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ANNUAL TECHNICAL (Oct15-Mar17) REPORT ON 

  

AFOSR FA9550-15-1-0493 

 

“Quantum Engineering of States in Heterostructure-based Detectors for Enhance 

Performance --- Revision” 

 

 

(1) Introduction 

 

This research effort has the goals of exploiting and integrating forefront developments in 

nanoscience and nanoelectronics to conceive, design, fabricate, and test flexible sensors 

with greatly enhanced performance.  To accomplish these goals, this effort focused on the 

design of novel heterostructure-based sensors that integrate multiple-quantum-well 

elements to yield enhanced performance based on quantum engineering of both electronic 

and phononic states.  Specifically, in this work the unwanted thermally excited carrier 

contribution in these heterostructure-based photodetectors has been reduced by using 

phonon-assisted transitions to design structures having deeper initial quantum states.  This 

novel design has been modeled and characterized experimentally for a prototypical 

heterostructure.  In addition, this effort addressed the optimization of these photodetectors 

through tailoring carrier interactions in these reduced dimensional structures.   

 

 

(2) List of Appendixes --- N/A 

 

(3) Statement of Problem Studied 

 

 

This research program addressed systematic theoretical and experimental investigations of 

nanostructure-based electronic and optoelectronic structures with the goal of facilitating 

major improvements in the performance levels of nanodevices beyond the current state-of-

the-art. In particular, this program focuses on research thrusts with objectives including: 

model, design, fabricate, and experimentally characterize nano-device structures for 

enhanced charge transport & collection; model, design, fabricate, and experimentally 

characterize such nanodevices to optimize device structures with quantum-engineering and 

phonon-assisted transitions in nanostructures. Quantum engineering of nano-structures is 

emphasized. Related quantum-based structures – including those with spontaneous 

polarizations are included. 

 

 

(4) Summary of Most Important Results  

DISTRIBUTION A: Distribution approved for public release.
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The most important results obtained during this period of this effort include: electrical and 

optical studies of components of devices and systems of quantum-dot-based optoelectronic 

devices; electronic and optical properties of quantum dots in ensembles; characterization 

of quantum-dot blinking phenomena; characterization of phonon modes in quantum dots; 

and extending a theory band formation in an array of colloidal quantum dots embedded in 

conductive polymer.  Specific results were obtained on the following topics: 

 

This research has focused on exploring the design and experimental verification of a 

concept for novel photodetectors with dramatic enhancement in detectivity, based on rapid 

interface phonon-assisted transitions combined with quantum engineering of phonon and 

electron states in nanostructures.  Based on the concepts we introduced previously 

(Stroscio (1996), Kisin et al. (1997), Stroscio et al. 1999, and Stroscio and Dutta (2001) for 

heterosturcture lasers, which have resulted in extremely large enhancements in the optical 

gain of quantum-well-based lasers, this work examines dramatic enhancement of 

photodetectivity in novel quantum-well based photodetectors in the first known 

embodiment that facilitates the detection of photons over a wide range of frequencies.  In 

preliminary studies (Lan et al. (2014)), we have identified several different heterostructures 

for these photodetectors – with specific materials, compositions -- suitable as 

photodetectors incorporating phonon-assisted transitions: one based on GaAlAs/GaAs 

material system, one based on InGaAs/InAs material system and the other one base on 

InAlAs/InP material system.  These designs bear similarities to phonon-assisted quantum 

cascade lasers discussed in papers (Spagnolo et al. (2002), Williams et al. (1999), Menon et 

al. (2002)) that make reference to our earlier treatments of phonons in heterostructures 

(Stroscio (1996), Kisin et al. (1997), and Stroscio et al. 1999). 

