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1. Project Objectives 
The major goals of the research project associated to the acquisition and installation of a biaxial/torsion testing system consist of two major tasks: (1) studying damage nucleation and accumulation of metallic materials and alloys under multiaxial conditions, including non­proportional loading, and (2) detecting and characterizing damage under multiaxial loading using suitable NDE techniques, e.g .. acoustic emission. This research will contribute and integrate well with the research tasks of the SHM MURI project currently being led by ASU. It is expected that the project will be effective in: (i) characterizing the mechanical behavior of metallic and composite materials under 2-D stress states; (ii) tracking evolution and growth of damage such as fatigue cracks under multiaxial loading conditions; (iii) developing progressive damage laws under multiaxial cycle loading; (iv) developing in situ damage monitoring techniques for identification of crack nucleation and propagation in metallic materials. 

2. Biaxial Tension/Torsion Test System 
The MTS biaxial tension/torsion load frame is a custom designed testing system with 100 kN (22 kip) planar bi-axial load capacity and 1.1 kN-m (10 kip-in) torsion capacity along the horizontal (x) axis. The dimensions of the system are shown in Fig. 1. It was delivered by MTS to ASU on Sep. 12, 2008, approximately 1 year after placing the order, as required for appropriate design and manufacturing. Figure 2a shows the delivery of the system to ASU. 'on Oct. 1, 2008, MTS engineers came to ASU to setup, and calibrate the test frame, and to train ASU personnel on its operation and maintenance (Fig. 2b). 

··-·· 

Fig. 1. Technical schematic of the MTS biaxial tension/torsion load frame. 
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a) (b) Fig. 2. (a) Delivery of the MTS biaxial tension/torsion load frame; (b) ASU graduate students 
being trained by an MTS engineer. 

3. Approach and Accomplishments 

3.1 Optimization of specimen geometry 
The "standard" specimen chosen for testing in this frame is a modified cruciform sample. This cruciform specimen was optimized for in-plane tension-tension tests to achieve a uniform stress field in the gage area. Tubular specimens were fabricated for tension/torsion tests, but emphasis is being placed on the cruciform samples. The optimization process is described next 

3.1.1 Metallic cruciform specimens 
The two basic geometries considered initially for the cruciform samples are shown in Fig. 4. 

(a) specimen without slots (b) specimen with slots 
Fig. 4. FEA model, load and boundary conditions 

These geometries, which were down-selected from several found in the literature, were studied using nonlinear finite element analysis (FEA), with emphasis on the radius of the corner fillet and the thickness of the gage section in the cruciform sample. Different corner fillets were simulated to avoid local stress concentrations. Various gage section geometries and slots in each arm were modeled to maintain a stress field as uniform as possible in the gage section. Due to the symmetry, only a quarter of the specimen is analyzed and symmetry boundary conditions are applied. The ratio of applied loads along the y (vertical) and x (horizontal) axes is 
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Py/Px = 1.0. Figure 5 shows contours of resultant displacement in the gage area of both the simple and slotted cruciform specimens obtained from FEA. 

' • (a) specimen without slots (b) specimen with slots 
Fig. 5. Displacement distribution from FEA. 

Figure 6 shows the Von Mises stress distribution for both geometries. It can be seen that the sample without slots shows higher stress concentrations at the corner between the gage area and the fillet while the stress distribution is uniform for the specimen with the slotted arms. 

(a) specimen without slots (b) specimen with slots 
Fig. 6. Von Mises stress distribution from FEA. 

Figures 7 and 8 show the maximum principal stress and in-plane shear stress distributions, respectively. The results indicate that the cruciform specimen with slots in the arms will generate an almost perfect two dimensional stress state within the gage area; therefore, that geometry was chosen for metallic samples. 

(a) specimen without slots (b) specimen with slots Fig. 7. Maximum principal stress distribution from FEA. 
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(a) specimen without slots (b) specimen with slots 
Fig. 8. In-plane shear stress distribution from FEA. 

The final sample geometry and an example of a machined specimen are shown in Fig. 9. 

, .. v 

1Hma1 (a) 
Fig. 9. (a) Final dimensions (in inches) of the cruciform sample; (b) Machined specimen. 

A modified cruciform specimen with a central hole (Fig. 10) was also modeled under identical loads and used to study fatigue crack initiation at the inner circumference. The FEA shows a Mises stress concentration around the inner circumference that decreases away from the hole. 

Fig. 10. von Mises stress distribution of a modified cruciform specimen with a central hole. 
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The basic geometry shown above was further modified to create a specimen that could be used to study correlations between microstructure and fatigue crack nucleation under biaxial loading. In particular, the sample had to be small enough to fit inside the scanning electron microscope, such that the microstructure around the central hole can be characterized and correlated to crack nucleation sites. This required scaling down the size of the sample significantly, i.e, sample length was reduced to 76.2 mm (3"). The sample fits inside the chamber of a Camscan Series 4 scanning electron microscope and will be attached to the grips of the biaxial frame using a system of collars. Figure 11 shows the geometry of the sample and the connectors as fabricated for testing, as well as results from FEA of the specimen to verify that the stress concentration around the central hole is indeed uniform despite the reduced sample size. 

(a) 
b} Fig. 11 . Miniature cruciform specimen. (a) Sample and loading grip; (b) van Mises stress. 

3.1.2 Cruciform specimens for composite materials 
Composite structures are often subjected to complicated service loading conditions. These loading scenarios are very rarely uniaxial; therefore, two- or three-dimensional static and cyclic loading is necessary for realistic testing. In order to insure reliable operation and efficient design of these components, it is critical to characterize the material behavior under complex multiaxial loads. This information can then be used for structural health monitoring (SHM) and residual useful life estimation. In this regard, a series of tests were conducted using woven fiber composite specimens. 

An optimal cruciform specimen also needed to be designed in this case. The design criteria included: (i) maximization of the gage region for uniform biaxial strains, (ii) minimization of the shear strains in the gage area, (iii) minimization of the stress concentrations outside of the gage section. 
To investigate the effect of geometry on the stress concentration of the specimen, geometric parameters such as (i) the radius of the corner fillet at the intersection of the arms, (ii) the thickness of the gage area and (iii) the geometry of the gage area were considered. Some of the different geometries that were fabricated and tested are shown in Figures 12, 13 and 14. All of them included a central hole to induce crack nucleation at a controlled location. 
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(a) 
Fig. 12. Uniform thickness sample. (a) Geometry (in inches); (b) Fabricated specimen. 

