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Introduction. 
The overall goal of this proposal is to develop synthetic lectins (SLs) that bind to prostate cancer associated 
glycans and glycoproteins (CAGs).  These studies are being pursued to develop this methodology into a robust 
system that can diagnose and monitor the stage of prostate cancer.  Related to the proposed system, aberrant 
glycosylation is a hallmark of cancer and, as such, the differential display of boronic acid moieties on peptides 
and peptoids will allow for monitoring the changes (over- or neoexpression of CAGs) associated with 
oncogenesis and metastasis, thereby providing a new paradigm for the development of a prostate cancer 
diagnostic.  AIM 1 describes a library based approach for the discovery of SLs targeting CAGs.  AIM 2 
describes biochemical and biophysical approaches to identify the factors that are required for the selective 
recognition of CAGs.  It is expected that the results of these studies will provide information that will allow us 
to improve the design of the libraries described in AIM 1, towards second and third generation libraries.  In 
AIM 3, selective and cross-reactive SLs will be assembled into an SL-based array.  The efficacy of this array 
will be evaluated using both prostate cancer derived CAGs and actual cell lines. 
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Body. 
Significant progress has been made.  While continuing to learn a great deal about how our SLs are binding with 
glycan and glycoproteins, we have also made great headway towards assessing the utility of a SL-Array to 
respond to secreted glycoproteins and human tissue samples.  In consultation with clinical colleagues, we have 
made strides towards simplifying the analysis platform/method and in working with statistical collaborators we 
are continuing to improve the robustness of our analysis while reducing sources of interface variation.  
Specifically, we have been able to move our bead-based readout from a fluorescence microscope to using a 
standard flow-based system (e.g. fluorescence activated cell sorter – FACS) while maintaining a significant 
portion of the assay validity.  Furthermore, we have been able to demonstrate that the patterns generated by our 
SL Array responding to cell membrane extracts from cultured cells mimic those patterns obtained when 
analyzing the culture media from those same cell lines, providing support for the concept of creating a serum-
based diagnostic.  Similarly, we have begun to study glycosylation patterns from human tissue samples using 
our SL Array and have obtained excellent discrimination between matched healthy and cancerous tissues.  In 
addition, we are continuing to develop and improve the screening methods used to identify new SLs.  To drive 
our efforts towards more biological and disease relevant models, we have used cell membrane extracts rather 
than purified proteins as the target component of our library screening method.  We have also identified a novel 
dual-label competitive binding screening assay that also relies on using cell membrane extracts.  Because of our 
association with and proximity to the Center for Colon Cancer Research (CCCR) at the University of South 
Carolina (USC), a great deal of our initial, method development efforts have used colon cancer associated cell 
lines and tissue samples.  As we have previously demonstrated and is discuss below, once the “bugs” have been 
worked out using colon cancer associated 
samples, the transition to prostate cancer related 
samples has been straightforward.   

Task 1.  Use a library-based approach to identify 
synthetic lectins that bind to prostate cancer 
associated glycans/glycoproteins (CAGs). Note 
that this aim will continue over the life of the 
grant to continuously identify more selective and 
useful SLs. (Months 1-36) 

Initiating PI: 

Task 1 a):  Synthesize bead based peptoid 
libraries that incorporate phenylboronic acid 
moieties. (Months 1-4) 

Peptoid libraries were constructed using 9 
amine building blocks (diversity = 95; 5.9 x 
104 members) using the scheme depicted in 
Figure 1A.  Briefly, bromoacetic acid was 
coupled using DIC to Tentagel –NH2 beads 
already coated with our MRBB linker 
sequence.  The beads were split and the 9 
different amines were added to equal amounts 
of beads and reacted in DMF.  The beads 
were then washed, re-pooled and treated with 

Figure 1.  Optimization of screening conditions. A. 
Scheme for generating peptoid library. B. Images of 
phenylboronic acid (PBA) library with either 0% E. coli 
lysate (EL, left) or 0.1 % EL lysate (right). C. Bead 
quantification of increasing amounts (0 – 5 %) EL. D.  
Increasing amounts of NaCl decrease the binding of the 
library down to background. 
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bromoacetic acid and DIC to couple the second diversity element.  The Dde protecting group was 
selectively removed using hydrazine to uncover the primary amine to be conjugated to phenylboronic acid 
(PBA).  PBA installation was verified using ARS and several beads were randomly selected for library 
quality evaluation. 
 With the synthesized libraries in hand, we turned our attention to identifying ideal screening conditions. 
Our goal was to identify stringent conditions so we could identify highly selective hits from our libraries. 
Based on previous studies,1 we used E. coli lysates (EL) to both pre-block the beads and minimize non-
specific interactions during analyte incubation.  Figure 1B shows the drastic decrease in fluorescence when 
adding 0.1% EL to the screening buffer.  Indeed, an EL gradient (Figure 1C) identified 0.1% EL as the 
optimal concentration since higher concentrations showed to strong of a decrease in fluorescence.  We then 
optimized the salt concentrations (Figure 1D) and determined that 150 mM NaCl is ideal. 

Task 1 b):  Screen peptoid libraries with prostate cancer associated glycoproteins and complex glycans to 
identify highly selective and cross-reactive synthetic lectin (SL) hits. (Months 3-36) 
To identify SLs that are specific for CAGs (Figure 4A), we designed a screening platform that used 
biotinylated complex carbohydrates conjugated to fluorescently labeled streptavidin (SA) (Figure 4B).  
Briefly, a series of biotinylated carbohydrates (i.e., sialyl Lewis X, sialyl Lewis A, Lewis X and Lewis A) 
were obtained from the Consortium of Functional Glycomics (CFG).  Because of our previous success with 
peptide library screening, we initially optimized our screening conditions using phenylboronic acid based 
peptide libraries instead of peptoid based ones incorporating either the phenylboronic acid or benzoboroxole 
moieties.  For this assay, we pre-incubated the CFG glycans with FITC-streptavidin for 1 h in a 4:1 glycan-
SA ratio then added this complex to our PBA-peptide library in screening buffer.  Using this method, we 
identified 2 hits when screening with sLex as the target glycan.  These hits were sequenced and had the 
following sequences: sLex1 = MRBB–LD*RFRD*L-Ac and sLex2 = MRBB–RD*RWVD*Y-Ac.  In 
addition to validating this screening modality for identifying both peptide and peptoid based libraries, 
further analyses demonstrate that these hits bind sialyl Lewis X better 
than Lex or either of the Lea

 derivatives (see below). 
 During the second year of funding we continued to focus on 
building SLs from peptides due to the immense success we have had 
with this structural motif.  As such, we screened our fixed-position-
library (FPL) against fluorescein labeled prostate specific antigen 
(FITC-PSA).  While the diagnostic utility of PSA has demonstrated 
little to no validity as a biomarker for prostate cancer, we chose PSA for 
screening because it displays many of the glycans overexpressed in 
prostate cancer and it is commercially available.  Briefly, 2 mg of 
library beads were washed with PBSG twice and then incubated with 
1% BSA in PBSG for 15 minutes to reduce nonspecific background 
binding.  The solution was removed from the beads and 0.01 mg/ml of 
FITC-PSA in PBS was added.  The beads were incubated with this 
solution for 20 hours at room temperature, after which the supernatant was removed and the resin washed 
with PBS three times before imaging using fluorescence microscopy.  Figure 2 depicts the green channel 
from a typical image from this screening protocol.  Note that the brighter bead would be classified as a 
“hit.”  We are currently working to sequence these hits using MALDI-MS. 
 We have alternatively begun to screen our libraries with cell membrane extracts as well as using 
competitive binding assays between cell membrane extracts from normal and cancerous prostate cell lines. 
For all of the work discussed below, we have used RWPE-1 cells as our normal/healthy cell line and PC3 as 

Figure 2.  The green channel 
from a typical image from 
screening the FPL with FITC-
PSA.  The bright bead 
indicates a “hit” for binding 
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our cancerous cell line.  Figure 3A shows a normalized binning 
chart for screening our FPL with rhodamine labeled membrane 
extracts (red diamonds) or fluorescein labeled membrane extracts 
(green diamonds).  Differentiation between what would be 
classified as “hits” (indicated within the blue box) and “non-
specific background binding SLs is sufficient to obtain acceptable 
hit rates under 10%.   
 In the competitive binding screen, one sample is labeled with 
fluorescein while the other is labeled with rhodamine.  In our 
current analysis, our samples are the cell membrane extracts from 
PC3 and RWPE-1.  Each cell membrane extract was separately 
labeled with each dye to produce R-RWPE-1, F-RWPE-1, R-PC3, 
and F-PC3; where R = rhodamine, F = fluorescein.  A portion of 
the FPL was then incubated separately with each cell membrane 
extract listed above (i.e. alone) and with all possible combinations 
in a 1:1 w/w ratio.   
 Figure 3B shows individual color channels from images taken 
of a portion of the FPL binding to a mixture of F-RWPE-1 and R-
PC3 imaged under the appropriate filters for each dye, i.e. DSR for 
rhodamine (red channel) and GFP3 for fluorescein (green channel).  
Each image is of the same beads, just taken using a different 
emission filter.  Note that the bead indicated by the yellow arrow 
in the green image is brighter than the other beads relative to the 
brightness of this same bead in the red image.  This indicates that 
the SL attached to this bead binds more tightly to the fluorescein 
labeled analyte than to the rhodamine labeled analyte.  Figure 3C 
expresses this more quantitatively, showing the fold increase in 
brightness for the six brightest beads in each image with respect to 
the average background binding.  Notice that most of the 
intensities are close to one, indicating that these beads are in 
general of equal brightness and close to the average bead intensity.  However, the bead labeled “4” displays 
nearly a 2-fold enhancement in binding to F-RWPE-1 compared to the other beads binding to F-RWPE-1 as 
well as compared with all of the beads binding to R-PC3, and corresponds to the bead indicated by the 
yellow arrow. 
 Based upon screening our FPL with individual and mixed prostate derived cell membrane extracts, five 
new sequences have been identified, Table 1.  Most significantly, these SLs were identified from screening 
our library with known prostate associated samples.  Most excitingly, these SLs were identified from an 
incredibly heterogeneous mix of membrane supported proteins and glycoproteins, all labeled with a 
fluorescent dye.  Furthermore, nearly half of 
these sequences came from mixtures of 
different incredibly heterogeneous cell 
membrane extracts, and still some degree of 
selectivity in binding was achieved!  We are 
currently continuing to evaluate the selectivity 

Table 1.  Sequences of SLs identified against prostate 
derived cell line membrane extracts. 