 

In addition to interface phonon engineering, a novel feature of the designs considered 

herein is a double-well region that allows tuning of energy state defferences so that a 

double resonance condition (Stroscio et al. (1999)) - for a pair of degenerate states and a 

pair of states separated by an interface phonon energy – can be satisfied.  To our 

knowledge, this novel double-well system has not been used in conjunction with phonon-

assisted transitions in the past; however, the double-well component is critical to the 

tunability of the low noise photodetectors advocated in this proposal.  Herein, we consider a 

triple quantum-well structure with one single well and one double well; the relationship 

between the energy levels should be, as in Fig. 1.  
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Figure 1. Structure of single-well—double well ehterostructure-based photodetector with 

intermediate states E3 and E2 that provide a channel for rapid phonon-assisted transitions 

of an electron from state E3 to state E2 as a result of the emission of an interface phonon. 

 

From the energy level states in Figure 1, it follows that: 

 

 E3=E2’ 

 

E3 - E1 = E4’ -E2 = Ephoton 

 

And 

 

E2’ - E2 = Ephonon 

 

The energy-level structure depicted in Figure 1 for the novel photodetector facilitates the 

absorption of a photon, emission of a phonon, and the absorption of a photon with the same 

wavelength as the original photon. E1 is the first energy level of the single well, and E3 is the 

second energy level. In addition, E2, E2’, E4, and E4’ represent the first, second, third, and 

forth energy levels for the double quantum well.  With reference to the Figure 1, it is clear 

that there will be a dramatic signal-to-noise enhancement in the current, Isn,E1, from the 

deepest state E1, relative to Isn,E2, from the deepest state E2 (without phonon-assisted 

transition and second photon absorption), as given by the Richardson formula: 
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In this equation, E3 - E1 = E4’- E2 = Ephoton and E2’ - E2 = Ephonon.  

For example if, 

 

 
 

a dramatic 1/3,000 reduction in the noise is predicted.  It is this reduction in noise through 

the quantum engineering of electronic and phononic states that is pursued in this research. 

 

Based on the previous description, it is clear that this photodetector design exploits the use 

of rapid interface-phonon assisted electron transitions between the single quantum well 

(left) and and the double quantum well (right).  In operation the photodetector works as 

follows: (1) a single photon is absorbed in the left single well; (2) the excited electron emits 

an interface phonon and, consequently, makes a transition to the double well on the right; 

(3) the electron then absorbs a photon and reaches the ionization limit where it is detected.  

The key innovations in this design are the tunable double-well structure coupled with the 

use of interface-phonon-assisted transitions so that the initial state of the electron is 

approximately twice as deep as in the case of a single-quantum well photodetector.  This 

extra depth leads to a dramatic reduction in the unwanted thermal excitation from the 

initial state as estimated on the bottom right.  

 

In this program a number of different heterostructure systems have been designed that 

facilitate phonon-assisted transitions in a single-well—double-well heterostructure with 

two pairs of energy levels having equal separations between eigenenergies for two-photon 

absorption. 

After many calculations are made, one set of single-double well design 

parameter for GaAlAs material that optimizes the signal-to-noise in the 

photodetector is found as shown in Figure 2. 
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Figure 2. Result of signal-to-noise enhanced photodetector in Ga1-xAlxAs material. 

 

 

For the single well, Ga0.452Al0.548As is used as the barrier, and GaAs as the 

well. The potential of the single well then turns out to be 457.849 meV. For the 

double well, Ga0.452Al0.548As is still the barrier, both outside the double well and 

between it, and now we use Ga0.741Al0.259As as the well. A depth of 241.457 meV 

as potential of the double well is obtained. 

In this result, we have the width of single well as 6 nm, and the width of each 

wells in double well as 6 nm as well. The barrier between the double well is 0.75 

nm, and the barrier between single well and double well is 6 nm. 

The energy states in single well then turns out to be E1 = 71.17 meV, and E3 

= 282.31 meV. In the double well, energy states are E2 = 248.52 meV, E2’ = 282.52 

meV, E4 = 384.71 meV, and E4’ = 454.75 meV as shown in Figure 2. 

