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1. Introduction

The US Army Research Laboratory (ARL) has been evaluating and designing
efficient broadband linear high-power amplifiers for future adaptive, multimode
radar systems in addition to other applications such as communications,
networking, and electronic warfare. Qorvo has a high-performance 0.25-pum
gallium nitride (GaN) fabrication process and a process design kit that researchers
at ARL use to design broadband amplifiers, power amplifiers, and other circuits for
future radar, communications, and sensor systems. Recently, several ARL designs
were submitted for fabrication as part of an Air Force Research Laboratory
(AFRL)-led effort. This technical report documents some of those monolithic
microwave integrated circuit (MMIC) designs to demonstrate the performance,
bandwidth, capability, versatility, and applicability of GaN for compact, efficient,
MMIC designs. A separate report documents the broadband power amplifier that
was part of this same effort.!

2. High-Power Couplers (GaN)

A lumped-element passive Wilkinson coupler for combining high-power amplifier
stages was designed in Qorvo’s 0.25-um GaN-on-silicon-carbide (SiC) process.
One concern for power limits in a passive combiner is the isolation resistor. For this
3- to 6-GHz coupler design, a 250-um-wide mesa resistor was used for the
100-ohm isolation resistor. Since GaN-on-SiC is an excellent thermal conductor,
the isolation resistor should be able to handle a significant amount of power. It may
be hard to test the limits of this design, especially on a probe station. Test cells of
various smaller resistor types might provide a better comparison of a mesa resistor
versus a thin-film resistor. Mesa-resistor temperature rise is expected to be minimal
and should handle significantly more power than a thin-film resistor. One downside
is that there may be more process variation in mesa resistors than in thin-film
resistors.

The typical distributed 3-port Wilkinson coupler consists of 2 transmission lines,
with a characteristic impedance of 70.7 ohm and an electrical length of 90° at the
design frequency plus a 100-ohm isolation resistor between the 2 equal power split
ports. For a lumped-element implementation, the transmission lines are replaced by
series and shunt capacitors. A schematic of the lumped-element Wilkinson coupler
is shown in Fig. 1. Figure 2 shows the layout of a lumped-element Wilkinson
coupler with the common port on the right leading to 2 lumped-element-equivalent
transmission lines of shunt capacitor, series inductor (spiral inductor), and shunt
capacitor, to a mesa resistor in order to provide isolation between the top and
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bottom split power ports. Analytical and Axiem electromagnetic (EM) simulations
of the coupler are shown in Fig. 3, exhibiting better than a 10-dB return loss and
about 0.5 dB of additional loss (over ideal) from 3 to 6 GHz. The size of the resistor
is a compromise width of 250 um. A larger size would increase power handling
capacity in the isolating resistor, while a smaller size would allow for higher-
frequency performance.

204250 T
BANTALA TS TR
CE ]

Fig.1  Schematic of 3- to 6-GHz lumped-element Wilkinson coupler
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Fig.2  Final layout of 3- to 6 GHz-Wilkinson coupler Gen2 GaN (1.15 x 0.75 mm)
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3. Broadband High-Power Transmit/Receive (TR) Switches
(GaN)

A simple GaN high-electron-mobility-transistor (HEMT) TR single-pull double-
throw (SPDT) switch consists of at least 2 series- and 2 shunt-arranged HEMTSs
configured and DC-biased such that the common path, typically the antenna, is
connected through series HEMT to a desired input or output port and isolated from
the other input/output port with a shunt HEMT. Bandwidth, insertion loss, and
power handling capability are determined by the size of the series and shunt
HEMTs and the quality of the process for switches, with the switch figure of merit
expressed as a resistance-times-capacitance (RC) product. Increasing the size of the
HEMT switch proportionally reduces the series resistance in the On state as desired
but increases the shunt capacitance in the Off state, which is not desired. There are
narrow-band ways to increase performance by offsetting the Off state capacitance
with series or shunt inductors, but it is difficult to absorb the series and shunt
capacitances for a broadband operation exceeding a decade. A simple TR switch
that works well up to 6 GHz is shown in Figs. 4 (layout) and 5 (simulation).
Complementary DC-bias voltages are applied at inputs A and B, typically 0 V for
On, and less than —6 V for Off. When A is On, the series switch connects port 1 to
port 3 at the bottom, then connects the shunt switch to isolate port 2 at the top, and
while B is Off, turning off the shunt switch at port 3 and turning off the series switch
from port 1 to port 2 at the top. Reversing the DC biases at A and B would connect
port 1 to port 2 at the top while isolating port 3 at the bottom. At 4 GHz, the insertion
loss is predicted as 1.3 dB, with a return loss of better than 13 dB and an isolation
greater than 34 dB.