 

SL Hit Sequence Cell Line
Screened

Cell Line 
Selectivity

SL10 H2N-RLD*ARSD*G-BBRM-resin F-PC3 - -

SL11 H2N-RLD*YLTD*R-BBRM-resin F-RWPE-1/R-PC3 PC3

SL12 H2N-RLD*GFYD*Q-BBRM-resin F-RWPE-1/R-PC3 RWPE-1

SL13 H2N-RTD*GLAD*V-BBRM-resin F-RWPE-1 - -

SL14 H2N-RYD*RASD*V-BBRM-resin R-PC3 - -

 
Figure 3.  a) Binning chart from 
screening the FPL against 
rhodamine labeled (red diamonds) 
or fluorescein labeled (green 
diamonds) membrane extracts.  B) 
Red and Green channel images 
from screening FPL with F-RWPE-
1 and R-PC3.  Arrows indicate one 
SL that binds F-RWPE-1 more than 
R-PC3and C) quantifies this 
preference (bead 4). 
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of binding for these new SLS as well as assessing their utility as part of our SL Array.  
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Task 1 c):  Upon identifying ≥5 hits, we will 
sequence, resynthesize, and determine their 
selectivity of identified hits towards the 
target that they were selected against as 
well as the other prostate cancer associated 
glycoproteins and complex glycans. 
(Months 3-36) 
We set out to validate our two PBA-peptide 
hits by first resynthesizing the two hits 
identified in (Task 1b), sLex1 and sLex2.  
We then screened these hits against Lex, 
Lea and sLea (Figure 4A) and determined 
that both of the hits bind sLex better than 
Lex or either of the Lea

 derivatives (Figure 
4C).  These results are encouraging and 
will be expanded as the number of hits 
increases after additional rounds of 
screening. 
 We have been able to sequence SLs 
from our fixed-position library using 
traditional Edman degradation techniques 
without removal of the boronic acid 
moiety.  As previously discussed, we 
accepted the low success rate for 
sequencing hits using MALDI-MS-MS 
(~40%), and looked forward to using the Orbi-Trap MS where we were able to obtain enhanced sensitivity 
and seemingly better sequencing efficiency.  However, the observed increase in sensitivity often hindered 
our analysis by introducing higher background signal compared to MALDI-MS and thereby complicated the 
MS-MS analysis.  Consequently, when provided the opportunity to evaluate using Edman degradation 
methods to sequence our SLs we enthusiastically tried it.  The most significant change made to our design 
was that we could no longer acylate the N-terminus of our SLs, because to do so would end the possibility 
of using this technique.  Thus a new library was synthesized using the split-and-pool protocol previously 
described.  The primary modification from prior library syntheses was that instead of cleaving the Fmoc and 
acylating the terminal amine after coupling the final R; the Dab(ivDde) protecting groups were removed 
using hydrazine and the boronic acid groups were introduced via reductive amination prior to removing the 
Fmoc protecting group.  The new general sequence for this fixed-position SL library is H2N-R-X-D*-X-X-
X-D*-X-B-B-R-M-resin, where X denotes a randomized amino acid chosen from R, A, G, V, N, Q, L, F, S, 
Y, T; while D* indicates diaminobutanoic acid with a 2-methyl phenyl boronic acid attached.   
 Perhaps the most compelling argument for switching from MS-based sequencing to Edman-based 
analysis is that there is no requirement to remove the boronic acids from the SL prior to sequencing.  When 
using MALDI-MS we found that oxidation of the boronic acid, followed by cleavage of the resulting 2-
methylphenol simplified our analyses.  However, when using the Orbi-Trap MS we noticed not only 
removal of our phenyl boronic acid (PBA), but also partial and irregular cleavage of our SL backbone.  This 
again only served to complicate our analysis when using data from the Orbi-Trap.  In our first efforts using 
Edman degradation to sequence our SLs we obtained beautiful data for the SL peptide sequence that had 

 
Figure 4.  New screening targets. A. Structures of cancer 
associated glycans. B. Diagram of the glycan screening 
methods using FITC-Streptavidin (SA). C. Library screens 
of the different glycans from A. using the approach in B.  
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never been coupled with the boronic acids (as would be 
expected), including a new peak in the corresponding LC 
traces associated with Dab.  However, the Edman-based 
sequencing results of known sequences after removal of 
the PBA showed the presence of numerous amino acids 
in each cycle, indicating that the SL peptide backbone 
had been partially hydrolyzed during the removal of the 
PBA.  Control studies confirmed that incomplete 
coupling while synthesizing the SL was not to blame for 
this result.  Consequently, we decided to evaluate this 
approach without removing the PBA groups.  In the case 
of the fixed-position library, we know where the D* 
residues are and since we only need to know the identity 
of the five randomized amino acids before, between and 
after these building blocks the  Edman-based approach 
should work as long as the boronic acids do not interfere with the phenylisothiocyanate chemistry (Figure 
5).  Remarkably, the PBA does not appear to interfere with the analysis and in fact a new peak is observed 
in the LC trace that is consistent with the D* moiety (Figure 5), thereby opening the door for the use of 
completely randomized libraries with the ability to sequence the D* residues.  Using this approach, we have 
identified four new SLs from library screens using prostate cancer associated glycoproteins and cell 
membrane extracts (Table 1). 

Partnering PI:  

Task 1 a):  Synthesize bead-based peptide libraries that incorporate phenylboronic acid moieties. (Months 1-4) 

Two peptide-based fixed-position libraries were synthesized on Tentagel resin analogous to those previously 
described.2  The effectiveness of the coupling was assessed using MALDI-MS in the past, here however, we 
ran into difficulties.  From all of our efforts, our MS analysis consistently indicated incomplete deprotection 
of the iv-Dde protecting groups on the Dab side-chains (where boronic acids are attached).  This appeared to 
be a significant portion of the product, composing up to 60%.  Moreover, our MS analysis frequently 
suggested that we were getting incomplete coupling of the first Dab moiety.  These were problems we had 
not encountered previously, yet appeared to be an issue when even re-synthesizing known SLs. 
 Consequently, we thoroughly evaluated the quality of the batches of TentaGel resin, hydrazine (used to 
deprotect the iv-Dde) and Fmoc-Dab(iv-Dde)-OH from the vendors.  Note that we were using the same 
vendors as we had in the past.  No apparent anomalies were detected in these reagents.  Furthermore, upon a 
detailed investigation of the literature, we identified much “controversy” and similar problems were 
indicated with respect to deprotecting the iv-Dde protecting group. 
 We thus opted to re-evaluate our synthetic approach and tried different side-chain amine protecting 
groups on Dab including alloc and MTT.  From these studies, we determined that the deprotection of alloc 
was sensitive to water and oxygen, making it difficult to work with at times.  Furthermore, while the MTT 
group was easy to deprotect, amino acids with this group on the side-chain were often difficult to couple to 
the resin due to the size of the MTT group and increased steric interactions. 
 Interestingly, when we synthesized SL5 on a cleavable Rink Amide Resin using Fmoc-Dab(iv-Dde)-
OH, we were able to confirm the presence of fully deprotected SL5 as the major product using MALDI-MS.  
Next, we more rigorously investigated the relative ratios of protected and deprotected SL5 from the 
TentaGel resin using LC-MS.  Remarkably, using this method we observed only ~3% of the mono-and di-

 
Figure 5.  LC traces for the first 4 cycles of 
Edman degradation of SL2. The first 4 resi-
dues from the N-terminus are: R-T-Dab-R.  
Note the new peak for Dab in the third trace. 
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protected analogs combined.  Still, by MALDI-MS we were seeing nearly 40% of the protected products 
from the same sample.  After numerous control experiments, including investigating the ionization 
efficiencies for all of the possible products and using an Orbi-Trap MS-MS to confirm sequences, we were 
able to confirm the validity of the LC-MS analysis. 
 Ultimately, we accepted the fickle-nature of MALDI-MS and again felt confident in our synthetic 
protocols for library development.  Confirmation of the attachment of the boronic acids proceeded with less 
uncertainty, relying on a previously identified binding assay with alizarin red S (ARS).  In the end, we were 
able to identify other orthogonal amine protecting groups (i.e. MTT on long side-chain amines) that will 
simplify syntheses related to studies on poly-valency as well as for incorporating other side-chain 
functionality such as biotin.  Using the Orbi-Trap MS we were also able to obtain better sensitivity and 
enhanced sequencing efficiency as compared to MALDI-MS. 

Task 1 b):  Screen peptide libraries with prostate cancer associated glycoproteins and complex glycans to 
identify highly selective and cross-reactive synthetic lectin (SL) hits. (Months 1-36) 

The screening methods previously used to identify SL1-SL5 were employed to screen portions of our library 
against prostate cancer associated glycoproteins.  As we continue to improve these screening methods we 
have continued to improve the quality of the hits we identify.  Initially, we screened the library with 
ovalbumin (OVA) and porcine stomach mucin (PSM) as these glycoproteins contain glycans of interest that 
have been associated with prostate cancer (PCa), namely mannose and N-acetyl glucosamine (GlcNAc) on 
OVA and GlcNAc and fucose on PSM.  From these screens, four new SLs were isolated and sequenced 
(SL6-SL9 in Table 2). 
 Beyond simply identifying new SLs, we 
have learned a great deal about how we do our 
analysis, specifically in how we image our 
resin and extract color data.  In all of our 
image acquisition and analysis we have been 
conscientious of the quality of the image and 
how we extract luminosity data.  Still, until 
recently all decisions had been made by the 
user, which can introduce user bias.  Therefore, 
in order to limit the introduction of external 
bias we wrote a bead finding and data 
extraction algorithm using MATLAB.  Of 
particular interest to us was eliminating any inhomogeneity across the field of view, which could result from 
variation, between users, in the illumination source settings, focus or hardware alignment.  The simplest 
approach was to define a region of interest (ROI) that could be set and used to reduce any edge effects.  
From there we could simply have the software “find” the beads based on relative intensity changes.  In 
addition, we created the option to reject any identified objects based on size (area or circumference), 
circularity and/or pixel saturation at any given percentile of the pixels for each bead.  Remarkably, 
reprocessing existing images with this algorithm, using only the ROI and rejection based on size, improved 
classification accuracy, based on leave-one-out methods, from 97% to 99% for 5 cell lines. 
 We have continued to optimize our data acquisition, extraction and analysis protocols.  In particular, an 
integral change was made to our MATLAB algorithm in order to improve the identification and 
quantification of individual assay beads.  One challenge we continually face is how to extract data from dark 
images resulting from weak binding between an SL and a certain analyte, while still maintaining confidence 

Table 2.  Sequences of identified SLs. 

 

SL Hit Sequence Glycoprotein
Screened

Glycoprotein
Selectivity

SL1 Ac-RGD*VTFD*R-BBRM-resin OVA Cross reactive

SL2 Ac-RTD*RFLD*V-BBRM-resin OVA OVA

SL3 Ac-RSD*VTTD*R-BBRM-resin OVA OVA

SL4 Ac-RRD*TQTD*Q-BBRM-resin PSM OVA, PSM

SL5 Ac-RAD*TRVD*V-BBRM-resin PSM PSM

SL6 Ac-RTD*NRND*F-BBRM-resin PSM OVA, BSM

SL7 Ac-RSD*YFTD*Q-BBRM-resin PSM OVA, PSM

SL8 Ac-RTD*YGND*N-BBRM-resin PSM PSM

SL9 Ac-RTD*YQVD*A-BBRM-resin PSM OVA, PSM
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in comparing these results with those from other SLs that bind more analyte and as a result are much 
brighter.  At the heart of this challenge is how to accurately find the edge of the dark bead compared to the 
background.  Given that we typically carried out our analysis based on luminosity or brightness 
measurement we always found particles based on a fold-change over background using a greyscale image 
that resulted from merging the red, green and blue channels from our color camera.  While the fold-change 
value can be readily changed to reduce the threshold, this often resulted in blurry edges and increased 
variability in our measurements.  In the new MATLAB algorithm we have chosen to find the particles, i.e. 
identify the edges, using the color channel with the greatest amount of information, for example using the 
green channel for fluorescein and the red channel for rhodamine.  Using this new design, we are able to 
reliably and consistently identify beads with intensities around 5 on an 8-bit scale, whereas the previous 
protocol limited us finding beads with intensities closer to 15 on an 8-bit scale. 

Task 1 c):  Upon identifying ≥5 hits, we will sequence, resynthesize, and determine the selectivity of identified 
hits towards the target that they were selected against as well as the other prostate cancer associated 
glycoproteins and complex glycans. (Months 3-36) 

As described above, the four new hits listed in Table 1 were sequenced using MS-MS techniques and were 
resynthesized on TentaGel resin.  To identify general selectivity trends, and for comparison with the original 
five SLs identified, each SL was bound with three glycoproteins (OVA, BSM, and PSM) as well as BSA, 
which was used as the control for nonspecific protein binding to the beads.  Briefly, the library and the SLs 
were blocked with 1% BSA to minimize nonspecific binding, and then incubated with 0.1 mg/mL FITC-
labeled analytes for 16 hours.  After washing with PBS to remove unbound analyte, beads were imaged 
using a fluorescent microscope and color data extracted using the MATLAB algorithm described above.  
The library was used as a control, to reduce the differences between each glycoprotein in the extent of 
fluorescent labeling and degree of glycosylation.  As such, the average raw intensity values for the library 
was subtracted from each replicate measure 
for each SL binding analyte.  This 
normalized difference was then divided by 
the raw intensity of the library to afford a 
relative percent change for each SL binding 
each analyte.  As shown in Figure 6, all of 
the SLs are cross-reactive to some degree.  
For example, while SL1 is considered 
completely cross-reactive, showing virtually 
no selectivity for any particular analyte, 
SL5 and SL6 display exquisite selectivity 
for PSM over BSM (~50-fold) and BSM 
over PSM (~60-fold), respectively.  The 
remaining newly identified SLs show 
between 1.6 and 18-fold selectivity for one 
analyte over another. 
 While continuing to evaluate these hits, there is one theme that has become obvious.  Most notably, the 
cross-reactive SLs that exhibit modest selectivity in this chicken-cow-pig paradigm (CCP, derived from 
ovalbumin (chicken), bovine mucin (cow) and porcine mucin (pig)) as indicated in Figure 3, typically 
provide the most useful information when assaying cancer related samples.  In this same manner, generally 
speaking, the high selectivity that one can achieve for cow over pig mucin (e.g. SL5, 50-fold selectivity) 

 
Figure 6. SL selectivity trends. Relative percent change in 
luminosity for SL1-SL9 binding ovalbumin (OVA), 
bovine submaxillary mucin (BSM), porcine stomach 
mucin (PSM) and bovine serum albumin (BSA). 