The whole process of this signal-to-noise photodetector in this design works 

as follows:  

i. From the E1 state, an electron absorbs one photon energy which equals 

to 211.19 meV, having wavelength of 5871.49 nm, and jumps to E3 state. 

ii. The electron emits one phonon energy of 33.79 meV, and falls down to 

the state E2. 

iii. Absorbing another photon with 206.23 meV (wavelength = 6012.70 nm) 

which having similar energy as the first one, the electron jumps to E4’, 

which is very close to the barrier level of Ga0.452Al0.548As, and will be 

detected. 
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A range of light source which includes 5871.49 nm and 6012.70 nm will be 

detected by this detector. 

 

  For In1-yGayAs, the need parameters must be specified; the parameters 

includes the discontinuity of conduction band energy for In1-yGayAs that having 

different concentration of y, and its electron effective mass. 

The total band gap energy discontinuity for In1-x-yAlxGayAs/AlAs is: 

∆𝐕 = [𝟐. 𝟎𝟗𝟑𝒙 + 𝟎. 𝟔𝟐𝟗𝒚 + 𝟎. 𝟓𝟕𝟕𝒙𝟐 + 𝟎. 𝟒𝟑𝟔𝒚𝟐 + 𝟏. 𝟎𝟏𝟑𝒙𝒚 − 𝟐. 𝟎𝒙𝟐(𝟏
− 𝒙 − 𝒚)] 𝒆𝑽 

 

and the band alignment is 47% of the total discontinuity in valence band, which 

means: 

∆𝐕𝐕𝐁 = 𝟎. 𝟒𝟕 
 

∆𝐕𝐂𝐁 = 𝟎. 𝟓𝟑 
 

The electron effective mass for In1-x-yAlxGayAs/AlAs is: 

𝐦∗ = (𝟎. 𝟎𝟒𝟐𝟕 + 𝟎. 𝟎𝟔𝟖𝟓𝒙)𝒎𝟎 
 

where 𝐦𝟎 = 𝟗. 𝟏𝟎𝟗𝟑𝟖𝟐𝟏𝟓 × 𝟏𝟎−𝟑𝟏. 

Therefore, if 𝐱 = 𝟎 is assumed in all the parameters, we can get parameters 

in In1-yGayAs/AlAs follows: 

∆𝐕′ = (𝟎. 𝟔𝟐𝟗𝒚 + 𝟎. 𝟒𝟑𝟔𝒚𝟐) 𝒆𝑽 
 

and since ∆𝐕𝐕𝐁 = 𝟎. 𝟒𝟕 and ∆𝐕𝐂𝐁 = 𝟎. 𝟓𝟑, the conduction band discontinuity of 

In1-yGayAs/AlAs is: 

∆𝐕" = [(𝟎. 𝟔𝟐𝟗𝒚 + 𝟎. 𝟒𝟑𝟔𝒚𝟐) × 𝟎. 𝟓𝟑] 𝒆𝑽 
 

Also, 

𝐦∗′ = 𝟎. 𝟎𝟒𝟐𝟕𝒎𝟎 
 

where 𝐦𝟎 = 𝟗. 𝟏𝟎𝟗𝟑𝟖𝟐𝟏𝟓 × 𝟏𝟎−𝟑𝟏. 

 

 

Since Figure 3 illustrates the association of parameters of the In1-yGayAs 

single-double well design and with different regions of the structure. 
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Figure 3. Single-double quantum well design in In1-yGayAs material. 

 

 

For the voltage level changing compared with InAs of wells and barriers in 

Figure 3, we have, 

𝐕𝟏 = (𝟎. 𝟔𝟐𝟗𝒚𝟏 + 𝟎. 𝟒𝟑𝟔𝒚𝟏
𝟐) × 𝟎. 𝟓𝟑 

 

𝐕𝟏 − 𝐕𝟐 = (𝟎. 𝟔𝟐𝟗𝒚𝟐 + 𝟎. 𝟒𝟑𝟔𝒚𝟐
𝟐) × 𝟎. 𝟓𝟑 

 

and the corresponding electron effective mass are, 

𝐦𝟏
∗ = 𝟎. 𝟎𝟒𝟐𝟕𝒎𝟎 

 

𝐦𝟐
∗ = 𝟎. 𝟎𝟒𝟐𝟕𝒎𝟎 

 

with 𝐦𝐈𝐧𝐀𝐬
∗ = 𝟎. 𝟎𝟔𝟕𝒎𝟎. 

