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Chapter 1: Introduction  
 

The reduction of size and cost for computing and electromechanical components is driving 
the deployment of networked cyber-physical systems (CPS). Defense, healthcare, infrastructure, 
and transportation industries are building CPS to create new services for their consumers. As these 
technologies proliferate and are composed to create vast systems of systems, there will be an 
increased risk of instabilities and cascading failures due to improperly designed control modules. 
 

Some recent examples of control induced failures include power grid blackouts and 
shutdowns [7,15] due to faulty actuators and human-interaction. Large-scale cloud applications 
also suffer outages because of improperly designed software control logic [2]. Even simple, stable 
automatic controllers may cause issues when chained together with other systems, e.g. [4, 18, 21, 
23]. These examples indicate that there is a fundamental issue with composition at all levels of 
system abstraction. 
 

For the past thirty years, there has been considerable effort to model, compose, and verify 
pure software systems such that they behave as specified by a customer or designer. One way to 
deal with software system composition is to apply software modeling and analysis techniques that 
ensure the software operates according to a specification [1]. This model checking process requires 
a formal model for each software component, typically some finite state machine, and a 
specification language (e.g. LTL [19] or CTL [5]) that captures system requirements. An analysis 
tool consumes these two components and applies an algorithm to determine if the desired 
specification was met by the software component. More sophisticated models of software 
components were developed to handle concurrent, communicating systems, such as the 
communicating sequential process language [10] and calculus of communicating systems [14]. 
These new modeling paradigms introduced the notion of bisimulation to determine the semantic 
equivalence of one process to another process. 
 

Since CPS have major software components, they inherit the same model checking 
challenges as pure software, but make the problem more complex through interactions with sensor 
and actuator hardware as well as heterogeneous communication systems. More recent research has 
built new CPS software analysis and synthesis tools that target individual components of the 
system. One important extension from the model checking community is the development of 
approximate bisimulation, e.g. [8, 9, 24]. This work allows the comparison between dynamical 
systems to determine if they have similar behavior within some error bound. Approximate 
bisimulation has been applied to software controller analysis [11] and synthesis [13]. 

 
The contribution of this paper is the TeamBlocks framework that facilitates the correct 

construction of cyber-physical systems from source code to collections of systems. We model 
software and systems using a modified hybrid automata and leverage recent advances in interface 
controllers, e.g. [6], to link together modules at each step in the abstraction hierarchy. Furthermore, 
approximate bisimulation is used to generate behavioral certificates for implemented controllers 
and compositions across abstraction layers such that they approximately match their theoretical 
design. By integrating these theoretical tools across each abstraction boundary in the CPS 
hierarchy, TeamBlocks guarantees the correct operation of the composed system within user 
specified bounds, or it detects that the composition fails. 
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Section 3 introduces TeamBlocks’s core concepts and models. Section 4 discusses our 

modeling assumptions and applies the work in Section 3 to model software and systems. The 
construction of behavioral certificates is presented in Section 5 and the simulation results for a 
candidate pair of systems are demonstrated in Section 6.3. We conclude with a discussion of our 
simulation results and potential research extensions in Section 9. 
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Chapter 2: Use Cases 
 
Before proceeding with formal definitions, it will be helpful to point out a few of the use cases that 
we have in mind for TeamBlocks’ software tools, and for the development of the underlying theory, 
so that we can see where we are headed. 

Example: Generate model from C++ source code. Suppose we have developed a controller to 
be implemented on an embedded system. The implementation has been written in C++. Now we 
would like to perform further analysis of the system, based on this C++ controller implementation, 
including whatever quirks it may have. To achieve this, our first step is to generate a model of the 
C++ implementation that can be used with the rest of the analysis tools. For a supported subset of 
C++ code, TeamBlocks provides exactly this automatic model extraction capability. Give it code; 
it returns a hybrid automaton model. 

Example: Compose and execute models. Suppose next that we are interested in assembling larger 
systems out of smaller ones, so that we can understand how the larger system (or system of 
systems) behaves. TeamBlocks provides tools to do this as well, and to prove properties of that 
larger system. That is, TeamBlocks provides tools for composition and execution of hybrid 
automaton models formed from smaller ones. 

Example: Check execution against specification. If we have a specification for how a system 
ought to behave, we would like to test whether a real system actually satisfies that specification. 
TeamBlocks provides a Runtime Validator that does this for a class of specification described using 
Linear Temporal Logic (LTL). 

Example: Use provided models. If we simply wish to model a system-of-systems without starting 
from scratch, TeamBlocks provides a small library of useful models for example, of vehicles that 
can be used within the framework. These are described using the same, unified representation as 
software and other systems. 

Example: Verify abstraction. As systems are composed, the dimensions of their state spaces are 
multiplied, and, as a result, one often runs quickly into problems of extremely large state spaces. 
We use abstraction to combat this complexity, by verifying that a complicated system actually 
behaves like another, simpler system, to within an approximation bound.  Given two systems, we 
would like an automatic proof that the more complicated system actually does behave 
approximately like the simpler one from an input-output perspective. 
 
As part of TeamBlocks, we have investigated problem formulations and developed prototypes that 
automatically search for proofs that the one system does in fact approximate the other. 

With these motivating examples in mind, we in the next chapter jump into a description of 
TeamBlocks’ underlying modeling framework. 
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Chapter 3: Modeling Framework 

3.1 Generalized Hybrid Automata 
TeamBlocks requires a modeling paradigm that can describe both control software, which typically 
has discrete time and state, and physical systems (e.g., the aerodynamics of a UAV), which are 
typically modeled with continuous time and state. Our approach is to use a single hybrid-
automaton representation for both. In particular, we use a kind of controlled hybrid automaton with 
output map, which we refer to throughout as the generalized hybrid automaton (GHA). Its 
definition follows: 

Definition 1. Let a generalized hybrid automaton (GHA) be defined as the tuple 

A = (Q,X,U,Y,Σ,F,H,E,Φ,R) 

consisting of: 

• a finite set Q = {q1,...,q|Q|} of modes, 

• a set X = {Xq}q∈Q, where Xq ⊂ Rdq, dq ∈ Z+ 

• a set U ⊂ Rm of admissible control inputs, 

• a set Y ⊂ Rp of possible outputs, 

• a finite set Σ of synchronization labels, 

• a set F = {fq}q∈Q of vector fields fq : Xq × U → Xq, 

• a set H = {hq}q∈Q of output maps hq : Xq → Y , 

• a set E ⊂ Q1 × Q × Σ of labeled edges where each edge e = (s,d,σ) ∈ E has the following 
components , 

• a set Φ = {φe}e∈E of guard functions, φe : Xs × U → RdimΦe(Xs,U) 

• a set R = {Re}e∈E of reset functions, Re : Xs × U → Xd 

• an initial condition W0 ⊂ { (q,x)|q ∈ Q,x ∈ Xq}. 
 

The GHA state space is the set W = {(q,x)|q ∈ Q,x ∈ Xq}. We say that an edge e ∈ E is active 
at time t whenever all elements of φe(x(t)) ≥ 0 during the execution; the system may 
nondeterministically transition, via its reset map, along any edge whenever that edge is active. 