0%

20%

40%

60%

80%

100%

120%

140%

SL1 SL2 SL3 SL4 SL5 SL6 SL7 SL8 SL9

OVA BSM PSM BSA

Pe
rc

en
t C

ha
ng

e 
Lu

m
in

os
ity



13 
 

does not translate into effective discriminatory capabilities within our SL Array.  For example, when using a 
SL Array composed of SL1-9 to evaluate the metastatic potential of six prostate derived cell lines 
(including: RWPE-1 (Healthy); WPE1-NA22 and WPE1-NB14 (cancerous non-metastatic); LNCAP, 
DU145 and PC-3 (cancerous metastatic), achieved with 100% accuracy) we see that 66% of the variance, or 
discriminatory ability of the array, is accounted for from SL2 and SL3, 25% and 41%, respectively.  Recall 
that we previously excluded SL2 because of the similarities in response to purified glycoproteins with SL3 
as well as noting the high BSA, background binding in SL2.  Ultimately, the take-home lesson for us has 
been 1) that we cannot take any SL for granted, and 2) identifying SLs from more biologically relevant 
samples could provide better classification and more detailed information regarding the particular 
glycosylation patterns associated with a particular disease state. 

Task 2.  Initiating PI:  Examine the biochemical/biophysical basis of the glycan•SL interaction. (Months 3-36) 

Task 2 a):  Upon identifying ≥5 hits (Task 1), we will develop a structure-activity relationship for highly 
selective SLs based on: 1) Alanine scanning ‘mutagenesis’; 2) Varying the tether length; 3) Varying the 
boronic acid linkage and substitution patterns; and 4) Examining boronic acid substituent effects, to identify 
the factors that promote the selective recognition of a glycan by a particular SL. (Months 3-32) 

 While we have had previous success using 2-
phenylboronic acid as our glycan targeting moiety, we 
also wanted to see if the recently described 
benzoboroxole would serve as a more suitable boronic 
acid.  We first synthesized the carboxy-benzoboroxole 
(Figure 7A) and then coupled it to the same side-chain 
Dab amine on SL5 as was used for the PBA derivative.  
Interestingly, benzoboroxole-SL5 showed increased 
affinity for PSM when compared to the original PBA 
derivative (Figure 7B).  Due to the improved affinity, we 
built both a peptide library (diversity = 115; 1.6 x105 
members) as well as a peptoid library (diversity = 95; 5.9 
x104 members) incorporating the benzoboroxole moiety.  
While we were able to successfully screen the peptide 
library and identify a hit (“Box1” - MRBB–
VDARTDGR), sequencing the boroxole hits has been 
challenging due to the effect of the benzoboroxole 
moiety on ionization.  As such, we are optimizing a 
variety of oxidation and cross coupling steps that we expect will efficiently remove the benzoboroxole 
functionality, and thereby facilitate the successful sequence of hits.  Additional structure-activity 
relationships will be determined once we accumulate ≥5 hits. 

Task 2 b):  Examine the contribution of multivalency towards binding affinity/selectivity of particular SLs. 
Synthesize mono-, di-, and tri-topic versions of the SLs identified in AIM 1 and evaluate their importance 
for glycan binding and selectivity. (Months 18-36). 

 To examine the effects of multivalency on SL affinity and selectivity we have begun to synthesize 
monovalent, two trivalent analogs varying the distance between the SL chains, and polyvalent SL5 based on 
poly(acrylic acid) (Figure 8).  In our initial efforts, the mono and trivalent SL5 analogs are being 
synthesized on Rink-Amide resin using HBTU/Fmoc chemistry.  The first amino acid attached to the resin 

 
Figure 7. Library design.  A. Synthesis of 
carboxy benzoboroxole to conjugate to 
peptides/peptoids.  B. Improvement of PSM 
binding to SL5 when using benzoboroxole 
instead of phenylboronic acid. 
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Figure 8.  Structures of divalent, trivalent and polyvalent SLs. 

was Fmoc-Cys(Mmt)-OH because the 
Mmt group can be removed orthogonally 
to other protecting groups used in the 
synthesis to install a reporter dye using 
thiol-selective maleimide chemistry 
(recall Cys is not used in the library 
synthesis).  For the monovalent SL5, 
Fmoc-Lys(ivDde)-OH was next coupled.  
The N-terminus was acylated, the side 
chain of lysine was deprotected with 
hydrazine and the desired SL 
synthesized using standard methods.  
Synthesis of the trivalent SL5 analogs 
begins like that of the monomeric derivative, however instead of acylating the N-terminus, the chain is 
extended with either one glycine or 3 glycine residues as spacers between the lysine branches that contain 
SL5 (Figure 8).  Differing amounts of glycine can be incorporated between the Lys units to explore the 
effect of SL density on glycan binding.  Sequential addition of Lys and glycine spacers provides the desired 
tri-topic scaffolds.  Subsequently, the lysine side-chains are deprotected with hydrazine and the desired SL 
synthesized in triplicate using standard methods in parallel.  After the Dab side-chains are deprotected using 
hydrazine and the boronic acids are coupled via reductive amination, the Mmt protecting group on Cys is 
removed using 1% TFA and the free thiol attached to a maleimide containing reporter tag (there is no 
interference with the boronic acid).  To obtain additional information related to the intensity of the 
fluorescence signal upon binding, as well as to probe the structure-activity relationship related to 
functionalization of the SL termini, we have also attached fluorescent dyes to the terminal amine of the Gly-
Lys scaffold as well as to the N-terminus of each SL.  Finally, the SL analogs are cleaved from the resin 
with concurrent removal of the acid-labile side-chain protecting groups using 95% TFA.   
 With these synthetic steps completed we are currently working to purify and validate the structure of 
these SLs.  Purification of the trivalent SL5 has proven to be a non-trivial task and we are having difficulty 
fully characterizing these novel structures.  Consequently, we are proceeding to a higher order, more 
broadly defined polyvalent SL5 derived from commercially available poly(acrylic acid) (PAA).  
Modification of PAA begins with using EDC/HOBT to couple each acid side-chain with 1,4-diaminobutane.  
The resulting amine functionalized polymer is then partially derivatized with maleic anhydride to afford the 
maleimide modified PAA which can be coupled with our Cys-terminated monovalent SL5.  Any remaining 
primary amines can be left to afford an overall positively charged polymer, acylated to provide a neutral 
polymer, reacted with succinic anhydride to obtain the anionic polymer or partially modified using any of 
these methods to tune the charge on the polymer backbone.  We are just now beginning this synthesis and 
are excited about the opportunities available via this approach to vary in a controllable manner, the SL 
density and overall ensemble charge.  Affinity and selectivity of each SL analog will be studied using a 
Fluorescence Polarization (FP) assay established in the PIs’ labs and/or a microtiter plate-based approach 
relying on immobilization of the glycoprotein followed by “staining” with the labeled SL analog. 

Task 2 c):  Feed information from the above studies back into the library design process to aid the generation 
and subsequent identification of highly selective SLs. (Months 9-32). 

 Based on our experience with the benzoboroxole, which improved the affinity of SL5 for PSM, we are 
focused on incorporating this moiety into libraries once we optimize library sequencing.  The lessons 
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learned from the Partnering PI’s structure-activity-relationships are also being incorporated into the design 
process (see below). 

Task 3.  Partnering PI: Examine the biochemical/biophysical basis of the glycan•SL interaction and develop 
SL-based sensor arrays for the proposed prostate cancer diagnostic. (Months 1-36) 

Task 3 a):  Develop a structure-activity relationship for previously identified SLs (SL2 and SL5) based on: 1) 
Alanine scanning ‘mutagenesis’; 2) Varying the tether length; 3) Varying the boronic acid linkage and 
substitution patterns; and 4) Examining boronic acid substituent effects to identify the factors that promote 
the selective recognition of a glycan by a particular SL. (Months 1-12) 

 In our analysis of how structure impacts binding affinity and 
selectivity of SLs for glycoproteins, we have identified some 
expected and some unexpected correlations.  These studies have 
largely revolved around SL2 and SL5 because they represent 
opposite ends of the spectrum; in that SL2 displayed modest 
selectivity (~2-fold) with high background binding while SL5 
exhibited high, nearly 50-fold selectivity, with low non-specific 
binding.  In selecting these two SLs we wanted to learn more 
about what factors most significantly impact binding for highly 
selective and modestly selective SLs to better understand if the 
same factors are important for each.  In the end, we are focused on 
improving our approach towards generating new SLs capable of 
effectively discriminating between healthy and cancerous 
samples. 
 Using alanine scanning mutagenesis with SL2 for binding 
OVA (Task 3 a-1, Figure 9A) we see that charge on the peptide is 
important for binding affinity.  Specifically, replacing R4 with 
alanine causes a 60% decrease in binding compared to native-SL2.  
Similarly, R1 and the arginine found in the C-terminal MRBB-
sequence also reduce binding, though to a lesser extent (45% and 
24% respectively).  Likewise, binding affinity is reduced by more 
than 50% when the aminomethyl-phenyl boronic acids (D* = 3,7-
Dab-2-PBA) are replaced with alanine or phenylalanine.  
However, when the Dab residues were left unmodified or 
alkylated with benzaldehyde, thereby leaving the charged ammonium at neutral pH, binding affinity was 
only diminished 2-3%.  Similar trends were observed in SL5 for binding with PSM (Figure 9B).  For 
example, when R5 was replaced by alanine, binding was decreased nearly 55% and replacing both D* with 
alanine resulted in a 65% binding decrease.  Interestingly, when T4 was replaced by alanine PSM binding 
was enhanced 25%.  Similarly, when V6 or V8 was replaced with alanine a 20% and 5% increase in PSM 
binding was observed, respectively. 
 The role that the boronic acids play in defining SL binding affinity and selectivity was also studied 
(Task 3 a-3).  In general, there was no observed loss of affinity when regio-isomeric phenyl boronic acids 
(PBAs) were used in SL2 and/or SL5, yet the PBA is undoubtedly important for defining selectivity (Figure 
10).  As seen in Figure 10A, there is no appreciable change in the selectivity patterns whether the boronic 
acid is ortho-, meta- or para- to the linkage to the peptide.  This observation was unexpected 1) because of 
expected conformational preferences for sugar binding based on positioning the boronic acid in a specific 

 
Figure 9. Alanine scanning 
mutagenesis. A. Relative binding for 
SL2-mutants with OVA. B. Relative 
binding for SL5-mutants with PSM. 
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orientation to bind the sugar, and 2) because when the 
boronic acid is ortho- to the amino-methyl group enhanced 
diol binding is expected due to conformational and Lewis 
acidity trends.  Still, binding between saccharides and meta-
linked boronic acids has been observed particularly when 
involved in a polyvalent system, thereby providing support 
for this observation.  When the more sterically crowded and 
conformationally restricted 2-Ac-PBA is incorporated into 
SL2 the binding preference for OVA actually increases, 
though modestly (from 3-fold to ~6-fold).  Most notably, 
however, is that when the PBA is replaced with a simple 
benzyl-group all selectivity is lost.  SL5 showed similar 
trends (Figure 10B); with the orientation of the boronic acid 
having no significant influence on glycoprotein binding.  
Interestingly, in contrast to what was observed for SL2, the 
binding selectivity for SL5 decreased when the bulky 2-Ac-
PBA was used, perhaps providing some insight into the steric 
and/or hydrophobic nature of the bound sugar environment.  
The final boronic acid modification, adding electron-
donating (-OCH3, -NR2) and electron-withdrawing (-CF3, -
NO2, -CN) substituents onto the PBA to alter the Lewis acidity of the boronic acid (Task 3 a-4), 
unquestionably showed no impact on analyte binding. 
 The length of the side-chain connecting the PBA to the peptide (i.e., the tether length, Task 3 a-2) was 
also investigated.  For this analysis, Dab and Lys were incorporated as the amino acid to which the boronic 
acid was attached in order to probe how degrees of freedom and thus preorganization can impact binding 
selectivity. Figure 11A and B show representative fluorescence images of portions of two libraries, derived 
independently from attachment of PBA to either DAB or LYS, after incubation with FITC-OVA.  The Dab-
based library displays decreased non-selective binding, as 
indicated by the decreased background fluorescence and 
increased library differentiation.  Figure 11C is a binning 
chart, in which individual bead luminosities are plotted for 
each library.  The greater spread in the data obtained for 
the Dab-containing library, versus the otherwise identical 
LYS-containing library, is an indication of greater 
differentiation and selectivity for binding the targeted 
glycoprotein. 
 As a final investigation of how structure can impact 
binding between SL and glycan, we looked at what impact 
the fluorescent label could have.  SL1-SL5 are cationic, 
each containing a minimum of three arginine residues, and 
fluorescein is anionic at physiological pH.  Based on what 
we learned about how charge impacts affinity in our 
alanine scanning mutagenesis studies, we wanted to 
determine how the dye charge was impacting binding affinity.  We therefore labeled each of our 
glycoproteins with coumarin (as a neutral alternative) and rhodamine (as a cationic alternative) separately.  