3.00 

13.00 

(a) (b) 
Fig. 13. Variable thickness sample. (a) Geometry (in inches); (b) Fabricated specimen. 

~ 3.CO ._. 

(a) 
(b) Fig. 14. Variable thickness sample. (a) Geometry (in inches); (b) Fabricated specimen. 

The gage area of the specimen shown in Fig. 12 is the same thickness as the arms and it has a 25.4 mm (1 ") radius of the fillet at the intersection of the arms, while the thickness of the gage area in Figures 13 and 14 is 1 /3 of the thickness of the arms, and 15.24 mm (0.6") and 6.35 mm (0.25") radii for the corner fillets, respectively. Cracks should initiate at the central hole. 
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3.2 Tubular specimens 
Tubular specimens were designed for tension/torsion as shown in Fig. 15. This loading has the advantage of providing variable principal directions for non-proportional loading. Figure 16 shows a specimen subjected to a tension/torsion cyclic loading. It can be seen that failure happened at the gage section, as expected. 

_, , ... a) 
b) Fig. 15. Tubular specimens. (a) Geometry (in inches); (b) Fabricated samples. 

Fig. 16. Broken tubular specimen under tension/torsion cyclic loading 

4. Applications of the Biaxial Frame 
In this section, some applications of the biaxial frame will be reported for material and structural damage detection and residual useful life estimation. 

4.1 Fatigue crack monitoring in metallic samples 
The modified metallic cruciform specimen with central hole was tested under cyclic loading with a load ratio R = 0.1 and frequency of 10 Hz. The maximum applied load of 32 kN along both the x and y axes was based on the results of the nonlinear FE simulation, so that the van Mises stress around the hole was slightly lower than the yield strength of Al 2024, which was measured from a uniaxial test to be 325 MPa. The experimental test setup for the cruciform specimen, including the biaxial frame, the acoustic emission (AE) system, the data acquisition system (DAQ) and the CCD camera, is shown in Fig. 17. 
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Fig. 17. Experimental setup for damage monitoring in a metallic cruciform specimen. 

Figure 18 shows the placement of the AE and piezoelectric (PZT) transducers. In this setup, the AE sensors were used for crack monitoring and the PZT sensors for damage diagnosis and prognosis. Figure 19 shows the CCD camera used for monitoring crack propagation. 

Fig. 18. Placement of AE and PZT sensors in a metallic cruciform sample. 
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Fig. 19. The installation of CCD camera 

Figure 20a shows a 1 mm long crack after 1598951 cycles. The AE amplitude then suddenly increased to 66 dB, as shown in Fig. 20 (b), which was probably due to rapid crack growth through the thickness of the specimen, as the initial crack probably had a thumbnail geometry . 

. / 
/ 

~--------------~ - - -- -Fig. 20. (a) Fatigue crack 1 mm long observed at 1598951 cycles; (b) AE amplitude of 66 dB. 

At 1610561 cycles, the crack reached a 4 mm length and the AE amplitude increased to 76 dB as shown in Fig. 21 (a) and (b). It should be noted that the crack initiation could occur at any place around the inner circumference of the hole and the crack could grow along either the x or the y direction based on the nonlinear FEA simulation shown in Fig. 11 . The crack growth direction showed in Figures 20 and 21 is close they direction, probably because it was parallel to the rolling direction of the 2024 Al plate used to fabricate the sample, and the rolling direction tends to be weaker with respect to crack propagation. 
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Fig. 21 . (a) Fatigue crack 4 mm long observed at 1610561 cycles; (b) AE amplitude of 76 dB. 

4.2 Structural health monitoring (SHM) on advanced composites 
Although composite materials are being used in various structural systems such as aircrafts and automobiles, SHM and damage prognosis of composite materials are still emerging research areas. This section will report on the use of the biaxial frame for SHM of woven composites 

4.2.1 Composite materials used in the test 
Multiple carbon fiber polymer composite test coupons were fabricated in the AIMS center at Arizona State University. Woven fiber was purchased from Fiber Glast Inc. and the matrix used was HEXION EPON 863 and EPl-CURE 3290. A hot press was used to cure composite plates and the shapes of different coupons were cut using CNC machines. Different stacking sequences were also investigated to see how it affected the fatigue life of the coupon. 

4.2.2 Uniaxial testing 
Uniaxial tensile tests were completed to determine the tensile strength of the materials used in the biaxial test. An Eight-ply, quasi-isotropic woven composite sample was used in the test with a (0°/45°/-45°/90°]5 stacking sequence. The monotonic tensile test followed the ASTM standard D 638. The geometry of the test coupon and examples of pristine and damaged samples are shown in Fig. 22. The measured strength of the composite coupons was used to estimate the cyclic load for the biaxial tension-tension fatigue test. 
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(a) 
Fig. 22. (a) Geometry (in inches) of the composite dog bone sample. (b) Uniaxial loading test 

using composite dog bone samples. 

4.2.3 Biaxial Test 
The biaxial fatigue tests for composite cruciform specimens were conducted to study the performance of composite structures under complex loading conditions. In this work, multiple sensing techniques, such as AE, PZT active and passive sensing and strain gages were used to monitor the degradation process of the composite material. The experimental setup for the biaxial test is shown in Fig. 23. 

Fig. 23. Testing setup for composite cruciform samples under biaxial fatigue load. 

The active PZT sensor signals were collected against three different types of actuation inputs: narrow band burst input, wide band chirp input and pseudo random pulse trains. The signal 
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features from various active and passive methods were being evaluated in the context of different metrics to eventually develop a high fidelity and robust prognostic algorithm. A time series prognostics algorithm based on a multivariate Gaussian process was used to map the input sensor signal features to a time varying damage index. In addition, the algorithm was used to forecast the future damage index and the corresponding residual useful life estimate (RULE). The prognostics framework will be verified by experiments with different biaxial loadings. The experimental excitation and sensing signals are shown in Figures 24 to 26 . 

. . , 

• - ••• ••• • -·• • •••• - - - - · - ••·• -•..-••• I ~ , I f 

Fig. 24. Chirped excitation signals and related sensing signals . 

... 

Fig. 25. Burst excitation signals and related sensing signals. 
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Fig. 26. Pseudo random pulse trains and related sensing signals 
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Acoustic emission techniques were also used during this test. Four sensors were mounted on 

the coupon and the counts associated to acoustic events indicated a clear trend in the 

degradation process. The AE counts are a good choice at later stages of fatigue life because a 

large amount of high-energy acoustic bursts were released as damage occurred. In Fig. 27, the 

number of counts, amplitude and time are shown. Note the steady increase of the amplitude up 

to 92 dB indicating the growth of damage. 
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Fig. 27. Acoustic emission Hits vs. Time (sec) and Amplitude (dB) during testing. 