                                                 
 
 

1 We use the subscripts s and d as shorthand for source and destination modes. 
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An execution of a GHA is a function 𝑤𝑤 = (𝑞𝑞, 𝑥𝑥):ℝ+ → 𝑊𝑊, such that 𝑤𝑤(0) ∈ 𝑊𝑊0, and there 
exists a sequence of times 𝑇𝑇 = {𝑡𝑡1, 𝑡𝑡2, … } ⊂ ℝ+ such that for each interval [𝑡𝑡𝑘𝑘, 𝑡𝑡𝑘𝑘+1) ∈
{[0, 𝑡𝑡1), [𝑡𝑡1, 𝑡𝑡2), … } the following equations hold for all 𝑡𝑡 ∈ [𝑡𝑡𝑘𝑘, 𝑡𝑡𝑘𝑘+1): 

𝑥𝑥(𝑡𝑡) = 𝑥𝑥(𝑡𝑡𝑘𝑘) + � 𝑓𝑓
𝑡𝑡𝑘𝑘+1

𝑡𝑡𝑘𝑘
(𝑞𝑞(𝜏𝜏))(𝑥𝑥(𝜏𝜏),𝑢𝑢(𝜏𝜏))𝑑𝑑𝜏𝜏

𝑞𝑞(𝑡𝑡) = 𝑞𝑞(𝑡𝑡𝑘𝑘)
𝜙𝜙(𝑠𝑠,𝑑𝑑)(𝑥𝑥(𝑡𝑡),𝑢𝑢(𝑡𝑡)) < 0, ∀(𝑠𝑠,𝑑𝑑) ∈ 𝐸𝐸 s. t.  𝑠𝑠 = 𝑞𝑞(𝑡𝑡)

 

For each 𝑡𝑡𝑖𝑖 ∈ 𝑇𝑇, there exists (𝑠𝑠, 𝑑𝑑) ∈ 𝐸𝐸 such that 𝑞𝑞(𝑡𝑡𝑘𝑘−) = 𝑠𝑠, 𝑞𝑞(𝑡𝑡𝑘𝑘) = 𝑑𝑑, 𝑥𝑥(𝑡𝑡𝑘𝑘) =
𝑅𝑅(𝑠𝑠,𝑑𝑑)(𝑥𝑥(𝑡𝑡𝑘𝑘−),𝑢𝑢(𝑡𝑡𝑘𝑘−)), and 𝜙𝜙(𝑠𝑠,𝑑𝑑)(𝑥𝑥(𝑡𝑡𝑘𝑘−),𝑢𝑢(𝑡𝑡𝑘𝑘−)) = 0.2 

We define polynomial GHA, denoted AP, as the subclass of GHAs for which the mappings 
within F,H,Φ, and R are finite polynomials, and W0 is a sub-level set of a finite polynomial. 

3.2 Composition Operators 
Asynchronous Composition of GHA 

The TeamBlocks analysis operations require the definition of an asynchronous product for two 
given GHA. We adapt the standard asynchronous product between two discrete automata (e.g. [3, 
17]): 

Definition 2. Given two GHAs, 
𝐴𝐴1 = (𝑄𝑄1,𝐗𝐗1,𝑈𝑈1,𝑌𝑌1,𝛴𝛴1,𝐅𝐅1,𝐇𝐇1,𝐸𝐸1,𝛷𝛷1,𝐑𝐑1,𝑊𝑊1,0)
𝐴𝐴2 = (𝑄𝑄2,𝐗𝐗2,𝑈𝑈2,𝑌𝑌2,𝛴𝛴2,𝐅𝐅2,𝐇𝐇2,𝐸𝐸2,𝛷𝛷2,𝐑𝐑2,𝑊𝑊2,0) 

their asynchronous product, 𝐴𝐴1||𝐴𝐴2, is composed of 

• mode set 𝑄𝑄 = 𝑄𝑄1 × 𝑄𝑄2 

• continuous state space 𝐗𝐗 = {𝑋𝑋1,𝑞𝑞1 ⊕ 𝑋𝑋2,𝑞𝑞2}(𝑞𝑞1,𝑞𝑞2)∈𝑄𝑄 where is ⊕ the direct sum. 

• labels 𝛴𝛴 = 𝛴𝛴1 ∪ 𝛴𝛴2 

• initial condition 𝑊𝑊0 = {(𝑞𝑞, 𝑥𝑥)|𝑞𝑞 ∈ 𝑄𝑄1,0 × 𝑄𝑄2,0, 𝑥𝑥 ∈ 𝑋𝑋1,0 ⊕ 𝑋𝑋2,0} 

• edges from the union of three sets: 

– 𝐸𝐸12 = {((𝑠𝑠1, 𝑠𝑠2), (𝑑𝑑1, 𝑠𝑠2),𝜎𝜎)|(𝑠𝑠1,𝑑𝑑1,𝜎𝜎) ∈ 𝐸𝐸1 ∧ 𝜎𝜎 ∈ 𝛴𝛴1\𝛴𝛴2 ∧ 𝑠𝑠2 ∈ 𝑄𝑄2} (Advance 𝐴𝐴1 
but not 𝐴𝐴2) 

                                                 
 
 
2 For notational convenience, we let 𝑔𝑔(𝑡𝑡𝑘𝑘−) denote lim𝜏𝜏→0𝑔𝑔(𝑡𝑡 − 𝜏𝜏) for any given function 𝑔𝑔. 
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– 𝐸𝐸12 = {((𝑠𝑠1, 𝑠𝑠2), (𝑠𝑠1,𝑑𝑑2),𝜎𝜎)|(𝑠𝑠2,𝑑𝑑2,𝜎𝜎) ∈ 𝐸𝐸2 ∧ 𝜎𝜎 ∈ 𝛴𝛴2\𝛴𝛴1 ∧ 𝑠𝑠1 ∈ 𝑄𝑄1} (Advance 𝐴𝐴2 
but not 𝐴𝐴1) 

– 𝐸𝐸12 = {((𝑠𝑠1, 𝑠𝑠2), (𝑑𝑑1,𝑑𝑑2),𝜎𝜎)|(𝑠𝑠1,𝑑𝑑1,𝜎𝜎) ∈ 𝐸𝐸1 ∧ (𝑠𝑠2,𝑑𝑑2,𝜎𝜎) ∈ 𝐸𝐸2} (Advance 𝐴𝐴1 and 𝐴𝐴2 
together) 

• guard functions for the three cases, 

– 𝐴𝐴1 guard condition: 

𝜙𝜙𝑒𝑒((𝑥𝑥1, 𝑥𝑥2)) = 𝜙𝜙1,(𝑠𝑠1,𝑑𝑑1,𝜎𝜎)(𝑥𝑥1) ∀𝑒𝑒 ∈ 𝐸𝐸12 

– 𝐴𝐴2 guard condition: 

𝜙𝜙𝑒𝑒((𝑥𝑥1,𝑥𝑥2)) = 𝜙𝜙2,(𝑠𝑠2,𝑑𝑑2,𝜎𝜎)(𝑥𝑥2) ∀𝑒𝑒 ∈ 𝐸𝐸12 

– Conjunction of 𝐴𝐴1,𝐴𝐴2 guard conditions: 

– 𝜙𝜙𝑒𝑒((𝑥𝑥1,𝑥𝑥2)) = (𝜙𝜙1,(𝑠𝑠1,𝑑𝑑1,𝜎𝜎)(𝑥𝑥1),𝜙𝜙2,(𝑠𝑠2,𝑑𝑑2,𝜎𝜎)(𝑥𝑥2))∀𝑒𝑒 ∈ 𝐸𝐸12 

• and reset maps for the three cases, 

– 𝑅𝑅𝑒𝑒((𝑥𝑥1,𝑥𝑥2)) = (𝑅𝑅1,𝑞𝑞1(𝑥𝑥1),𝑥𝑥2) ∀𝑒𝑒 ∈ 𝐸𝐸12 

– 𝑅𝑅𝑒𝑒((𝑥𝑥1,𝑥𝑥2)) = (𝑥𝑥1,𝑅𝑅2,𝑞𝑞2(𝑥𝑥2)) ∀𝑒𝑒 ∈ 𝐸𝐸12 

– 𝑅𝑅𝑒𝑒((𝑥𝑥1,𝑥𝑥2)) = (𝑅𝑅1,𝑞𝑞1(𝑥𝑥1),𝑅𝑅2,𝑞𝑞2(𝑥𝑥2)) ∀𝑒𝑒 ∈ 𝐸𝐸12. 

