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1. Project Objectives

The major goals of the research project associated to the acquisition and installation of gz
biaxial/torsion testing system consist of two major tasks: (1) studying damage nucleation and
accumulation of metallic materials and alloys under multiaxia conditions, including non-
proportional loading, and {2) detecting and characterizing damage under multiaxial loading
using suitable NDE techniques, e.g., acoustic emission. This research wili contribute and
integrate well with the research tasks of the SHM MUR project currently being led by ASU. Itis
expected that the project will be effective in: (i) characterizing the mechanical behavior of
metallic and composite materials under 2-D stress states; (i) tracking evolution and growth of
damage such as fatigue cracks under multiaxial loading conditions; (iii) developing progressive
damage laws under multiaxiai cycle loading; (iv) developing in situy damage. monitoring
techniques for identification of crack nucleation and propagation in metallic materials.

2. Biaxial Tension/Torsion Test System

The MTS biaxiai tension/torsion load frame is a custom designed testing system with 1 00 kN
(22 Kip) planar bi-axial load Capacity and 1.1 kN-m (10 kip-in) torsion capacity along the
horizontal (x) axis. The dimensions of the system are shown in Fig. 1. It was delivered by MTS

QOct. 1, 2008, MTS engineers came to ASU to sefup, and calibrate the test frame, and to train
ASU personnel on its operation and maintenance (Fig. 2b).
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Fig. 1. Technical schematic of the MTS biaxial tension/torsion load frame.



(b)
Fig. 2. (a) Delivery of the MTS biaxial tension/torsion load frame; (b) ASU graduate students
being trained by an MTS engineer.

3. Approach and Accomplishments

3.1 Optimization of specimen geometry

The “standard” specimen chosen for testing in this frame is a modified cruciform sample. This
cruciform specimen was optimized for in-plane tension-tension tests to achieve a uniform stress
field in the gage area. Tubular specimens were fabricated for tension/torsion tests, but
emphasis is being placed on the cruciform samples. The optimization process is described next

3.1.1 Metallic cruciform specimens
The two basic geometries considered initially for the cruciform samples are shown in Fig. 4.

1<
(a) specimen without slots (b) specimen with slots
Fig. 4. FEA model, load and boundary conditions

These geometries, which were down-selected from several found in the literature, were studied
using nonlinear finite element analysis (FEA), with emphasis on the radius of the corner fillet
and the thickness of the gage section in the cruciform sample. Different corner fillets were
simulated to avoid local stress concentrations. Various gage section geometries and slots in
each arm were modeled to maintain a stress field as uniform as possible in the gage section.
Due to the symmetry, only a quarter of the specimen is analyzed and symmetry boundary
conditions are applied. The ratio of applied loads along the y (vertical) and x (horizontal) axes is
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Py/Px = 1.0. Figure 5 shows contours of resultant displacement in the gage area of both the
simple and slotted cruciform specimens obtained from FEA.

(a) specimen without slots (b) specimen with slots
Fig. 5. Displacement distribution from FEA.

Figure 6 shows the Von Mises stress distribution for both geometries. It can be seen that the
sample without slots shows higher stress concentrations at the corner between the gage area
and the fillet while the stress distribution is uniform for the specimen with the slotted arms.

e A

(a) specimen without slots (b) specimen with slots
Fig. 6. Von Mises stress distribution from FEA.

Figures 7 and 8 show the maximum principal stress and in-plane shear stress distributions,
respectively. The results indicate that the cruciform specimen with slots in the arms will
generate an almost perfect two dimensional stress state within the gage area; therefore, that
geometry was chosen for metallic samples.

-

(a) specimen without slots (b) specimen with slots
Fig. 7. Maximum principal stress distribution from FEA.
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(a) specimen without slots (b) specimen with slots
Fig. 8. In-plane shear stress distribution from FEA.

The final sample geometry and an example of a machined specimen are shown in Fig. 9.

SECTION A-A

= § - e
— A
=== [ Yl b

Fig. 9. (a) Final dimensions (in inches) of the cruciform sample; (b) Machined specimen.
A modified cruciform specimen with a central hole (Fig. 10)
loads and used to study fatigue crack initiation at the inner
Mises stress concentration around the inner circumference th

was also modeled under identical
circumference. The FEA shows a
at decreases away from the hole.

Fig. 10. von Mises stress distribution of a modified cruciform specimen with a central hole.
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The basic geometry shown above was further modified to create a specimen that could be used
to study correlations between microstructure and fatigue crack nucleation under biaxial loading.
In particular, the sample had to be small enough to fit inside the scanning electron microscope,
such that the microstructure around the central hole can be characterized and correlated to
crack nucleation sites. This required scaling down the size of the sample significantly, i.e,
sample length was reduced to 76.2 mm (3"). The sample fits inside the chamber of a Camscan
Series 4 scanning electron microscope and will be attached to the grips of the biaxial frame
using a system of collars. Figure 11 shows the geometry of the sample and the connectors as
fabricated for testing, as well as results from FEA of the specimen to verify that the stress
concentration around the central hole is indeed uniform despite the reduced sample size.

(a)

Fig. 11. Miniature cruciform specimen. (a) Sample and loading grip; (b) von Mises stress.

(b)

3.1.2 Cruciform specimens for composite materials

Composite structures are often subjected to complicated service loading conditions. These
loading scenarios are very rarely uniaxial; therefore, two- or three-dimensional static and cyclic
loading is necessary for realistic testing. In order to insure reliable operation and efficient design
of these components, it is critical to characterize the material behavior under complex multiaxial
loads. This information can then be used for structural health monitoring (SHM) and residual
useful life estimation. In this regard, a series of tests were conducted using woven fiber
composite specimens.

An optimal cruciform specimen also needed to be designed in this case. The design criteria
included: (i) maximization of the gage region for uniform biaxial strains, (ii) minimization of the
shear strains in the gage area, (jii) minimization of the stress concentrations outside of the gage
section.

To investigate the effect of geometry on the stress concentration of the specimen, geometric
parameters such as (i) the radius of the corner fillet at the intersection of the arms, (ii) the
thickness of the gage area and (jii) the geometry of the gage area were considered. Some of the
different geometries that were fabricated and tested are shown in Figures 12, 13 and 14. Al of
them included a central hole to induce crack nucleation at a controlled location.