4.3 SHM on a metallic specimen 

In this application, a correlation analysis approach based on non-parametric system 

identification is used to estimate the current damage state. This damage state is estimated by 

correlating the real-time sensor signals obtained from two different strain gages placed at two 
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different places on the structure/specimen. Once the damage state (in the form of a damage 
index) is estimated, it is fed to an off-line predictive model based on a Gaussian process to 
forecast the future damage state and the residual useful life. The real-time algorithm was 
validated on an Al-6061 cruciform specimen undergoing biaxial fatigue loading. The details on 
the application of this procedure are provided in the paper included in the appendix. 

5. Outreach 

5.1 Local schools 
The Kyrene Middle School Prep. Program (8th grade), AZ, visited the Biaxial Testing Facility on 
4/30/09. These students were given a laboratory tour and some basic instruction (visual) on 
multi-axial loading using the biaxial test frame. A picture is shown in Fig. 28. 

Fig. 28. Kyrene Middle School, AZ, students visit the biaxial testing facility. 

5.2 AFOSR sponsored research 
The program managers of the SHM MURI project, Dr. Victor Giurgiutiu and Dr. David Stargel 
from AFOSR, and members of the MURI Advisory Board visited the Biaxial Testing facility on 
5/19/09. They were given a demonstration of the use of the frame on SHM of metallic materials 
and were shown the corresponding testing setups, as shown in Fig. 29. 

Fig. 29. MURI program managers and advisory board members visit the biaxial testing facility. 
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6. Publications 
• S. Mohanty, A, Chattopadhyay, J. Wei, and P. Peralta, On-line Structural Health Monitoring 

and Prognosis of a Biaxial Cruciform Specimen, 50th AIAA/ASME/ASCE/AHS/ASC 
Structures, Proc. Structural Dynamics and Materials Conference, Palm Springs, California, 
4-7 May 2009. 

• S. Lemmer, C. Leser, P. Peralta, and A. Chattopadhyay, "Apparatus for Biaxial Thermal 
Fatigue Testing." Proceedings of the 7th International Conference on Fatigue Damage of 
Structural Materials, Sept. 2008. 

7. Summary 

• Optimized cruciform specimens for metallic materials 
• Optimized cruciform specimens for advanced composite materials 
• Designed and fabricated miniature cruciform samples to study crack nucleation 
• Designed tubular metallic specimen for tension/torsion testing 
• Conducted crack initiation test via Al 2024 cruciform specimens 
• Conducted SHM validation test via Al 2024 cruciform specimens 
• Conducted SHM validation test via woven composites cruciform specimens 

8. Appendix 
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On-line Structural Health Monitoring and Prognosis of 
a Biaxial Cruciform Specimen 

Subhasish Mohanty * Aditi Chattopadhyay 1 Jun Wei I 

Pedro Peralta§ 
Mechanical and Aerospace Engineering, Arizona State University, Ternpe, AZ, 85287, USA 

The current research of on-line damage state estimation techniques offers adaptive dam­
age state prediction and residual useful life assessment. The real-time damage state infor­
mation from an on-line state estimation model can be regularly fed to a predictive model to 
update the residual useful life estimation in the event of a changing situation. The present 
paper discusses the use of an integrated prognosis model, which combines an on-line state 
estimation 1nodel with an off-line predictive model to adaptively estimate the residual use­
ful life of an Al-6061 cruciform specimen under biaxial loading. The overall fatigue loading 
history is assumed to be a slow time scale process compared to the time scale at which, 
the sensor signals are acquired for on-line state estimation. The fast scale on-line model is 
based on a non-parametric system identification approach such as correlation analysis. A 
new damage index equivalent to quantitative damage state information at any particular 
fatigue cycle, is proposed. The on-line model regularly estimates the current damage state 
of the structure based on passive strain gauge signals. These damage states information, is 
regularly fed to the slow scale off-line predictive model as it becomes available. The off-line 
predictive model is a probabilistic nonlinear regression model, which is based on Bayesian 
statistics based Gaussian process approach. The off-line 1nodule adaptively updates the 
model parameters and recursively predicts the future states to provide residual useful life 
estimate. 

Nomenclature 

Fast scale variables 
m Fast scale lag nu1nbcrs 
tlt (= l/f1) Fast scale time interval 
T Fast scale observation time 
lvl No. of fast scale observation samples 
u(m) Fast scale input observation at lag ·m 
v(m) Fast scale output observation at lag m 
v(m) Fast scale noise observation at lag m 
l'uv(m) Fast scale cross correlation coefficient at lag m 
Slow scale variables 
n Slow scale damage level number (or da1nagc instances) 

(Note: In general n is not sainc as number of fatigue cycles) 
fl Nu111bcr of da1nage instances after last fast scale data available 
ii* After last fast scale data aV'ailablc,thc nun1bcr of damage instances tn dainagc state bccon1e critical 
N Total no. of fatigue cycles 
No No. of fatigue cycles elapsed, before the first on-line sensor data available 

~Graduate Research Associate, Mechanical and Aerospace Engineering, Arizona State University, Te1npe, AZ, 85287, USA, and AIAA Student me1nbcr, 
tProfessor, !v1echanical and Aerospace Engineering1 Arizona State University, Tempe, AZ, 85287, USA, and Fellow AIAA . .:f:.Research faculty, i\.1echanical and Aerospace .Engineering, Arizona State University, Tempe, AZ, 85287, USA 
§Associate Professor, Mechanical and Aerospace Engineering, Arizona State University, Tempe, AZ, 85287, USA 
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D.N 
B~ 
B~ 
o~: 
o~, 
Xn 

an 
Kn 
k(x;,x;) 

No. of fatigue cycles per incren1ent of each da1nagc instant 
Slow scale material scatter related noise hypcrparamcter at nth fatigue cycles 
Slo\v scale process hypcrparameter at nth da1nagc instances 
Slow scale input weighing hypcrpara1nctcr at nth damage instances 
Slow scale input bias hypcrpara1nctcr at nth dan1age instances 
Slow scale input vector at nth damage instances with n = 1, 2 ... 1 n, ... , N 
Slo\V scale output da1nagc index at nth fatigue cycles with n = 1, 2 ... in, ... 1 N 
Slow scale kernel n1atrix at n"h fatigue cycles with n = 1, 2 ... , n, .. . 1 N 
Slow scale kernel function at nth fatigue cycles with i, j = 1, 2 ... , n: ... 