When a pair of GHA, 𝐴𝐴1,𝐴𝐴2, have inputs and outputs, say 𝑈𝑈1,𝑈𝑈2 and 𝑌𝑌1,𝑌𝑌2 respectively, we 
need to take care that the asynchronous composition properly handles the dimensionality 
requirements connecting these systems. To handle this operation, we develop a feedback 
operator from one GHA to another. 

Feedback Operator  

Given a product of automata, we will often want to define the connection of its outputs to its inputs. 
For this purpose, it will be useful to define a class of simple selection operators Π{i1,...,ik} : Rj → Rk, 
k ≤ j, that return a subset of a vector’s elements. With this operator, we define a (partial) feedback 
map to be a function KI,J : ΠIY → ΠJU, |I| = |J|, that maps components (specified by index set I) of 
the output in Y , to corresponding components (specified by J) of the input in U. Given an 
automaton A and a feedback map KI,J, we get new vector fields at all modes by composing fq and 
K as well as new passports and transforms by composing φe and Re with K. 
 

3.3 Timing 
The hybrid automaton model defined in the previous section can describe a variety of event-
triggered systems. As a special case, this includes discrete-time digital control systems with regular 
sample intervals. In this section, we describe how this is modeled by means of a clock automaton 
(Figure 1). Clocks and time will appear in more detail in the next chapter. 
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Figure 1 The clock automaton is a polynomial hybrid automaton that, when composed with a 
controller model via asynchronous product, defines the passage of time and the sample rate ρ. Its 
modes {1,2} = 𝑄𝑄 have continuous state space 𝑋𝑋1 = 𝑋𝑋2 = 𝑋𝑋 = ℝ × ℝ ∋ (𝑡𝑡, 𝑥𝑥), where 𝑡𝑡 is the 
physical time, and 𝑥𝑥 is the state of a triangle oscillator. 
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Chapter 4: Modeling Software Dynamics 
 
TeamBlocks uses the polynomial variant of Definition 1 to model control software. This approach 
is similar in essence to the work of [22]; however, by using the full generality of hybrid automata, 
it is possible to leverage approximate bisimulation for validation. This section describes and 
illustrates how polynomial GHA model software components as well as how the models are 
automatically generated from C/C++ source code. 

4.1 Modeling Assumptions 
Figure 2 presents the assumed control architecture that runs software controllers. It is assumed that 
software controllers are non-blocking functions deployed within a timed process that executes 
every T seconds. However, operations that access hardware, such as the A/D or D/A, may be a 
blocking operation through their software APIs. The sample period sets the rate at which the 
system A/Ds digitize the output signal for control code consumption. Once the newly sampled data 
is provided to the software controller, it executes as quickly as possible according to the system’s 
processor clock. The control algorithm computes a new value that is written to the D/A for 
conversion into an actuator signal. 

 

Figure 2  A diagram of the assumed control software execution when deployed on the 
cyberphysical system. 

Modern software controllers are typically implemented on embedded systems with short 
instruction periods (µs to ns) using a zero-order-hold strategy. For example, an unmanned aerial 
vehicle autopilot running on a 900 MHz Raspberry Pi 23 can easily satisfy control loop periods on 
the order of 10−3s. Thus, we assume that the time to execute a piece of control code, ∆t, is much 
less that the control loop period, T. Figure 2 visualizes the parallel execution of control software 
with system dynamics by using the notion of superdense time [12]. 
 

                                                 
 
 

1 https://www.raspberrypi.org/ 
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Figure 3: An illustration of how superdense time models the execution of a software controller 
between autopilot sample times. When a control loop is intiated at its next sample period, the 
code executes instantaneously along the steps along the index set N. The control value is then 

written to the actuator and held until the next sample time. 

Superdense time is the set S = R × N where R is a real valued clock and N ⊂ N≥0 is a finite subset 
of indices. The continuous portion of system state, x(t), evolves along the physical time axis, t. 
The software controller state, xc, evolves along the code execution axis, n, where each instruction 
is a discrete step. Consider the sample time kT in Figure 4.2, where a sensor provides new data to 
the control software routine. The computer executes each line of the routine at an index value from 
the code execution time line. When the control calculation routine completes, it writes the actuator 
value for that sample time, u(kT), to the memory location used to set actuator speed or position. 
This actuator value will be held until the next sample time, (k + 1)T, and the software controller 
executes again along its discrete axis. 

Note that this model of software controller execution is not limited to directly interfacing 
software and hardware. It can also capture higher level control algorithms that read (write) from 
(to) data channels. For example, a multi-agent consensus algorithm might block on a queue that 
provides new neighbor and local state information. The consensus software would compute the 
resulting control value as soon as the new data arrives in the queue. If this data is provided at a 
regular interval, the algorithm’s execution would operate in a similar way to the hardware example 
above. 

4.2 Generating Dynamical Models of Code 
The authors of [22] developed a graphical model of software and created an algorithm to analyze 
it for runtime behavior. However, there was no process to ingest controller code written in a general 
purpose language and automatically create a model. Figure 4.3 shows the process that translates 
source code written in C/C++ into a polynomial hybrid automata. The LLVM compiler, clang, 
compiles the source le into LLVM’s intermediate representation (IR) bytecode. The intermediate 
gha application builds the polynomial GHA model by processing a subset of the IR instruction set 
to build the elements in Definition 1. To facilitate analysis of GHA by future downstream tools, 
the GHA Model output is generated using a protocol buffer schema2 

 
2https://github.com/google/protobuf 
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IR bytecode les produced by clang represent a hierarchy of program objects: modules, 

functions, basic blocks, and instructions. Modules are the highest level of IR and maintain a list of 
Figure 4: The internal process for TB Generator that turns controller source code into a polynomial 
GHA. 

functions; consequently, each function has a list of instructions. Basic blocks are support 
structures that contain a sequence of instructions that have no branching operations. The gha 
application processes a single module by inspecting each function’s IR instructions in order of 
execution. 

We map sequences of instructions that do not branch, or call other functions, into a single mode. 
Each program variable that is assigned on the stack becomes a state variable for that mode. Using 
this modeling approach, we assume that there are no dynamics within a mode; instead, state 
variables evolve through the reset functions along each edge of the produced model. The GHA 
captures branching behavior by converting comparison instructions into guard functions. The 
inputs and outputs of a software model are indicated through function calls that read or write 
hardware registers. For example, a function sync_in() might perform a blocking read from the 
A/D in Figure 4.1. These synchronization functions also generate the events contained in Σ. All 
other edges in the model receive the empty label, ∈, indicating that no synchronization is required 
on that edge. 