The gage area of the specimen shown in Fi
25.4 mm (1”) radius of the fillet at the intersection of the ar
area in Figures 13 and 14 is 1/3 of the thickness of the ar,
(0.25") radii for the corner fillets, respectively. Cracks sho

o
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Fig. 12. Uniform thickness sample. (a) Geometry (in inches); (b) Fabricated specimen.
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Fig. 13. Variable thickness sample. (a) Geometry (in inches)

(b)

; (b) Fabricated specimen.
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Fig. 14. Variable thickness sample. (a) Geometry (in inches); (b) Fabricated specimen.

g. 12 is the same thickness as the arms and it has a
ms, while the thickness of the gage
ms, and 15.24 mm (0.6") and 6.35 mm
uld initiate at the central hole.



3.2 Tubular specimens

Tubular specimens were designed for tension/torsion as shown in Fig. 15. This loading has the
advantage of providing variable principal directions for non-proportional loading. Figure 16
shows a specimen subjected to a tension/torsion cyclic loading. It can be seen that failure
happened at the gage section, as expected.

Fig. 16. Broken tubular specimen under tension/torsion cyclic loading

4. Applications of the Biaxial Frame
In this section, some applications of the biaxial frame will be reported for material and structural
damage detection and residual useful life estimation.

4.1 Fatigue crack monitoring in metallic samples

The modified metallic cruciform specimen with central hole was tested under cyclic loading with
aload ratio R = 0.1 and frequency of 10 Hz. The maximum applied load of 32 kN along both the
x and y axes was based on the results of the nonlinear FE simulation, so that the von Mises
stress around the hole was slightly lower than the vyield strength of Al 2024, which was
measured from a uniaxial test to be 325 MPa. The experimental test setup for the cruciform
specimen, including the biaxial frame, the acoustic emission (AE) system, the data acquisition
system (DAQ) and the CCD camera, is shown in Fig. 17.



Figure 18 shows the placement of the AE and piezoelectric (PZT)
AE sensors were used for crack monitoring and the PZT senso
prognosis. Figure 19 shows the CCD camera used for monitoring

transducers. In this setup, the
rs for damage diagnosis and
crack propagation.

AE Sensors

-
] ”

L

Fig. 18. Placement of AE and PZT sensors in a metallic cruciform sample.
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Fig. 19. The installation of CCD camera

Figure 20a shows a 1 mm long crack after 1598951 cycles. The AE amplitude then suddenly
increased to 66 dB, as shown in Fig. 20 (b), which was probably due to rapid crack growth
through the thickness of the specimen, as the initial crack probably had a thumbnail geometry.

(a) (b) _J
Fig. 20. (a) Fatigue crack 1 mm long observed at 1598951 cycles; (b) AE amplitude of 66 dB.

At 1610561 cycles, the crack reached a 4 mm length and the AE amplitude increased to 76 dB
as shown in Fig. 21 (a) and (b). It should be noted that the crack initiation could occur at any
place around the inner circumference of the hole and the crack could grow along either the x or
the y direction based on the nonlinear FEA simulation shown in Fig. 11. The crack growth
direction showed in Figures 20 and 21 is close the y direction, probably because it was parallel
to the rolling direction of the 2024 Al plate used to fabricate the sample, and the rolling direction
tends to be weaker with respect to crack propagation.
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(b)

(a)

l;ig. 21. (a) Fatigue crack 4 mm long observed at 1610561 cycles, (b) AE amplitude of 76 dB.

4.2 Structural health monitoring (SHM) on advanced composites

Although composite materials are being used in various structural systems such as aircrafts and
automobiles, SHM and damage prognosis of composite materials are still emerging research
areas. This section will report on the use of the biaxial frame for SHM of woven composites

4.2.1 Composite materials used in the test

Multiple carbon fiber polymer composite test coupons were fabricated in the AIMS center at
Arizona State University. Woven fiber was purchased from Fiber Glast Inc. and the matrix used
was HEXION EPON 863 and EPI-CURE 3290. A hot press was used to cure composite plates
and the shapes of different coupons were cut using CNC machines. Different stacking
Sequences were also investigated to see how it affected the fatigue life of the coupon.

4.2.2 Uniaxial testing

Uniaxial tensile tests were completed to determine the tensile strength of the materials used in
the biaxial test. An Eight-ply, quasi-isotropic woven composite sample was used in the test with
a [0°/45°/-45°/90°]; stacking sequence. The monotonic tensile test followed the ASTM standard
D 638. The geometry of the test coupon and examples of pristine and damaged samples are
shown in Fig. 22. The measured strength of the composite coupons was used to estimate the
cyclic load for the biaxial tension-tension fatigue test.

11
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(a) (b)
Fig. 22. (a) Geometry (in inches) of the composite dog bone sample. (b) Uniaxial loading test
using composite dog bone samples.

4.2.3 Biaxial Test

The biaxial fatigue tests for composite cruciform specimens were conducted to study the
performance of composite structures under complex loading conditions. In this work, multiple
sensing techniques, such as AE, PZT active and passive sensing and strain gages were used to
monitor the degradation process of the composite material. The experimental setup for the

biaxial test is shown in Fig. 23.
' ‘

O e [
. I\ M

B
AE sensor
-

Fig. 23. Testing setup for composite cruciform samples under biaxial fatigue load.

The active PZT sensor signals were collected against three different types of actuation inputs:
narrow band burst input, wide band chirp input and pseudo random pulse trains. The signal

12



features from various active and passive methods were being evaluated in the context of
different metrics to eventually develop a high fidelity and robust prognostic algorithm. A time
series prognostics algorithm based on a multivariate Gaussian process was used to map the
input sensor signal features to a time varying damage index. In addition, the algorithm was used
to forecast the future damage index and the corresponding residual useful life estimate (RULE).
The prognostics framework will be verified by experiments with different biaxial loadings. The
experimental excitation and sensing signals are shown in Figures 24 to 26.

“ 7 'l £ : 9 9 4

Fig. 25. Burst excitation signals and related sensing signals.
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Fig. 26. Pseudo random pulse trains and related sensing signals

Acoustic emission techniques were also used during this test. Four sensors were mounted on
the coupon and the counts associated to acoustic events indicated a clear trend in the
degradation process. The AE counts are a good choice at later stages of fatigue life because a
large amount of high-energy acoustic bursts were released as damage occurred. In Fig. 27, the
number of counts, amplitude and time are shown. Note the steady increase of the amplitude up
to 92 dB indicating the growth of damage.

