KINEMATICS OF LAYING AN AUTOMATED WEAPON SYSTEM

Joshua Stapp

July 2017

Approved for public release; distribution is unlimited.

UNCLASSIFIED

The views, opinions, and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy, or decision, unless so designated by other documentation.

The citation in this report of the names of commercial firms or commercially available products or services does not constitute official endorsement by or approval of the U.S. Government.

Destroy by any means possible to prevent disclosure of contents or reconstruction of the document. Do not return to the originator.

REPORT DOCUMENTATION PAGE						Form Approved
The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the burden to Department of Defense, Washington Headquarters Services Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.						
1. REPORT DATE (DD-MM-YYYY) July 2017			2. REPORT TYPE Final			3. DATES COVERED (From - To)
4. TITLE AND SUBTITLE KINEMATICS OF LAYING AN AUTOMATED WEAPON SYSTEM					5a. CONTRACT NUMBER	
					5b. GRANT NUMBER	
					5c. PROGRAM ELEMENT NUMBER	
6. AUTHORS Joshua Stapp					5d. PROJECT NUMBER	
					5e. TASK NUMBER	
					5f. WORK UNIT NUMBER	
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) U.S. Army ARDEC, WSEC Weapons Systems \& Technology Directorate (RDAR-WSW-I) Picatinny Arsenal, NJ 07806-5000						8. PERFORMING ORGANIZATION REPORT NUMBER
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES U.S. Army ARDEC, ESIC Knowledge \& Process Management (RDAR-EIK) Picatinny Arsenal, NJ 07806-5000						10. SPONSOR/MONITOR'S ACRONYM(S)
						11. SPONSOR/MONITOR'S REPORT NUMBER(S) Technical Report ARWSE-TR-16024
12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution is unlimited.						
13. SUPPLEMENTARY NOTES						
14. ABSTRACT This report describes the unique issues of pointing an automated weapon by an indirect fire system. Due to different frames of reference, between the calculated firing solution and the platform that the weapon is mounted to, a mathematical transformation is required to move the firing solution from its reference frame to a reference frame that is meaningful to the weapon system. This report describes the aforementioned problem in detail and provides a systematic solution using a series of equations.						
15. SUBJECT TERMSArtillery Kinematics Automation Mortars Control systems						
16. SECURITY CLASSIFICATION OF:			17. LIMITATION OF ABSTRACT SAR	```18. NUMBER OF PAGES 15```		19a. NAME OF RESPONSIBLE PERSON Joshua Stapp
$\begin{gathered} \text { a. REPORT } \\ U \end{gathered}$	$\begin{gathered} \text { b. ABSTRACT } \\ U \end{gathered}$	c. THIS PAGE				19b. TELEPHONE NUMBER (Include area code) (973) 724-3051

Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. Z39.18

UNCLASSIFIED

CONTENTS

Page
Introduction 1
Reference Frames 1
The Problem 2
Methods, Assumptions, and Procedures 2
Conventions and Variable Definitions 2
Rotation Matrices 5
Transformation of a Vector 5
Conversion Between Cartestian and Spherical Coordinate Systems 6
Transformation of Earth Referenced Lay to Platform Reference Frame 6
Results and Discussions 7
Conclusions 8
Bibliography 9
Distribution List 11
FIGURES
1 Earth reference frame 1
2 Platform reference frame 2
3 Cartesian coordinate system 3
4 Spherical coordinate system 4
5 Rotation symbols and directions 4
6 Attitude description 5

UNCLASSIFIED

INTRODUCTION

In artillery, the process of aiming a weapon is referred to as "gun laying." Gun laying is achieved by performing movements that align the axis of the gun barrel with the calculated lay angles. The gun angles are specified relative to a horizontal plane and a vertical plane. A gun is traversed in the horizontal plane, and elevated in the vertical plane, to range it to its target. The traverse and elevation values make up the aiming portion of the "firing solution."