4.3 Code to Model Example 
We apply the modeling discussion of the prior section to the example code snippet in Figure 4.4, 
which increments an integer value, a, from 0 to 9. A diagram of the automatically generated hybrid 
model is shown in Figure 4.5. 
 

 
Figure 4: A simple for-loop code snippet ingested by the TB Model Generation process. 
 
 
The formal hybrid automata model, Afor, for this source code is generated by applying Definition 
1 over the IR code that follows the requirements described in Section 4.2. This code has five modes, 
Q = {q0,··· ,q4}, five edges,  

; and a state space 
set X composed of: 

Source  
Code 

LLVM 
clang 

IR  
Code gha 

GHA 
Model 



Approved for Public Release; Distribution Unlimited.  
11 

 
 

 
 
 
Note that the state variable retval represents the return status of the main() process. This model 
has no inputs or outputs, so U = Y = ∅ and H = ∅ . Since there are no synchronization labels, all 

 
Figure 5: The polynomial hybrid automata that is automatically generated from the source code 

in Figure 4. 

edges have the empty label, . Then the guard function set is given by: 

𝛷𝛷 = {𝜙𝜙𝑒𝑒0 = 1,𝜙𝜙𝑒𝑒1 = 𝙽𝙽 − 𝚒𝚒,𝜙𝜙𝑒𝑒2 = 𝚒𝚒 − 𝙽𝙽,𝜙𝜙𝑒𝑒3 = 1,𝜙𝜙𝑒𝑒4 = 1} 

Based on the assumptions described in Section 4.2, the physical dynamics of each mode are 
fq = 0, ∀q ∈ Q. The software state variables are transformed by a set of reset functions, R, 
associated with each edge: 
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Chapter 5: Simulations and Abstraction 
 
5.1 Motivation 
The TeamBlocks model generation and validation process is illustrated in Figure 6. The TB 
Model Generator component accepts software controller source code, such as PID or consensus 
algorithms. Using the LLVM4 compiler infrastructure, this component translates C or C++ 
source code into a hybrid dynamical model, which is presented in Section 3.1. 

The TB Validator consumes the hybrid automata models for the source code and its ideal 
description. It uses sum-of-squares (SOS) optimization [16, 20] algorithms to 1) generate an 
approximate bisimulation function as a behavioral certificate, or 2) report that the code is invalid 
based on the requirements. Although this paper is focused on the validation of implemented 
source code against its ideal model, the TB Validator may operate over any pair of models that 
conform to the definitions presented in Section 3.1. 

 

Figure 6: This figure illustrates the TeamBlocks model generation and validation process. 

The more precise sense in which one system can be made behave to like another one is called 
approximate (bi)simulation; we describe this next, beginning with the older concepts of exact 
simulation and bisimulation. 

5.2 Definitions 

5.2.1 Simulation and Bisimulation 
Informally, a transition system T2 can simulate a system T1, if there exists a memoryless 
controller for T2 that makes it input-output identical to T1. In symbols, we have: 
 
Definition 3 (Simulation). Let Q1,Q2 be the state spaces of T1,T2, respectively. A relation S ⊂ 
Q1 × Q2 is called a simulation relation of T1 by T2 is for all (q1,q2) ∈ S: 

• h1(q1) = h2(q2) 

• for all  there exists  such that . 

                                                 
 
 

4 http://llvm.org/ 
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If a simulation relation of T2 by T1 exists, then T1 is said to simulate T2. 

Translating back to words, such a relation S has the property that states can be associated between 
Q1,Q2, and inputs to T2 chosen, such that corresponding outputs of T2 are identical to outputs of T1. 
When we read there exists in the above definition, we can mentally substitute there exists a 
function to choose, or there exists a controller. 

Likewise, a bisimulation relation exists between T1 and T2 if T1 can simulate T2 and T2 can 
simulate T1, i.e.: 

Definition 4 (Bisimulation). Let Q1,Q2 be the state spaces of T1,T2, respectively. A relation S ⊂ 
Q1 × Q2 is called a bisimulation relation between T1 and T2 if for all (q1,q2) ∈ S: 

• h1(q1) = h2(q2) 

• for all  there exists  such that . 

• for all  there exists  such that . 

If a bisimulation relation between T2 and T1 exists, then T1 and T2 are said to be bisimilar. 

In other words, controllers exist to make either system input-output identical to the other. 

5.2.2 Approximate Simulation and Bisimulation 
In [8], closely-related definitions were introduced that allow for a greater degree of 
approximation. These modified definitions, appropriately-enough named approximate 
(bi)simulation, simply introduce a distance metric d and replace the exact equality h(q1) = h(q2) 
by the approximate equality . The definitions follow: 

Definition 5 (Approximate Simulation). Let Q1,Q2 be the state spaces of T1,T2, respectively. A 
relation S ⊂ Q1 × Q2 is called an -simulation relation of T1 by T2 is for all (q1,q2) ∈ S: 
• 𝑑𝑑(ℎ1(𝑞𝑞1),ℎ2(𝑞𝑞2)) ≤ 𝜖𝜖 

• for all 𝑞𝑞1 →𝜎𝜎 𝑞𝑞1′ there exists 𝑞𝑞2 →𝜎𝜎 𝑞𝑞2′ such that (𝑞𝑞1′,𝑞𝑞2′) ∈ 𝑆𝑆. 

If a 𝜖𝜖-simulation relation of 𝑇𝑇2 by 𝑇𝑇1 exists, then 𝑇𝑇1 is said to 𝜖𝜖-simulate 𝑇𝑇2. 

 

Definition 6 (Approximate Bisimulation). Let Q1,Q2 be the state spaces of T1,T2, respectively. 

A relation S ⊂ Q1 × Q2 is called a -bisimulation relation between T1 and T2 if for all (q1,q2) ∈ S: 

• 𝑑𝑑(ℎ1(𝑞𝑞1),ℎ2(𝑞𝑞2)) ≤ 𝜖𝜖 

• for all 𝑞𝑞1 →𝜎𝜎 𝑞𝑞1′ there exists 𝑞𝑞2 →𝜎𝜎 𝑞𝑞2′ such that (𝑞𝑞1′,𝑞𝑞2′) ∈ 𝑆𝑆. 

• for all 𝑞𝑞2 →𝜎𝜎 𝑞𝑞2′ there exists 𝑞𝑞1 →𝜎𝜎 𝑞𝑞1′ such that (𝑞𝑞1′,𝑞𝑞2′) ∈ 𝑆𝑆. 

If a 𝜖𝜖-bisimulation relation between 𝑇𝑇2 and 𝑇𝑇1 exists, then 𝑇𝑇1 and 𝑇𝑇2 are said to be 𝜖𝜖-bisimilar. 
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As [8] argues, the importance of the newer approximate definitions is that they enable 
additional abstraction. In short, the relaxed definition may allow a system to get away with using 
fewer states to approximate a more complicated system, than it would have needed to exactly 
simulate it. For our purposes in TeamBlocks, it is primarily simulation that will be of importance. 
We will look for controllers that cause a complicated system to approximately simulate a simpler 
one and we will look for certificates that the approximate simulation relation actually exists. 