 
Figure 10. Impact on binding selectivity 
between SL and different test 
glycoproteins (OVS, BSM, PSM, BSA) 
when different regio-isomeric boronic 
acids are used for SL2 (A.) and SL5 (B.). 
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Figure 11. Representative fluorescence 
images of libraries incorporating Dab (A.) 
or Lys (B.) upon binding FITC-OVA. C. A 
binning chart of individual bead lumin-
osities showing decreased background 
fluorescence and increased differentiation 
when Dab is used compared to Lys. 
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If the charge on the dye significantly impacts the affinity of the 
SL for any given glycoprotein, we should see a decrease in the 
binding response as we move from fluorescein to coumarin, 
which is in fact what we observe (Figure 12).  Still, rhodamine 
labeled glycoproteins would be expected to have a further 
reduced binding affinity due to the cationic dye, which is 
contrary to our results.  We conclude from this that our 
microscope filter set is somehow inappropriate for the 
coumarin dye we are using, even though the wavelengths 
described seem relevant.  Regardless, we are much more 
confident that labeling our targets is an appropriate method for 
identifying hits diagnostic. 
 Efforts to evaluate and understand the SL-glycan binding 
interaction have continued into the subsequent years of funding while previous results have been fed back 
into our SL design.  For example, based on the remarkable correlation between SL charge and binding 
affinity, we have made certain to include at least one arginine residue near each terminus of our SLs, while 
also taking a closer look at the importance of arginine residues near the middle of our SLs.  It is clear that 
upon removal of any of the positively charged arginine residues from the basic SL5 sequence binding 
affinity is reduced (Figure 13).  In initial studies (discussed above), the R5A mutant of SL5 showed nearly a 
55% decrease in binding to PSM compared to the native SL5.  In the present studies, we observe nearly a 
40% decrease for the same mutant.  Importantly, the trend remains the same, the small difference in these 
observed changes likely results from a change in glycoprotein concentration (0.5 mg/mL (old) to 0.1 mg/mL 
(new)).  This reduction in analyte concentration was 
made to help reduce our hit rate so that we can focus on 
tighter binding SLs while also helping to reduce cost 
when using clinically relevant glycoproteins. 
 In further evaluating binding selectivity, alanine 
scanning mutagenesis was carried out to study SL2 and 
the mutants binding to proof-of-concept glycoproteins 
(BSA, BSM, OVA, PSM).  Recall that previous studies 
only examined how these mutants bound to OVA.  As 
indicated in Figure 14A, removal of any of the charged 
arginine residues (SL2-no MRBB, SL2-R4A, SL2-R1A) 
results in a loss of binding, though the relative binding 
pattern for the four glycoproteins remains virtually 
unchanged, with the exception of SL2-R4A where the 
BSM/PSM selectivity inverts.  Similarly, removing the 
Dab and the PBA cause a decrease in binding affinity for 
all glycoproteins studied.  Interestingly, for the SL2-D*3,7F mutant the binding selectivity is changed such 
that this SL prefers binding to FITC-BSA, even in the presence of 1% (w/w) BSA.  Finally, upon 
reintroduction of the Dab residue as either the primary (SL2-Dab) or secondary amines (SL2-Bn), while still 
lacking the boronic acids, the overall affinity is recovered but the selectivity is dramatically reduced, 
indicating the importance of the charge on SL2 mutants in binding to (+5 in each of these mutants) but not 
necessarily in discrimination of these different glycoproteins.   

 
Figure 13.  SL5 mutant selectivity trends 
based on fraction bound compared with SL5 
binding ovalbumin (OVA), bovine submax-
illary mucin (BSM), porcine stomach mucin 
(PSM) and bovine serum albumin (BSA). 
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Figure 12. Relative binding response 
for SL2-SL5 binding with PSM, 
labeled with coumarin (blue), 
fluorescein (green) or rhodamine (red). 
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 Furthermore, we had previously shown that by 
shortening the amino acid side-chain, onto which the PBA 
is attached, from four methylenes (lysine) to two 
methylenes (Dab), we can reduce non-specific background 
binding to the boronic acids and thereby increase selectivity 
by taking advantage of pre-organization (Figure 11).  We 
took this analysis one step further, moving from two to one 
methylene spacer between the peptide backbone and the 
PBA attachment point (Dab to Dpr (diaminopropanoic 
acid), respectively).  Simultaneously, we evaluated the 
significance of the boronic acids on these SL5 and Dpr 
mutants.  The first pattern, labeled “SL5 raw,” in Figure 
14B simply shows the normalized response (by the greatest 
intensity) for SL5 responding to our four proof-of-concept 
glycoproteins.  Note that even in this raw form, SL5 still 
binds most significantly with PSM.  The second pattern, for 
SL5, shows the simple normalization (to one) of the 
response of SL5 binding to each glycoprotein (as a 
reference for comparison).  Note that when the boronic 
acids are not included, as depicted for SL5-Dab, the affinity 
(indicated by reduced bar size) and selectivity (indicated by 
the pattern being the inverse of that for SL5 raw) displayed 
by SL5 is lost, providing additional evidence for the 
importance of the boronic acids in our approach.  While we 
previously saw that SL2-Dab maintained high affinity for 
OVA even without the boronic acids (Figure 11), SL5-Dab 
does not follow this trend, even though both SL mutants are overall 5+ charged.  This is not a surprising 
result because we expect that the boronic acids and the peptide sequence is more significant in defining the 
SL5 binding interactions than they are for SL2 based on the higher selectivity exhibited by SL5 compared to 
that of SL2. 
 We are also continuing to examine our analysis protocols that define the relative response of each SL for 
a series of different analytes.  In the case of studying purified glycoproteins, we previously used the average 
response from 20 library beads as a reference.  While this does provide a control set containing all of the 
potential cross-reactive elements that could interfere with our assessment of binding selectivity, it is also 
susceptible to large variations depending on sample size.  If we were to use our entire library, this would be 
an ideal reference, however, new “reference libraries” would need to be synthesized and evaluated for each 
glycoprotein, each time new samples were made (to account for labeling variation) and this is not 
reasonable.  As this method has been used, i.e. with small sample sets (n=20), the inclusion of one “hit” 
within the library “reference” data is sufficient to vary the average between 10-30% based on typical 
luminosity values for identifying a hit (e.g. assume average library background luminosity ~ 30 for n = 20; 
including one “modest hit” (luminosity ~100) changes this average to ~33 and including one good hit 
(luminosity ~200) changes the average to ~38; if n = 15 the range changes to 15-40% variability). 

 
Figure 14.  A) Binding selectivity for SL2 
and SL2-mutants, and B) raw binding 
intensities for SL5 and SL5 mutants all 
responding to OVA, BSM, PSM and BSA. 
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 As a consequence of this variability, we have evaluated other means of accounting for instrument, user 
and labeling variability.  As a first response, regular examination of the optical set-up using NIST-certified 
control particles (commercially available) ensures the consistency of our hardware set-up.  We have also 
evaluated a number of “SL control sequences” to be used as reference controls, including: acylated resin, 
MRBB, octa-ala and SL5 (Figure 15).  The acylated resin does not sufficiently bind with anything and 
consequently, when we image the beads after incubation with tagged analyte, we most often cannot even 
find the particles to measure.  The MRBB and octa-ala sequences coat the resin particles with a peptide-
based structure while offering little to no structure to afford discrimination of analytes beyond the inherent 
stickiness of the sample.  Due to the similarity in the response from each of these models, we have focused 
primarily on the MRBB sequence.  While the “look” of the SL binding pattern for each SL changes, the 
general trends are maintained.  SL5 is an interesting option that we have used extensively, particularly as 
indicated in any of the figures in this document with a Y-axis label reading “Fraction Bound”.  Using an 
existing SL as a reference offers many benefits, perhaps most importantly is that it provides a known 
response pattern to standard glycoproteins that can be statistically evaluated to assess the differences and, by 
association, the similarities between runs (e.g. using MANOVA), subsequently producing a correction 
factor if needed.  As a minor downside to this approach, the analytes which bind best to the SL, by 
definition, return the smallest response from the other SL Array members due to the mathematical approach 
(i.e. dividing by a large number).  Nonetheless, we are continuing to evaluate these approaches and 
regardless of how we manipulate our raw data, the final analysis has been quite consistent. 
 With respect to the cell and tissue based work, we can simplify the analysis by normalizing the response 
from each SL responding to each different sample type (e.g. divide the response from each SL by the 
brightest measurement from all of the SLs responding to one cell line or tissue sample).  This approach 
removes any labeling variability between samples of the same type as each preparation would be considered 
a unique sample at this point, while also addressing instrument variation (as long as samples are run at the 
same time) and user variability.  Even with this simplified analysis we are still searching for the optimal 
reference method to most accurately address all of our sources of variability while preserving the integrity 
of the SL Array pattern and maximizing the SL Array 
response. 
 As a final element in these detailed investigations, we 
have just begun to investigate the impact of the dye 
charge and structure by changing from fluorescein and 
rhodamine to a pair of Alexaflour dyes (Figure 16).  
These Alexafluor dyes contain the common xanthene core 
like fluorescein and rhodamine.  However, they both 
contain ammonium and sulfonate groups that promote 
water solubility and while also reducing the overall charge disparity 
that we see when comparing binding between our SLs and fluorescein 
and rhodamine labeled glycoproteins. 

Task 3 b):  Upon identifying ≥5 selective and cross-reactive SLs (Task 1), 
we will assemble them, and others identified in Task 2, into an array-
based diagnostic format. (Months 1-36) 
 Our main focus in this area has been to develop a more “user-
friendly” platform for acquiring and analyzing our SL Array results.  
While using fluorescence microscopy has afforded excellent results, it 
is a labor intensive and time consuming process.  Therefore, 

 
Figure 15. Binding selectivity 
for control SLs all responding to 
OVA, BSM, PSM and BSA. 
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Figure 16.  Molecular structures of 
Alexafluor 488 and Alexafluor 594. 
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microtiter plate based assays were tested as a possible new 
array format.  Two designs were studied.  In the first, SLs 
biotinylated at the C-terminus were attached to neutravidin 
coated plates and fluorescein-labeled analytes were bound to 
the SLs on the plate.  In the second approach ELISA plates 
were coated with unlabeled analyte and fluorescein-modified 
SLs were allowed to bind to the analyte immobilized in the 
plate wells.  Either of these formats would have allowed for a 
plate-based fluorescence assay that could be read with any 
fluorescence plate reader.   
 In both cases SLs bound to the proof-of-concept 
glycoprotein analytes (BSA, BSM, OVA, PSM) and retained 
selectivity trends similar to those observed for SLs on beads.  
However, the affinity of the SLs for the analyte was 
markedly lower.  As a result, very weak intensity readings 
were obtained that did not afford a large enough dynamic 
range to obtain intensity measurements from both strong and 
weak binders.  Additionally, the variability within the assay 
was quite large (up to 50%) making pattern analysis nearly 
impossible.  Still, given the encouraging results obtained 
using simple monovalent SLs, we plan to revisit this concept 
again once we have polyvalent SLs available. 
 As we continue to evaluate alternate assay formats, we turned to a more high-throughput method of 
collecting and analyzing fluorescence data associated with SL-glycoprotein binding, namely flow 
cytometry, as a means to read out the fluorescence intensity derived from labeled analytes binding with 
resin-bound SLs.  This approach has the added benefit of allowing SL synthesis and glycoprotein binding to 
be carried out on beads, thereby maintaining our desired polyvalency and the resulting binding 
characteristics of the beads.  Briefly, synthesis of SLs followed the same procedure as described above 
differing only in that 10 µm mono-disperse TentaGel beads were used to adhere to the particle size limits 
for analysis on the available Flow Cytometer (BD LSR II).  SLs synthesized on these beads had binding 
profiles similar to those synthesized on larger 300 µm beads as assessed using flow cytometry (Figure 17).   
 Evaluation of cell membrane extracts has focused on colon and prostate derived cell lines.  Four human 
colon cell lines were chosen for analysis; CCD 841 CoN (Healthy); HCT116 and HT29 (cancerous non-
metastatic); LOVO (Cancerous metastatic).  SL1-9 were bound individually to fluorescein-labeled cell 
membrane extracts.  Unbound protein was washed away and beads were passed through a BD LSR II flow 
cytometer.  Individual intensity readings were recorded for each bead within a sample, extraction of this 
type of data resulted in the ability to acquire intensity values from hundreds of beads.  Outliers were rejected 
at 1.8 interquartile distances (IQDs) and intensity readings were normalized to one using the brightest 
reading for each cell line.  To complement existing colon cancer data, Linear Discriminant Analysis (LDA) 
was carried out and classification accuracies determined for discrimination between healthy, cancerous non-
metastatic and cancerous metastatic cell lines based on leave-one-out cross-validation.  Compared to 93% 
classification accuracy obtained for data acquired from microscope images of large beads, the classification 
accuracy from flow cytometry data was only 73%.   