 

 

The wave equations for the In1-yGayAs single-double quantum well structure 

can now be described as follows: 
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where ћ = 𝟏. 𝟎𝟓𝟒𝟓𝟕𝟏𝟔𝟐𝟖 × 𝟏𝟎−𝟑𝟒, and 𝐦𝟎 = 𝟗. 𝟏𝟎𝟗𝟑𝟖𝟐𝟏𝟓 × 𝟏𝟎−𝟑𝟏. 

 

Figure 4 illustrates the demands for signal-to-noise enhanced photodetector. 

In In1-yGayAs design, the larger the y is, which means when the 

concentration of GaAs is higher, the higher the conduction band level will be. 

 

 

−
ћ𝟐

𝟐 × 𝟎. 𝟎𝟒𝟐𝟕𝒎𝟎

𝝏𝟐

𝝏𝒛𝟐
𝝋𝟏(𝒛) + [(𝟎. 𝟔𝟐𝟗𝒚𝟏 + 𝟎. 𝟒𝟑𝟔𝒚𝟏

𝟐) × 𝟎. 𝟓𝟑]𝝋𝟏(𝒛) = 𝑬𝝋𝟏(𝒛) 

−
ћ𝟐

𝟐 × 𝟎. 𝟎𝟒𝟐𝟕𝒎𝟎

𝝏𝟐

𝝏𝒛𝟐
𝝋𝟐(𝒛) = 𝑬𝝋𝟐(𝒛) 

−
ћ𝟐

𝟐 × 𝟎. 𝟎𝟒𝟐𝟕𝒎𝟎

𝝏𝟐

𝝏𝒛𝟐
𝝋𝟑(𝒛) + [(𝟎. 𝟔𝟐𝟗𝒚𝟏 + 𝟎. 𝟒𝟑𝟔𝒚𝟏

𝟐) × 𝟎. 𝟓𝟑]𝝋𝟑(𝒛) = 𝑬𝝋𝟑(𝒛) 

−
ћ𝟐

𝟐 × 𝟎. 𝟎𝟒𝟐𝟕𝒎𝟎

𝝏𝟐

𝝏𝒛𝟐
𝝋𝟒(𝒛) + [(𝟎. 𝟔𝟐𝟗𝒚𝟐 + 𝟎. 𝟒𝟑𝟔𝒚𝟐

𝟐) × 𝟎. 𝟓𝟑]𝝋𝟒(𝒛) = 𝑬𝝋𝟒(𝒛) 

−
ћ𝟐

𝟐 × 𝟎. 𝟎𝟒𝟐𝟕𝒎𝟎

𝝏𝟐

𝝏𝒛𝟐
𝝋𝟓(𝒛) + [(𝟎. 𝟔𝟐𝟗𝒚𝟏 + 𝟎. 𝟒𝟑𝟔𝒚𝟏

𝟐) × 𝟎. 𝟓𝟑]𝝋𝟓(𝒛) = 𝑬𝝋𝟓(𝒛) 

−
ћ𝟐

𝟐 × 𝟎. 𝟎𝟒𝟐𝟕𝒎𝟎

𝝏𝟐

𝝏𝒛𝟐
𝝋𝟔(𝒛) + [(𝟎. 𝟔𝟐𝟗𝒚𝟐 + 𝟎. 𝟒𝟑𝟔𝒚𝟐

𝟐) × 𝟎. 𝟓𝟑]𝝋𝟔(𝒛) = 𝑬𝝋𝟔(𝒛) 