5.2.3 Simulation Functions 
Our certificate that one system really does approximately simulate another one will take the 
form of a simulation function. These are scalar-valued functions of the states of the two systems, 
which upper-bound the error that may possibly be seen. More precisely: 

Definition 7 (Simulation Function). A function V : Q1 × Q2 is a simulation function if, 

  .  (5.1) 

If we have a function V : Q1 ×Q2, we can easily verify that it is indeed a simulation function, 
by performing a local test at each joint state (q1,q2). In this sense a simulation function is much 
like a Lyapunov function it’s difficult to find but easy to test, and it implicitly carries global 
information about the dynamical system. 

 
If (5.1) holds with equality, then we arrive at a system of Bellman-like inequalities, and V is 

known as the directed branching distance. Like the optimal Value Function, it can be computed 
by Value Iteration, but this can only be done in finite-state systems, and the Curse of 
Dimensionality makes this impractical in all but the smallest of these. Thus, we will need to find 
a better way to search for simulation functions. This will be the topic of the next chapter but 
first, we make one additional simplification. 

5.2.4 The Interface Controller and the Error System 
If we fix a choice of controller 5 K : Q1 × Σ −→ Q2, then (5.1) becomes, 

  . (5.2) 

Equivalently, we form a new system T by first (a) forming the product system T1 × T2, then (b) 
applying the feedback interconnection operator with feedback map K, and finally (c) defining 
the output function h(q) = d(q1,q2), at which point, letting Q = Q1 ×Q2 be the state space of T, 
(5.2) can be expressed, 

                                                 
 
 

5 K is called the interface controller because it causes T2 to satisfy the interface defined by T1. 
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  . (5.3) 

The transition system T is illustrated by Figure 7. In short, for any choice of interface controller 
K we will have an upper bound on the directed branching distance (and thus a simulation 
function), and, fixing that choice of controller, the problem reduces to bounding the output of 
the error system T. We will tackle this problem with Sum of Squares optimization in the next 
chapter. 
 

 

Figure 7: The error system T is formed through a product of the complicated system T2 with 
the simple (or abstract) system T1, and its feedback interconnection with an interface 

controller K. 

  

Interface 
Controller 

Complicated 
System 

Simple 
System 

- 
≤ ϵ ∈ u U y 



Approved for Public Release; Distribution Unlimited.  
16 

 
 

Chapter 6: Sum of Squares 
In an effort to tame the Curse of Dimensionality, in this chapter we will attempt to search for 
polynomial simulation functions, given a fixed choice of interface controller. To do this, we will 
form a convex relaxation (really a stricter, sufficient problem), that in principle will allow us to 
efficiently search for these polynomials by solving a convex optimization problem. If we 
succeed in finding such a polynomial, then we will have an easily-checked certificate that one 
system -simulates another. (If on the other hand the optimization is infeasible, then we will have 
proven nothing.) The method by which we search for these polynomials is known as Sum of 
Squares programming an efficient method for finding positive polynomials. 

6.1 Introduction 
A  polynomial  p  in  one  or  more  variables  is  a  sum  of  squares (SoS)  if  it  is of the form 

  (6.1) 

where N ≥ 1 and p1,...,pN are arbitrary polynomials. Clearly, such a polynomial is everywhere 
positive. What is more interesting, however, is that whereas it is NP-hard to test whether an 
arbitrary multivariate polynomial is pointwise positive, one can test whether it is a sum-of-
squares in polynomial time by solving a semidefinite program (SDP). Thus SoS-ness is, in the 
general (i.e. multivariate) case, a sufficient but not necessary condition for positivity. Our 
approach, then, will be to form systems of polynomial inequalities, to turn these into positivity 
constraints on polynomials, and to then to replace those positivity constraints by sufficient (but 
not necessary) SoS constraints. In fact, the procedure for converting SoS constraints to SDP 
constraints is relatively simple: 
 

Given an appropriately-large 6 vector b = (b1,...,bn) of basis polynomials (e.g., monomials to 
sufficient degree), p is a sum-of-squares if and only if 

 p = bTSb (6.2) 

for positive-semidefinite (PSD) matrix 𝑆𝑆 = 𝑆𝑆𝑇𝑇 ≻ 0. Thus, constraints that polynomials be SoS, 
can quickly be reduced to constraints that real matrices be PSD. 
 
6.2 Simulation Function Search 
Our algorithm will take the following form: 

1. Form product automaton of model (in feedback with interface controller) with 
abstraction. 

                                                 
 
 

6 There are a number of techniques for reducing the number of basic elements needed, e.g. by exploiting properties of the 
Newton Polytope; for more information, see [20]. 
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2. Define error output polynomial for the product automaton e.g. h2(x2) − h1(x1). 

3. Choose a polynomial basis (e.g., monomials) in which to search for a candidate 
simulation function. 

4. Generate constraints to link (the coefficients of) various polynomial-valued decision 
variables. 

5. Solve a convex program for the polynomial coefficients. 

The main question arises at step 4: What constraints should be formed to define a simulation 
function for a polynomial hybrid automaton? And what decision variables will we need to 
define? We answer these questions next. 

6.2.1 The Optimization Problem 
 
Decision variables: For each mode 𝑞𝑞 ∈ 𝑄𝑄, we define a polynomial decision variable 𝑉𝑉𝑞𝑞; 
together these describe the hybrid simulation function (𝑥𝑥, 𝑞𝑞) ↦ 𝑉𝑉𝑞𝑞(𝑥𝑥). (The degree of the 𝑉𝑉𝑞𝑞 is 
an algorithm parameter.) Additionally, following the s-procedure, we define for each edge 𝑒𝑒 ∈
𝐸𝐸 a “Lagrange multiplier” polynomial 𝑆𝑆𝑒𝑒 (again with some chosen degree). Finally, we also 
introduce a scalar decision variable 𝛾𝛾 > 0 to upper-bound the simulation function. 

Mode constraints: For each mode 𝑞𝑞 ∈ 𝑄𝑄, we define constraints that the following polynomials 
be SoS: 

𝑉𝑉𝑞𝑞(𝑥𝑥) − ℎ𝑞𝑞(𝑥𝑥)𝑇𝑇ℎ𝑞𝑞(𝑥𝑥) The simulation function upper− bounds the instantaneous error
𝑑𝑑𝑉𝑉𝑞𝑞
𝑑𝑑𝑥𝑥

(𝑥𝑥)𝑓𝑓𝑞𝑞(𝑥𝑥) The simulation function is non − decreasing within a mode

𝛾𝛾 − 𝑉𝑉𝑞𝑞(𝑥𝑥) 𝛾𝛾 upper− bounds the simulation function

 

Edge constraints: For each edge 𝑒𝑒 = (𝑠𝑠,𝑑𝑑) ∈ 𝐸𝐸, we define constraints that the following 
polynomials be SoS: 

𝑉𝑉𝑠𝑠(𝑥𝑥) − 𝑉𝑉𝑑𝑑(𝑅𝑅𝑒𝑒(𝑥𝑥)) + 𝑆𝑆𝑒𝑒(𝑥𝑥)𝛷𝛷𝑒𝑒(𝑥𝑥) Meaning: 𝛷𝛷(𝑥𝑥) ≥ 0 ⇒ 𝑉𝑉𝑠𝑠(𝑥𝑥) ≥ 𝑉𝑉𝑑𝑑(𝑅𝑅𝑒𝑒(𝑥𝑥)) 

𝑆𝑆𝑒𝑒(𝑥𝑥) 

Optimization Problem: Solve, 

 min
{𝑉𝑉𝑞𝑞}𝑞𝑞∈𝑄𝑄,{𝑆𝑆𝑒𝑒}𝑒𝑒∈𝐸𝐸,𝛾𝛾

𝛾𝛾 (6.8) 

subject to the preceding constraints. 
 