 
Figure 17.  Comparison of the binding 
selectivity for SL1, 3, 4 and 5 to four 
glycoproteins OVA, BSM, PSM and 
BSA when data is collected by A) 
Microscopy or B) Flow Cytometry. 
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 Focusing on prostate derived cell lines, six human prostate cell lines were analyzed; RWPE-1 (healthy); 
WPE1-NA22 and WPE1-NB14 (cancerous non-metastatic); LNCAP, DU145 and PC-3 (cancerous 
metastatic).  Based on LDA of flow cytometry data prostate cancer cell lines classified with 81% accuracy 
(Figure 18) compared to 100% from microscope images for this three class model.  When simply comparing 
healthy or cancerous samples, using flow cytometry, our SL Array predicts sample type with 97% accuracy.  
In comparison to microscope-based collection of data and analysis, this method allows a comprehensive and 
unbiased approach.  While these results are indeed exceptional for this type of analysis, the outcomes are 
obviously not as robust as the microscopy-based analysis and progress needs to be made if this design is to 
compete.  One area to be worked on more is in how we apply boundaries to our raw data.  The sheer amount 
of data obtained from using flow cytometry can be overwhelming and more detailed analysis of the quality 
of these data sets needs to be carried out. 
 While we continue to improve the efficacy of our SL Array we are also looking to enhance not only the 
user interface (as described above) but to also expand the assay utility by working with clinically relevant 
and less invasively collected samples (Task 3 d includes a discussion of using our SL Array to assess 
human tissue samples based on metastatic potential).  In an effort to move towards serum-based analysis, we 
have begun to study the secreted glycoproteins found in the media from cultured cell lines.  Four human 
colon cell lines were chosen for analysis; CCD 841 CoN (Healthy); HCT116 and HT29 (cancerous non-
metastatic); LOVO (Cancerous metastatic).  We 
have therefore taken secreted glycoproteins 
isolated from cell culture media as well as 
membrane extracts from the cells taken from the 
exact same media.  Furthermore, we have 
evaluated our SL Array response towards media 
containing fetal bovine serum (FBS) as well as 
starving the cells of FBS for 48 hours prior to 
harvesting the secreted and membrane 
glycoproteins.  Briefly, membrane extracts were 
isolated and labeled with FITC as previously 
described.  Cell culture media containing the 
secreted glycoproteins was concentrated using 
ultra centrifugation.  The secreted proteins were 
then precipitated into acetone, centrifuged, and the 
supernatant removed.  The pellet was washed once 
with acetone and the previous step repeated.  The 
cell pellets were re-suspended in buffer and 
labeled with FITC without any further purification. 
 Figure 19 shows the 2D plot of the LDA 
results from the analysis of secreted (Figure 19A) 
and membrane extracts (Figure 19B) for each of these four 
human colon cell lines, using SL1-9 binding to fluorescein 
labeled glycoproteins to generate response patterns.  Notice 
that in each plot, the data clusters into three groups 
(normal/healthy, cancerous non-metastatic, cancerous 
metastatic) with virtually no overlap.  Cross-validation of each model indicates classification accuracies of 
100% for the secreted and 96% for the membrane extracted glycoproteins.  Most excitingly, when these two 

 
Figure 19.  2D LDA plot of microscope-obtained 
data from the SL Array (i.e. SL1-9) responding to 
secreted (A) and membrane extracted glycoproteins 
(B) from four human colon cell lines; with classifi-
cation accuracies of 100% and 96% respectively.  
C) LDA plot obtained from modeling data from the 
secreted and membrane extracted glycoproteins 
together, achieving 92% classification accuracy. 
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Figure 18.  2D LDA plot of flow 
cytometry data from the SL Array 
responding to six prostate cancer cell 
lines, classified with 81% accuracy. 
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sets of data are combined and modeled together (Figure 19C) 
we see excellent overlap, with an overall classification accuracy 
of 92%; suggesting that there is a high correlation between the 
amounts and types of glycoproteins secreted and those integral 
to the cell membrane.  In addition, whether we starve the cells 
of FBS or not, even with all of the different bovine proteins and 
glycoproteins present in the sample, makes little difference in 
the statistical analysis.  All of this taken together provides 
further support for the use of our SL Array to assess secreted 
glycoproteins from clinical samples. 

Task 3 c):  Evaluate the ability of the array to discriminate complex 
glycans (i.e., TF antigen, Lea, Lex, sLea, sLex).  Note that 
because the development of the arrays will be continually 
evolving, as we identify new and more selective SLs, the time 
frame for this task is the entire proposal period. (Months 1-36) 
 As an initial test of our approach towards binding 
biologically relevant targets, we used an array of SL1, SL3, SL4 
and SL5 to distinguish between five structurally similar cancer 
associated glycans (TF antigen, Lea, Lex, sLea and sLex; Figure 
2A).  These glycans were chosen because they represent some 
of the more common saccharide motifs overexpressed by 
cancerous cells as well as being composed of many of the same 
monosaccharides that were found on our proof-of-concept 
glycoproteins (OVE, PSM, BSM).  SL2 was not included in the 
array based on the assumption that we could eliminate 
redundancy due to response similarities with SL3 and because 
of the high background binding to BSA as compared with SL3.  
Briefly, after incubating each SL with a solution containing 
biotinylated glycan and fluorescently labeled streptavidin, 
luminosity values, from fluorescence microscope images, were analyzed (4 SLs by 5 glycans by 15 
replicates).  To account for differences in bead size and loading levels, luminosities were normalized against 
the highest luminosity within a given SL type (in this study the greatest degree of variability stems from 
bead-to-bead variations).  The unique pattern generated for each different glycan based on the response of 
the four different SLs is shown in Figure 20A.  Note that the response for each glycan produces unique and 
distinguishable patterns that are reproducible within the limits of the associated error. 
 To interpret patterns that display subtle differences, statistical analyses were used to identify the most 
significant features necessary for classification of the analytes, specifically, linear discriminant analysis 
(LDA).  From this analysis, Discriminant 1 and Discriminant 2 contain 83.3% and 14.8% of the between 
group variation, respectively (Figure 20B).  Note that the different glycans are clustered into five groups 
with an average standard deviation of 6%.  Furthermore, the Wilks’ lambda value for this analysis is 0.009 
with a p-tail value of <0.000001, indicating that there is a statistically significant difference in the 
population means from this analysis at the 95% level of confidence.  Based on leave-one-out cross-
validation the SL array correctly classified 71 of the 75 measured samples (94.7% classification accuracy, 
with a chance accuracy of only 20%).  Significantly, the Lewis antigens and their sialylated forms (Lea/Lex 
and sLea/sLex) were efficiently discriminated while only differing by the addition of a terminal sialic acid 

 
Figure 20.  Differentiation of 5 
glycans using a SL-array.  A.) 
Fingerprint pattern of the average 
normalized luminosity intensities from 
SL1, SL3, SL4, and SL5 responding to 
5 different glycans (TF, Lea, Lex, sLea 
and sLex).  B.) The 2-dimensional 
LDA score plot derived from the 
patterns shown in (A.) for 15 
replicates.  Ellipses indicate 95% 
confidence level, analyte identification 
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moiety.  Additionally, this SL-Array impressively distinguished between Lea and Lex, as well as between 
sLea and sLex, glycans where the only structural difference is the regiochemistry of the linkage to the core 
GlcNAc moiety (Figure 2A).  Of the four misclassified glycans, Lea was twice identified as sLea, sLea was 
once classified as Lea, and Lex was once recognized as sLea. 
 To further validate the utility of our SL Array for discriminating these five structurally similar glycans, 
the more statistically robust ‘‘boot-strapping’’ approach was used.  Fifty separate and unique data sets were 
generated using the Mersenne–Twister random number 
generator.  Overall, this analysis yielded 94% classification 
accuracy correctly classifying individual glycans from 86–
99%.  As with the leave-one-out analysis, the three greatest 
misclassifications were due to Lea being misclassified as sLea 
(9.3%), sLea being misclassified as Lea (6.7%), and Lex being 
misclassified as sLea (4.7%).  Still further stressing the limits 
of this array for differentiating glycans, training and test sets 
were chosen at random from the Normal distribution, splitting 
our data in half.  One half was used as a training set, to create 
a statistical model, and the other half as a test set to assess the 
ability of this model to accurately identify these ‘‘unknowns.’’  
Random set generation and subsequent analyses were carried 
out 25 times to create replicates in order to minimize 
systematic error.  Consistent with the previously described 
analyses, the overall classification accuracy of this approach 
was 94%.  The consistency displayed across the three methods 
further testifies to the strength of the outlined SL Array design 
for discriminating structurally similar cancer associated 
glycans.  
 We next generated a lectin array containing 19 synthetic 
lectin (SLs) and investigated the binding affinity of each with 
six different glycans for which expression is commonly 
altered during prostatic and colorectal cancers.  This was done 
primarily to identify SLs selective towards certain glycans and 
then to further comprehend the chemical basis of the 
selectivity.  To ensure that SLs bind to glycans and not the 
fluorescent dye and to maintain the dye:glycan ratio, we made 
use of biotin tagged CAGs.  After incubation with the CAGs, 
fluorescently tagged streptavidin was introduced later to introduce an optical signal upon conjugation of 
biotin to streptavidin.  Figure 21A shows increased binding of SL5-RR over SL5 with sialylated Lea.  This 
is an example of how the SL-glycan interaction is enhanced upon the introduction of additional positively 
charged arginine residues (R) in the sequence of SL5-RR, thereby leading to a stronger charge-pairing 
interaction with sLea over non-sialylated Lea.  Figure 21B displays selective binding of SL11 over 18 other 
SLs to non-reducing fucose.  This could be attributed to extra boronic acid present on the free N-terminus of 
SL11, thus assisting in fucose binding.  SL11 also contains four phenyl rings that could contribute to CH-π 
type interactions with fucose. 
 To investigate the cross-reactivity of SLs and their applicability to distinguish all 6 CAGS we 
constructed an array, thus fostering the hypothesis of SL-glycan interactions and boronic acid-diol binding.  