−
ћ𝟐

𝟐 × 𝟎. 𝟎𝟒𝟐𝟕𝒎𝟎

𝝏𝟐

𝝏𝒛𝟐
𝝋𝟕(𝒛) + [(𝟎. 𝟔𝟐𝟗𝒚𝟏 + 𝟎. 𝟒𝟑𝟔𝒚𝟏

𝟐) × 𝟎. 𝟓𝟑]𝝋𝟕(𝒛) = 𝑬𝝋𝟕(𝒛) 

when 𝐳 ≤ 𝟎 

when 𝟎 ≤ 𝐳 ≤ 𝐳𝟏 

when 𝐳𝟏 ≤ 𝐳 ≤ 𝐳𝟐 

when 𝐳𝟐 ≤ 𝐳 ≤ 𝐳𝟑 

when 𝐳𝟑 ≤ 𝐳 ≤ 𝐳𝟒 

when 𝐳𝟒 ≤ 𝐳 ≤ 𝐳𝟓 

when 𝐳𝟓 ≤ 𝐳 
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Figure 4. Simulation for Single-Double Quantum Well in In1-yGayAs material. 

 

 

Figure 5. depicts the optimized structure for the design in InGaAs material 

based on many calculations performed by adjusting these parameters. 
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Figure 5. Optimized Signal-to-Noise enhanced photodetector in In1-yGayAs material. 

 

 

For the single well, In0.248Ga0.752As is used as the barrier, and InAs as the 

well. The potential of the single well then turns out to be 381.371 meV. For the 

double well, In0.248Ga0.752As is still the barrier, both outside the double well and 

between it, and now we use In0.590Ga0.410As as the well. A depth of 205.845 meV 

as the potential of the double well is obtained. 

In this result, we have the width of single well as 8.8 nm, and the width of 

each well in double well as 10 nm. The barrier between the double well is 0.6 nm, 

and the barrier between single well and double well is 10 nm. 

The energy states in single well then turn out to be E1 = 61.614 meV, and E3 

= 232.18 meV. In the double well, energy states are E2 = 198.28 meV, E2’ = 231.95 

meV, E4 = 307.54 meV, and E4’ = 375.68 meV as shown in Figure 5. 

The whole process for this signal-to-noise photodetector with InGaAs 

material in this design works as following: 

i. From E1 state, an electron absorbs one photon energy which equals to 

170.57meV, having wavelength of 7269.74 nm, and transitions to the E3 

state. 

ii. The electron emits one phonon energy of 33.9 meV, with wavelength 

36578.17 nm, and falls down to the state E2. 

iii. Absorbing another phonon with 177.4 meV (wavelength = 6989.85 nm) 

which having similar energy as the first one, the electron transitions to 

E4’, which is very close to the barrier level of In0.248Ga0.752As, and will be 

detected. 

The photon absorption for the first photon and the second photon having a 

difference of 4% in energy. Even though, error less than 5% is acceptable in 

experiment, the light source being detected needs to have a wide band at least 

from 6989.85 nm to 7269.74 nm in this apparatus. 

 

 

  The parameters we need include: the discontinuity of conduction band 

energy for In1-xAlxAs that having different concentration of x, the electron 

effective mass for the corresponding x value, and the conduction band energy 

level and electron effective mass of InP. 

The total band gap energy discontinuity for In1-x-yAlxGayAs/AlAs is 

mentioned in the previous part as: 
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∆𝐕 = [𝟐. 𝟎𝟗𝟑𝒙 + 𝟎. 𝟔𝟐𝟗𝒚 + 𝟎. 𝟓𝟕𝟕𝒙𝟐 + 𝟎. 𝟒𝟑𝟔𝒚𝟐 + 𝟏. 𝟎𝟏𝟑𝒙𝒚 − 𝟐. 𝟎𝒙𝟐(𝟏
− 𝒙 − 𝒚)] 𝒆𝑽 

 

and the band alignment is 47% of the total discontinuity in valence band, which 

means: 