 
6.3 Example 
Simulation-function certificate generation was demonstrated by comparing two relatively 
simple two-well polynomial systems of the form, 
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for polynomials U1,U2 (potential functions), scalar ζ > 0 (damping factor), and control input u 
(force). The system is illustrated in Figure 6.1; in this case, the polynomials were given by, 

 .  

After the parallel composition of Systems 1 and 2, the certificate polynomial V was 
computed by sum-of-squares optimization. For a polynomial basis, all monomials of order less 
than or equal to 8 were used. The YALMIP frontend was used to generate SoS constraints, and 
the SDPT3 was used to solve the resulting convex optimization problem. 

The resulting certificate polynomial V of the joint state (x1,v1,x2,v2) has 495 terms, a few of 
which are shown below, together with global upper bound γ on the error, obtained via SoS 
constraints: 

V (x) = 20.00081495 − 0.0027x1 + 0.0033v1 + ··· − 1.7699e − 05x2v2
7 − 4.5964e − 06v2

8  

γ = 20.2882 

The polynomial V is plotted in Figure 9. 

 

Figure 8: Two similar polynomial potential wells 

 
A few things are worth noting. First, we are able to compute a certificate polynomial; and, 

moreover, we obtain a global upper bound for the error between the two systems (20.2882). 
However, note also how ill-conditioned the problem is when using this monomial 
representation: Products of 
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Figure 9: The simulation function polynomial V for the two-well system 

very small numbers (e.g. 4.5964e-06) with large powers (in this case ) appear. This quickly 
starts to present difficulties for the interior point solvers (e.g. SDPT3) that we use, and as a 
result the technique will require modifications for use on larger problems. In particular, future 
research may investigate the use of other polynomial and trigonometric bases. 
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Chapter 7: Modeling Vehicles and Teams 
 

7.1 Models Overview 
In this section, we describe a collection of continuous-time state-space models that are 

provided as reference models for use with the TeamBlocks Framework. The models provided in 
the current version are tailored for TeamBlocks Demonstration 1 (scheduled for December 2015) 
and are intended to form the basis of a hierarchy of abstraction in multiagent systems that spans 
low-level vehicle dynamics to higher-level team behaviors. 

Each of the examples that follows has a single mode of operation, which maps to a single Mode 

in the TeamBlocks schema, without any edges. The dynamics are represented by the Mode’s 
vector_field field, which describes a polynomial that is the right hand side of an ordinary 
differential equation (ODE) in the state and input variables. 

7.2 Vehicle Models 
Here, we describe vehicle models that appear in TeamBlocks Demonstration 1 abstraction 

hierarchy. 
We begin with the simplest, highest-level kinematic descriptions of vehicles as integrators, and 

finish with more complicated models of ight dynamics, before proceeding to team abstractions that 
aggregate these models into larger formations. 

7.2.1 Cartesian Single-Integrator 
Summary The single-integrator is the simplest kinematic vehicle abstraction. It is useful in 

situations when dynamics can, relative to the required tolerances, be entirely abstracted by 
lowerlevel controllers. This model allows the application of the extremely well-developed tools of 
linear control theory. 

Parameters  Models in this class are parameterized by the spatial dimension n ∈ { 2,3}. 

Modes   The system consists of a single mode. 

Inputs   The input to the system is an instantaneous velocity command u ∈ Rn = U. 

State Space The state x ∈ X = Rn of the vehicle is its n-dimensional position in Euclidean space. 
 
Dynamics  The position x ∈ X evolves according to the rst-order linear ODE x˙ = u. 

7.2.2 Cartesian Double-Integrator 
Summary The double-integrator is used to abstract vehicles in cases when their acceleration 

is bounded but their orientation is unimportant. As in the single-integrator case, systems that can 
be abstracted to this model can be treated with the many tools of linear control theory. 

Parameters   Models in this class are parameterized by the spatial dimension n ∈ { 2,3}. 
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Modes   The system consists of a single mode. 

Inputs   The input to the system is an instantaneous acceleration command u ∈ Rn = U. 

State Space The state space X = Rn × Rn 3 (p,v) consists of n-dimensional positions and velocities. 

Dynamics   The state evolves simply according to the linear ODE, 

p˙ = v  

v˙ = u . 

7.2.3 SE(2) Integrator 
 
Summary The SE(2) integrator is a kinematic model of a nonholonomic vehicle in two-
dimensional space. It is used to abstract ground vehicles, surface vessels, and fixed-wing aircraft 
constrained to constant-altitude flight. 

Modes The system consists of a single mode, containing the ODEs described in the next 
paragraphs. 

Inputs An input u = (v,ω) ∈ R2 = U to the system consists of a (signed) speed command v, together 
with a angular velocity command ω. 

State Space The state space X = R2 ×SO(2) 3 (p,R) of the system consists of all 2d rigid-body 
positions and orientations. 

Dynamics  The state evolves according to the ODEs, 

p˙ = vRe1 

R˙ = ωRJ 

where 

 

is the 90-degree rotation matrix (named J for its analogy to the imaginary number), and e1 = (1,0) 
is the rst element of the natural basis for R2. 
 

7.2.4 SE(3) Integrator 
 
Summary The SE(3) integrator is a simple kinematic model of a nonholonomic vehicle in three-
dimensional space. It is used to abstract fixed-wing aircraft and other vehicles (e.g., unmanned 
underwater vehicles (UUVs)) that perform three-dimensional maneuvers by steering. 
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Modes The system consists of a single mode, containing the ODEs described in the next 
paragraphs. 

Inputs An input u = (v,ω) ∈ R×R3 = U to the system consists of a (signed) speed command v, 
together with a angular velocity command ω. 

State Space The state space X = R3 × SO(3) ∼ SE(3) 3 (p,R) of the system consists of all 3d 
rigid-body positions and orientations. 

Dynamics   The state evolves according to the ODEs, 

p˙ = vRe1 

R˙ = RΩ 

where 

 

and e1 = (1,0,0) is the fi rst element of the natural basis for R3. 

 

7.2.5 Flight Model 
Summary This is a quasi-static model of 6-degree-of-freedom fixed-wing flight with 12 state 
dimensions. Quasi-static in this case means that the aerodynamic forces are entirely a function of 
the aircraft’s orientation and (angular and translational) velocity, as opposed to also depending on 
additional state possessed by the surrounding fluid. 

Modes The flight model described here consists of a single mode, 7 containing the equations of 
motion that are described next. 

Inputs The input space for the aircraft is U = R≥0 × R3; an input u = (uv,uω) consists of, 

• uv ∈ R≥0, the engine thrust, in units of force, and 

• uω = (ur,ue,ua) ∈ R3, the rudder, elevator, and aileron deflections, in radians. 
 