Fig.4  Layout of broadband DC-6-GHz SPDT TR switch 0.25-um GaN (1 x 1 mm)
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To achieve a broadband TR SPDT switch designed to operate from near DC up to
18 GHz using Qorvo’s 0.25-pum GaN-on-SiC process, the HEMTs had to be made
smaller to achieve performance at the high end of the band. The tradeoff in size,
topology, and performance resulted in higher insertion loss than desired to achieve
broadband performance up to 18 GHz. While the earlier TR switch design had
lower insertion loss, it only operated up to about 6 GHz before the return loss fell
below 10 dB. Figures 6-8 show the schematic, layout, and simulations,
respectively, of a broadband 0.1- to 18-GHz TR switch (SPDT). There are 2-shunt
HEMTSs in each path rather than a single-shunt switch to improve the high-end
performance. Likewise, the DC bias voltage inputs at A and B are complementary,
switching the common port to one or the other of the top or bottom ports (the port
numbers are renumbered vs. the previous example). In the simulation, insertion loss
is a moderate 1.5 dB below 7 GHz, increasing to 2 dB at 14 GHz, then increasing
to 2.5 dB at the 18-GHz band edge. There are thin-film resistors to isolate the DC
switch biases on the HEMT gates from the source and drain radio-frequency switch
connections. This may limit (RC delay) how quickly the TR switch can be
transitioned from receive to transmit.
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t0 18-GHz SPDT TR switch Gen2 GaN (0.9 x 0.9 mm)

Final layout of broadband 0.3

Fig. 7
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4. Broadband-Distributed Power Amplifier (GaN)

A very-broadband-distributed amplifier was designed in Qorvo’s 0.25-pum GaN-
on-SiC process. The simple design is not as efficient as a narrower-band amplifier
optimized for power but does have good output power and reasonable power
efficiencies, which can be optimized by adjusting the DC operating conditions. This
design is expected to operate well over a DC voltage bias of 10 V or less and up to
28 V or higher. Plots of the broadband-distributed-amplifier schematic, layout, and
small-signal simulation are shown in Figs. 9-11, respectively. Power performance
at 8, 10, 15, and 20 V with output power but decreasing power-added efficiencies
(PAESs) are shown in Figs. 12-15, respectively. PAEs are reasonable at 20%—-25%
at the lower 8-V drain bias but decrease at higher DC voltages. Output power is
about 1/2 W with 10-V drain bias and over 1 W when the drain bias is increased to
20 V.
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MWO schematic of broadband-distributed amplifier
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Fig. 10  Layout of broadband-distributed amplifier (1.6 x 0.75 mm)
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5. Summary and Conclusions

Several MMIC designs were submitted to an AFRL-sponsored Qorvo 0.25-pum
GaN wafer fabrication to demonstrate the performance, bandwidth, capability,
versatility, and applicability of GaN for compact and efficient microwave circuit
designs.

The distributed amplifier was particularly interesting for having extreme broadband
gain above 20 GHz with reasonable output power and efficiency. Varying the
output DC bias can optimize the output power and efficiency of these 0.25-um GaN
HEMT designs though 28 V is desired. The 0.25-um HEMTSs can handle higher
DC voltages but were not optimally matched for higher operating voltages. For this
design, PAEs are higher at lower DC bias voltages such as 8 or 10 V.

Other designs include a TR switch that was designed for operation to 18 GHz.
Using GaN HEMT switches increases the linear operating range of TR switches
over previous gallium arsenide designs. The need to reduce the HEMT switch sizes
to increase operation to 18 GHz will sacrifice power handling capability and
increase insertion loss.

Passive power-combiner circuits with isolation resistors that can handle the high
powers of GaN amplifiers are included in the fabrication. A simple 3- to 6-GHz
single-stage passive Wilkinson coupler using a mesa resistor for isolation will
likely be included in the fabrication. Layout, EM simulations, and design rule
checking of these designs were performed by the author. A brief description of all
the GaN MMIC designs submitted by ARL for an AFRL-sponsored Qorvo
0.25-um GaN wafer fabrication are included in another technical note.? Later
technical reports will detail design tests and evaluations when the MMICs are
available.
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