∆𝐕𝐕𝐁 = 𝟎. 𝟒𝟕 
 

∆𝐕𝐂𝐁 = 𝟎. 𝟓𝟑 
 

  The electron effective mass for In1-x-yAlxGayAs/AlAs is: 

𝐦∗ = (𝟎. 𝟎𝟒𝟐𝟕 + 𝟎. 𝟎𝟔𝟖𝟓𝒙)𝒎𝟎 
 

where 𝐦𝟎 = 𝟗. 𝟏𝟎𝟗𝟑𝟖𝟐𝟏𝟓 × 𝟏𝟎−𝟑𝟏. 

Therefore, if 𝐲 = 𝟎 is assumed in all the parameters, we can get parameters 

for In1-xAlxAs/AlAs as follows: 

The total band discontinuity is: 

∆𝐕′ = (𝟐. 𝟎𝟗𝟑𝒙 − 𝟏. 𝟒𝟐𝟑𝒙𝟐 + 𝟐𝒙𝟑) 𝒆𝑽 
 

and since that ∆𝐕𝐕𝐁 = 𝟎. 𝟒𝟕 and ∆𝐕𝐂𝐁 = 𝟎. 𝟓𝟑, the conduction band discontinuity 

of In1-yGayAs/AlAs is: 

∆𝐕" = [(𝟐. 𝟎𝟗𝟑𝒙 − 𝟏. 𝟒𝟐𝟑𝒙𝟐 + 𝟐𝒙𝟑) × 𝟎. 𝟓𝟑] 𝒆𝑽 
 

Also, 

𝐦∗′ = (𝟎. 𝟎𝟒𝟐𝟕 + 𝟎. 𝟎𝟔𝟖𝟓𝒙)𝒎𝟎 
 

where 𝐦𝟎 = 𝟗. 𝟏𝟎𝟗𝟑𝟖𝟐𝟏𝟓 × 𝟏𝟎−𝟑𝟏. 

 

The heterointerface in the InGaAs/InAlAs/InP family is described as 

follows: 

For the conduction band energy level, In0.52Al0.48As is 0.34 eV higher than 

InP. 

The conduction band discontinuity of In0.52Al0.48As to AlAs is 0.475921 eV. 

The conduction band discontinuity of InAs to AlAs is 1.4151 eV. 

Figure 6 depicts the relevant energy conditions. 
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Figure 6..Conduction band energy level relationships of the 

In0.52Al0.48As/InAs/AlAs/ InP family. 

 

 

As shown in Figure 6, we can calculate the conduction band discontinuity of 

InP to AlAs by substrate 0.475921 eV to 0.34 eV, so 0.135921 is obtained. 

For the the conduction band discontinuity of InAs to InP: 𝟏. 𝟒𝟏𝟓𝟏 𝐞𝐕 −
𝟎. 𝟏𝟑𝟓𝟗𝟐𝟏 𝐞𝐕 = 𝟏. 𝟐𝟕𝟗𝟏𝟕𝟗 𝐞𝐕, which is the largest quantum well potential that 

we are able to design in InAlAs/InP design when using InP as the material of the 

single well. 

For calculating the In1-xAlxAs/InP conduction band discontinuity, the 

relationship of them is plotted as Figure 7. 
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Figure7. Conduction band discontinuity of In1-xAlxAs/InP. 

 

 

According to Figure 7, 

∆𝑽′′′ = (∆𝐕" − 𝟎. 𝟏𝟑𝟓𝟗𝟐𝟏) 𝒆𝑽
= [(𝟐. 𝟎𝟗𝟑𝒙 − 𝟏. 𝟒𝟐𝟑𝒙𝟐 + 𝟐𝒙𝟑) × 𝟎. 𝟓𝟑 − 𝟎. 𝟏𝟑𝟓𝟗𝟐𝟏] 𝐞𝐕 

 

 

Using the previously-defined parameters the single-double well design in 

In1-xAlxAs/InP material is defined as illustrated in Fig. 8. 
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Figure 8. Single-Double Quantum Well Design in In1-xAlxAs/InP material. 

