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OUTLINE

1 Plasma
2 Multi-Fluid Plasma Model

Advantages
Limits of the model

3 Numerics: Blended Finite Element Method
Discontinuous Galerkin for ion/neutrals
Continuous Galerkin for electrons/fields
Initial tests
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WHAT ARE PLASMAS?

Plasma is a quasineutral gas of charged and neutral particles which exhibits
collective behavior.

Credit: particleincell.com
“99% of matter in the universe is in the state

SOUSA (ERC/AFRL)

  of plasma"
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TIME/SPATIAL SCALES.

Sean Miller, PhD dissertation, University of Washington (2016)
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THERE ARE MULTIPLE PLASMA MODELS.

3-Dimensions + 3-Velocities

Evolve the particles position
and velocity

e.g. Particle-In-Cell models

Ensemble average of particles
distribution, fs(x,v,t)

Evolve the distribution
function

e.g. Vlasov-Maxwell models
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BOLTZMANN EQUATION EVOLES fs.

The Boltzmann eqn:

∂fs
∂t

+ v · ∂fs
∂x

+
qs

ms
(E + v× B) · ∂fs

∂v
=
∂fs
∂t

∣∣∣∣
c

Take the 0th, 1st, 2nd moments of the Boltzmann Eqn.

ms

∫
vn ∂fs

∂t
dv + ms

∫
vn+1 · ∂fs

∂x
dv + qs

∫
vn (E + v × B) · ∂fs

∂v
dv = ms

∫
vn ∂fs

∂t

∣∣∣∣
c

dv

Each moment of the Boltzmann eqn gives an equation for the moment
variable, and introduces the next higher moment variable

This process can go on indefinitely
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BOLTZMANN EQUATION EVOLES fs.

∂ρs

∂t
+∇ · (ρsus) =

∂ρs

∂t

∣∣∣∣
Γ

∂ρsus

∂t
+∇· (ρsusus + psI + Πs) =

ρsqs

ms
(E + us × B)−

∑
s∗

Rs,s∗+
∂ρsus

∂t

∣∣∣∣
Γ

∂εs

∂t
+∇ · (((εs + ps) I + Πs) · us + hs) =

ρsqs

ms
us · E +

∑
s∗

Qs,s∗ +
∂εs

∂t

∣∣∣∣
Γ

System is truncated by relating higher moment variables to the lower
ones

The fluids are coupled to each other and to the electromagnetic fields
through Maxwell’s equations and interaction source terms.
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PLASMA MODELS RANGE OF APPLICABILITY.

Sean Miller, PhD dissertation, University of Washington (2016)
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ADVANTAGES OF THE MODEL

Kinetic LTE, velocity moments−−−−−−−−−−−−→ MFPM εo→0, me→0−−−−−−−−−→ MHD

IDEAL MHD MODEL IS VALID WHEN:
High collisionality, τii/τ � 1

Small Larmor radius, rLi/L� 1

Low Resistivity,
(

me
mi

)1/2 ( rLi
L

)2 τ
τii
� 1

MULTI-FLUID PLASMA MODEL

Less computationally expensive than kinetic models

Multi-fluid effects become relevant at small spacial and temporal scales

Finite electron mass and speed-of-light effects are included

There is charge separation is modeled

Displacement current effects are resolved in the MFPM
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THE MFPM HAS DISPERSIVE SOURCES.

∂Q
∂t

+
∂
←→
F
∂x

= S

The source Jacobian
∂S
∂Q

has imaginary eigenvalues

The equation system has dispersive sources

The dispersion is physical (may be difficult to distinguish from
numerical dispersion)

This dispersion is due to plasma waves that result from ion and electron
plasma interactions with electromagnetic fields

An ideal numerical method for the MFPM should:
be high-order accurate

capture shocks

couple the flux and the sources

not impose strict time-step
Srinivasan et al, CCP 10 (2011)
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BFEM SIMULTANEOUSLY USES CG AND DG.