                                                 
 
 

7 We anticipate that subsequent models will capture piecewise features of lift and drag curves through separate glide and stall 
modes, each subject to different aerodynamic forces, and with a passport (or guard) dependent on the angle of attack. 
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State Space The state space of the aircraft is X = R3 × SO(3) × R3 × R3; states consist of 

• pI ∈ R3, the inertial position of the aircraft, 

• RIB ∈ SO(3), the rotation from the aircraft’s body frame to the inertial frame, 

• vB ∈ R3, the body velocity of the aircraft, and 

• ωB ∈ R3, the angular velocity of the aircraft in the body frame. 

The subscripts I and B are used above to denote inertial and body frames, respectively. 
Additionally, we denote by 
 

 
the cross-product matrix corresponding to ωB. 

Dynamics  The state variables evolve according to the ODEs, 

�̇�𝑝𝐼𝐼 = 𝑅𝑅𝐼𝐼𝐼𝐼𝑣𝑣𝐼𝐼
�̇�𝑅𝐼𝐼𝐼𝐼 = 𝑅𝑅𝐼𝐼𝐼𝐼𝛺𝛺𝐼𝐼
�̇�𝑣𝐼𝐼 = 𝑀𝑀−1(−𝛺𝛺𝐼𝐼𝑀𝑀𝑣𝑣𝐼𝐼 + 𝑓𝑓𝑣𝑣(𝑥𝑥) + 𝐺𝐺𝑣𝑣(𝑥𝑥)𝑢𝑢𝑣𝑣)
�̇�𝜔𝐼𝐼 = 𝐽𝐽−1(−𝛺𝛺𝐼𝐼𝐽𝐽𝜔𝜔𝐼𝐼 + 𝑓𝑓𝑤𝑤(𝑥𝑥) + 𝐺𝐺𝜔𝜔(𝑥𝑥)𝑢𝑢𝜔𝜔)

 

where, 

• 𝑓𝑓𝑣𝑣(𝑥𝑥) = 𝑓𝑓𝑣𝑣(𝑅𝑅𝐼𝐼𝐼𝐼, 𝑣𝑣𝐼𝐼,𝜔𝜔𝐼𝐼) and 𝑓𝑓𝜔𝜔(𝑥𝑥) = 𝑓𝑓𝜔𝜔(𝑅𝑅𝐼𝐼𝐼𝐼,𝑣𝑣𝐼𝐼 ,𝜔𝜔𝐼𝐼) are aerodynamic forces and moments, 
to be specified, 

• 𝑀𝑀 = 𝑚𝑚𝑚𝑚 ∈ ℝ3×3 for 𝑚𝑚 > 0 is the aircraft mass matrix, 

• 𝐽𝐽 = 𝐽𝐽𝑇𝑇 ≻ 0 ∈ ℝ3×3 is the body-frame inertia tensor about the aircraft center of mass 

• 𝐺𝐺𝑣𝑣(𝑥𝑥) = 𝐺𝐺𝑣𝑣(𝑅𝑅𝐼𝐼𝐼𝐼,𝑣𝑣𝐼𝐼 ,𝜔𝜔𝐼𝐼) ∈ ℝ3×1 and 𝐺𝐺𝜔𝜔 = 𝐺𝐺𝜔𝜔(𝑅𝑅𝐼𝐼𝐼𝐼, 𝑣𝑣𝐼𝐼,𝜔𝜔𝐼𝐼) ∈ ℝ3×3 are the decoupling 
matrices that relate control surface deflections to moments. 

The functions fv, fω, Gv, and Gω are required to be polynomial for use in the larger framework, and 
in particular in the Sum of Squares optimization. 

7.3 Team Abstractions 
When multiple vehicles are combined into a team or platoon, they are then controlled to behave as 
a single composite system, called the Team Abstraction. The Team Abstraction enables 
coordinated behavior among the agents, and, because it generally has lower state dimension than 
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the product of the vehicles’ states, it additionally helps to abstract or simplify the state space for 
planning and verification purposes. 
 

7.3.1 Formation Abstractions 
 
Summary The formation abstraction treats the formation as a single rigid body, together with a 
number of shape parameters that describe degrees of freedom e.g. the spacing of agents in a line, 
or the apex angle of a V formation. It is formed as a Cartesian product of an integrator in the shape 
parameters, with an SE(3) integrator, as described next. 8 

Parameters   A formation abstraction is parameterized on, 

• a number m ∈ N of degrees of freedom for the formation, 

• a set Q ⊂ Rm of possible shape parameters, and 

• a shape function g = (g1,...,gN) : Q =⇒ (R3)N, where N is the number of platforms. 

The example of a “V” formation is given later in this section. 

Modes   The system consists of a single mode. 

Inputs  An input u = (v,ω,ξ) ∈ R × R3 × Q = U to the system consists of a (signed) speed 

command v, an angular velocity command ω, and a shape velocity command ξ. 

State space   The state of the formation abstraction is a tuple x = (p,R,q) ∈ R3×SO(3)×Q = X. 

Dynamics   The formation abstraction’s state evolves according to, 

p˙ = vRe1 

R˙ = RΩ 

q˙ = ξ 

where again 

                                                 
 
 

8 More generally, a formation abstraction can be formed as a Cartesian product of (a) a model with any dynamics on the 
shape parameters (e.g., double or single integrator), and (b) a vehicle model whose state space contains an SE(3) subspace 
(e.g., the aircraft model). 
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Outputs  The formation abstraction generates an output . 
 

Example   The “V” formation on N platforms, as e.g. in Figure 7.1, is defined by, 

• m = 2 degrees of freedom, 

• shape parameters (θ,L) ∈ (0,π]×R≥0 = Q, that define the V angle and integrant spacing, 

respectively, and 

 

Figure 10: A formation abstraction for “V” -type formations. 

 
• the shape function g = (g1,...,gN) : Q =⇒ (R3)N, defined by 

 k > 1 is even 
 k > 1 is odd . 

Thus the “V” formation summarizes the state of N agents by a total of 8 state dimensions. 
 

  

L   

θ   
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Chapter 8: TeamBlocks Tools 
 
8.1 GHA Schema 
The tbautomaton command line tool interacts with the TeamBlocks Framework through a 
serialization schema, which provides the concrete realization of the abstract TB automaton. This 
section describes TeamBlocks’ first such schema. 

One motivation for providing a concrete serialization is that it allows the TeamBlocks 
Framework to support analysis tools implemented in multiple languages. In particular, while 
TeamBlocks now performs LLVM-based code analysis in C++, its current version performs 
bisimulation function computations separately in MATLAB using the SOSTOOLS toolbox for 
Sum of Squares programming. 

Typical choices for a serialization format include s-expressions, JSON, and Google Protocol 
Buffers (protobuf). Matlab and C++ both have industry and community support for Google 
Protocol Buffers and JSON; by using one of these formats, TB automaton models can be 
imported/exported using mature deserialization/serialization libraries. The current version of 
TeamBlocks, including the the tbautomaton program, therefore now supports a concrete protobuf 
serialization of the abstract TB automaton. We expect that other tools may interact with 
tbautomaton by reading TB automaton objects following the schema defined in this section. 

