
REPORT DOCUMENTATION PAGE

Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. Z39.18

Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining
the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for
reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a
currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
 1. REPORT DATE 2. REPORT TYPE 3. DATES COVERED (From - To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
 REPORT NUMBER

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT
 NUMBER(S)

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

12. DISTRIBUTION/AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:
a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
 ABSTRACT

18. NUMBER
 OF
 PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (Include area code)

08 May 2017 Briefing Charts 05 April 2017 - 08 May 2017

Using Kokkos for Performant Cross-Platform Acceleration of Liquid Rocket
Simulations

Michael Carilli

Air Force Research Laboratory (AFMC)
AFRL/RQR
5 Pollux Drive
Edwards AFB, CA 93524-7048

Air Force Research Laboratory (AFMC)
AFRL/RQR
5 Pollux Drive
Edwards AFB, CA 93524-7048

Q1FZ

AFRL-RQ-ED-VG-2017-066

Approved for Public Release; Distribution Unlimited. PA Clearance Number: 17207 Clearance Date: 21 April 2017

For presentation at GPU Technology Conference 2017; San Jose, CA, USA; May 8, 2017
Prepared in collaboration with ERC, Inc. The U.S. Government is joint author of the work and has the right to use, modify, reproduce,
release, perform, display, or disclose the work.

Viewgraph/Briefing Charts

N/A

Unclassified Unclassified Unclassified SAR 56

Venke Sankaran

N/A

DISTRIBUTION A: Approved for public release; distribution unlimited. PA Clearance Number 17207

May 8, 2017

Dr. Michael Carilli
Contractor, ERC Incorporated

RQRC
AFRL-West

Using Kokkos for Performant Cross-Platform
Acceleration of Liquid Rocket Simulations

2DISTRIBUTION A: Approved for public release; distribution unlimited. PA Clearance Number 17207

SPACE-LRC: Scalable Physics-based Advanced Computational
Engineering Platform for Liquid Rocket Combustion Simulation

SPACE simulation of rotating detonation engine
(courtesy of Dr. Christopher Lietz)

3DISTRIBUTION A: Approved for public release; distribution unlimited. PA Clearance Number 17207

Components of SPACE-LRC

 GEMS (Purdue University): Unstructured near-body solver

 CASTLES (AFRL-West): High-order Cartesian off-body solver
 Kokkos is integrated into CASTLES

 PUNDIT (CREATE-AV): Mesh communication between GEMS and CASTLES

 SAMRAI (LLNL): Adaptive meshing for off-body

4DISTRIBUTION A: Approved for public release; distribution unlimited. PA Clearance Number 17207

Control API

Timestepping
Time derivatives for physical quantities

Geometry
Handles spatial discretization

System
Specifies system of equations

Equations
Physics-independent quantities

Physics
Turbulence models

Detailed chemical kinetics
Chung Viscosity Model (ported to Kokkos)

Peng-Robinson Equation of State (ported to Kokkos)

Structure of CASTLES

5DISTRIBUTION A: Approved for public release; distribution unlimited. PA Clearance Number 17207

What is Kokkos?

“Performant cross platform parallelism”: write once, compile for anything.

Parallel patterns (for, reduce, scan) accept user-defined functors (like Thrust or Intel TBB)

Backends for Nvidia GPU, Intel Xeon, Xeon Phi, IBM Power8, others.

“View” data structure provides optimal layout:
cache-order access when compiled for CPU, coalesced access when compiled for GPU.

Thrust offers similar multi-platform backends – but less low level control and does not abstract data layout.

Programming Guide:
https://github.com/kokkos/kokkos/blob/master/doc/Kokkos_PG.pdf

At GTC 2017:
S7344 - Kokkos : The C++ Performance Portability Programming Model
S7253 - Kokkos Hierarchical Task-Data Parallelism for C++ HPC Applications

https://github.com/kokkos/kokkos/blob/master/doc/Kokkos_PG.pdf

6DISTRIBUTION A: Approved for public release; distribution unlimited. PA Clearance Number 17207

Enabling Kokkos in CASTLES

CASTLES is a Cartesian solver written in Fortran 90.