Solution to the electron and EM fields is smooth and does not shock

Continuous Galerkin

Electron fluid and EM fields

Q =
∑

i

qivi

Discontinuous Galerkin

Multiple ion and neutral fluids

Q =
∑

i

civi
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IMPLICIT CONTINUOUS GALERKIN

For this implementation the balance law form is cast as

∂Q
∂t

+
∂
←→
F

∂Q
· ∂Q
∂x

= S + κ∇2Qd

Lagrange polynomials are used for basis functions, vr∫
Ω

vr
∂Q
∂t

dV = Lr(Q) =

∫
Ω

vrSdV −
∫

Ω

vr
∂
←→
F

∂Q
· ∂Q
∂x

dV + κ

∫
Ω

vr∇2QddV

θ-method time integration

R(Qn) =
←→
M

Qn+1 −Qn

dt
− θLr(Qn+1)− (1− θ)Lr(Qn) = 0

θ = 0.5 is used for 2nd order accuracy
←→
J (Qn) =

∂R(Qn)

∂Qn ,
←→
J (Qn)∆Q = −R(Qn), Qn+1 = Qn + ∆Q

Reddy, An Introduction to the Finite Element Method (2006)
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RUNGE-KUTTA DISCONTINUOUS GALERKIN

∂Q
∂t

+
∂
←→
F
∂x

= S

Legendre polynomials are used for basis functions, vp

The hyperbolic equation is multiplied by the basis function,∫
Ω

vp
∂Q
∂t

dV = Lp(Q) =

∫
Ω

vpSdV −
∮
∂Ω

vp
←→
F · dA +

∫
Ω

←→
F · ∇vpdV

Explicit Runge-Kutta time integration
CFL = c∆t/∆x ≤ 1/(2p− 1), p is the polynomial order

Q∗ = Qn + ∆tLp(Qn),

Qn+1 =
1
2

Q∗ +
1
2

Qn +
1
2

∆tLp(Q∗).

Loverich et al, CCP 9 (2006)
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CONVERGENCE OF THE BFEM.

∂Q
∂t

+
∂Q
∂x

= 0, Q(x, 0) = e−10(x−8)2
, ||∆Q||2 =

√√√√1
n

n∑
i=1

(Q̂− Qi)2

Spatial Convergence

Simulations at fixed time-step

Temporal Convergence

Simulations at fixed CFL=1
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1D SOLITON PROBLEM

1D soliton is a two-fluid plasma
problem

The solution is smooth, therefore
artificial dissipation can be small

The simulation uses 512
second-order elements

Bz = 1.0, Te = Ti = 0.01,
ui = ue = 0
ne = ni = 1.0 + e−10(x−6)2

Baboolal, Math. and Comp. Sim. 55 (2001)
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DG AND BFEM COMPARISON WITH A SOLUTION

mi

me
= 1836,

c
csi

= 1000
√

2, FV 5000 cells

DG Solution is very dispersive BFEM is less dissipative than the
converged solution

Hakim et al, JCP 219 (2006)
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BFEM COMPUTATIONAL COST SAVINGS

case mi/me c/csi DG time(s) BFEM time (s) BFEM cost over DG
1 25 10/

√
2 0.32 37.7 +11681%

2 100 10/
√

2 1.28 37.7 +2845%
3 500 10/

√
2 6.82 37.7 +452.8%

4 1000 10/
√

2 12.4 38.2 +208.1%
5 1836 10/

√
2 23.5 40.4 +71.91%

6 3672 10/
√

2 47.2 39.2 -16.95%
7 3672 100/

√
2 520 265 -49.04%

8 3672 1000/
√

2 5274 2735 -48.14%

Per time-step explicit DG is faster than BFEM, but it requires many more
time-steps

BFEM is more efficient only when time-step are considerably larger than
explicit DG
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BFEM ACCURACY

mi/me = 1836 mi/me = 1
The BFEM seems to be less accurate than the DG implementation
(∼ 50%)
When the mass ratio is one, the two methods have the same level of
accuracy
The discrepancy is due to the fact that the semi-implicit BFEM does not
resolve the plasma frequency in this problem

SOUSA (ERC/AFRL)                 DISTRIBUTION A: APPROVED FOR PUBLIC RELEASE; UNLIMITED DISTRIBUTION  Clearance No. 17211 18 / 31



ELECTROMAGNETIC PLASMA SHOCK PROBLEM

Fast rarefaction wave (FR), a
slow compound wave (SC), a
contact discontinuity (CD), a
slow shock (SS), and another
fast rarefaction wave (FR)
The problem exhibits limits
of MHD and multi-fluid
behavior by changing the
Larmor radius, rL

MHD: rL → 0
Multi-fluid: rL ∼ L

Brio and Wu, JCP 75 (1988)
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SHOCK IN DENSITY BUT SMOOTH FIELDS.

t=0.05/ωci, c/csi=110, mi/me=1836

mass density Magnetic field (y-comp.)

