dictionary on Olympic

Sports. Vertical bars indicate standard devi-

ation of mAP in cross-validation.

Attribute, show that modeling of activity dynamics is crit-

ical for success in these datasets. While BDS has substan-

tially improved performance, the underlying assumption of

a single dynamic process is a limitation for these sequences,

where the activities of interest are not temporally aligned

and are surrounded by irrelevant video. Substantially bet-

ter performance is achieved with the BoWAD representa-

tion, which has perfect performance on these datasets. Both

clustering strategies achieve good results, although BMC

outperforms MDS-kM slightly.

5.2. Olympic Sports

The second set of experiment was conducted on the

Olympic Sports dataset [16]. The performance of BoWADs,

learned with BMC and MDS-kM, was compared to BoF-

TP [11], activity models with decomposable segments [16],

the hidden Markov model with latent states of variable dura-

tion of [25], the holistic attribute representation of [15], and

the BDS [14]. In all cases, a 3000-word STIP vocabulary

was used to quantize low-level features. BDS and BoWAD

used the 40 attributes defined by [15]. A 30 frame sliding

video window, with a step of 4 frames, was used to compute

attribute scores. For the BoWAD, attribute sequences con-

sisted of 12 consecutive attribute vectors, with a 75% over-

lap between consecutive sequences. Performance was mea-

sured with per-category average precisions (AP) and mean

AP, using 5-fold cross-validation.

As shown in Table 2, the BoWAD again achieves the

best results. In fact, it achieves the best results reported

in the literature with the similar low-level features (STIP)

on this dataset. This includes methods based on much

more sophisticated classifiers, such as the 74.4% of [15]

or the 76.5% of [14], which use latent SVMs or multiple

kernel classifiers to combine supervised, unsupervised at-

tributes (dynamics), and low-level features. The BoWAD

achieves 78.2% by simply quantizing attribute dynamics.

It works particularly well for categories, such as “tennis-

serve”, which have large variability and tend to include

video irrelevant for activity detection, or category pairs,

such as “triple-jump” and “long-jump”, that differ in subtle

ways. The robustness inherent to a vocabulary of dynamics

is critical for the former (compare the 73.2% of BoWAD-

BMC with the 38.7% of BDS on “tennis serve”), while the

detailed characterization of attribute dynamics is critical for

the latter (75.7% v.s. 48.3% of Attribute on “triple-jump”).

With regards to clustering algorithms, there is now a sub-

stantial gap between MDS-kM (70.8%) and BMC (78.2%).

Figure 4 shows that this difference holds across a large

range of WAD dictionary sizes. The robustness of the pro-

posed representation is reinforced by the fact that a 320-

word BoWAD has mAP (75%) superior to all other repre-

sentations of Table 2.

5.3. TRECVID-MED11

The third set of experiments used the 2011 TRECVID

multimedia event detection (MED) open source

dataset [17]. The event collection (EC) set was used

for training and the development set (DEVT) for testing

(events 1-5). EC contains 2,062 training samples of 5

high-level events, with 100-200 positive examples per

event. DEVT has around 11,000 samples. We manually

defined 93 attributes and used a 10,000-word low-level

feature dictionary. Attribute scores were computed with

a 180-frame sliding window with steps of 30 frames, and

attribute sub-sequences (τ = 10) were extracted every

window. BoWAD used a dictionary of size 1000.

The performance of the different methods is summa-

rized in Table 3. On this highly challenging dataset, the

259125912593



Table 3: Average Precision for Event Detection on TRECVID MED11 DEVT Dataset.

Event
(E001-E005)

Random

Guess

Laptev et al.
[11] (BoF-TP)

Niebles et al.
[16]

Tang et al. [25]

(d = 1 / d � dmax)

Attribute

[15]

BDS

[14]

BoWAD

MDS-kM [21] BMC

attempting a board trick 1.18% 8.22% 5.84% 6.24% / 15.44% 18.91% 8.41% 26.62% 29.99%
feeding an animal 1.06% 2.54% 2.28% 5.28% / 3.55% 4.95% 1.78% 4.61% 7.36%

landing a fish 0.89% 9.77% 9.18% 7.30% / 14.02% 24.17% 6.20% 24.97% 28.10%
wedding ceremony 0.86% 5.52% 7.26% 9.48% / 15.09% 16.68% 12.24% 22.15% 22.39%

working on a wood project 0.93% 4.09% 4.05% 3.42% / 8.17% 5.11% 5.08% 12.39% 18.32%
mean AP 0.98% 6.01% 5.72% 6.34% / 11.25% 13.96% 6.74% 18.15% 21.23%

gap between BoWAD and the other representations is enor-

mous. In fact, the BoWAD learned by BMC (21.23%) al-

most doubles the best previous results in the literature that

model temporal structure of complex events (i.e., 11.25%

of [25]). The fact that the BoWAD substantially outper-

forms the BDS also confirms the observation that the ro-

bustness of a vocabulary of local attribute dynamics is crit-

ical for accurate detection of complex activities. For exam-

ple, events in the class “attempting a board trick” include a

repetition of local actions, e.g., “slide-jump-(somersault)-

land-slide”. While it is difficult to model this sequence

as a whole, due the large variability of cutting in different

videos, it is much easier to capture short-term signature ac-

tions, such as “slide-jump”, which are usually not broken

during video editing. Finally, with respect to clustering al-

gorithms, BMC agains substantially outperforms MDS-kM.

6. Conclusion
In this work, we proposed a novel solution to the prob-

lem of modeling attribute and dynamics for activity recog-

nition. The method combines the advantages, in terms

of robustness, of histogram-based representations, with the

power of BDSs to model the dynamics of video attributes.

We developed new algorithms for learning BDS dictionar-

ies and quantizing video with them. The proposed rep-

resentation significantly outperforms other state-of-the-art

attribute-based or temporal-structure-modeling approaches

in complex activity recognition.
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