 Identify performance limiting subroutines
 Port Fortran subroutines to Kokkos C++
 Optimize ported routines
 Minimally invasive integration of Kokkos C++ with CASTLES

(“code surgery”)

7DISTRIBUTION A: Approved for public release; distribution unlimited. PA Clearance Number 17207

Identify critical subroutines – CPU profile

Quick and easy single-process profile with nvprof:

nvprof --cpu-profiling on
--cpu-profiling-mode top-down ./CASTLES.x

I like the top-down view…
easy to see global structure and call chains.

Can also do bottom up profile (default)

8DISTRIBUTION A: Approved for public release; distribution unlimited. PA Clearance Number 17207

Identify critical subroutines – CPU profile

Quick and easy single-process profile with nvprof:

nvprof --cpu-profiling on
--cpu-profiling-mode top-down ./CASTLES.x

I like the top-down view…
easy to see global structure and call chains.

Can also do bottom up profile (default)

Looks like those “preos” and “chung” routines
are burning a lot of CPU time

======== CPU profiling result (top down):
51.29% clone
| 51.29% start_thread
| 51.29% orte_progress_thread_engine
| 51.29% opal_libevent2021_event_base_loop
| 51.29% poll_dispatch
| 51.29% poll
48.54% MAIN__
| 48.45% interfacetime_mp_maintimeexplicit_
| | 48.45% interfacetime_mp_rhstimessp34_
| | 29.77% interfacegeom_mp_rhsgeomrescalc_
| | | 15.46% interfacegeom_mp_rhsgeom3dresad1lr_
| | | | 15.35% interfacesysexternal_mp_rhssysupdiss_
| | | | | 15.35% interfacesysinternal_mp_rhssysscalarupdiss_
| | | | | 9.85% eosmodule_mp_eoscalcrhoh0fromtp_
| | | | | | 9.64% eosmodule_mp_eosrhohfromtpprop_
| | | | | | 9.64% preosmodule_mp_preosrhohfromtpprop_
...
| | | | | 5.18% eosmodule_mp_eosgammajacobianproperties_
| | | | | 5.10% preosmodule_mp_preosgammajacobianproperties_
...
| | | 13.90% interfacegeom_mp_rhsgeom3dviscres2_
| | | | 13.84% interfacesysexternal_mp_rhssysviscflux_
| | | | 13.32% preosmodule_mp_preosviscousfluxproperties_
| | | | | 7.85% chungtransmodule_mp_chungcalctransprop_
...
| | | | | 3.27% preosmodule_mp_preoscriticalstate_
...
| | 18.33% interfacegeom_mp_bcgeomrescalc_
| | | 14.77% interfacegeom_mp_bcgeomsubin_
| | | | 14.77% interfaceeqnfluids_mp_bcfluidseqnsubin_velocity_
| | | | 14.77% preosmodule_mp_preoscalctfromhp_
...
| | | 3.56% interfacesysexternal_mp_stepsys3dcalcqadd_
| | | 3.53% eosmodule_mp_eosthermalproperties_
| | | | 3.50% preosmodule_mp_preosthermalproperties_
...

9DISTRIBUTION A: Approved for public release; distribution unlimited. PA Clearance Number 17207

Peng-Robinson equation of state and Chung transport model

Peng-Robinson Equation of State:
Computes physical properties (density, enthalpy, etc.) for real gas
mixtures at high pressure

Chung Transport Model:
Computes transport properties (viscosity, thermal conductivity,
mass diffusivity) for real gas mixtures at high pressure

Many underlying subroutines shared between Chung and P-R.