The main features of the problem are captured by all three methods

BFEM does not properly resolve the fast electromagnetic waves which
require accurately resolving the electron dynamics
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MAXIMUM BFEM TIME-STEP

∆tmax = min
(

∆x
cse
,
∆x
csi
,
∆x
c
,

0.1
ωce

,
0.1
ωci

,
0.1
ωpe

,
0.1
ωpi

)
∆tmax corresponds to the
maximum value allowed for
explicit methods based on the
CFL condition

∆t = 42.9∆tmax is the
maximum time step allowed
by the BFEM due to ion
dynamics
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EFFECTS OF ARTIFICIAL DISSIPATION

Varying the artificial
dissipation on the electron
fluid, κe

Wave-like behavior of the
problem is better resolved

Amplitude of the compound
wave increases

Right fast rarefaction wave is
not visible
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EFFECTS OF ARTIFICIAL DISSIPATION

Varying the artificial
dissipation on the EM-field,
κEM

There is better agreement
with the DG solution

This reinforces the point that
the wave-like behavior arises
from the interaction of the
electron fluid with the
electromagnetic fields
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SUMMARY

The blended finite element method (BFEM) is presented
DG spatial discretization with explicit Runge-Kutta (i+, n)
CG spatial discretization with implicit Crank-Nicolson (e−, fileds)
DG captures shocks and discontinuities
CG is efficient and robust for smooth solutions

Physics-based decomposition of the algorithm yields numerical solutions
that resolve the desired timescales

DG method takes less computational time to advance the solution by one
time-step, however ∆t is much smaller than that of the BFEM

Computational cost savings using the BFEM will only occur for
relatively large implicit time-steps compared to explicit time-steps

Sousa and Shumlak, JCP 326 (2016) 56-75

Thank you.
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EXTRAS
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PHYSICAL DESCRIPTION OF A FLUID.

Modeling each particle velocity and position is not practical.

Instead an average is performed to give a statistical description.
Calculate the number of particles per unit volume having approximately
the velocity v near the position x and at time t, distribution function
f (v, x, t)

ρs = ms

∫
fs(v)dv

ρsus = ms

∫
vfs(v)dv

Ps = Ps = ms

∫
wwfs(v)dv, ps =

1
3

ms

∫
w2fs(v)dv

Hs = ms

∫
wwwfs(v)dv, hs =

1
2

ms

∫
w2wfs(v)dv

w = v− us

SOUSA (ERC/AFRL) DISTRIBUTION A: APPROVED FOR PUBLIC RELEASE; UNLIMITED DISTRIBUTION  Clearance No. 17211 26 / 31



FIELD REVERSED CONFIGURATION THRUSTER

● Compact toroid, no central column
● Simple geometry and B-field configuration
● High power density (high plasma beta)
● Highly movable

● A Rotating Magnetic Field (RMF) is 
used to form the FRC

● Strong magnetization of the electrons 
to the RMF produces a current

● To conserve the total flux the B-field 
at the center reverses

● 1 - Formation of high density FRC
● 2 - Acceleration of the FRC by 

Lorentz force
● 3 - FRC expands, converting 

thermal energy to directed energy

AdvantagesAdvantages:
● Electrodeless and the plasmoid propellant is magnetically isolated from the walls
● Propellant is completely uncoupled from the driving and confining fields
● High plasma temperatures and densities significantly reduce ionization losses
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FRC FORMATION STUDIES.

The formation of FRC using a rotating magnetic field (RMF)

ωci < ω < ωce

νei � ωce

Flux Conserver BC

Bz(a, t) =
b2Ba(0)

b2 − a2
−

1
π(b2 − a2)

∫ a

0
rdr

∫ 2π

0
dθBz(r, θ, t)

RMF BC

IRMF = It cos(ωt + φ)

It = Io(1 − e−t/τ )

φA,B = 0, φE,F = π

φC,D = π/2,
φG,H = −π/2

Bias Field is constant at
t=0s
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RMF ANTENNA MODELING.

Initialization: Bω=90G, Bz=50G, ω=5MHz

Solve Maxwell’s eqns. with divergence constraints
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FRC FORMATION SIMULATIONS.

Initialization: Ti=Te=30eV, ni=ne=1019m−3, mi/me=1836

Solve Multi-Fluid eqns.

Bz is plotted

t = 250ns t = 500ns t = 1500ns
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(NEAR) FUTURE WORK

Neutral-Plasma Model

Interaction of multi-fluid plasma
with gas dynamics neutral fluid

electron-impact ionization

e− + n→ i+ + 2e− − φion

radiative recombination

e− + i+ → n + hν

resonant charge exchange

i+ + n→ n + i+

Meier and Shumlak, PoP 19 072508 (2012)

Collisional-Radiative Model

Excitation/De-excitation rates

Le and Cambier, PoP 22 093512 (2015)
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