 
Figure 21: Selective binding of Synthetic 
Lectins (SL). A. output of SL5 and SL5-
RR with cancer associated glycans 
(CAGs) like sLea and its non-sialylated 
counterpart Lea, illustrating that extra 
Arginine residues (+ charged amino 
acids) at the N-terminus of SL-RR help 
in binding to sialic acids in sLea. B. 
showing SL11 selectively binding to 
fucose, illustrating boronic acid on N-
terminus of SL11 assisted fucose 
interaction (4 phenyl rings in SL11 
peptide sequence assist hydrophobic 
interactions to non-polar fucose residue. 
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Depicted in Figure 22A is the output from when 
we employed a guided statistical approach, LDA, 
to accurately discern these 6 CAGs with >99% 
classification accuracy.  It is noteworthy that 
sialylated CAGs (sLea and sLex) and their non-
sialylated counterparts (Lea and Lex) are close to 
each other in these models.  Lea is also closely 
situated to sLea.  These signify the capability of 
the array to discern sialyated from non-sialylated 
as well as small structural differences between 
sLea and sLex.  TF-antigen (TFA) is a 
disaccharide and does not possess the same 
glycan motif shared by the other CAGs involved 
in this study, hence it is uniquely classified.  The 
two SLs which contributed the most to this 
classification were SL7 and SL2-Dab.  We 
hypothesize that these two SLs dominate, 
primarily because of greater number of aromatic 
rings in SL7 (CH-π interactions) and the greater 
amount of positive charges in SL2-Dab (ionic 
interactions). 
 An LDA model with SLs containing a greater 
number of aromatic rings only (and low positive 
charges), similar to SL7, resulted in a decrease in 
the tightness of model (Figure 22B), indicating a 
loss in precision and compromising the 
classification accuracy, reducing it to 83%.  
Similarly, a LDA model with SLs having a greater number of positive charges and no boronic acids (similar 
to SL2-Dab) shows a reduction in classification accuracy to 93% (Figure 22C).  These results suggest that 
boronic acid residues were important to discriminate sLea, sLex and Lea.  In addition, the model derived 
from positively charged SLs retains excellent ‘tightness/precision’, indicating that these positively charged 
SLs provide a microenvironment necessary for accurate binding.  The unguided statistical models offer 
similar insight, indicating that positively charged amino acids are important for precision and boronic acids 
are important for accuracy. 
 As indicated above, it is possible that the SLs interact, not only with the glycan, but also with the protein 
portion of glycoproteins.  In this analysis the protein component, FITC-streptavidin, is the same for each 
glycan being analyzed.  As such, any observed difference in the response from the array must be attributed 
to the glycan constituent.  Given the structural similarities between these glycans, it is remarkable that there 
were not more misclassifications.  In total, these results validate our ability to differentiate structurally 
similar cancer associated glycans with high accuracy using a small, cross-reactive SL Array. 

Task 3 d):  Evaluate the ability of the array to discriminate prostate cancer cell lines (i.e. PC-3, LNCaP, and 
DU145), as well as RWPE-1, WPE1-NA22, WPE1-NB14, WPE1-NB11, and WPE1-NB26, which are 
referred to as the MNU cell lines, all available from the ATCC.  Note that because the development of the 
arrays will be continually evolving, as we identify new and more selective SLs, the time frame for this task 
is the entire proposal period. (Months 1-36) 

 
Figure 22: guided statistical output of SL array with 
various CAGs. (TF) antigen, sialyl Lewis X (sLex) 
and sialyl Lewis A (sLea) are some CAGs that tend 
to overexpress in colon cancer. Circles reflect 95% 
confidence intervals. A. shows 100% classification 
of all CAGs due to lectins SL7 (high no. of phenyl 
rings and low + charge) and SL2-Dab (no boronic 
acids and high + charge). B. shows loss of accuracy 
to 83% when modeled with SLs having only greater 
no. of phenyl rings. C. shows 93% classification 
with SLs not containing boronic acids, deeming 
boronic acid useful to discern sLea, sLex and Lea. 
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 The vast majority of our work to date in developing and 
working with arrays has focused on how we analyze our array 
data.  As described above, we have improved our data 
collection methods to obtain better consistency between 
replicate measurements as well as optimizing how intensity 
values are extracted.   
 In this regard, we have begun to evaluate our array response 
using color space intensities and not just luminosity.  In 
particular, we have focused on the popular “Red-Green-Blue” 
(RGB) color space to obtain more of a full spectral response 
from our array.  In so doing we have improved our 
classification accuracy from 97% to 100% for a five cell line 
panel (including: HT-29, CT-26, CT-26-F1, CT-26-FL3, and 
3T3/NIH) made up of 114 replicates we often use to evaluate 
our models. 
 To further validate our approach, we have assessed the ability of our array to identify analytes which it 
has never seen before.  Specifically, we used ten cell lines including a mix of mouse and human lines as 
well as colon (7 - 3T3, HT29, HCT116, CT26, CT26-F1, CT26-FL3, and Lovo), breast (2 - MCF7 and 
MCF10A) and prostate (1 - PC3) cell lines.  To do this we create a statistical model based on 9 cell lines 
while leaving data from one cell line out and then attempt to classify this excluded line, in much the same 
way that a diagnostic test must determine the disease status for a patient that did not contribute to the 
calibration data set.  As such, when classifying our samples as healthy, cancerous/non-metastatic or 
cancerous/metastatic we only obtained 56% overall classification accuracy (Figure 23, blue).  However, if 
we simply look to diagnose the cancer and not stage at the same time, thereby identifying our data as either 
healthy or cancerous, we improve our overall classification accuracy to just over 83% (Figure 23, green).  
Still, by ignoring the 3T3/NIH mouse fibroblast line, the most out of place cell line in this analysis, and 
looking at the remaining nine cell lines using this same approach, we can “diagnose” the presence of cancer 
100% of the time, with a sample set of n = 434. 
 Finally, we realize that using linear discriminant analysis (LDA) is not necessarily the best approach for 
analyzing our data.  We also recognize that not all samples can be controlled as tightly as ours have been 
previously.  As such we evaluated our complete data set derived from colon cancer cell lines, including 
variations in incubation time (1 h to 24 h), incubation temperature (4 oC, 25 oC and 37 oC), and sample 
dilution (20x, 50x and 100x).  In total this afforded nearly 12,000 measurements leading to 3000 different 
fingerprints from our SL Array.  Using support vector machines we were able to obtain 93% classification 
accuracy and using regression tree analysis we improved the classification accuracy to 97%.  Working 
closely with Prof. Edsel Pena in the Department of Statistics at the University of South Carolina we are 
continuing to explore our options, being cautious that the approach we take is appropriate for the type of 
analysis we are doing as well as verifying that we do not “over-train” our models and that we maintain 
statistical validity. 
 As part of our focus during the final years of funding on this project we aimed to expand our previous 
work, which focused primarily on colon cancer related cell lines, to include prostate cancer related samples 
as well.  Furthermore, existing data analyses from ten colon cancer cell lines using our SL Array relied 
heavily on murine cell lines (nearly half); and we desired to focus this aspect of our analyses on human 
derived cell lines only.  Therefore, we expanded our analysis to include 15 human cell lines consisting of 
four colon derived cell lines (HCT 116, LoVo, HT-29, CCD 841 CoN), five breast derived cell lines 

 
Figure 23. Individual classification 
accuracies (3-class groupings in blue, 
2-class groupings in green) for each of 
10 cell lines derived from a model 
lacking all input from that line. 
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(MCF10A, MCF7, MDA-MB-231, BT474, D47T) and six prostate derived cell lines (LNCaP, DU145, PC3, 
RWPE-1, WPE1-NA22, WPE1-NB14).  Initially, a healthy human colon cell line was tested in place of NIH 
3T3s, a murine fibroblast cell line, as part of a colon cancer model for determining metastatic potential.  The 
addition of the human normal colon cell line (CCD 841 CoN) in place of a mouse cell line (NIH 3T3) 
improved overall classification accuracies.  Known tissue specific differences in glycosylation led to the 
addition of tissue-specific normal cell lines, specifically, RWPE-1, a healthy prostate cell line.   
 When examining data from all cell lines, the removal of murine-based cell line data as well as the 
increase in the number of human cell line data resulted in the ability to classify cell lines as healthy vs. 
cancerous with 79% accuracy.  A significant improvement was seen when classifying samples as healthy, 
cancerous/non-metastatic or cancerous/metastatic for the human only cell lines with a classification 
accuracy of 76%, as compared to the model which included the murine cell line data, having a classification 
accuracy of only 56%. 
 However, since tissue specific differences in glycosylation have been shown to occur, we evaluated the 
ability of our array to distinguish these cell lines based on tissue type.  The top pane in Figure 24 shows the 
two-dimensional data spread from using LDA to analyze 13 different cell lines based on tissue type (four 
colon derived cell lines (HCT 116, LoVo, HT-29, CCD 841 CoN), three breast derived cell lines (MCF10A, 
MCF7, MDA-MB-231) and six prostate derived cell lines (RWPE-1, WPE1-NA22, WPE1-NB14, LNCAP, 
DU145, PC-3), achieving 90% classification accuracy based on leave-one-out cross-validation.  Using LDA, 
this same type of analysis, was run on each tissue type cluster identified in the previous classification 
process to evaluate these subsets for differing metastatic potential.  Independently, each tissue type 
classified excellently, 98% for breast, 93% for colon and 100% for prostate based on the 3-class 
identification paradigm of normal (healthy), cancerous non-metastatic or cancerous metastatic.  Overall, this 
afforded between 84% to 90% classification accuracy, compared to 76% when not including tissue type in 
the analysis. 



27 
 

 Based on our particular 
interest in prostate cancer, 
we looked more closely at 
the data from only the 
prostate-derived cell lines.  
Briefly, the RWPE-1 cell 
line is also the parent cell 
line to a series of cell lines 
transformed by exposure to 
N-methyl-N-nitrosourea 
(MNU).  These cell lines are 
representative of a 
progression from normal 
cells to cancerous/metastatic 
cells.  To the best of our 
knowledge, there are no 
low-/non-metastatic prostate 
cancer cell lines isolated 
from patient tissue which are 
commercially available.  
Therefore, of the four 
original NMU cell lines 
WPE1-NA22 and WPE1-
NB14 were first analyzed as 
part of our prostate cancer 
model to assess metastatic 
potential because these are 
the closest to healthy, and thus representative of cancerous non-metastatic cells. 
 Using LDA we were able to show that our SL Array can distinguish between healthy (RWPE-1), 
cancerous/non-metastatic (WPE1-NA22, WPE1-NB14) and cancerous/metastatic cell lines (LNCAP, 
DU145, PC-3) with 100% accuracy (Figure 25).  
Here, we see that there is an obvious trend in the 
clustering based on metastatic potential regardless 
of cell line.  For example, and perhaps not so 
surprising given that they are isogenic cell lines, 
the WPE1-NA22 and WPE1-NB14 cluster tightly 
together (red squares and green triangles, Figure 
25); however, note that the RWPE-1 parent cell 
line (blue diamonds, Figure 25) are clearly 
separated from these tumorigenic cell lines.  More 
notable is how the data from the LNCAP, DU145 
and PC-3 cell lines cluster together (purple X, 
turquoise asterisks and orange circles, Figure 25), 
thereby indicating strong similarities in the 
glycosylation patterns of these more aggressive cell 

 
Figure 25.  2D LDA score plot of microscope-
obtained data from the SL Array (i.e. SL1-9) 
responding to membrane extracted glycoproteins 
from 4 prostate derived cell lines; distinguishing 
normal/healthy (RWPE-1), cancerous non-
metastatic (WPE1-NA22 and WPE1-NB14) and 
cancerous metastatic (LNCAP, DU145 and PC-3) 
groups of cell lines with 100% accuracy. 