Properties are computed individually per cell
(or interpolated points at cell interfaces),
so trivially parallel

Relatively small data transfer, lengthy computation
=> perfect for GPU offload

Input/output data scales linearly with number of species (NS)

Subroutines contain single loops, double loops, triple loops over NS
=> runtime scales like a*NS + b*NS2 + c*NS3

Occupies significant majority of CASTLES runtime for ns >= 4ish

y = 2E-10x3 + 3E-09x2 + 2E-08x + 6E-09
R² = 0.9999

0.00E+00

5.00E-06

1.00E-05

1.50E-05

2.00E-05

2.50E-05

5 8 11 14 17 20 23 26 29 32 35 38 41 44 47 50

Se
co

nd
s p

er
 g

rid
 p

oi
nt

Number of species (NS)

Cubic polynomial fits P-R scaling
with number of chemical species

Runtime on GPU Poly. (Runtime on GPU)

10DISTRIBUTION A: Approved for public release; distribution unlimited. PA Clearance Number 17207

Frame

// Owns and allocates TVProperties object
TVProperties* tvproperties;

// Controls Kokkos initialization/finalization
void initialize(…);
void finalize(…);

TVProperties* gettvproperties();

Architecture of my Kokkos framework
Designed for minimally-invasive operation alongside large Fortran code.

Everything is controlled from
Fortran through a single

lightweight global Frame object.

Kernel launches and data comms
are referred to TVProperties*

owned by Frame.

11DISTRIBUTION A: Approved for public release; distribution unlimited. PA Clearance Number 17207

Frame

// Owns and allocates TVProperties object
TVProperties* tvproperties;

// Controls Kokkos initialization/finalization
void initialize(…);
void finalize(…);

TVProperties* gettvproperties();

Architecture of my Kokkos framework
Designed for minimally-invasive operation alongside large Fortran code.

TVProperties

// Owns and allocates TVImpl object
TVImpl* impl;

// Public member functions to communicate data
// to/from Views in TVImpl
void populateInputStripe(…);
void populateOutputStripe(…);
void populateprEOSSharedData(…);
void populatechungSharedData(…);
…

// Public member functions to launch collections of
// kernels
void prEOSThermalProperties(…);
void prEOSViscousProperties(…);
void eosGammaJacobianProperties(…);
…

Everything is controlled from
Fortran through a single

lightweight global Frame object.

Kernel launches and data comms
are referred to TVProperties*

owned by Frame.

12DISTRIBUTION A: Approved for public release; distribution unlimited. PA Clearance Number 17207

Frame

// Owns and allocates TVProperties object
TVProperties* tvproperties;

// Controls Kokkos initialization/finalization
void initialize(…);
void finalize(…);

TVProperties* gettvproperties();

Architecture of my Kokkos framework
Designed for minimally-invasive operation alongside large Fortran code.

TVProperties

// Owns and allocates TVImpl object
TVImpl* impl;

// Public member functions to communicate data
// to/from Views in TVImpl
void populateInputStripe(…);
void populateOutputStripe(…);
void populateprEOSSharedData(…);
void populatechungSharedData(…);
…

// Public member functions to launch collections of
// kernels
void prEOSThermalProperties(…);
void prEOSViscousProperties(…);
void eosGammaJacobianProperties(…);
…

TVImpl

// Contains members of TVProperties that don’t need
// external visibility (pimpl idiom)
// Owns and allocates Kokkos Views
View1DType T;
View1DType P;
View1DType Yi;
…(several dozen of these)

// Owns std::unordered_maps to launch kernels
// and communicate data by name
unordered_map<string,View1DType>

select1DViewByName;
unordered_map<string,View2DType>

select2DViewByName;
// Owns Launcher for each kernel
// (lightweight wrapper with string identifier,
// inherits common timing routines from
// LauncherBase)
unordered_map<string,LauncherBase*> launchers;

void safeLaunch(…);

Everything is controlled from
Fortran through a single

lightweight global Frame object.

Kernel launches and data comms
are referred to TVProperties*

owned by Frame.

13DISTRIBUTION A: Approved for public release; distribution unlimited. PA Clearance Number 17207

For modularity and consistency: one subroutine->one kernel

There are roughly 50 of these that serve as building blocks.