A\

AN

Fig. 27. Acoustic emission Hits vs. Time (sec) and Amplitude (dB) during testing.

4.3 SHM on a metallic specimen

In this application, a correlation analysis approach based on non-parametric system
identification is used to estimate the current damage state. This damage state is estimated by
correlating the real-time sensor signals obtained from two different strain gages placed at two

14



different places on the structure/specimen. Once the damage state (in the form of a damage
index) is estimated, it is fed to an off-line predictive model based on a Gaussian process to
forecast the future damage state and the residual useful life. The real-time algorithm was
validated on an Al-6061 cruciform specimen undergoing biaxial fatigue loading. The details on
the application of this procedure are provided in the paper included in the appendix.

5. Outreach

5.1 Local schools

The Kyrene Middle School Prep. Program (8th grade), AZ, visited the Biaxial Testing Facility on
4/30/09. These students were given a laboratory tour and some basic instruction (visual) on
multi-axial loading using the biaxial test frame. A picture is shown in Fig. 28.

Fig. 28. Kyrene Middle School, AZ, students visit the biaxial testing facility.

5.2 AFOSR sponsored research

The program managers of the SHM MURI project, Dr. Victor Giurgiutiu and Dr. David Stargel
from AFOSR, and members of the MURI Advisory Board visited the Biaxial Testing facility on
5/19/09. They were given a demonstration of the use of the frame on SHM of metallic materials
and were shown the corresponding testing setups, as shown in Fig. 29.

Fig. 29. MURI program managers and advisory board members visit the biaxial testing facility.
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. Summary

Optimized cruciform specimens for metallic materials

Optimized cruciform specimens for advanced composite materials

Designed and fabricated miniature cruciform samples to study crack nucleation
Designed tubufar metallic specimen for tension/torsion testing

Conducted crack initiation test via Al 2024 cruciform specimens

Conducted SHM validation test via Al 2024 cruciform specimens

Conducted SHM validation test via woven composites cruciform specimens

. Appendix
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On-line Structural Health Monitoring and Prognosis of
a Biaxial Cruciform Specimen

Subhasish Mohanty * Aditi Chattopadhyay ! Jun Wei

Pedro Peraltal
Mechanical and Acrospace Enginéering, Arizone State University, Tempe, AZ, 85287, USA

The eurrent research of on-line damage state estimation techniques offers adaptive dam-
age state prediction and residual useful life assessment. The real-time damage state infor-
mation from an on-line state estimation medel can be regularly fed to a predictive model to.
update the residual useful life estirnation in the event of a changing situation. The present
paper discusses the use of an integrated prognosis model, which combines an on-line state
estimation model with an off-line predictive model to adaptively estimate the residual use-
ful life of an Al-6061 cruciform specimen under bizxial loading. The overall fatigue loading
history is asswmed to be a slow time scale process compared to the time scale at which,
the sensor signals are acquired for on-line state estimation. The fast scale on-line model is
based on a non-parametric system identification approach such as correlation analysis. A
new damage index equivalent to quantitative damage state information at any particular
fatigue cycle, is proposed. The on-line model regularly estimates the current damage state
of the stiucture based on passive strain gauge signals. These damage states information is
regularly fed to the slow scale off-line predictive model as'it becomes available. The off-line
predictive model is a probabilistic nonlinear regression ‘model, which is based on Bayesian
statistics based Gaussian process approach. The off-line module adaptively updates the
maodel parameters and recursively predicts the future states to provide residual useful life
estimate.

Nomenclature
Fast scale variables
m Fast scale lag numbers
AL (= 1/ff) Fast scale time interval
T Fast scale observation time
M No. of fast scale observation samples
u(m) Fast scile input observation at lag m
v{mm) Fast scale output observation at lag m
v(m) Fast scale noise observation at lag m
V() Fast scale cross correlation coefficient at lag m
Slow scale variables
n Slow scale daniage level number (or damage instances)
(Note: In general n is not same as number of fatigue cycles)
7l Number of damage instances after last fast scale data available

3

7i After last fast scale data avaitable,the nunmber of damage instances to damage state become critical
N ‘Total no. of fatigue cycles.
Ny No. of fatigue cycles elapsed, before the first on-line sensor data available

*Graduate Research Associate, Mechanical and Aerospace Engineering, Arizena State University, Tempe, AZ, 85287, USA,
and ATAA Student meinber,

TProfessor, Mechanical arnid Aerospéce Engineering, Arizona State University, Tempe, AZ, 85287, USA, and Fellow ATAA,

$Research faculty, Mechanical and Aerospace Engineering, Arizona State University, Teinpe, AZ, 85287, USA

S Associate Professor, Mechanical and Aerospace Engineering, Arizona State University; Temipe, A7, 85287, USA
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AN No. of fatigue cycles per increment of cach damage instant

9}2 Slow scale material scatter related noise hyperparameter at nt* fatigue cycles

lird Slow scale process hiyperparameter at n*™ damage instances

oy Slow scale input weighing hyperparamcier at nt* damsge instarces

6 Slow scale input bias hyperparameter at n** damage instances

X, Slow scale input vector at n*® damage instances withn =1,2...,n,..., N

&y, Slow scale output damage index at yit* fatigue cycles with i = 1. 2...n,.... N
K., Slow scale kernel matrix at n*® fatigue cycles withn =1,2...,n,..., N

(%, %) Slow scale kernel function at n** fatigue cycles with 4,§ = 1,2...,n,..., N