 
Figure 24.  2D LDA score plot of microscope-obtained data from the SL 
Array (i.e. SL1-9) responding to membrane extracted glycoproteins from 
13 different cell lines based on tissue type; with a classification accuracies 
of 90%.  The bottom panes depict the LDA scores plots from each tissue 
type cluster identified in the previous analysis (top pane).  Classification 
based on the 3-class identification paradigm of normal (healthy), 
cancerous non-metastatic or cancerous metastatic resulted in classification 
accuracies of 98% for breast, 93% for colon and 100% for prostate 
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lines, overall suggesting a high correlation between array 
response and metastatic potential.   
 In addition to increasing the number of cell lines used as 
analytes, the number of SLs used as part of the array has also 
been increased.  SL2 and SLs 6-9 were initially discounted as 
part of an array due to low selectivity or repetition of 
selectivity.  However, since tissue specific differences in 
glycosylation have been shown to occur, all SLs were 
included in the SL Array to determine if they provided 
greater accuracy in determining the metastatic potential of 
prostate cancer.  When our original SL Array, including SL1, 
3, 4 and 5, was used to evaluate the six prostate cancer cell 
lines based on metastatic potential, the array was able to 
distinguish between healthy, cancerous non-metastatic and 
cancerous metastatic cell lines with 93% accuracy (Figure 
26A).  When the same cell lines are assessed using the nine 
membered SL Array (SLs 1-9) the accuracy increases to 
100% (Figure 26B).  This data suggests that while the 
individual SLs binding selectivity’s may not be greatly 
different with respect to OVA, BSM and/or PSM, the 
inclusion of these differential binding SLs in the array 
provides incremental information for discriminating cell lines 
of differing metastatic potential.  For example, and as described above, SL2 was previously excluded from 
our SL Array because of the similarities in response with SL3 to purified glycoproteins as well as noting the 
high BSA, background binding in SL2; still in the current analysis, SL2 accounted for 25% of the variance 
in the array that could discriminate prostate derived cell lines with 100% accuracy (i.e., 25% of the 
discriminatory ability of the array was provided by SL2). 
 In addition, array diversity was expanded by including the charged arginine mutants discussed Task 3 a.  
In evaluating the same four human colon derived cell lines, using SL1-5 along with SL5-Dab, SL5-RR, Ac-
(RAA)3 and Ac-(RA)4 in different combinations provided classification accuracies between 95%-100% 
(Figure 27).  While using SL1-9 consistently produced 100% classification for this group of cell lines, it is 
interesting to note that SL4, SL5-Dab and SL5-RR accounted for 
nearly 81% of the diversity captured by this array, suggesting 
charge is important in certain analyses and adding to our array 
capabilities.  
 While the current array discriminates cell lines with 
classification accuracies 
continuing to improve by 
refining the SLs in the 
array and improved 
statistical modeling, this is 
not our ultimate goal.  Cell 
lines do serve as 
acceptable in vitro models 
for cancer, however they 

 
Figure 26.  2D LDA score plots of 
microscope-obtained data from different 
SL Arrays responding to membrane 
extracted glycoproteins from six prostate 
derived cell lines (RWPE-1, WPE1-
NA22, WPE1-NB14, LNCAP, DU145, 
PC-3).  The plots derive from using SLs 
1, 3, 4 and 5 (A) and SLs 1-9 (B) and 
provide 93% and 100% classification 
accuracy based on the 3-class 
identification paradigm of normal 
(healthy), cancerous non-metastatic or 
cancerous metastatic. 
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Figure 27.  LDA analysis of four 
colon cancer cell lines based on 
SL1-5, SL5-Dab, SL5-RR, Ac-
(RAA)3 and Ac-(RA)4 producing 
95% accuracy in determining 
metastatic potential. 
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Figure 28: depicting work-flow of incubating SL library (2 or 3BA) with 
dual dye mix of normal and metastatic proteins  followed by imaging under 
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do not always represent the complexity of the tumor microenvironment.  To examine whether our SL Array 
could work with clinical specimens, tissue from 11 colon cancer patients were analyzed using the SL Array 
containing SL1-9.  This tissue was readily available from the Colon Cancer Research Centre Tissue 
Biorepository, which JJL is a member.  Each patient tissue sample consisted of one tumor sample and one 
normal or healthy sample taken from an adjacent site. 
 Briefly, the tissues were ground in liquid nitrogen and the resulting powder added to lysis buffer.  
Membrane proteins were extracted using the Qiagen membrane extraction kit, labeled with FITC and 
incubated with SLs1-9.  Fluorescence intensity data was collected for each sample using fluorescence 
microscopy.  Outliers were rejected at 1.8 interquartile distances (IQDs) and intensity readings were 
normalized to one using the brightest reading for each patient sample.  Using de-identified patient disease 
data, LDA analysis was carried out to determine the ability of the array to differentiate patient samples 
based on a number of factors.  Of greatest importance was the ability of the array to tell the difference 
between healthy and cancerous tissues and to accurately stage the cancer.  Using this nine SL array we were 
able to distinguish healthy and cancerous samples with 83% accuracy and stage the cancer with 91% 
accuracy.  Most interestingly, we were able to identify patients who had pre-adjuvant chemotherapy prior to 
surgery as the “normal/healthy” tissue samples from these patients more closely resembled tumor tissue 
samples than they did normal/healthy tissue from patients who had not yet received any chemotherapy.  
These initial results demonstrate that our array not only discriminates between cell types effectively in in 
vitro cell line models but also in tissue samples.  This promising data suggests that the development of the 
array for clinical utility is possible.  The next set of pressing experiments is to evaluate tissue samples from 
prostate cancer patients and to follow-up with serum samples from similar patients. 
 Taking advantage of the dual-fluorescent dye competitive binding platform we screened our library to 
discriminate secreted proteins from normal and metastatic cell lines.  One advantage to using secreted 
proteins rather than membrane extracts is in minimizing the impact on native protein structures and also 
testing the ‘sensitivity’ of SLs (because proteins of interest may be in low concentration in the secreted 
protein mixture).  Proteins concentrated from a normal prostate cell line (RWPE-1) were labeled green using 
FITC and proteins from a metastatic non-androgenic, non-PSA expressive cell line (DU145) were labeled 
red with rhodamine (the inverse was also tested to ensure that the charge on the dye did not influence 
binding; similar results were observed).  Competitive binding screens between these differentially labeled 
analytes were carried out with two libraries; one involving an extra boronic acid on the N-terminus, thus 
having three boronic acid residues on each SL(3BA) while the original library has only 2 boronic acids and 
a free N-terminus (2BA).  The 3BA library consequently has one extra aromatic ring in each SL sequence 
and both libraries were screened using secreted proteins from prostate and colon cell lines.  Figure 28 
depicts the screening 
process beginning with 
incubation of both libraries 
separately with dual dye 
mix of normal and 
metastatic proteins.  After 
incubation, the library 
beads were imaged under 
separate filters and 
differential beads were 
isolated as healthy 

 
Figure 29: Binning chart representing population diversity of bead 
fluorescent intensity in 3BA and 2BA SL libraries with A. human prostate 
metastatic (DU145) and B. human prostate normal cell line (RWPE-1). 
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or cancerous hits.  SL hits were sequenced, re-synthesized and studied.  It was observed (Figure 29A) that 
the 3BA library had greater binding diversity with prostate cancer cells and that the 2BA library had greater 
diversity with normal prostate and colon cell lines (Figure 29B).  We hypothesize this is due in part to the 
extra aromatic ring in the 3BA library, increasing CH-π interactions with metastatic prostate glycoproteins 
(which are known have greater 
fucosylation compare to normal prostate 
cell lines).   
 Several different glycoprotein 
sources were screened including ones 
from secreted cell lines and ones from 
pooled clinical tissue samples, producing 
a new series of SL hits exhibiting some 
interesting trends.  For example, it was 
observed (Table 3) that SL hits for 
normal prostate and colon glycoproteins 
had a higher ratio of polar amino acids 
e.g. S, T, N and Q.  SL hits for 
metastatic colon cancer had a greater 
number of arginine residues (R), 
whereas SL hits for metastatic prostate 
cancer had a greater number of aromatic rings (from amino acids like F and Y and/or from phenyl boronic 
acid) in the isolated SL sequences. 
 Finally, on a different but quite exciting note, we have been able to classify triple negative breast cancer 
(TNBC) using our SL Array with high accuracy.  Since we have demonstrated the ability of our SL Array to 
distinguish between tissue types and classify cell lines and tissue samples based on metastatic potential; it is 
of interest to determine if the SL Array can be used to distinguish between different molecular subtypes of 
cancer.  The basis of our current research using our SL Array is that during the progression of cancer, from 
healthy to cancerous/metastatic, glycosylation profiles change.  One of the best-characterized cancers in 
terms of molecular subtypes is breast cancer.  It can be broken down into four broad subtypes, Human 
Epidermal growth factor Receptor 2 (HER2) overexpressing, Luminal A, Luminal B and Triple Negative, 
based on the expression levels of three receptors; HER2, Estrogen Receptor (ER) and the Progesterone 
Receptor (PR).  Therefore, SLs 1-9 were used in an array format to determine if we could classify five 
breast cancer cell lines into these molecular subtypes based on the SL-glycan interactions.  In brief 
summary, from this analysis (based on SLs1-9 and evaluated using LDA), we were able to distinguish these 
four subtypes with 98% accuracy.  Given the lack of known markers for TNBC, these results are quite 
exciting!  Furthermore, the ability of our SL Array to distinguish between well characterized subtypes of 
breast cancer suggests that it may be of use in this capacity for other types of cancers, for example in 
determining androgen sensitivity in prostate cancer.  

Table 3: SL ‘hits’ from 2BA and 3BA library screens using 
secreted proteins from human prostate or human colon cell 
lines, or membrane extracts from human prostate tissue 
samples (patient-matched normal and adenocarcinoma GS7), 
illustrating amino acid composition trends, e.g. charged 
amino acids, number of aromatic rings and boronic acids. 
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Key Research Accomplishments  

• Synthesized peptoid libraries (PRT).  Peptoid based SL libraries (diversity = 95; 5.9 x104 members) were 
synthesized on Tentagel macro beads and their utility for identifying SL’s targeting proof-of-concept 
glycoproteins assessed.  The library was also used to further optimize our screening procedures.  Screening 
with this library to identify selective SL’s is ongoing.  We are also moving toward the synthesis of β-amino 
acid containing libraries, which are intrinsically structured/pre-organized, we expect to further aid the 
identification of SL’s with improved selectivity. 

• Synthesized peptide libraries (JJL and PRT).  Peptide based SL libraries (diversity = 115; 1.6 x105 
members) were synthesized on Tentagel macro beads and also used to further optimize our screening 
procedures and identify several new selective SLs (see below). 

• Optimization of screening protocols (PRT).  The above libraries were used to identify optimized 
conditions for identifying SLs that selectively bind our proof-of-concept glycoproteins and CAGs.  These 
conditions are:  10 mM HEPES, 150 mM NaCl, 0.1% E. coli lysate (stock conc. 8 mg/mL) and 0.05% 
TWEEN. 

• Developed a structure activity relationship (JJL).  Used SL2 and SL5 to develop a structure activity 
relationship.  The key findings were that positive charge and the boronic acid are critical for affinity and 
selectivity.  This information is being fed back into the library design process to aid in the generation and 
subsequent identification of highly selective SL’s (see Tasks 2c and 3a). 

• Identified boroxole as a high affinity sugar binding motif (PRT).  The 2-formylphenyl boronic acid 
moiety was replaced with several different boronic acids to explore boronic acid substituent effects, and 
thereby identify the factors that promote the selective recognition of a glycan by a particular SL.  The key 
findings were that the substitution pattern did not matter and that substituent effects (e.g. electron 
donating/withdrawing group) were minimal. Also, the boroxole moiety was identified as an alternative 
moiety with improved affinity. 

• Optimization of image capture and analysis (JJL).  A Matlab algorithm was successfully developed to 
automate data extraction from microscope images of our bead-based assays.  The algorithm not only 
identifies each bead and extracts color space intensity values, but also allows for data rejection based on 
customizable threshold values for size, circularity and/or color space percentile high values (i.e., relating 
pixel saturation).  Using this automated data collection system, additional statistical analyses have been 
performed on our colon cancer data sets, and using quadratic discriminant analysis and/or support vector 
machines, our classification accuracies improved from 97% to >99%. 

• Identified 4 additional SLs that bind proof-of-concept glycoproteins (JJL and PRT).  Screens of 
peptide libraries containing either 2-formylphenyl boronic acid or boroxole identified 4 additional SLs that 
bind proof-of-concept glycoproteins. 

• Identified SLs that selectively bind sialyl Lewis X over Lewis X, sialyl Lewis A, and Lewis A (PRT).  
Screens of peptide libraries versus biotinylated-sialyl Lewis X identified two SLs (SLex1 and SLex2).  
Confirmation assays demonstrated that SLex2 selectively binds sialyl Lewis X over Lewis X, sialyl Lewis 
A, and Lewis A. 