Fortran subroutine Kokkos kernel launch

Operates on nActivePoints grid points in parallel

c, rho, hT, etc. are Kokkos Views,
captured by value from members of TVImpl
(View copy constructor is a lightweight shallow copy)

t is the parallel work index

Operates on a single grid point at a time

parallel_for(tvimpl->nActivePoints,
KOKKOS_LAMBDA(const int& t)
{

c(t) = sqrt(rho(t)*hT(t)/
(rho(t)*rhoP(t)*hT(t)
+ rhoT(t)*(1.0-rho(t)*hP(t))))

});

pure subroutine prEOSCalcSoundSpeed(&
rho, rhop, rhoT, hp, hT, c)

use useGENKindDefs, only: dp
implicit none
real(dp), intent(in) :: rho, rhop, rhoT, hp, hT
real(dp), intent(out) :: c

c = sqrt(rho*ht/&
(rho*rhop*ht + rhot*(1.0_dp-rho*hp)))

end subroutine prEOSCalcSoundSpeed

14DISTRIBUTION A: Approved for public release; distribution unlimited. PA Clearance Number 17207

32.6X

24.6X

18.7X

15.5X

0

5

10

15

20

25

30

35

Fortran (Serial)

Sp
ee

du
p

GPU* vs. Serial Fortran**
5 species 10 20 50

GPU Speedups for Standalone Peng-Robinson

*Nvidia Kepler K40 **Intel Xeon E5-2620 v3 CPU

Good speedups overall.

GPU speedup is better for fewer species (NS)
 smaller per-thread data set => improved

cache hit rates on GPU
 Smaller inner loops => vectorization less

efficient on CPU

(a combination of GPU doing better and CPU
doing a bit worse)

15DISTRIBUTION A: Approved for public release; distribution unlimited. PA Clearance Number 17207

Integrating Kokkos with CASTLES: Interface Functions
C++ Interface functions (callable from Fortran) tell Frame object to initialize/finalize Kokkos, launch collections of kernels, or communicate data.

Decorated with ‘extern “C”’ to disallow name mangling, added trailing underscore_ expected by Fortran linker.

extern “C” void frame_initialize_(int device_id,
int nGridPoints
int ns
int nq
int iTurb)

{
frame.initialize(device_id, // GPU device to select

nGridPoints, // Chunk size for Kokkos launches
ns, // Num chemical species
nq, // Utility values
iTurb);

}

extern “C” void
frame_tvproperties_eosthermalandviscousproperties_(

int nActivePoints)
{

frame.gettvproperties()->eosThermalAndViscousProperties(
nActivePoints);

}

call
frame_tvproperties_eosthermalandviscousproperties&

(%VAL(NumThisStripe))

Interface function to initialize Kokkos and allocate internal storage

Interface function to launch collection of kernels for thermal and viscous properties
Corresponding Fortran call

! Compute KokkosDeviceID as MPI rank%num devices
! Num devices is supplied by input file
call frame_initialize(%VAL(KokkosDeviceID,&

%VAL(KokkosMaxBlock),&
%VAL(nspe),&
%VAL(nq),&
%VAL(iTurbType))

Corresponding Fortran call

16DISTRIBUTION A: Approved for public release; distribution unlimited. PA Clearance Number 17207

Communicating Data
Data communication must translate between 4D Fortran pointers (x,y,z,dataindx) and Kokkos Views. For some computations, a halo of fringe points must be ignored.

Fortran <-> C++ communication works as follows:

1. C++ framework receives double* from Fortran
2. Iterates linearly through x,y,z values, copying data to Views and skipping fringe points.
3. In Views, x,y,z indices are flattened into a single parallel-work index, t.
4. After computation, reverse the process, copying data from Views back into double* storage with data layout expected by Fortran.

C++ framework must know xdim, ydim, zdim, and fringe boundaries to unpack and repack data. Annoying indexing math…

! Name tag of destination View
tag = “Q”//char(0)
call frame_castles_populateinputstripe(tag,&

Q,& ! 4D Fortran pointer, source of copy
%VAL(NumX), %VAL(NumY), %VAL(NumZ),&
%VAL(SptX), %VAL(EptX),&
%VAL(SptY), %VAL(EptY),&
%VAL(SptZ), %VAL(EptZ),&
%VAL(SptData), %VAL(EptData),&
%VAL(SptStripe), %VAL(EptStripe))

extern “C” void frame_castles_populateinputstripe_(
const char name[8], // Name tag of destination View
double* data, // Source pointer (from Fortran)
int nx, int ny, int nz, // Dims of block (including fringes)
int SptX, int EptX, // Fringe boundaries in x-direction
int SptY, int EptY, // “ y-direction
int SptZ, int EptZ, // “ z-direction
int SptData, // Start of data region (slowest index)
int EptData, // End of data region
int stripeStart, // Start and end of selected x,y,z
int stripeEnd) // stripe; used when looping over block