 
Polynomials Bisimulation function computation, using the Sum of Squares technique, assumes 
that systems and their controllers are formulated in terms of polynomial expressions. Thus, we 
define the Expression Schema, shown in Figure 12, together with its required components, to 
represent these polynomials. Polynomial expressions are naturally expressed in a tree structure 
where each node in the tree may be a binary operation, such as addition (+), a variable (x), or a 
numeric literal (1.0). For example, consider the simple two-variable polynomial p(x,y) := 2x + y. 
The tree structure for this polynomial is shown in Figure 11. The leaf nodes of the tree are always 
a variable or literal, i.e. 2, x, and y. The intermediate nodes represent sub-expressions of the total 
polynomial. 

Using these facts, we define the Expression Schema that is composed of one of the following: 
1) a BinaryOperator, 2) a double-valued literal, or 3) a string-valued variable. BinaryOperators are 
themselves composed of left and right operand Expressions as well as a mathematical Operator: 
+,−, or ×. These objects are all required to make a valid BinaryOperator object. 

Modes and Edges The TB automaton definition in Section 3 requires these polynomial Expression 
objects, as well as several other components. Figure 11 shows the schema for Modes and Edges 
that represent a TB automaton object. Each Mode object has an integer identifier, id, as well as 

 

Figure 11: A tree structure representing the expression 2x + y. 
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Figure 12: This diagram shows the structure of the Polynomial Schema used in the TeamBlocks 

Framework. Green colored blocks are optional fields. one or more Expression objects that 
represent the dynamics of the Mode. Edges maintain their source and destination Modes using 

the integers src_id and dest_id as well as a label string that may be used in synchronization 
operations. They must also contain a passport expression and one or more transformation 

expressions. 

Schema Realization in protobuf format The current TeamBlocks Framework realizes the schema 
concretely using the Google Protocol Buffers serialization library; the descriptor (.proto) is shown 
in Figure 12. The process that generates a TeamBlocks Automaton in this format is described in 
the next section. 

Schema Realization in MATLAB Corresponding to their protobuf representation, GHAs also 
have a native MATLAB struct representation as shown in Figure 8.5. 

8.2 Functions 

8.2.1 Core Functions 
tbproduct(tb1, tb2) 

• Inputs: two GHA Models. 
 

 
 
 

Figure 13: This diagram illustrates the high level structure of TB automaton models. This schema 
is ingested by optimization tools to perform the bisimulation function search for code certification. 
Red colored blocks indicate required fields. 



Approved for Public Release; Distribution Unlimited.  
28 

 
 

• Returns: the composed GHA model. 

• This function performs a composition that synchronizes two GHA on edge labels. 

tbsim(tb, startModeId, x0, time_variable, input, maxTime, maxIters, display) 

• Inputs: A GHA model, the start mode identifier, state variable initial condition(s), the 
time variable. The input signal, maximum simulation time, maximum iterations, and 
display are all optional. 
 

• Returns: A struct of the simulation history. 
 

• This function simulates a GHA model from initial conditions until a maximum time or 
number of iterations. 
 

tbIoConnect(tb, output_names, input_names) 

• Inputs: A GHA model, output variable names, and input variable names. 
 

• Returns: A new GHA with the IO variables substituted. 
 

• This function connects the outputs of an GHA model to its inputs based on the given 
name vectors. For example, the tbdemo_ghaexecution script uses this operation to make 
feedback system out of the product of the linear system and PI controller. 

tbread( lename) 

• Inputs: String of a filename. 
 

• Returns: A GHA struct built from the protocol buffer binary file. 
 

• This function loads a protobin schema instance and creates a Matlab representation using 
the structs described above. 
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Figure 14: The Protocol Buffer implementation of the schema in Figures 12 & 13. 
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Figure 15: The MATLAB struct representation of GHAs. tbCompileToMat(tb, name) 

 

tbCompileToMat(tb, name) 

• Inputs: A GHA struct, and name for the output function. 
• This function takes a GHA model and compiles it into a set of Matlab functions. One 

would use this function to make a GHA model execution more performant than running 
tbsim on the same GHA model. 

tbCertificate(tb, degree, tolerance) 

• Inputs: A GHA struct, the maximum degree of polynomial used in certification, the 
constraint checking tolerance. 

• Returns: A struct with polynomial objects that represents the squared norm bound on 
theoutput of the system. 

• This function computes, if possible, the polynomial error bound certificate of the GHA. 
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•  

8.2.2 Model Templates 
tbclock(rate) 

• Inputs: The rate in Hz for the clock. 
 

• Returns: A GHA-based clock model.  
 

tbLinearSystem( A,B,C) 
 

• Inputs: The canonical A, B, and C linear system matrices. 
 

• Returns: A GHA-based linear model.  
 

tbIdealPi(nMeasurement, nControl, kp, ki) 
 

• Inputs: The number of measurement and control signals, proportional gain, and integral 
gain. 
 

• Returns: A GHA-based model of the theoretical PI controller.  
 
tbSE2Integrator(speed) 

• Inputs: Speed of the vehicle. 
 

• Returns: A GHA-based model of an SE(2) vehicle.  
 

tbVee(N,speed) 
 

• Inputs: The number of agents and speed of the formation. 
 

• Returns: A GHA-based model of a collection of SE(2) vehicles in a “vee” formation 
 
 
8.2.3 LTL Translation and Integration 
ltlToTb(ltlCharacterString) 

• Inputs: A string of characters that represent an LTL expression. 
• Returns: An executable LTL specification automaton using the GHA data structure. 

Thetbdemo_ghaexecution script illustrates how this function is invoked. 
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Chapter 9: Conclusion 
 
TeamBlocks introduces theory and software tools that address the modeling, composition, and 
abstraction of hybrid systems. It does this using a single, unified representation the generalized 
(polynomial) hybrid automaton (GHA) that represents both continuous systems (i.e., systems 
described by differential equations) and discrete ones, like control software. Within this 
framework, one can compose, interconnect, and execute a variety of models, whether generated 
automatically from C++ code by our tool, or compiled from Linear Temporal Logic (LTL) 
specifications, or constructed by hand in MATLAB. 
The LLVM-based model generator, in particular, is a key product of the TeamBlocks effort. 

We have also shown that, despite being restricted to polynomials, GHAs are sufficiently 
expressive to describe a variety of systems of interest, from basic models like linear systems, to 
standard models of nonholonomic vehicles, to actual C++ implementations of controllers and that 
these models behave as expected. Indeed, the TeamBlocks library currently ships with a number of 
useful model templates provided. In future, relatively straightforward extensions to include 
trigonometric factors can only increase the expressiveness of GHA-type models (and may improve 
numerical stability). 

By compiling Linear Temporal Logic (LTL) specifications to monitor automata, we are also 
able to perform runtime verification efficiently and within the same framework of automaton 
execution. 

The most challenging part of this work has been the development of automatic proof 
techniques, based on Sum of Squares (SoS) optimization, to find polynomial certificates that verify 
that one system abstracts another. Here we have developed a formulation of an optimization 
problem over polynomials as a sum-of-squares optimization problem, which in principle has the 
advantage of convexity and therefore tractability; moreover, we developed prototype software that 
is able to search for these polynomials using standard, state-of-the-art solvers. However, the 
resulting optimization problems appear to be numerically ill-conditioned in practice, which may 
be a symptom of the use of monomial bases; as a result, the generation of certificates for more 
complicated systems will likely require the use of other polynomial or trigonometric basis 
functions, and must be left for future work. 
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