1 
N 

I. Introduction 

Real-time health n1onitoring and prognostics is emerging at the forefront of Condition based J\ilaintenancc 
(CBM) of critical structural systcn1s giving rise to the ter1n Prognostic Health Managcn1ent (PHI\.1). Whether 
it is a nev.rly acquired or an aging fleet aircraft, the structural life ceiling of the fleet aircraft arc defined from 
three distinct approaches: safe-life, fail-safe, and damage-tolerant approaches. A detailed review of these 
approach and their applications to US Navy's P-3C aircraft is presented by Iyer, ct. al.1 In the case of safe-life 
approach service or retirernent life of a cornpouent i!:) defined by crack initiation time derived from a full-scale 
component, or clcn1cnt fatigue test. In practice, ho\vcvcri the cornponent is retired before the formation of 
a fatigue crack by using safety factors on calculated crack initiation time because of inherent variability 
in both static and fatigue material properties as well as assu1nptions made in analytical models used to 
calculate crack initiation thne. The fail-safe approach assumes an initial da1nage due to rnanufacturing and 
its subsequent gTowth during service to detectable crack sizes. Service life in fail-safe structures can thus be 
defined as the time to a survivable detectable damage. The fail-safe approach requires inspections as part 
of the 1naintenance program, an<l these inspections are also specifically geared to find da1nages in identified 
critical co111ponents of the aircraft. In the case of dan1age-tolerant approach, it assumes initial defects~ 
however small they may be in critical structural ele1ncnts 1 which will eventually gro\v in scrVice to large crack 
sizes. Service life is estimated through rigorous crack growth analysis both deter1ninistic and stochastic. A 
majority of the deterministic crack growth analysis models arc based on the approach followed in FASTRAN2 

or AFGROW3 type crack growth model. It is to be noted that these models are based on sonic e1npirical 
parameters, which have to be tuned for a particular application. In case of stochastic life cstimation1 two 
different approaches, are currently being used in industry, and are these techniques are continuously being 
huprovetl by the stochastic life rnodeling research conununity. In the first technique service life is based 
on the basic principles of lVIincr's damage accu1nulation criteria1 and in the second technique the stochastic 
crack growth curves arc obtained first, followed by estimation of the corresponding stochastic service life. 
Wu and Ni4 presented a stochastic crack growth 1nodel which can be used for stochastic life cstin1ation 
of structures. In the case of damage accu1nulation type models, the recent work by Liu and !\.1ahadcvcn5 

on nonlinear fatigue damage accu1nulation rule and a stochastic S-N curve representation technique for 
predicting stochastic fatigue life under variable amplitude loading is noteworthy. In the above mentioned 
deterministic or stochastic approaches the darnagc tolerance and fatigue life predictions arc obtained based 
on assunied structural fia\vs or based on previous coupon test results regardless of whether the assu1ned 
structural fla\vs actually occur in service (Lc. 1 prognosis is 1nade before diagnosis). In addition in a real life 
scenario, changing loading conditions and other environmental conditions such as change in hu1nidity and 
temperature, leads to different crack growth law paran1et,ers, compared Lo those originally found from coupon 
testing. Conscquently1 a large degree of conservatism is incorporated into structural designs due to these 
uncertainties. The current research in the area of on-line6- 8 damage state esti1nation, or Stn1ctural Health 
Monitoring (SH1t1) techniques offers methodologies for adaptive da1nage state prediction and residual useful 
life assessment. The on-line state estimation model can be either supervised or baseline-free unsupervised 
niodcl. In a supervised approach 1

7 ' 8 the n1odel has to be trained for known damage cases based on previously 
conducted tests. The supervised ino<lcl is difficult to irnplement in real-life condition. This is because of 
the changing boundary conditions and noise levels (due to electrical connections), which may not necessru·ily 
be sirr1ilar to the previously obtained data (those used for training purpose). A detail review on different 
SI-IM approaches arc presented by Farrar, ct. al.9•1° For real-time da1nage monitoring and prognosis1 there 
is also a need for an effective predictive model to forecasts the future state and the remaining life of the 
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structure. The real-time damage state information from the on-line state estimation model can be regularly fed to the predictive model to update the residual useful life estimation in the event of a changing situation. The bearing failure adaptive predictive model presented by Billington, et.al. 12 is among the few earliest reported work on real-time adaptive predictive models. However, the model is based on a linear covariance structure, which may not always be suitable for learning nonlinear damage growth dynamics. The present paper proposes a recursive Gaussian process predictive model, in which the model parameters arc adaptively updated to predict the future states and residual useful life estimate. Unlike the covariance based structure, the Gaussian process13- 15 uses the kernel function. The kernel function is a multi-dimensional function and transfer the linearly inseparable information first to a high dimensional feature space, where the information can be linearly separable. In the present paper a non-parametric system identification based correlation analysis approach is used to estimate the current damage state. The current damage state is estimated by correlating the real-time sensor signals obtained from two different strain gauges placed at two different places on the structure. Once the damage state (in the form of a damage index) is estimated, it is fed to the Gaussian process off-line predictive model to forecast the future damage state and residual useful life est imate (RULE) . The real-time algorithm is validated on a Al-6061 cruciform specimen undergoing biaxial fatigue loading. 

II. Integrated Prognosis Model 
The integrated prognosis model is a real-time prognosis model, that work in conjunction with real-t ime sensor signal measurements. As shown in Fig. 1, the integrated prognosis architecture has two distinct sub modules, the on-line state estimator and the off-line state predictor. The on-line state estimator infers the current state of the structure from real-t ime sensor measurements. Once the current on-line state information becomes available, it is fed to the off-line predictive model to predict the future states and compute the corresponding residual useful life estimate. It is noted that the overall fatigue loading history is assumed to be a slow time scale process6 compared to the t ime scale at which the sensor signals are acquired at discrete intervals. Based on this assumption, from this point onwards the sensor signal acquiring process and corresponding current cycle damage state (or damage index) estimation process is denoted a fast scale process, whereas the overall slower fat igue process is denoted a slow scale process. It is noted that the fast scale sensor measurements are performed a t discrete slow scale intervals. Also, it is noted that at the individual slow scale instances, where the fast scale sensor measurements arc taken, the damage state of the structure is assumed to remain unchanged. 
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Figu re 1. Schem atic of integr ated prognosis m odel. 
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A. On-line fast-scale damage state estimation 