// in chunks (stripes) of fixed size
{

frame.gettvproperties()->populateInputStripe(name,
data, nx, ny, nz, SptX, EptX, SptY, EptY,
SptZ, EptZ, SptData, EptData, stripeStart, stripeEnd);

}

C++ interface function

Corresponding Fortran call

17DISTRIBUTION A: Approved for public release; distribution unlimited. PA Clearance Number 17207

Data marshalling challenges

Challenge #1:
Kokkos launches need enough parallel work (enough grid points) to saturate GPU.

Solution:
Ensure availability of this process’ entire block of data where Kokkos interface functions are called.
Restructuring some Fortran calling functions was required, but minimal impact to code overall.

Challenge #2:
Block size handled by each process may change between timesteps, due to adaptive mesh refinement.
Prefer not to reallocate Kokkos data structures, or worse, exhaust GPU memory.

Solution:
Launch Kokkos computations via a loop over this process’ block in chunks of largeish but fixed size
“KokkosMaxBlock.”

KokkosMaxBlock is a tuning parameter in input file, large enough that one chunk’s launch should saturate GPU when
10-20 processes are sharing the GPU via Nvidia Multi-Process Service.

KokkosMaxBlock = 8192 or 12288 usually gives good performance.

18DISTRIBUTION A: Approved for public release; distribution unlimited. PA Clearance Number 17207

Cluster-level concerns: Multiple GPUs per node

Standalone Kokkos application:

Pass
--kokkos-ndevices=2
on the command line and call
Kokkos::initialize(int& argc, char* argv[])
within code.

Kokkos will detect available GPUs and assign MPI ranks to GPUs
round robin.

Minor Caveat:
If MPI process is bound to a specific set of cores, Kokkos does not try
to select the optimally hardware co-located GPU
(this may have changed since last I checked).

My application (embedded deep within a big Fortran code):

Pass number of available GPU devices in input file.

Manually compute which device to use as (MPI rank%num devices).

Tell this process’ Kokkos kernels to use that device as follows:
Kokkos::InitArguments args;
args.device_id = device_id;
Kokkos::initialize(args);

Kokkos can handle multiple GPUs.

19DISTRIBUTION A: Approved for public release; distribution unlimited. PA Clearance Number 17207

Cluster-level concerns: Nvidia Multi-Process Service (MPS)
Without MPS:

Each MPI process has its own CUDA context.
Multi-process profile shows one process at a time using a given GPU.

With MPS:
Multiple processes can share a given GPU simultaneously.

Better utilization and dramatic speedup for my application, and easy to use
(just run nvidia-cuda-mps-control –d on each compute node to start the daemons).

See http://on-demand.gputechconf.com/gtc/2016/presentation/s6142-jiri-kraus-multi-gpu-
programming-mpi.pdf

Kernels from different processes do not overlap Kernels from different processes overlap
For small NS, turning on MPS makes overall

application up to 3X faster

http://on-demand.gputechconf.com/gtc/2016/presentation/s6142-jiri-kraus-multi-gpu-programming-mpi.pdf

20DISTRIBUTION A: Approved for public release; distribution unlimited. PA Clearance Number 17207

GPU Speedup of Overall CASTLES+Kokkos

Production-style runs:
40 MPI ranks on 2 nodes.

 CASTLES Fortran uses 20 CPUs/node
only.

 CASTLES+Kokkos uses 20 CPUs + 2
GPUs/node.

 Speedup computed as (CASTLES
Fortran runtime)/(Castles+Kokkos
runtime)

2.5-3.0X consistently observed across
range of desirable problem parameters.