 

 

For the conduction band (CB) changes compared with InP conduction band 

is depicted in Figure 8 for the structure made consideration. 

The value of V1 and V2 in Figure 14 are given in terms of: 

𝐕𝟏 = [(𝟐. 𝟎𝟗𝟑𝒙𝟏 − 𝟏. 𝟒𝟐𝟑𝒙𝟏
𝟐 + 𝟐𝒙𝟏

𝟑) × 𝟎. 𝟓𝟑 − 𝟎. 𝟏𝟑𝟓𝟗𝟐𝟏] 
 

𝐕𝟏 − 𝐕𝟐 = [(𝟐. 𝟎𝟗𝟑𝒙𝟐 − 𝟏. 𝟒𝟐𝟑𝒙𝟐
𝟐 + 𝟐𝒙𝟐

𝟑) × 𝟎. 𝟓𝟑 − 𝟎. 𝟏𝟑𝟓𝟗𝟐𝟏] 
 

The corresponding electron effective masses are, 

𝐦𝟏
∗ = (𝟎. 𝟎𝟒𝟐𝟕 + 𝟎. 𝟎𝟔𝟖𝟓𝒙𝟏)𝒎𝟎 

 

𝐦𝟐
∗ = (𝟎. 𝟎𝟒𝟐𝟕 + 𝟎. 𝟎𝟔𝟖𝟓𝒙𝟏)𝒎𝟎 

 

as well as 𝐦𝐈𝐧𝐏
∗ = 𝟎. 𝟎𝟖𝒎𝟎. 

 

The Schrödinger equations for solutions, as outlined previously, yield the 

following designs. 

 

In the In1-xAlxAs/InP design, the larger the x is, the higher the conduction 

band level will be. 
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Figure 9. Simulation for single-double quantum well in In1-xAlxAs/InP material. 

 

These results illustrate the feasibility of the phonon-assisted photodetector design in a 

variety of heterostructure systems. 

The AlGaAs/GaAs triple quantum well photodetector (QWP) with a detection wavelength 

at 5 μm has been analyzed further as discussed in Tang et al. (2016) which was produced 

under this grant. It shows that the escape probability of phonon-assisted tunneling devices 

can be enhanced by over two times, if the condition of the electron-phonon resonance is 

accompanied by the anticrossing between first excited level in single QW and the first 

excited level in the adjacent double QW. The escape probability in the proposed triple 

QWP is optimized to be as high as 0.8, which is at least two times higher than reported in 

QCDs. In addition, the noise current in the proposed structure is studied to have a 

reduction of 2.9×10
13 

times that in a QWP at 77 K. Moreover, the effects of delta doping 

locations and densities on scattering time and absorption coefficient in AlGaAs/GaAs triple 

QWP have been studied theoretically. It shows that delta doping at the middle of the single 

well has advantages in obtaining longer intersubband relaxation time, larger escape 

probability and higher absorption coefficient. These results are especially valuable for 

designing double resonance optoelectronic device 

 

A summary of results obtained during this effort this effort include: design of novel multi-

quantum-well structures with greatly enhanced signal-to-noise in tailored structures that 
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employ phonon-assisted transition to enhance the effective ionization potential; 

spontaneous polarization induced electric field in zinc oxide nanowires and nanostars; and 

enhanced optical properties due to indium incorporation in zinc oxide nanowires. 

 

Summary: Specific results were obtained on the following topics: phononic 

properties for enhanced signal-to-noise photodetector; spontaneous polarization 

induced electric field in nanostructures; AlGaAs/GaAs triple well photodetector 

design based on phonon-assisted transitions operating at a 5-micron wavelength 

with greatly reduced noise – noise reduced several orders of magnitude at room 

temperature; and enhanced optical properties due to indium incorporation in zinc 

oxide nanowires. 
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