Reference Frames

The firing solution provides values referenced to an orthogonal earth reference frame. The origin of the frame is placed at the weapon's location on the earth's surface. From the origin, north is the X axis, east is the Y axis, and the Z axis points downward toward the center of the earth's sphere as shown in figure 1.

Figure 1
Earth reference frame
In the case of an automated weapon, actuators traverse and elevate the gun barrel relative to the platform the barrel is mounted to. The gun to platform relationship is defined using a reference frame that is different than the earth reference frame described previously. The origin of the platform reference frame exists at the intersection of the traverse axis and the elevation axis. In some instances, the elevation axis of rotation may not intersect with the traverse axis. However, since translation is not a concern for pointing, this condition can be ignored and the axes can be assumed to have a common origin, as long as they exist within a common plane. For the platform reference frame, the Z axis extends down along the traverse axis of rotation. The X axis extends toward what is established to be the 0 reference of the platform at a right angle to the Z axis (typically what would be considered the front of the platform). The Y axis completes the orthogonal reference frame using the right hand rule. An example platform reference frame is illustrated in figure 2.

UNCLASSIFIED

Figure 2
Platform reference frame
When performing rotation transformations, an intermediate reference frame is used to perform the operations. This is referred to as the local reference frame. The local reference frame is initially coincident with the starting reference frame. It is subsequently rotated about its axes in a series of motions that result with it being coincident with the final reference frame. In the case of laying a weapon, the centerline of the gun tube is represented by the X axis of the local reference frame.

The Problem

Since the platform reference frame is typically not coincident with the earth reference frame, a disparity exists between the feedback used to control motion of the gun and the feedback indicating current attitude of the gun relative to earth. To resolve this issue, the firing solution must be translated from the earth reference frame to the platform reference frame. The actuator control system can then use that information to command traverse and elevation motions required to lay the gun on the intended target.

METHODS, ASSUMPTIONS, AND PROCEDURES

Conventions and Variable Definitions

Before describing the formulas that convert the firing solution to the correct reference frame, the conventions and variables to be used are defined in table 1, which defines the variables used in the subsequent calculations:

UNCLASSIFIED

Table 1
Variable definitions

Variable	Definition
$X_{\mathrm{e}}, Y_{e}, Z_{\mathrm{e}}$	Axis of earth reference frame
$\mathrm{X}_{\mathrm{p}}, \mathrm{Y}_{\mathrm{p}}, Z_{\mathrm{p}}$	Axis of platform reference frame
Ψ_{Fe}	Firing solution yaw rotation (earth reference)
θ_{Fe}	Firing solution pitch rotation (earth reference)
Ψ_{Ge}	Gun attitude yaw rotation (earth reference)
θ_{Ge}	Gun attitude pitch rotation (earth reference)
φ_{Ge}	Gun attitude roll rotation (earth reference)
$\mathrm{X}_{\mathrm{Fe}}, \mathrm{y}_{\mathrm{Fe}}, \mathrm{Z}_{\mathrm{Fe}}$	Firing solution cartesian coordinates (earth reference)
ψ_{Gp}	Gun attitude yaw rotation (platform reference)
θ_{Gp}	Gun attitude pitch rotation (platform reference)
Ψ_{Fp}	Firing solution yaw rotation (platform reference)
θ_{Fp}	Firing solution pitch rotation (platform reference)
$\mathrm{X}_{\mathrm{Fp}}, \mathrm{y}_{\mathrm{Fp}}, \mathrm{Z}_{\mathrm{Fp}}$	Firing solution Cartesian coordinates (platform reference)

A coordinate system uses one or more values, or coordinates, to uniquely determine the position of a point or other geometric element. The calculations that solve the problems in this report require that unit vectors be represented in two different types of coordinate systems: Cartesian and spherical. Equivalent Cartesian and spherical coordinate systems are shown in figures 3 and 4 .