2.50X 2.59X
2.77X2.73X 2.79X 2.83X

0

0.5

1

1.5

2

2.5

3

5 species 20 species 40 species

Speedup with Kokkos
1st order 9th order

21DISTRIBUTION A: Approved for public release; distribution unlimited. PA Clearance Number 17207

Kokkos on CPU matches Fortran on CPU

Often, naively porting Fortran to C++ can result in a slowdown (e.g. compiler has a harder time optimizing/vectorizing loops).
Need to use hardware-specific (Intel) compiler and manually tweak vector pragmas for some in-kernel loops, but in the end
Kokkos C++ is as fast as original Fortran.

Can the Kokkos-enabled codebase compile for CPU as well as GPU, with good performance?

KOKKOS_LAMBDA(const int& t)
{

#ifdef KOKKOS_HAVE_CUDA
…GPU-optimal code goes here…
#else
…CPU-optimal code goes here…
#endif

}

To compile for CPU, just change arguments to makefile.

nvcc ignores Intel pragmas. Kokkos-enabled source code is (almost entirely) same as used for GPU.

Only two kernels needed moderately divergent code for good performance on both CPU and GPU.
Kokkos build system provides pragmas to select different code when compiling for different hardware:

Kokkos promise of “performant cross-platform parallelism” more or less fulfilled.

30.2 s 28.5 s

CASTLES+Fortran (1 CPU) CASTLES+Kokkos OpenMP
(1 thread)**

Test case: NS=5, 163 grid points, 50 timesteps

**KMP_AFFINITY=compact,1,granularity=core

22DISTRIBUTION A: Approved for public release; distribution unlimited. PA Clearance Number 17207

Node level performance + comparison with Xeon Phi
Kokkos runs on Xeon Phis in native mode:
 MPI+Kokkos processes see Phi cores as additional CPU cores.
 Kokkos computations are not offloaded GPU-style.
 Entire process runs on a set of Phi cores just like on a multicore CPU.

GPUs are offload coprocessors, so can’t compare Phi vs. GPU apples-to-apples. But we can get an idea at node level.

200 s
67 s

726 s

151 s

CASTLES Fortran:
20 CPU cores

CASTLES+Kokkos:
20 CPU cores + 2

GPUs

CASTLES+Kokkos:
Xeon Phi Knight's

Corner

CASTLES+Kokkos:
Xeon Phi Knight's

Landing

Runtime for fixed problem size 1203, NS=5, 1st order, 20 timesteps

23DISTRIBUTION A: Approved for public release; distribution unlimited. PA Clearance Number 17207

System details

2x10 core Intel Xeon E5-2650 v3
Config file for Intel MPI:
-genv I_MPI_PIN_DOMAIN=auto:compact
-n 20 ./CASTLES.kokkos
Although cores are hyperthreaded (40 logical cores available),
adding more processes does not improve performance noticeably.

2x10 core Intel Xeon E5-2650 v3
+ 2 Kepler K40 GPUs.
Same MPI config as CASTLES Fortran.

One Knight’s Corner 5110P
(60 cores, 240 logical processors).
Config file for Intel MPI:
-genv I_MPI_PIN_DOMAIN=4:compact –genv OMP_NUM_THREADS 4
-host mic0 –n 60 –env KMP_AFFINITY=compact,granularity=core ./CASTLES.knc

One Knight’s Landing 7230 (64 cores, 256 logical processors), using SNC4 clustering
Config file for Intel MPI:
-genv I_MPI_PIN_DOMAIN=1:compact -genv OMP_NUM_THREADS 1
-n 256 –env KMP_AFFINITY=compact,granularity=core numactl –m 4,5,6,7 ./CASTLES.knl
Numactl –m 4,5,6,7 encourages first-touch allocation in onboard high-bandwidth memory.
I experimented with fewer MPI processes, bigger domains, and more OpenMP threads,
and found 256 procs with 1 thread/proc best.

200 s
67 s

726 s

151 s

CASTLES Fortran:
20 CPU cores

CASTLES+Kokkos:
20 CPU cores + 2

GPUs

CASTLES+Kokkos:
Xeon Phi Knight's

Corner

CASTLES+Kokkos:
Xeon Phi Knight's

Landing

Runtime for fixed problem size 1203, NS=5, 1st order, 20 timesteps

24DISTRIBUTION A: Approved for public release; distribution unlimited. PA Clearance Number 17207

Bandwidth Optimizations for Per-Grid-Point Inner Loops

“Embarrassingly parallel,” and inner loops are simple…
but achieving high performance is an interesting problem!