1. Fast-scale transfer function 

At any given ntl• slow scale fatigue cycle the fast scale output sensor measurement can be mapped with the 
fast scale input sensor measurement over fast scale unmeasured noise v. A typical nth fatigue cycle block 
diagram that maps the fast scale input measurement with fast scale output measurement is shown in Fig. 
2. The fast scale Z-domain transfer function P(z) between input u and output y at ntl• damage level can be 
represented as: 

Measured input 
signal 

u(m) 

Degrading structure 

at nth damage level 

with plant: Pn(z) 

Unmeasured 
electrical noise 

v(m) 

Measured 
output signal 

y(m) 

Figure 2. Block diagram for fast scale t ransfer function. The trans fer function is an instantane ous represen­
tation of the time d egrading structure at a ny typical damage level. However as t h e damage grow the transfer 
function a lso cha nges leading to a time variant approach for system ide ntificat ion. 

v(t) P (z)u(t) + v(t) 
(bo + b1z-1 + ~z-2 + ... + bMz-M)u(t) + v(t) (1) 

where z-m; m = 0, 1,. . . M arc the backspace operators of the pulse transfer function P (z) and bm; m = 
0, 1, ... M are the finite impulse response (FIR) coefficients. Then Eq. (2) can be rewritten in the discrete 
domain as 

v(t) = b0u(t) + b1u(t - 1) + b2u(t - 2) + ... + bMu(t - M) + v(t) (2) 

2. Damage index 

T he slow scale damage index a(n), at nth fat igue cycle, is the representat ive damage state inferred from nth 
fatigue cycle fast scale sensor measurements. The damage index can be derived by finding the mth lagged 
output v(t + m) from Eq. (2) and pre multiplying the input u(t), obtaining 

u(t)v(t+m) = bou(t)u(t+m)+b1u(t)u(t - 1 +m)+b2u(t)u(t - 2+m)+ ... +bMu(t)u(t-M +m) +u(t)v(t+m) 
(3) 

Applying expectation operator to both sides of Eq. (3) and assuming independence between noise and the 
input signal, the mth lagged cross-correlation coefficients can be expressed as 

'Yuv(m) = bo'Yuv(m) + b1'Yuv(m - 1) + b2'Yuv(m - 2) + ... + bM'Yuv(m - M) ; m = 0, 1 ... , M (4) 

With known input (u) and output (v) time series, the mth lagged cross-correlation coefficients 'Yuv(m) and 
auto-correlation coefficients 'Yu(m), the FIR coefficients bm; m = 0, 1, ... M can be estimated and hence 
the nth fatigue cycle pulse transfer function. To estimate M + 1 FIR coefficients we need to solve M + 1 
algebraic equations given by Eq. (4). However, solving M + 1 algebraic equations involves inverting a 
(M + 1) x (M + 1) autocorrelation coefficient matrix , which becomes computationally expensive in the 
context of real-time applications. To circumvent this problem rather than directly estimating the transfer 
function and the damage states (such as nth fatigue cycle zeros and poles), the damage state equivalent 
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damage index can be estin1ated. Based on the cross-correlation coefficients l'uv(m) a new dan1agc index is 
formulatcdi which is expressed as follows: 

<c:'m~M( n ( ) O ( ))2 
L..,m=O "luy m - /uy m · n = 1 2... Al/AN 

<c:'m-M( O (' ))2 ' ' ' L..,rn=O "fuy m 
(5) 

where 1·;:
11

(rn) represents nth fatigue cycle fast scale cross-correlation coefficients, and 'Y~v(m) represents oth 

(or reference) fatigue cycle fast scale cross-correlation coefficients. It is noted that if 
·max{1u(rn) or ''"fv(m) = l; 1n=01 l 1 ••• J14} 1 then either the sensor is damaged or is dcbondcdJ pro­
ducing only noise. 

B. Off-line slow-scale damage state prediction and residual useful life estimation 

1. Predicting in a Bayesian framework 

The goal of a probabilistic Baycsian13- 15 forecasting approach is to compute the posterior distribution11 of 
a future dan1age state or damage index an+ Ii i.e., to determine the probability distribution of the rando1n 
dan1age index an+l given a random test input Xn+l and a set of n training data points described as D = 
{xi:a'i}i=I, ... ,n· In the Bayesian framework the predictive distribution with mean and variance can be found 
by conditioning the damage indices a1) a2 1 ...... ,an 1an+l that are aifected by the corresponding rando1n inputs 
x 1 , x2 , ...... iXn,Xn+l· A prior over the space of possible functions to n1odel the randon1 damage index as 
f(ala), can be defined where a arc some hyperparamet('rs that can account for random load sequence effect 
in I.he form of curve fit;ling. Also, a prior over the noise f(Ol.8), can be defined where 1J is some appropriate 
noise vector that arises due to scatter in material micro structure and (3 is another set of hypcrpara1neters 
used to inodel the uncertainty due to scatter. No'v if the hypcrpara1nctcrs a and f3 arc given, the conditional 
probability13- 15 can be expressed as 

f (an+1 I { x;~1,,,,,n, a, /l}) = J (an+il { X;~1,,,,,,," a, ti}) f (ala)/ ( tll/l)dadtl 

(6) 

where a and {J denotes the underlying function which respectively corresponds to damage index and noise 
due to scatter. Since ai, a2, ..... .,an 1 and an+I arc conditioned rando1n variables in the observed set of da1nagc 
indices~ the conditional distribution of an+ I can be written as follows 

( )
, f (an+il {xd,~1,,,,,n+1 '°''/l) 

f an+1ID={x;,a;),~l,,,,n'Xn+1,ct,/l = ( ) 
f anl {xi} i=l, ... ,n 'a, {3 

(7) 

2. Predicting with a. Gaussian process 

To evaluate Eq. (7) it is necessary to evaluate the integral given in Eq. (6). IIowcver, in general, Eq. (6) is 
complicated to evaluate. The standard approach to evaluate the integral in Eq. (6) is by a method called 
evidence inaximization16 or by numerically integrating by Monte Carlo simulation. 17 IIowever, assun1ing the 
underlying damage index function ai=l, . .,n,n+l,. .. follows a Gaussian distribution, the exact analytical fonn 
of Eq, (7) is as follow 

f ( a,,+il {x;},~1 ,,,,,n, Kn+l) = (27r)n+l/2d!t(Kn+i)l/2 exp (-~(an+l - /L)"'K~~l (an+l - µ)) 
(8) 

where µ, is the function mean and Kn is a n X n kernel matrix. The individual clements knm.n of the kernel 
matrix Kn can be found frorn a parameterized kernel function that will be described in the next section. 
Assun1ing zero 1ncan function distribution Eq. (8) can be written as 

f ( an+1 ID= {xi, ai}i=l, ... ,n, Xn+I 1 kij(Xt, Xj 1 G)i,j=1,2, .. n+l) 

det(K,.) ( 
exp 

(27r)det(Kn+I) 
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where D.n+ 1 is the one-step ahead predicted 1ncan at slow scale damage level n + 1 and is given by 