Figure 3
Cartesian coordinate system

UNCLASSIFIED

Figure 4
Spherical coordinate system
When describing rotations, the Greek letters ψ, θ, and φ are used to describe angular rotation quantities of yaw, pitch, and roll about the Z, Y, and X axes respectively. By convention, positive rotation is defined as clockwise when looking outward from the origin of the frame (fig. 5).

Figure 5
Rotation symbols and directions
The attitude of an object relative to a fixed reference frame is defined by means of a series of rotations about the object's axes starting with the objects local reference frame aligned with the fixed reference frame. The order of these rotations is ψ about Z, θ about Y, then φ about X. Figure 6 illustrates this concept.

UNCLASSIFIED

Figure 6
Attitude description

Rotation Matrices

A rotation matrix is used to perform a rotation in Euclidean space. When working in three dimensions, there are three basic rotation matrices that are used to rotate vectors about the X, Y, and Z axes.

$$
\begin{align*}
& R_{Z}(\psi)=\left[\begin{array}{ccc}
\cos \psi & -\sin \psi & 0 \\
\sin \psi & \cos \psi & 0 \\
0 & 0 & 1
\end{array}\right] \tag{1}\\
& R_{Y}(\theta)=\left[\begin{array}{ccc}
\cos \theta & 0 & \sin \theta \\
0 & 1 & 0 \\
-\sin \theta & 0 & \cos \theta
\end{array}\right] \tag{2}\\
& R_{X}(\varphi)=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \varphi & -\sin \varphi \\
0 & \sin \varphi & \cos \varphi
\end{array}\right] \tag{3}
\end{align*}
$$

Transformation of a Vector

If two vectors, p and p^{\prime}, both describe the Cartesian coordinates of a point P using different reference frames, a rotation matrix can be used to represent the transformation of the vector coordinates from one reference frame to the other. The rotation matrix R represents the transformation matrix of the vector coordinates in frame $O-X^{\prime} Y^{\prime} Z^{\prime}$ into the coordinates of the same vector in frame O-XYZ.

$$
\begin{equation*}
p=R p^{\prime} \tag{4}
\end{equation*}
$$

UNCLASSIFIED

Since R is an orthogonal matrix (i.e., $R^{\top} R=I_{3}$), it follows that p^{\prime} can be calculated using the transpose of R :

$$
\begin{equation*}
p^{\prime}=R^{T} p \tag{5}
\end{equation*}
$$

Conversion Between Cartestian and Spherical Coordinate Systems

At times, it is necessary to convert from a Cartesian coordinate system to a spherical coordinate system. These calculations assume that the Cartesian X axis aligns with the spherical A axis and that the Z axes align. Since unit vectors are used, the actual radius r is irrelevant and set to 1 . These equations are used for conversion.

$$
\begin{gather*}
x=\cos (\psi) \cos (\theta) \tag{6}\\
y=\sin (\psi) \cos (\theta) \tag{7}\\
z=-\sin (\theta) \tag{8}\\
\psi=\operatorname{atan} 2\left(\frac{y}{x}\right) \tag{9}\\
\theta=\operatorname{atan} 2\left(\frac{-z}{\sqrt{x^{2}+y^{2}}}\right) \tag{10}
\end{gather*}
$$

Note that atan2 is a programming function that uses the input to determine the quadrant and returns the corrected angle from an arctangent operation.

Transformation of Earth Referenced Lay to Platform Reference Frame

Given the yaw and pitch values that form a firing solution in the earth reference frame, the first step in transforming the solution to the platform reference frame is to create a vector in Cartesian coordinates using equations 6 through 8.

$$
\begin{gather*}
x_{\mathrm{Fe}}=\cos \left(\psi_{\mathrm{Fe}}\right) \cos \left(\theta_{\mathrm{Fe}}\right) \tag{11}\\
y_{\mathrm{Fe}}=\sin \left(\psi_{\mathrm{Fe}}\right) \cos \left(\theta_{\mathrm{Fe}}\right) \tag{12}\\
z_{\mathrm{Fe}}=-\sin \left(\theta_{\mathrm{Fe}}\right) \tag{13}
\end{gather*}
$$