I. Introduction

Real-timie health monitaring and prognostics is-cmerging at the forefront of Condition based Maintenance
(CBM) of critical structural systems giving risc to the terin Prognostic Health Management (PHM). Whether
it is a newly acquired or an aging fleet aircraft, the structural life ceiling of the fleet aircralt are defined from
three distingt approaches: safe-life, fail-safe, and damage-tolerant approaches. A detailed review of these
approach and their applications to US Navy’s P-3C aircraft is presented by Iyer, ot. al.! In the case of safe-life
approach service or vetirement life of a compouerit is defined by crack initiation timeé derived from a full-scale
component,. or-clement fatigue test. In practice, however, the component is retired before the formation of
a fatigue crack by using safety factors on calculated crack initiation time because of inherent variability
in both static and fatigue material properties as well as assumptions made in analytical models used to
calculate crack initiation time. The fail-safe approach assumes an initial damage due to manufacturing and
its subsequent growth duiing service to detectable crack sizes. Service life in fail-safe structures can thus be
defined. as the time to a survivable detectable damage. The fail-safe approach requites inspections as part
of the maintenance program, and these inspections are also specifically geared to find damages in identified
critical components of the aircraft. In the case of damage-tolerant approach, it assumes initial defects,
however small they may be in eritical structural elements, which will eventually grow in service to large crack
sizes. Service life is estimated through rigorous crack srowth analysis both deterministic and stochastic. A
majority of the deterministic crack growth analysis models arc based on the approach followed in FASTRAN?
or AFGROW? type crack growth model. It is to be noted that these models are based on some empirical
parameters, which have to be tuned for a particular application. In case of stochastic life estimation, two
diflerent approaches, are currently being used in industry, and are these techniques are coutinuously being
improved by the stochastic life modeling research commuimity, In-the first technique service life is based
on the basic principles of Miner’s damage accumulation criteria, and in the second technique the stochastic
crack growth curves are obtained first, followed by estimation of the ‘corresponding stochastic serviee life.
Wu and Ni* presented a stochastic crack growth model which can be used for stochastic life cstimation
of structures. In the case of damage aceumulation type models, the recent work by Liu and Mahadeven®
on nonlinear fatigue damage accumulation rule and a stochastic S-N curve representation technique for
predicting stochastic fatigue’ life under variable amplitude loading is noteworthy. In the above mentioned
deterministic or stochastic approaches the damage toleranee and fatigue life predictions are obtained based
on assumed structural flaws or based on previous coupon test results regardless of whether the assumed
structural flaws. actually oceur in service (i.c., prognosis is made before diagnosis). In addition in a real life
scenario, changing loading conditions and other environmental conditions such as change in humidity and
temperature, leads to different érack growth law parameters; compared Lo ihose:-originali_y'found from coupon
testing, Consequertly, 2 large degree of conservatism is incorporated into structural designs die to these
uncertainties. The current researchi in the area of on-line®* danmiage state estimation, or Structural Health
Monitoring (SHM) techniques offers methodologies for adaptive damage state prediction and residual usefil
life assessment. The on-ling state estimation model can be either supervised or baseline-free unsupervised
model. In a supervised approach,”® the model has to be trained for known damage cases based on previously
conducted tests. The supervised model is difficult to implement in real-life condition. This is becauss of
the changing boundary conditions-and noise levels {due to electrical connections), which may not necessarily
be similar to the previously obtained data (those used for training purpose). A detail review on different
SHM approaches are presented by Farrar, ot. 41930 Tor real-time damage monitoring and prognosis, there
is also a need for an effective predictive model to forecasts the future state and the remaining life of the
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structure. The real-time damage state information from the on-line state estimation model can be regularly
fed to the predictive model to update the residual useful life estimation in the event of a changing situation.
The bearing failure adaptive predictive model presented by Billington, et.al.'? is among the fow carliest
reported work on real-time adaptive predictive models. However, the model is based on a lincar covariance
structure, which may not always be suitable for learning nonlincar damage growth dynamics. The present
paper proposes a recursive Gaussian process predictive model, in which the model paramcters arc adaptively
updated to predict the future states and residual useful life estimate. Unlike the covariance based structure,
the Gaussian process'®5 uses the kernel function. The kernel function is a multi-dimensional function and
transfer the linearly inseparable information first to a high dimensional featurc space, where the information
can be linearly separable. In the present paper a non-parametric system identification based correlation
analysis approach is used to cstimate the current damage statc. The current damagc state is estimated
by correlating the real-time sensor signals obtained from two different strain gauges placed at two different
places on the structure. Once the damage state (in the form of a damage index) is estimated, it is fed to
the Gaussian process off-line predictive model to forecast the future damage state and residual uscful life
estimate (RULE). The real-time algorithm is validated on a Al-6061 cruciform specimen undergoing biaxial
fatigue loading.

II. Integrated Prognosis Model

The integrated prognosis model is a real-time prognosis model, that work in conjunction with real-time
sensor signal measurements. As shown in Fig. 1, the integrated prognosis architecture has two distinet
sub modules, the on-line state estimator and the off-line state predictor. The on-line state estimator infers
the current state of the structure from real-time sensor measurements. Once the current on-line state
information becomes available, it is fed to the off-line predictive model to predict the future states and
compute the corresponding residual useful life estimate. It is noted that the overall fatigue loading history is
assumed to be a slow time scale process® compared to the time scale at which the sensor signals are acquired
at discrete intervals. Based on this assumption, from this point onwards the sensor signal acquiring process
and corresponding current cycle damage state (or damage index) estimation process is denoted a fast scale
process, whereas the overall slower fatigue process is denoted a slow scale process. It is noted that the
fast scale sensor measurements are performed at discrete slow scale intervals. Also, it is noted that at the
individual slow scale instances, where the fast scale sensor measurements are taken, the damage state of the
structure is assumed to remain unchanged.

On-line fast scale current state Off-line slow scale future
estimator
Fast scale it Slow scale
Uhmeasured Predictive or estimated material]  —
signal noise Assumed Loading "“‘:;: :trucfure
related noise
Measured é Envelope X
fast scale ] R
input ;
,:Lpn,, Y ! Single step & u
E Fast scale E""—' ' T & Muiti step ahead L
transfer T r::"":f:"e slow scale
function ' initial damage index E
condition predictor
updating
Measured Fast scale Predicted state updating J
output s]gna] = ———————————

Figure 1. Schematic of integrated prognosis model.
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A. On-line fast-scale damage state estimation

1. Fast-scale transfer function

At any given n'* slow scale fatigue cycle the fast scale output sensor measurement can be mapped with the
g g P pPp

fast scale input sensor measurement, over fast scale unmeasured noise v. A typical n*" fatigue cycle block
diagram that maps the fast scale input measurement with fast scale output measurement is shown in Fig.
2. The fast scale Z-domain transfer function P(z) between input « and output y at n*® damage level can be
represented as:

Unmeasured
electrical noise
v(m)
Measured input Degrading structure Measured
signal at nih damage level output signal
u(m) . _ y(m)
with plant. 2,(z)

Figure 2. Block diagram for fast scale transfer function. The transfer function is an instantaneous represen-
tation of the time degrading structure at any typical damage level. However as the damage grow the transfer
function also changes leading to a time variant approach for system identification.

v(t) = P(z)u(t)+v(t)
= (bo+b1z7  +boz? + .. 4 barz Mult) + v(2) (1)

where z7™;m = 0,1,... M are the backspace operators of the pulse transfer function P(z) and by,;m =
0,1,... M are the finite impulse response (FIR) cocfficients. Then Eq. {2) can be rewritten in the discrete
domain as

v(t) = bou(t) + byu(t — 1) + boult — 2) + ... + baru(t — M) + v(t) (2)

2. Damage index

The slow scale damage index a(n), at n®* fatigue cycle, is the representative damage state inferred from nt®
fatigue cycle fast scale sensor measurements. The damage index can be derived by finding the m* lagged
output v(f +m) from Eq. (2) and pre multiplying the input u(t), obtaining

u(t)u(t+m) = bou(t)u(t+m)+byu(t)u(t—1+m)+bou(tyu(t—2+m)+. .. +bpru(t)u(t— M+m)+u(t)v(t+m)

(3)
Applying expectation operator to both sides of Eq. (3) and assuming independence between noise and the
input signal, the m*" lagged cross-correlation coefficients can be expressed as

Tuu(m):bD’Yuv(m)""b]'Yuv(m*1)+627uv(m_2)+---+bM7uv(m_M) ;m=0:1"-:M (‘1)

With known input (u) and output (v) time series, the m** lagged cross-correlation coefficients 7., (m) and
auto-correlation coefficients 7, (m), the FIR coefficients b,,;m = 0,1,... M can be estimated and hence
the n** fatigue cycle pulse transfer function. To estimate M + 1 FIR coefficients we need to solve M + 1
algebraic equations given by Eq. (4). However, solving M + 1 algebraic equations involves inverting a
(M + 1) x (M + 1) autocorrelation coefficient matrix, which becomes computationally expensive in the
context of real-time applications. To circumvent this problem rather than directly estimating the transfer
function and the damage states (such as n** fatigue cycle zeros and poles), the damage state equivalent

4 of 16

American Institute of Aeronautics and Astronautics



damage index can be estimated. Based on the cross-correlation coefficients vy, () a new damage index is
formulated, which is expressed as follows:

=M oy 0 o .
2= f:ﬁi'f(-@ 'ruyz(m)) =19, NJAN (55
2om=n (Yy{m))
where 7

. (m) represents nt* fatigue cycle fast scale cross-correlation coefficients, and 49, (m) represents 0%
(or reference) fatigue cycle fast scale cross-correlation coefficients. Tt is noted that if

maz{w{m) or Yim)=1; m=0,1,... M}, then either the sensor is damaged or is debonded, pro-
ducing only noise. '

(g =

th

B. Off-line slow-scale damage state prediction and residual usefu} life estimation

1. Predicting in ¢ Bayesion fromework

The goal of a prababilistic Bayesian!®5 forecasting approach is to compute the posterior distribution!! of

a future damage state or damage index @41, i.e., t0 determine the probability distribution of the random
damage index a,.41 given a random test input ¥,5, and a set of n training, data points described as ) =
{x: i}y, . - In the Bayesian framework the predictive distribution with mean and variance can be found
by conditioning the damage indices ay, ¢2,......,80 @541 that are affected by the corresponding random fuputs

flaley), can be defined where o are sorie hyperparaimeters that can aecount for randon load sequence effect
in the fortn of curve fitting. Also, a prior over the noise F(9|B), can be defined where 9 is some appropriate
noise vector that arises due to scatter in material micro structure and & is another set of hyperparameters
used to model the uncertainty due to scatter. Now if the hyperparameters o and 3 are given, the conditional
probability'® 1% can be expressed as

S (anga| {Femt, om0, B)) = / (ant1| {Xiz1, @, 9}) flala) f(9]5)dad?
(6)
where a and ¥ denotes the underlying function which respectively corresponds to damage index and noise

due to scatter. Since di, Gzy.....aly, and a4 arve conditioned random variables in the observed set of damage
indices, the conditional distribution of a,41 can be written as follows

F (annd (ibim, r - 8)
f (an} {%i}ict,m s 04,,5)

f (a’n+1iD = {x'iaa'i}i=1!m-,n s X1, (¥, ;6) = (7)

2. Predicting with o Gaussian process

To evaluate Eq. (7} it is necessary to evaluate the integral given in Eq. (6). However, in general, Eq. (6} is
complicated to evaluate. The standard approach to evaluate the integral in Eq. (6) is by a method called
evidence maximization'® or by numerically integrating by Monte Carlo simulation.!” However, assuming the
underlying damage index funection Gy, sin+1,.. follows a Gaussian distribution, the exaet analytical forin
of Eq. (7) is as follow

i ( i {zi} K ) = ! er —l(a - K (anar ~ )

A Bnt AT S o v BonkL | = ey 2det(K 1)/ Py 75\ A+l a1 Borr M

(8)

where y is the function mean and K, is a n x % kernel matrix. The individual elements kyimr. of the kernel
matrix K, can be found from a parameterized kernel funetion $hat will he described in the next section.
Assuming zero mean function distribuiion Eq. (8) can be written as

J (an-!—l |D= {xis @idiy oo Rkt Kig (20,25, e)i.j'—"ll-‘%,--n-i-l)

o det(Ky) (@41 — Eng1)”
- (2m)det(K;11) copl= 202:\4-1 : o
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where &, is the onc-gtep ahcad piedicted mean at slow scale damage level 4 1 and is given hy

fpty = kTK:r:Ian§ ki = k(xnnl-lfxi)i:L,Z,...n (10}
whereas ”gn-».z is the one-step.ahead predicted variance at slow scale damage fevel 5+ 1 and is given by
U§u+1 =k~ kK 'k ki = k(Xn41,%:)ins 2eas = E(Xna1, Xaga) (11)

&, Parameterizing the kernel function

There arc many possible choices of prior interpolating kernel functions. From a modeling point of view,
the objective is to specify a prior kernel function that contains our assymptions about the structure of the
process being madeled. Formally, it is required to specify a function that will generate a positive definite
kernel matrix for any set of inputs. In this paper, a multi layer perceptron (MLP}'® based kernel function
is used, which has the foliowing form

1 xT0vx; + 68
\/ (xT0wx; + 05 + (X0, + 05 + 1)

In Eq. (12) the superscript n represents the nt* damage instances. It is noted that unlike the fixed hyperpa-
rameters, the hyperparameters in Eq. (12) are adaptivly found as new data set D = {xi, @by uner n

becomes available.