(IO) 

whereas aa~ is the one-step ahead predicted variance at slow scale damage level n + 1 and is given by 
"" 

2 kTK-tk au,,+1 = K- n ; (11) 

3. Para1neterizing the kernel function 

There arc inany possible choices of prior interpolating ke1ncl functions. Fron1 a 1nodcliug point of view, 
the objective is to specify a prior kernel function that contains our assumptions about the structure of the 
process being n1odelcd. Formally, it is required to specify a function that will generate a positive definite 
kernel 1natrix for any set of inputs. In this paper1 a multi layer perceptron (MLP) 18 based kernel function 
is used, i,vhich has the following form 

k ( ) ()PS" -l x'[O~Xj +o~ fi 
'J x;,x;,e ~ n i.n . I( "'e b )( TO B' ) +e,, 

y Xi ~Xi_+ ()n + 1 Xn ~Xn + n + 1 
(12) 

In Eq. (12) the superscript n represents the nth damage instances. It is noted that unlike the fixed hyperpa­
ramctcrs, the hyperparruucters in Eq. (12) arc adaptivly found as new data set D ={xi, ai}i=I, .. ,n,n+i,. .... N 
becomes available. 

4. Jlype:rpara.mcters dctcrrn.ination 

So far we have only considered the properties of the predicl;io111nodel for fixed values of the hypcrparan1ctcrs. 
'J'his section discusses how to obtain the hyperparameters 8 for a fixed training data set D ={xi, ai}i=l n· 
Ideally integration over all possible hyperparru.netcrs should be done in order to obtain the best pos~iblc 
predictions of the function value an+ I at damage level n + 1. Therefore, it can be written as, 

(13) 

The above integral is as eon1plex as the integral given in Eq. (6) and also difficult to evaluate for a complex 
problem with several hyperpru·an1eters and a multiple input space. Out of the t\vo possible approaches e.g., 
the Maximun1 evidcncc16 and the Monte Carlo17 approach only the use of the rnaxhnurn evidence approach 
will be discussed to evaluate the integral. Using maximum evidence approach1 Eq. (13) can be written in 
its approxilnatc form as 

(14) 

The approximation in Eq. (14) is based on the assun1ption that -the posterior distribution over 8, i.e 
f (BID, K(·)), has a sharp peak around E>lifAP· This approximation is generally rcasonable13 and predictions 
arc often found very close to those obtained using the true predictive distribution. Now to find the peak 
location of f ( 8 ID, K ( ·)) the posterior of it needs to be optimized and the posterior distribution can be 
written as 

(15) 

In 'Eq.(15), !J1e denominator (i.e., the evidence) iR independent of 8 and can be ignored in the optirr1ization 
process. On the other hand, the other two terms, the likelihood f (iinl {x,}, 'KU, e), and the prior f (e), 
need to be considered in the optimization off (8[D, I<(·)). \-Vith the assu1nption that all ai=l,2 ... n da1nagc 
indices follow a Gaussian distribution and using Eq.(8), the logarith1n of the objective function can be \Vritten 
as 

L =Log(! (6JD, K(·))) = 
1 
'ifog(dctKn) 

~a~K;;'an - ~fog(21f) +Logf(e) 
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'I'he log-likelihood function L in Eq.(16) is generally inulti-modal and can be optimized using any 1uulti­
variatc opthnization algorith111. In the present work 1 the conjugate gradient 1ncthod is used to opti1nizc the 
log-likelihood function and to obtain the opti1nized hypcrparametcrs. Note that it is common practicc13 to 
ignore the log prior term in Eq.(16) due to the absence of knowledge on 8. The resulting solution may not 
be always a realistic solution1 however it can be assun1cd that Logf (8) is itnplicitly 1nodclc<l through the 
optimization of the log-likelihood L. 

5. Input-outpnt data set for single step ahead prediction 

For single step ahead prediction, the Gaussian process prediction n1odcl given by Eq.(8)i only predicts single 
step ahead damage index. For prediction of the n +1th drunagc index, the training data set D and test input 
vector Xn+i can be stated as, 

D = [Xi ai l~d ... ,n = 

TTaining data mat1•ix TaTge.t vector 
,..-~~~~~~~~~~~~~ ,,_.,...__., 

Test input data vecto1· 

ad 

ad+I 

a,, 

(17) 

(18) 

where in Eq. (17 and 18) the subscript n syn1bolizes the nth da1nage instance or damage level: up to which 
the last on-line data was available1 and d symbolizes dimension of the input space. 

6. Input-output data set for multi step ahead prediction 

For multi step ahead prediction1 the GP model given by Eq.(8) recursively predicts the future state n1ulti 
step ahead of the la.~t on-line data available. However, unlike the single step ahead prediction casci the inulti 
step ahead training data set D and test input vector Xn+n are adaptively updated with off-line predicted 
da1nage indices rather than on-line estiinatcd dan1age indices. For prediction of then+ nth dan1agc index 
G.n+fi =? the training data set D and test input vector Xn+n can be written as 

Tra.ining data 1natrix: Targflt ved01· 
~ 

ao a, a2 ad-1 ad 

a, a, a3 ad ad+1 

D= [ X; 
lln-d lln-rl+l lln-d+2 lln-1 0.11 (19) a ] 

a~+I i i=d, .. ,n-l+ii lln-d+l an-d+2 G.n-d+3 a,. 

lln-d+2 lln-d+3 G.n-d+4 a~+1 a~+2 

aP 
n-d-l+fi 

aP 
n-d+1i a~-d+Fi+1 a~-2+Tt a~-1+n 

Xn+n = [ a~-d+n 
Te.st input data vector 

(20) 
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where in Eq. (19 and 20) the subscript n symbolizes the dan1age instance up to which the last on-line data is 
available, and the subscript ii symbolizes the da1nage instance nun1ber following the availability of the last 
on-line data available, and the superscript p sy1nbolizes predicted damage index from the off-line module 1 as 
opposed to being csti1nated from the on-line inodcl. 