// Loop over N grid points (trivially parallel)
for(int t = 0; t < N; t++)

// ax[], ay[], bx[], and by[]:
// arrays of size NS*N that store per-grid-point input data.
for(int y = 0; y < NS; y++) // NS ~ up to 50ish

for(int x = 0; x < NS; x++)
output[N*(NS*y+x)+t] = ax[x*N+t]*ay[y*N+t] + bx[x*N+t]*by[y*N+t];

P-R and Chung involve nested inner loops over chemical species NS (can be 50 or more).

Independent calculations for each grid point.

Toy example (shown as CPU-style serial loop over grid points):

25DISTRIBUTION A: Approved for public release; distribution unlimited. PA Clearance Number 17207

Bandwidth Optimizations for Per-Grid-Point Inner Loops

“Embarrassingly parallel,” and inner loops are simple…
but achieving high performance is an interesting problem!

// Loop over N grid points (trivially parallel)
for(int t = 0; t < N; t++)

// ax[], ay[], bx[], and by[]:
// arrays of size NS*N that store per-grid-point input data.
for(int y = 0; y < NS; y++) // NS ~ up to 50ish

for(int x = 0; x < NS; x++)
output[N*(NS*y+x)+t] = ax[x*N+t]*ay[y*N+t] + bx[x*N+t]*by[y*N+t];

P-R and Chung involve nested inner loops over chemical species NS (can be 50 or more).

Independent calculations for each grid point.

Toy example (shown as CPU-style serial loop over grid points):

Several X-dependent loads Several Y-dependent loads

26DISTRIBUTION A: Approved for public release; distribution unlimited. PA Clearance Number 17207

Testing Parameters

Tesla K40 GPU
 12 GB device memory
 15 Kepler SMs

Kepler architecture:
 192 single-precision cores and 64 double-precision cores per SM
 100% occupancy = 2048 active threads per SM
 65,536 registers available per SM
 64KB L1 cache/shared memory per SM, configurable as either 48 KB L1 + 16 KB shared, 32 KB L1 + 32 KB shared,

or 16 KB L1 + 32 KB shared
 48 KB read-only cache (declare pointers with const __restrict__ to use this**)

Compiled with nvcc version 7.5, opt-in L1 caching, verbose to see register/local mem use, targeting compute capability 3.5
nvcc -Xptxas=“-dlcm=ca” –Xptxas=“-v” –arch=sm_35 kernels.cu

Runtime call to cudaDeviceSetCacheConfig(cudaFuncCachePreferL1) to set the 48 KB L1 + 16 KB shared
option in case the compiler chooses to load via L1

For timing purposes, I use N=2048*120, NS=64, 960 blocks, 256 threads/block. On a K40 with 15 SMs, this is 8 full waves.

Kernel wall times averaged over 10 trials.

**In subsequent examples, I do not write “const.” Although the Kepler Tuning Guide is pretty adamant that writing “const” is necessary to trigger
loads via the 48 KB read-only cache, I found that for toy kernels presented here, the compiler uses read-only cache even if “const” is omitted.

http://docs.nvidia.com/cuda/kepler-tuning-guide/#read-only-data-cache

27DISTRIBUTION A: Approved for public release; distribution unlimited. PA Clearance Number 17207

__global__ void naive(double* __restrict__ ax, double* __restrict__ bx,
double* __restrict__ ay, double* __restrict__ by, double* __restrict__ output)

{
// Ordinarily we might wrap this in a grid stride loop…omitted to save space.
int t = threadIdx.x + blockIdx.x*blockDim.x;
#pragma unroll 1 // Disallow compiler unrolling so we know what’s happening.**
for(int y = 0; y < NS; y++)

pragma unroll 1
for(int x = 0; x < NS; x++)

output[N*(NS*y+x)+t] = ax[x*N+t]*ay[y*N+t] + bx[x*N+t]*by[y*N+t];
}

**If we omit the “#pragma unroll 1”s and let the compiler unroll as it wishes, register use goes up (as expected), occupancy falls, and the “naïve” kernel’s performance
worsens. 100% occupancy is not always essential, but in this case, explicitly including the pragmas is better than relying on compiler heuristics.