}"f (xhx.)! O) = gnl- + 9‘2 (12)

4:  Hyperparvameters determination

So far we have only ¢onsidered the propérties of tlie prediction model for fixed values of the hyperparametors.
This section discusses how to obtain the hyperparameters © for a fixed training data set D .= {x;, @itici, a
Ideally integration over all possible hyperparameters. should be done in order to obtain the best posslblc
predictions of the funetion value a,,41 at damage level 124 1. Therefore, it can be written as,

f {a-'l’_l'ﬁ-l{D‘)xR“{‘! 3 I(()) = ff (a'n*l-l [Da Xn+1: I(()z 6) f (@lD, I{(‘)} d@ (13)

The above integral is as complox as the integral given in Eq. (6) and also difficult to evaluate for a complex
problem with several hyperparameters and a multiple input space. Qué of the two possible approaches e.g.,
the Maximum ¢vidence'® and the Monte Carlo!” approach only the use of the maximum evidence approach
will be discussed to evaluate the integral. Using maximum evidence approach, Fq. {13) can be written in
its approximate form ag

f(an-f*iID:xn«{-l:-K(')) & f(arz.+ll-[):x.1z+1_sf{('):el"/rAP) (14)

The approximation in Eq. (14) is based on the assumption that the posterior distribulion over @, j.e
(&0, K(-)), has a’sharp peak around @7 4p. This approximation is generally reasonable®® and predietions
‘are often found very elose to those obtained using the true predictive distribution. Now to find the pesk
location of f(8|0,K()) the posterior of it needs to be optimized and the posterior distribution can be
written as

FlE e o KELO)F(O
eI, () = £ (inszxf};}g (jrq))j( : (15)

In Eq.(15), the denominator (i.e., the evidence} is independent of © and can be ignored in the optimization
process. On the other hand, the othel two terms, the likelihood f(@.]{x:},, K(-).©}, and the prior f(©),
rieed to bé considered in the optimization of f (©]D, K(-)). With the assumption that all 6= 2., damage
‘indices follow a Gaussian distiibution and using Eq.(8), the logarithm of the objective function can be written
as

L= Log(f(B1D, () = ~ LogldetK.,)

1., 7
~  GAnE7', — 5 Log(2m) + Logf (6) (16)
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The log-likelihood function L in Eq.(16) is gencrally muiti-modal and can be optimized using any multi-
variate optimization algorithm. In the present work, the conjugate gradient method is used to optimize the
log-likelihood function and to obtain the optimized liyperparameters. Note that it is common practice!® to
ignore the log prior term in Eq.(16) due to the absence of knowledge on ©. The resulting solution may not
be always a realistic solution, however it can be assumed that Logf (©) is implicitly modeled through the
optimization of the log-likelihood. L.

8. Input-putput deta set for single step aheod prediction

For single step ahead prediction, the Gaussian process prediction model given by Eq.(8), only predicts single
step ahead damage index. For prediction of the n+ 1" damage index, the training data set 2-and test input
vector X,4+1 can be stated as,

r Training data mairiz Target veetor]
- -~ - ——
ap a1 a3 cer gy ag
23] ag @3 - G4 Ay
D:[xa | mt]' = . . Qam
i=d,....n
Gn—d On—d4+l Cp-di2 .- Gp-t Up

Test triput date veclor

-~ Y

Xn4l = | Un-d+1 Qn-dt2 Op-d43 --- dn (18)

whire in Eq. (17 and 18) the subscript nsymbolizes the n** damage instance or damage lovel, up-to which
the last on-line data was available, dnd d symbolizes dimension of the input space,

6.  Input-vutput data set for multi step ahead prediction

For multi step ahead prediction, the GP model given by Eq.(8) recursively predicts the future state mulii
step ahead of the last on-line data available. However, wilike the single step dhead prediction case, the multi
step ahead training data set IJ and test input vector X,.5 are adaptively updated with off-line predicted
damag¢ indices rather than on-line estimated damage indices. For prediction of the n 4+ A% damage mdex
Gntn =7 the training data set D and test input vector x5 can be written as

r Troining date matrix Target vector]
< " Y
ag a1 T2 e Q-1 ad
ay a3 as ‘- Od gt
’ Apod n—d+41 Rpp el 42 ces Qn—1 yy
D= [ X ! [+23 ]__‘ _= » (19)
i=d, - 147 Gp—d+1 Ly e o2 Q3 Ces [ o ti
b2 P
On—d+42 Qn—d+3 Op—d+4 e T Bnyo
» r P P o P
Fedettin Cu—dti Tp—dientl Qyops Pnelin

Test input dote vector
.

-~ ~

- p » P 2
Enta = | Op_gpn Fmediitl Cp—dpat2 coc Snolta (20)
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where in Eq. (19:and 20} the subscript n symbolizes the damage instance up to which the last on-line data is
available, and the subseript 7 symbolizes the' damage instance number following the availability of the last
on-line data available, and the superscript p syinbolizes predicted damage index from the off-line module, as
opposcd to being estimated from the on-line model.

7. Residual useful life estimation (RULE)

The residual useful life cstimation gan be defined as the difference between the number of fatigue cycles at
which the predicted damage index becomes critical, i.e reaches its eritical value (a*). and the number of
fatigue cycles at which the last on-line data is available. The RULE can be defined as:

RULE = (n 4+ #*)AN — (n)AN — Ny = AN ~ N, (21)

where AN is the mumber of fatigue cycle increments por each incrément of damage instance and #* corre-
spouds to the mumber of damage instances for the damage index to become critical after the last available
on-line data.