7. Residual usefv.l life estimation (RULE) 

The residual useful life estimation can be defined as the difference between the nun1ber of fatig11e cycles at 
which the predicted drunage index beco1nes critical, i.e reaches its critical value (a"), and the number .of 
fatigue cycles at which the last on-line data is available. The RULE can be defined as: 

RULE= (n + ii')b.N - (n)b.N - N0 = iib.N - N0 (21) 

where ~N is the number of fatigue cycle incren1ents per each incre1nent of damage instance and fr"' corre­
sponds to the number of dan1age instances for the damage index to become critical after the last available 
on-line data. 

III. Numerical Results 

A. Fatigue experiment and data collection 

1b nun1crically validate the integrated prognosis algorithm1 a fatigue test was performed on a Al-6061 
cruciforn1 specin1cn under bia.xial loading. The loaded cruciforn1 spccilncn in a lvITS biaxial fatigue test 
frame can be seen in Fig.3. The specilnen was subjected to a constant a1nplitudc fatigue loading with 
1naxin1um runplitude (u111a:c:) 4 kips and load ratio R=0.1, and the biaxial rnachine actuator was operated 
'\vith a frequency of 10 Hz. It is noted that, the 1naxhnun1 stress an1plitudc a.max = 4kips is equal to t'vo 
third of the yield stress ay. Ba.'led on nonlinear finite element analysis of cruciform specimen, the yield 
stress is approximated as uy = 6kips. Also note that both the x-axis actuator and y-axis actuator of the 
bia.xial fra1nc was subjected to in-phase fatigue loading. For on-line state csthnation, passive strain gauge 
sensors were used. Oile strain gauge is 1nounte<l on the horizontal flange (Fig. 4a), and one on the vertical 
flange (Fig. 4a) and two strain gauges arc 1nouuted on the web area (Fig. 4b) of the cruciform specimen. 
In addition1 to the strain gauge sensors, piezoelectric (PZT-5If) sensors were also instrun1ented to collect 
the active scnsi1ig data. I-Iowever, the active sensing data will be used in a future study. The current paper 
is ba'3ed on strain gauge n1casurc1nents. A hole in the center of the specin1en was n1ade to create crack: 
initiation in the web area of crucifor1n specimen. To accelerate da1nage gro,vth an EDM notch of 1 inm 
length was made at left quadrant boundary of the central hole ( 45° to the vertical axis). A 48 channel NI 
PXI system was used to collect the strain gauge signals, the piezoelectric sensor signals and the measurements 
from the biaxial n1achinc load cells. 111 addition, a high resolution SONY camera was also used to visually 
1nonitor the crack growth. The data acquisition system and the co1nputer capturing the visual image were 
synchronized with the biaxial inachine controller to collect the time synchronized <lata/ irnage at a specified 
interval of f),.N = 1500cycles. The data and image collection started at approximately 11 k cycles. The 
iinage and sensor data was collected at 47 different tiine instance. For the first 44 instances1 the signals and 
in1agcs were collected while the biaxial machine was running and during the last three instances the data 
was collected when the machine was not running. 'This lead to a total of 44 different damage cases with the 
last da111agc state occurring at 75.5 kcycles. The developed real-time 1.1ATLAB based prognosis algorithn1 
was also synchronized with the data acquisition syste1n to estimate the current damage state, and to predict 
the future damage state and remaining useful life. 

B. Correlation features and damage index 

To evaluate the drunage index as n1entioncd earlier, strain signal are mapped as input and output. For 
example, the signal (f~) from the strain gauge 1nounted on the horizontal flange (or X-arm) of the cruciform 
specimen is considered as the input signal u, whereas the signal ( t~) from the web mounted stain gauge is 
considered as output v. It is noted that both the horizontal axis strain (c~) and the vertical ID.is strain (t~) 
are ineasured Ly t'\vo different strain gauges placed perpendicular to each other. Cotnparison of input strain 
(c:) and output strain (c~) is shov.rn in Fig. 5. It presents a co1nparison for four different dan1age cases, 
damage case 7 (at 20 kcycle), damage case 20 (at 39.5 kcyc!c), damage case 42 (at 72.5 kcyclc) and damage 
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Figure 3. AJ-6061 cruciform s pecime n loade d in a MTS biaxial fatigue test frame 

case 44 (at 75.5 kcycle). Prom the figure it can be seen that though there is a clear trend between input 
and output strain during the later stages, the t rend is hard ly discernable in the earlier stages of damage 
growth. Rather than directly using the time series data for different d amage case comparisons, using Eq. 
( 4), the cross-correlation coefficient between input and output is found for different damage cases. The 
comparison of cross-correlation coefficients for damage level l (reference case at 11 k cycles) with cross­
corrclation coefficient at different damage levels arc shown in Fig. G. Figure 6a, 6b, 6c, and 6d, respectively 
show the comparison of cross-correlation coefficients of damage case 1 with damage case 7, damage case 20, 
damage case-42 and damage case-44. It is noted, the results shown in Fig.6, the x-axis flange strain (e:) 
and x-axis web strain e!;"} arc respectively taken as input u and output v. Also, it can be seen there is a 
better trend of damage condition, compared to the direct time series data from the strain gauges. However, 
to compare the different damage levels using a scalar quantity and to improve the disccrnability between 
different damage cases, the damage index proposed in Eq. (5), is evaluated for the differe11t damage states. 
Figure 7 shows increase in the damage index with fatigue cycle for two different output measurements, 
t!;" and €~, for fixed inpnt from x-axis nange measurement €:, The figure shows a clear trend of damage 
growth with e:' as output strain. A good correlation between estimated damage index and normalized visual 
measurement is also observed. It must be noted that, the visual measurement is available up to damage level 
29 (up to 53 kcyclc). After the 29th damage level, it was found that the camera went out of focus. Figure 
7 also shows t hat with respect to t~ as the output strain, except for inal failure regime, there is no clear 
trend in damage growth. This is because the input signal €: is poorly correlated with the y-axis web strain 
(c~) measurements. The higher damage indices during the final failnrc regime is possibly due to presence 
of shear strain components. In addition to t he strain signal as input, a damage index is also obtained using 
biaxial frame load cell measurements (x-axis load cell). T he new damage index is shown in Fig. 8, and a 
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a) b) 

Figure 4 . Unda maged and damaged condition of cruciform specimen: Plot-a shows the undamaged cruciform 
s pecime n. This rear v ie w of the s p ecime n a lso shows the location of two strain gauges mounted in the w eb 
area. Plot-b shows the final damage c ondition (at 75.5 kcycles) of the cruciform specimen. This front vie w 
of the specimen also shows the loca tion of two strain gauges: one mounted on horizontal arm and the other 
mounted on the vertical arm of the sp e cime n . 

similar t rend in damage index growth, as in the case of x-axis flange strain measurement as input, can be 
observed. However, it is noted that in a real life system, it is hardly possible to directly measure the loads 
applied to the structure. On the other hand, it is feasible to mount strain gauges or small sensors at required 
locations without affecting the structural integrity of the host structure. Therefore the results presented in 
the subsequent sections a re based only on the strain gauge based data. 