• Used existing SL array to demonstrate the utility in diagnosing and staging prostate, breast, and colon 
cancer (JJL).  Using our SL array to classify various colon cancer cell lines according to metastatic 
potential, we achieved 97% classification accuracy as reported in our Chem Sci manuscript.  Inclusion of 
additional colon, breast and prostate cancer cell lines (n = 10; 426 separate measurements), and grouping the 
different cell lines according to whether they are healthy, cancerous and cancerous/metastatic we achieve 
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84% classification accuracy.  However, if we look at it from a diagnostic perspective, i.e. cancerous versus 
non-cancerous, the classification accuracy improves to 95%.  
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• Developed a Dual Dye screening protocol.  A method was developed to screen the fixed-position-library
with mixtures of fluorescein and rhodamine labeled analytes.  In one case, a fluorescein labeled membrane
extract from the RWPE-1 cell line (normal) was combined with a rhodamine labeled membrane extract from
the PC3 cell line (cancerous-metastatic), and this mixture was incubated with our SL library.  Hits were
identified as beads that were bright in one channel or the other (i.e., red or green) but not in both; thereby
affording cross-reactivity between prostate and cancerous prostate markers.

• Identified 5 additional SLs that bind prostate cancer related glycoproteins.  Screens of the fixed-
position-library with FITC-PSA and labeled membrane extracts from RWPE-1 and PC3 cell lines identified
5 additional SLs that bind prostate cancer related glycoproteins.

• Identified SL sequencing methods based on Edman Degradation.  Previous efforts to use Edman
degradation methods had failed due to randomized boronic acid location and linker length (e.g. Lys, Orn,
Dab, Dpr).  Partial hydrolysis of the peptide backbone was observed after cleavage of the boronic acid
moiety with peroxide, further complicating the Edman-based analysis.  However with a fixed location and
only one linker for our boronic acid, we have been able to use Edman methods to sequence our SLs with
high fidelity, without removing the boronic acid group.

• Optimized image analysis protocol.  A change was made to our MATLAB algorithm to improve the
identification and quantification of individual assay beads from weak binding between an SL and a certain
analyte (i.e. from dark images).  The basic challenge was how to accurately find the edge of the dark bead
compared to the background.  In the new MATLAB algorithm the particles are found using the color
channel with the greatest amount of information (e.g. the green channel for fluorescein), thereby improving
the reliability and consistency of identifying beads with intensities as low as 5 on an 8-bit scale.

• Developed a better understanding of the importance of cross-reactivity.  Notably, the cross-reactive SLs
that exhibit modest selectivity in our proof-of-concept paradigm (ovalbumin, bovine mucin and porcine
mucin) consistently provide the most useful information when assaying cancer related samples.  For
example, SL2 and SL3 account for 66% of the variance, or discriminatory ability of the array, when
discriminating six prostate derived cell lines; yet SL2 and SL3 were cross-reactive, displaying no more than
a 2-fold selectivity for any of the proof-of-concept glycoproteins.

• Developed a structure activity relationship.  Continuing studies to evaluate the relationship between SL
structure and glycoprotein binding affinity/selectivity, and thus diagnostic prospect, have highlighted the
importance of positive charge on the SL.  Specifically, a combination of boronic acid functionalized SLs
and highly positively charged SLs lacking boronic acids was used to discriminate colon cancer related cell
lines with great effectiveness, in some cases better than when only SLs containing boronic acids was used.
This information is being fed back into our design to improve the detection and staging capabilities of our
SL Array by providing additional and still different information on the cell line in general.

• Advanced SL Array design and utility to address clinical challenges.  Using flow cytometry to evaluate
SLs (10µm beads) we have demonstrated the utility of our initial SL Array to mimic results obtained using
more tedious and time-consuming fluorescence microscopy.  Using Linear Discriminant Analysis (LDA),
classification accuracies were determined for six prostate derived cell lines, discriminating healthy,
cancerous non-metastatic and cancerous metastatic; providing 81% accuracy (microscope data was 100%).
However, when simply comparing samples as healthy or cancerous using flow cytometry our SL Array
predicted sample class with 97% accuracy.  Additionally, moving towards serum-based testing, we have
shown that samples secreted into culture media show the same response to our SL Array as those from
membrane extracts.  Finally, evaluation of human tissue samples match trends observed from cell lines.

• Used SL Array to demonstrate diagnostic and staging utility in prostate, breast, and colon cancers.
Using LDA to interpret the results from an expanded SL Array, including SL1-9, we evaluated 15 human
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cell lines consisting of four colon derived cell lines (HCT 116, LoVo, HT-29, CCD 841 CoN), five breast 
derived cell lines (MCF10A, MCF7, MDA-MB-231, BT474, D47T) and six prostate derived cell lines 
(LNCaP, DU145, PC3, RWPE-1, WPE1-NA22, WPE1-NB14), obtaining 76% classification accuracy based 
solely on cancerous or normal.  However, when we included the tissue source (breast, colon or prostate) into 
our analysis the overall classification accuracy improved, depending on the tissue type, to between 84% and 
90%. 

• Used a Dual Dye screening protocol with prostate cell lines.  Screens of the fixed-position-library with
labeled secreted glycoproteins from RWPE-1 and DU145 cell lines identified 2 additional SLs that bind
prostate cancer related glycoproteins.

• Used a Dual Dye screening protocol with colon cell lines.  Screens of the fixed-position-library with
labeled secreted glycoproteins from CCD 841 CoN and LOVO cell lines identified 3 additional SLs that
bind colon cancer related glycoproteins.
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Reportable Outcomes 

• Published a manuscript in Chemical Sciences3 (see Appendices) detailing the utility of SL arrays to
discriminate cancer cell lines based on metastatic potential, thereby setting the stage for further developing
this approach for the diagnosis and staging of cancer.

• Kevin Bicker, who played a key role in developing the SL array, will begin his tenure track faculty position
at Middle Tennessee State University in August 2013.

• Lavigne presented a seminar to the College of Pharmacy at the Medical University of South Carolina.
• Held joint lab meeting at The Scripps Research Institute, Scripps Florida, on July 25, 2013.  Anna

Veldkamp, Kathleen O’Connell, and Daniel Lewallen presented seminars on their SL studies.
• Jing Sun, who played a key role in developing the SL array, began her full-time Instructor position at

Georgia Southern University in August 2013.
• Lavigne presented an invited seminar at the Southeast Regional Meeting of the American Chemical Society

in Atlanta, GA in November 2013.
• Lavigne presented a seminar in the Department of Chemical Engineering at Texas A&M University in

College Station, TX in May 2013.
• Lavigne spent one week as a Visiting Scientist in the Department of Chemical Engineering at Texas A&M

University in College Station, TX in May 2013.
• Lavigne and O’Connell (post-doctoral fellow) participated in the Space, Cancer and Personalized Medicine

Conference at the Gibbs Cancer Center and Research Institute in Spartanburg, SC in May 2014.
• Lavigne presented a seminar for the South Carolina Cancer Prevention and Control Program 
• Lavigne presented a seminar for the Center for Colon Cancer Research.
• Lavigne presented a poster at the1st Annual MUSC/GRU/USC Joint Cancer Retreat.
• Lavigne presented an invited seminar at the 250th National Meeting of the American Chemical Society,

Division of Organic Chemistry, Teva Pharmaceuticals Scholars Grant Symposium.
• Lavigne presented an invited seminar at Pacifichem 2015.
• Lavigne presented an invited seminar at the XXVIII International Carbohydrate Symposium (ICS).
• Erin E. Gatrone successfully defended her Dissertation entitled “Using Synthetic Lectins to Investigate

Metastatic Potential in Colon Cancer”
• Anna A Veldkamp successfully defended her Dissertation entitled “Assessing Aberrant Glycosylation with

Synthetic Lectins to Detect and Stage Prostate Cancer”
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Conclusions 
Significant progress has been made on this project to develop synthetic lectin (SL) arrays that bind to prostate 
cancer associated glycans and glycoproteins (CAGs) to detect glycosylation patterns associated with cancer.  
These studies are being pursued to develop this methodology into a robust system, thereby providing a new 
paradigm that can diagnose and stage prostate cancer.  Moreover, these studies directly relate to the “Imaging,” 
and “Biomarker” focus areas of the PCRP overarching challenges.  In particular, the progress made towards 
creating a cross-reactive sensor platform will allow for more reliable diagnosis of prostate cancer and thus 
improve the likelihood of accurate detection and aid in managing prostate cancer, thereby decreasing many of 
the negative impacts associated with prostate cancer. 
 Peptide and peptoid libraries have been synthesized and screened against cancer associated analytes.  
Consequently, six new synthetic lectins have been identified targeting both glycans (2 new SLs) and 
glycoproteins (4 new SLs).  In so doing, we have been able to improve our methods for binding SLs to CAGs to 
reduce background binding, thereby improving our signal to noise ratio.  We have also been able to advance our 
approaches to 1) acquire assay images, 2) extract assay response values and 3) analyze the assay outcome.  
Ultimately, these improvements have allowed us to verify the validity of our approach while also improving the 
overall assay accuracy.  As such, we have enlarged our data set to nearly 12,000 measurements while expanding 
the assay relevance and at the same time maintaining classification accuracies between 93-97%.  These results 
reflect assay responses to a combination of prostate, colon and breast cancer cell lines. 
 In addition to enhancing the overall assay performance, we have also advanced our understanding of what 
factors are important for SLs to bind CAGs.  Specifically, we have demonstrated that boroxoles are efficient 
replacements for the originally proposed boronic acids and can improve the binding affinity of SLs for certain 
CAGs.  We have also begun to develop a detailed structure-activity-relationship that has to date indicated that 
charge on the SL is important for defining binding affinity with CAGs while the boronic acids significantly 
contribute to binding selectivity. 
 New protocols have been developed to screen our SL libraries based on competitive binding between 
differently labeled glycoproteins or cell membrane extracts.  Subsequently, five hits have been isolated and 
sequenced that unambiguously target prostate cancer associated glycoproteins.  While developing these novel 
screening methods we have also been able to improve our sequencing and image analysis techniques.  In 
particular, we can now effectively use Edman degradation schemes to sequence our SLs without having to 
remove our boronic acid groups.  Regarding image analysis, we are now better able to identify our particle 
edges from fluorescence microscopy while also transitioning to flow cytometry based methods to afford higher 
throughput and more consistent data acquisition. 
 In evaluating how SL structure impacts binding affinity and selectivity with glycoproteins, we have gained a 
better understanding of cross-reactive SLs contribute to the overall SL Array effectiveness while also learning a 
great deal about how the charge and boronic acid group of our SLs impact binding and ultimately influence the 
utility of our SL Array for diagnosing and staging prostate cancer.  As such, we have been able to expand the 
scope of our SL Array analysis to include breast, colon and prostate derived cell lines.  We have also utilized 
samples obtained from cell-culture media that include secreted glycoproteins towards evaluating patient serum.  
Similarly, we have demonstrated that our SL Array can effectively discriminate human colon tissue samples. 
 As this project progresses, we will continue to expand our understanding of the factors important for SLs to 
bind CAGs.  Specifically, we will study in greater detail how our SLs are interacting with clinically relevant 
targets.  Ultimately, while initial studies have provided valuable insight into what factors contribute to SL-



37 
 

Glycan binding, it is clear that what makes a good binder for PSM is not necessarily what is needed to make a 
good sensor for detecting prostate cancer, for example.  In regards to screening the SL library and using these 
SLs in discerning normal and cancerous cell lines, we have importantly learned: 1) that we cannot take any SL 
for granted, and 2) identifying SLs from more biologically relevant samples could provide better classification 
and more detailed information regarding the particular glycosylation patterns associated with a particular 
disease state.  As novel and exciting approaches, we will endeavor to incorporate fluorescent boronic acids into 
our SL design thereby eliminating the need to label our samples because the boronic acids change intensity 
upon diol binding.  Furthermore, we plan to evaluate using our SLs to capture or stain glycoproteins as part of a 
spot array.  Significantly, we are continually screening our libraries for new hits that better target prostate 
cancer and subsequently these hits are included into our array and used to better discriminate prostate cancer 
cell lines while simultaneously improving our signaling strategies, our data analysis and the overall utility of 
our approach.   
 Despite being located at two different sites JJL at USC and PRT moving from TSRI to the University of 
Massachusetts Medical School, the project has continued to grow and evolve through constant email and phone 
contact, as well as organized weekly meetings and scheduled site visits.  As revealed above, each PI has 
contributed to different aspects of this project; with both PIs having overlapping and supporting roles for the 
other.  Clearly, this team works well together, providing their own expertise to result in a level of productivity 
that is greater than that achievable by each PI working independently.  Certainly, this project would not exist 
without the input of both PIs. 
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