II1. Numerical Results

A. TFatigne experiment and data cotlection

To numberically validate the integrated prognosis algorithm, a fatigue test was performed on a Al-G061
cruciform specimen under biaxigl loading. The loaded éruciform spocimen i a MTS biaxial fatigue test
frame can be seen in Pig.3. The specimen was subjected to a constant amplitude fatigue loading with
maximum amplitude (op,0.) 4 kips and load ratio R=0.1, and the biaxial machine actuator was operated
with a frequency of 10 Iz. It is noted that, the maxbmum stress amplitude o, = 4kips is equal to two-
third of the yield stress ¢y. Based on nonlinear finite element analysis of cruciform specimen, the vield
stress is approximated as oy = 6kips. Also note that both the x-axis actuator and y-axis actuator of the
biaxial frame was subjected to in-phase fatigue loading. For on-line state estimation, ‘passive strain gauge
sensors were used. One strain gauge is mounted on the horizontal flange (Fig. 4a}, and one on the vertical
flange (Fig. 4a) and two strain gauges are mounted on the web srea (Fig. 4b) of the ernciform: specimen.
In addition, to the strain gauge sensors, piezoeclectric (PZT-5H) sensors were also instrumented to collect
the active sensitig data. Fowever, the active sensing data will be used in a future study. The current paper
is based on strain gauge measurements. A hole in thie center of the specimen was made to create crack
initiation in the web arca of cruciform specimen. To accelerate damage growth an EDM notch of 1 min
length was made at left quadrant boundary of the central hole (45° to the vertical axis). A 48 channel NI
PXI system was used to collect the strain gauge signals, the piezoelectric sensor signals and the measurements
from the biaxial machine load cells. In addition, 4 high resolution SONY camera was also used to visually
menitor the crack growth. The data acquisition system and the computer capiuring the visual image were
synichronized with the biaxial machine controller to eollect the time synchronized data/ image at a specified
interval of AN = 1500cycles. The data and image collection started at approximately 11 k cycles. The
itage and sensor data was collected at 47 different time instance. For the Arst 44 instances, the signals and
images were collected while the biaxial machine -was running and during the last three instarices the data
was collected when the machine was not running. This lead to a total of 44 different damage cases with the
last. damage state oceurring at 75.5 keycles. The developed real-time MATLAB based prognosis algorithm
was also synchronized with the data acquisition system to estimate the current damage state, and to predict
the future damage state and remaining useful life.

B. Correlation features and damage index

To evaluate the damage index as mentioned earlier, strain signal arc mapped as input and output. For
example, the signal (ef) from the strain gauge mounted on the horizontal flange (or X-arm) of the cruciform
specimen is considered as the input signal u, whereas the signal () from the web mounted stain gauge is
considered as output v. It is noted that both the horizontal axis strain (¢/¥) and the vertical axis strain (c;’,v)
are ineasured by two different strain gauges placed perpendicular to each other. Comparison of input strain
(¢f') amd output strain () is shown in Fig. 5. It presents a comparison for four different damage cases,

damage case 7 (at 20 keycle), damage case 20 (at 39.5 keycle), damage case 42 (at 72.5 keyelo) and damage
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Figure 3. Al-6061 cruciform specimen loaded in a MTS biaxial fatigue test frame

case 44 (at 75.5 keycle). From the figure it can be seen that though there is a clear trend between input
and output strain during the later stages, the trend is hardly discernable in the earlier stages of damage
growth. Rather than directly using the time series data for different damage case comparisons, using Eq.
(4), the cross-correlation coefficient between input and output is found for different damage cases. The
comparison of cross-correlation coefficients for damage level 1 (reference case at 11 k cycles) with cross-
correlation coefficient at different damage levels are shown in Fig. 6. Figure 6a, 6b, 6c, and 6d, respectively
show the comparison of cross-correlation coefficients of damage case 1 with damage case 7, damage case 20,
damage case-42 and damage case-44. It is noted, the results shown in Fig.6, the x-axis flange strain (e
and x-axis web strain ¢/') are respectively taken as input » and output v. Also, it can be seen there is a
better trend of damage condition, compared to the direct time series data from the strain gauges. However,
to compare the different damage levels using a scalar quantity and to improve the discernability between
different damage cases, the damage index proposed in Eq. (5), is evaluated for the different damage states.
Figure 7 shows increase in the damage index with fatigue cycle for two different output measurements,
e and EL’V , for fixed input from x-axis flange measurement. ¢£. The figure shows a clear trend of damage
growth with ! as output strain. A good correlation between estimated damage index and normalized visual
measurement is also observed. It must be noted that, the visual measurement is available up to damage level
29 (up to 53 keycle). After the 29** damage level, it was found that the camera went out of focus. Figure
7 also shows that with respect to c;V as the output strain, except for inal failure regime, there is no clear
trend in damage growth. This is because the input signal ¢£ is poorly correlated with the y-axis web strain
(C;V ) measurements. The higher damage indices during the final failure regime is possibly due to presence
of shear strain components. In addition to the strain signal as input, a damage index is also obtained using
biaxial frame load cell measurements (x-axis load cell). The new damage index is shown in Fig. 8, and a
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a)

Figure 4. Undamaged and damaged condition of cruciform specimen: Plot-a shows the undamaged cruciform
specimen. This rear view of the specimen also shows the location of two strain gauges mounted in the web
area. Plot-b shows the final damage condition (at 75.5 kcycles) of the cruciform specimen. This front view
of the specimen also shows the location of two strain gauges: one mounted on horizontal arm and the other
mounted on the vertical arm of the specimen.

similar trend in damage index growth, as in the case of x-axis flange strain measurement as input, can be
observed. However, it is noted that in a real life system, it is hardly possible to directly measure the loads
applied to the structure. On the other hand, it is feasible to mount strain gauges or small sensors at required
locations without affecting the structural integrity of the host structure. Therefore the results presented in
the subsequent sections are based only on the strain gauge based data.