C. Single step a head state prediction 

F igure 9 shows the comparison between single step ahead prediction and actual damage index with on­
line data available up to the previous damage level. As seen in the figure, t he prognosis algorithm starts 
predicting from damage level 7. It is noted that the dimension d of the Gaussian process input is chosen 
as 6. T herefore the prognosis algorithm requires at least six damage states to obtain the 1 x 6 test input 
vector (see Eq. 18). Also, with unavailability of any training data set D (Eq. 17), to predict the 7th damage 
state, t he initial hyperparameters (Eq. 16) are chosen as: O~ = O":; = 1 and O~ = 0.1. Because of this, 
t here is a large mismatch between the 7 th level damage prediction and the actual damage index. However, 
for prediction of damage level eight and beyond , the traing input data ma tr ix (Eq. 17) and target vectors 
(Eq. 18) arc recursively updated. For each recursive updating, a new set of hypcrparamctcrs arc obtained 
using the conjugate gradient method. Once the hyperparameters are estimated, the one-step ahead damage 
index is predicted for the following damage level. Figure 9 shows a clear correlation between one-step ahead 
predicted damage level and the actual damage index before the damage index reaches its critical value of 0. 7. 
It must be noted that t he actual damage indices arc t he on-line damage states (or damage index); t hese are 
directly estimated from the sensor signals. T he threshold va lue of 0.7 is 703 of the final damage index value 
of 1. F'rom Eq. (.'i) t he damage index reaches its final value of 1 when there is no cross-correlation between 
the input u and v . T his is because the specimen undergone complete failure. It is noted that choosing the 
critical damage index value of 0.7 is based on the results from previously performed similar experiments. 

D . Multi step ahead p rediction 

Unlike the single step ahead prediction, the mult i step ahead prediction recursively predicts t he damage 
state ahead of the last on linc data availability stage. Figure 10 shows the multi step ahead st ate predict ion . 
Similar to single step ahead prediction process, the prognosis algorithm initiates after the 5th damage level 
(at 18.5 kcycles). From t he 7th damage level (from 20kcyclcs) , damage indices are predicted and then fed 
back to the prognosis model to update the training data matrix (Eq . 19) and the test input vector (Eq. 20). 
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The feedback process is continued recursively as long as the predicted damage index does not reach its 
critical value of 70% of its final failure value. It is to be noted that unlike single step ahead prediction, the 
t raining data matrix and the test input vector are upd ated with off-line model predicted states, rather than 
being updated with on-line model estimated states. It can be seen from Fig. 10 that up to damage level 
23 (at 44 kcyclcs) t he multi step ahead prediction fails to reach the critical damage index. This is because 
the predictive model, which is unable to learn the damage growth dynamics. To reduce the computational 
expenses, the prognosis algorithm was stopped at certain times. The criteria for stopping the algorithm was 
if t he rate of damage index growth is not greater than 1 x 10- 7 /cycles for six consecu t ive damage levels, 
the off-line predictive model is terminated. This is because, physically, if the damage growth is so slow the 
damage index value, will never reach the critical value even if the algorithm were to run indefinitely. From 
Figure 10 it is a lso seen that , the first multi step ahead prediction curve, t hat reaches the critical value starts 
from damage level 24 (from 45.5 kcycles). Beyond this damage level, the multiple step ahead prediction 
increasingly converges with the actual damage index. Also, it can be assumed that the prediction horizon 
is between damage level 24 (45.5 kcyclcs) and damage level 42 (72.5 kcycles), at which the on-line model 
estimation states reaches its critical value. 

E. Residua l useful life estimation (RULE} and mean square error evaluation 

Using Eq. (21), the residual useful life at a given damage level (up to which the last onlinc data was available) 
is estimated. Figure 11 shows the comparison of predicted RULE and actual RULE. From the figure it can 
be seen that, there is a good correlation between predicted and actual RULE in the true positive regime i.e., 
between damage level 24 (at 45.5 kcyclcs) and damage level 42 (at 72.5 kcycles) . Also it can be observed 
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that as more and more online data becomes available, better correlation between predicted RULE and actual RULE is obtained . Figure 12 shows the mean square error between predicted RULE and estimated RULE. It can be seen that during the t rue positive regime, the mean square error is substantially reduced compared to the mean square error during the false positive regime. 
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IV. Conclusion 

An adaptive on- line off-line life integrated predictive model has been developed for applications to Struc­tural Health Monitoring and damage prognosis. The developed prognosis model combines an on-line state estimation model with an off-line predictive model to adaptively estimate the residual useful life of an Al-6061 cruciform specimen under biaxial loading. Some important features of this algorithm and observation from this study arc summarized below. 

l. The on-line model is based on a non-parametric system identification approach , which estimates the current damage states. The numerical results showed good correlation oetwcen on-line estimated state and the normalized visual measurements. 

2. Once the current damage state was available from the on-line model, the informat ion was fed to an off-line predictive model to obtain the future states and remaining useful life estimation (RULE) . 
3. The off-line predictive model is a high-dimensional kernel function based recursive Gaussian process model. 

4. The future states arc recursively predicted by feeding back the previous predicted states to the off-line model. Also, the model parameters (Gaussian process hyperparamcters) are updated with repetitive conjugate gradient based optimization. 

5. Good correlation was observed between actual damage states and predicted future damage states between the 24th damage level (at 45.5 kcycles) and the 4pt (at 71 kcycles) damage level at which the damage index reaches its critical value of 0.7. 

6. T he duration between the 24th damage level (at 45.5 kcycles) and the 42nd damage level (at 72.5 kcycles) was considered as true positive regime or prediction horizon. This regime also showed that a good correlation between predicted RULE and actual RULE. 
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