To transform the Cartesian coordinates from the earth reference frame to the platform reference frame, a rotation matrix is defined as the product of a series of rotations via the basic rotation matrices defined in equations 1 through 3 . Starting with the local reference frame, coincident with the earth reference frame, a rotation of ψ_{Ge} is performed about Z, then θ_{Ge} is rotated about Y, and finally φ Ge is rotated about X. These yaw, pitch, and roll rotations result in the reference frame being coincident with the current gun tube axis. The local reference frame is then rotated by the negative of θ_{Gv} about Y and the negative of ψ_{Gv} about Z. These motions result in the reference frame being coincident with the platform reference frame. These five series of rotations are depicted in equation 14.

UNCLASSIFIED

$$
\begin{equation*}
R=R_{Z}\left(\psi_{\mathrm{Ge}}\right) R_{Y}\left(\theta_{\mathrm{Ge}}\right) R_{X}\left(\varphi_{\mathrm{Ge}}\right) R_{Y}\left(-\theta_{\mathrm{Gp}}\right) R_{Z}\left(-\psi_{\mathrm{Gp}}\right) \tag{14}
\end{equation*}
$$

Substituting the functions with the rotation matrix equations found in equations 1 through 3 yields:
$R=\left[\begin{array}{ccc}c \psi_{\mathrm{Ge}} & -s \psi_{\mathrm{Ge}} & 0 \\ s \psi_{\mathrm{Ge}} & c \psi_{\mathrm{Ge}} & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{ccc}c \theta_{\mathrm{Ge}} & 0 & s \theta_{\mathrm{Ge}} \\ 0 & 1 & 0 \\ -s \theta_{\mathrm{Ge}} & 0 & c \theta_{\mathrm{Ge}}\end{array}\right]\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & c \varphi_{\mathrm{Ge}} & -s \varphi_{\mathrm{Ge}} \\ 0 & s \varphi_{\mathrm{Ge}} & c \varphi_{\mathrm{Ge}}\end{array}\right]\left[\begin{array}{ccc}c\left(-\theta_{\mathrm{Gp}}\right) & 0 & s\left(-\theta_{\mathrm{Gp}}\right) \\ 0 & 1 & 0 \\ -s\left(-\theta_{\mathrm{Gp}}\right) & 0 & c\left(-\theta_{\mathrm{Gp}}\right)\end{array}\right]\left[\begin{array}{ccc}c\left(-\psi_{\mathrm{Gp}}\right) & -s\left(-\psi_{\mathrm{Gp}}\right) & 0 \\ s\left(-\psi_{\mathrm{Gp}}\right) & c\left(-\psi_{\mathrm{Gp}}\right) & 0 \\ 0 & 0 & 1\end{array}\right]$
Multiplication of the transpose of the rotation matrix by the firing solution vector results in the firing solution vector in terms of the platform reference frame.

$$
\left[\begin{array}{c}
x_{\mathrm{Fp}} \tag{16}\\
y_{\mathrm{Fp}} \\
z_{\mathrm{Fp}}
\end{array}\right]=R^{T}\left[\begin{array}{c}
x_{\mathrm{Fe}} \\
y_{\mathrm{Fe}} \\
z_{\mathrm{Fe}}
\end{array}\right]
$$

The new firing solution vector is then converted back to spherical coordinates using equations 9 and 10 .

$$
\begin{gather*}
\psi_{\mathrm{Fp}}=\operatorname{atan} 2\left(\frac{y_{\mathrm{Fp}}}{x_{\mathrm{Fp}}}\right) \tag{17}\\
\theta_{\mathrm{Fp}}=\operatorname{atan} 2\left(\frac{-z_{\mathrm{Fp}}}{\sqrt{x_{\mathrm{Fp}}^{2}+y_{\mathrm{Fp}}^{2}}}\right) \tag{18}
\end{gather*}
$$

RESULTS AND DISCUSSIONS

The equations and methods described in this report have been implemented on several systems with great success. The accuracy and resolution of the sensors and actuators determine how accurately the weapon can be pointed. The values needed to perform the previous calculations required the yaw, pitch, and roll of the gun barrel relative to earth and the yaw and pitch of the gun tube relative to the platform. The gun to earth angles are typically provided by an inertial navigation system (INS), and the gun to platform angles are typically provided by angular sensors on the azimuth and elevation axes.