C. Single step ahead state prediction

Figurc 9 shows the comparison between single step ahead prediction and actual damage index with on-
line data available up to the previous damage level. As seen in the figure, the prognosis algorithm starts
predicting from damage level 7. It is noted that the dimension d of the Gaussian process input is chosen
as 6. Therefore the prognosis algorithm requires at least six damage states to obtain the 1 x 6 test input
vector (sce Eq. 18). Also, with unavailability of any training data set D (Eq. 17), to predict the 7t* damage
state, the initial hyperparameters (Eq. 16) are chosen as: 62 = 8% = 1 and §? = 0.1. Because of this,
there is a large mismatch between the 7 level damage prediction and the actual damage index. However,
for prediction of damage level cight and beyond, the traing input data matrix (Eq. 17) and target vectors
(Eq. 18) are recursively updated. For each recursive updating, a new set of hyperparameters are obtained
using the conjugate gradient method. Once the hyperparameters are estimated, the one-step ahead damage
index is predicted for the following damage level. Figure 9 shows a clear corrclation between one-step ahead
predicted damage level and the actual damage index before the damage index reaches its critical value of 0.7.
It must be noted that the actual damage indices are the on-line damage states (or damage index); these are
directly estimated from the sensor signals. The threshold value of 0.7 is 70% of the final damage index value
of 1. From Eq. (5) the damage index reaches its final value of 1 when there is no cross-correlation between
the input « and v. This is because the specimen undergone complete failure. It is noted that choosing the
critical damage index value of 0.7 is based on the results from previously performed similar experiments.

D. Multi step ahead prediction

Unlike the single step ahead prediction, the multi step ahead prediction recursively predicts the damage
state ahead of the last online data availability stage. Figure 10 shows the multi step ahead state prediction.
Similar to single step ahead prediction process, the prognosis algorithm initiates after the 6t* damage level
(at 18.5 keycles), From the 7*" damage level (from 20kcycles), damage indices are predicted and then fed
back to the prognosis model to update the training data matrix (Eq. 19) and the test input vector (Eq. 20).
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Figure 5. Input output strain comparisons at different damage levels.

The feedback process is continued recursively as long as the predicted damage index does not reach its
critical value of 70% of its final failure value. It is to be noled that unlike single step ahead prediction, the
training data matrix and the test input vector are updated with off-line model predicted states, rather than
being updated with on-line model estimated states. It can be seen from Fig. 10 that up to damage level
23 (at 44 keycles) the multi step ahead prediction fails to reach the critical damage index. This is because
the predictive model, which is unable to learn the damage growth dynamiecs. To reduce the computational
expenses, the prognosis algorithm was stopped at certain times. The criteria for stopping the algorithm was
if the rate of damage index growth is not greater than 1 x 107 /eyeles for six consecutive damage levels,
the off-line predictive model is terminated. This is because, physically, if the damage growth is so slow the
damage index value, will never reach the critical value even if the algorithm were to run indefinitely. From
Figure 10 it is also seen that, the first multi step ahead prediction curve, that reaches the critical value starts
from damage level 24 (from 45.5 keycles). Beyond this damage level, the multiple step ahcad prediction
increasingly converges with the actual damage index. Also, it can be assumed that the prediction horizon
is between damage level 24 (45.5 keyeles) and damage level 42 (72.5 keycles), at which the on-line model
estimation states reaches its critical value.

E. Residual useful life estimation (RULE) and mean square error evaluation

Using Eq. (21), the residual useful life at a given damage level (up to which the last online data was available)
is estimated. Figure 11 shows the comparison of predicted RULE and actual RULE. From the figure it can
be scen that, there is a good correlation between predicted and actual RULE in the true positive regime i.e.,
between damage level 24 (at 45.5 kcycles) and damage level 42 (at 72.5 kcycles). Also it can be observed

11 of 16

American Institute of Aeronautics and Astronautics



at 7th d level

(m) a1 20 keycles

Y. (m) @t 11 keyeles
Tuv

Corrrianon oefTw bmis.

1 15 2
Positive Lag Coafficients
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Figure 7. Variation of damage index with fatigue cycle. Flange (x-axis) strain measurements are used as input
and web (x-axis) strain measurements as output
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Figure 8. Damage index with x-axis biaxial frame load-cell measurements as input and web (x-axis) strain
measurements as output

that as more and more online data becomes available, better correlation between predicted RULE and actual
RULE is obtained. Figure 12 shows the mean square error between predicted RULE and estimated RULE.
It can be scen that during the true positive regime, the mean square error is substantially reduced compared
to the mean square error during the false positive regime.
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Figure 9. Off-line model prediction of one-step ahead damage state.

IV. Conclusion

An adaptive on-line off-line life integrated predictive model has been developed for applications to Struc-
tural Health Monitoring and damage prognosis. The developed prognosis model combines an on-line state
estimation model with an off-line predictive model to adaptively estimate the residual useful life of an Al-
6061 cruciform specimen under biaxial loading. Some important features of this algorithm and observation
from this study arc summarized below.

1.

The on-line model is based on a hon-parametric system identification approach, which estimates the
current damage states. The numerical results showed good correlation between on-line estimated state
and the normalized visual measurements.

- Once the current damage state was available from the on-line model, the information was fed to an

off-line predictive model to obtain the future states and remaining useful life estimation (RULE).

. The off-line predictive model is a high-dimensional kernel function based recursive Gaussian process

model.

- The future states are recursively predicted by feeding back the previous predicted states to the off-line

model. Also, the model parameters (Gaussian process hyperparameters) are updated with repetitive
conjugate gradient based optimization.

. Good correlation was observed between actual damage states and predicted future damage states

between the 24™ damage level (at 45.5 keycles) and the 41% (at 71 keycles) damage level at which the
damage index reaches its critical value of 0.7.

- The duration between the 24** damage level (at 45.5 keycles) and the 4274 damage level (at 72.5

keycles) was considered as truc positive regime or prediction horizon. This regime also showed that a
good correlation between predicted RULE and actual RULE.
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Figure 10. Off-line model prediction of multi step ahead damage state.
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x10°
14 T T T T T T
Note: —‘
12 1. The cycle at which, bottom crack |
reach web boundary = 72.5 keyles
2. The assumed best case scenario number of cycles
10k for final failure = (1.5)"72.5 o
=108.75 kcycles
B Regime of wrong prediction 7
(False positive regime)
6 o

Minimum waiting time
to start prognosis loop

171 ] L

Regime of possible true prediction|
(True positive regime)

20 30 40 50 60 70
Fatigue cycles (in keycles) at which last on-line sensor data was available

Figure 12. Mean square error between predicted RULE and actual RULE.
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