There are some additional real world factors that need to be considered as well. The INU is mounted to a structure that moves in unison with the gun tube. However, the reference frame representing the INU may not perfectly align with that of the gun tube. To correct for this, the INU is boresighted to the gun tube. The boresighting process determines the misalignment values and stores three corrections in the INU representing yaw, pitch, and roll offsets. This allows the INU to take any misalignments between itself and the axis of the gun into consideration and adjust its output to represent the attitude of the gun itself.

Another consideration is ensuring that the earth referenced gun attitude output by the INU uses the same north reference as the reference used for the firing solution. There are three primary ways of referencing north. True north points to the northern axis of the earth's rotation. Magnetic north is aligned with the earth's magnetic field, which will differ from true north, based on location and also changes with time. Grid north is north as represented on a two dimensional map. Military

UNCLASSIFIED

systems typically specify their location using the military grid reference system that breaks locations on the surface of the earth down into a set of grid zones. For a location within a grid zone, there could be an error between its grid north and true north, which is corrected using a declination correction. For instance, if the INU is outputting true north referenced values and the firing solution is referenced to grid north, a declination offset needs to be applied prior to performing the calculations.

Furthermore, since the platform could be a vehicle with a compliant suspension, the platform reference frame can change with respect to the earth reference frame as the weapon moves and the suspension is loaded in different areas. This becomes a control problem to which there are many approaches. Suffices to say that the final platform solution may differ from the solution calculated prior to moving.

CONCLUSIONS

Through the use of rotation transformations and trigonometric functions, solutions were found for the aforementioned problem. These calculations allow the system controlling the actuators to successfully point a boresighted weapon to the desired orientation regardless of initial platform orientation.

UNCLASSIFIED

BIBLIOGRAPHY

1. Bruno, Siciliano, Sciavicco, Lorenzo, and Villani, Luigi, "Robotics: Modelling, Planning and Control," Springer Verlag, New York, NY, pp. 39-54, 2009.

UNCLASSIFIED

DISTRIBUTION LIST

U.S. Army ARDEC

ATTN: RDAR-EIK
RDAR-WSW-I, Joshua Stapp
Picatinny Arsenal, NJ 07806-5000
Defense Technical Information Center (DTIC)
ATTN: Accessions Division
8725 John J. Kingman Road, Ste. 0944
Fort Belvoir, VA 22060-6218
GIDEP Operations Center
P.O. Box 8000

Corona, CA 91718-8000
gidep@gidep.org

UNCLASSIFIED

PART 1. 作ust be signed bofore the report can be adited.
a. The diaft copy of this report has been reviewed for technical accuracy and is approved
for editing.
b. Use Distribution Statement $\mathrm{AX}, \mathrm{B}_{2 \ldots}, \mathrm{C}_{2 \ldots \ldots}, \mathrm{D}$ \qquad , F \qquad or X \qquad for the reason checked on the continustion of fhis form. Reasam; \qquad

1. If Statement A is selecled, the report will be released to the National Technical Information Service (NTIS) for sale to the gerieral public. Only unclassified reports whose distribution is not limitod or controtled in any way are relaased to NTIS.
2. If Statement B, C, D, E, F, or X is selected, the report will be seleased to the Defense Technical Information Center (DTIC) which will limit distrjbution according to the conditions indicated in the statement.
c: The distribution list for this report has been reviewed for accuracy and completgregs.

PART 2. To be signeo' either when draft report is submitted or after review of reproduction copy.
This report is approved for publication.

LCSD 49 supersedes SMCAR Form 49,20 Dec 06