Naïve Cuda Kernel – one thread per grid point

28DISTRIBUTION A: Approved for public release; distribution unlimited. PA Clearance Number 17207

__global__ void naive(double* __restrict__ ax, double* __restrict__ bx,
double* __restrict__ ay, double* __restrict__ by, double* __restrict__ output)

{
// Ordinarily we might wrap this in a grid stride loop…omitted to save space.
int t = threadIdx.x + blockIdx.x*blockDim.x;
#pragma unroll 1 // Disallow compiler unrolling so we know what’s happening.
for(int y = 0; y < NS; y++)

pragma unroll 1
for(int x = 0; x < NS; x++)

output[N*(NS*y+x)+t] = ax[x*N+t]*ay[y*N+t] + bx[x*N+t]*by[y*N+t];
}

Grid point index “t” is the fast index for coalescing
(corresponds to Kokkos::LayoutLeft)

Naïve Cuda Kernel – one thread per grid point

29DISTRIBUTION A: Approved for public release; distribution unlimited. PA Clearance Number 17207

__global__ void naive(double* __restrict__ ax, double* __restrict__ bx,
double* __restrict__ ay, double* __restrict__ by, double* __restrict__ output)

{
// Ordinarily we might wrap this in a grid stride loop…omitted to save space.
int t = threadIdx.x + blockIdx.x*blockDim.x;
#pragma unroll 1 // Disallow compiler unrolling so we know what’s happening.
for(int y = 0; y < NS; y++)

pragma unroll 1
for(int x = 0; x < NS; x++)

output[N*(NS*y+x)+t] = ax[x*N+t]*ay[y*N+t] + bx[x*N+t]*by[y*N+t];
}

Grid point index “t” is the fast index for coalescing
(corresponds to Kokkos::LayoutLeft)

y-dependent loads should hit in cache (or be promoted to registers) during loop over x.
I find that manually hoisting y-loads to a register does not affect performance.

Naïve Cuda Kernel – one thread per grid point

30DISTRIBUTION A: Approved for public release; distribution unlimited. PA Clearance Number 17207

__global__ void naive(double* __restrict__ ax, double* __restrict__ bx,
double* __restrict__ ay, double* __restrict__ by, double* __restrict__ output)

{
// Ordinarily we might wrap this in a grid stride loop…omitted to save space.
int t = threadIdx.x + blockIdx.x*blockDim.x;
#pragma unroll 1 // Disallow compiler unrolling so we know what’s happening.
for(int y = 0; y < NS; y++)

pragma unroll 1
for(int x = 0; x < NS; x++)

output[N*(NS*y+x)+t] = ax[x*N+t]*ay[y*N+t] + bx[x*N+t]*by[y*N+t];
}

Grid point index “t” is the fast index for coalescing
(corresponds to Kokkos::LayoutLeft)

y-dependent loads should hit in cache (or be promoted to registers) during loop over x.
I find that manually hoisting y-loads to a register does not affect performance.

Each x-load is used only once per outer y-loop iteration.
Probably won’t hit in cache on the next outer y-loop iteration.

Naïve Cuda Kernel – one thread per grid point

31DISTRIBUTION A: Approved for public release; distribution unlimited. PA Clearance Number 17207

Kernel “naïve” is strongly bandwidth-bound, and
accesses are already coalesced. What should we do?

__global__ void naive(double* __restrict__ ax, double* __restrict__ bx,
double* __restrict__ ay, double* __restrict__ by, double* __restrict__ output)

{
// Ordinarily we might wrap this in a grid stride loop…omitted to save space.
int t = threadIdx.x + blockIdx.x*blockDim.x;
#pragma unroll 1 // Disallow compiler unrolling so we know what’s happening.**
for(int y = 0; y < NS; y++)

pragma unroll 1
for(int x = 0; x < NS; x++)

output[N*(NS*y+x)+t] = ax[x*N+t]*ay[y*N+t] + bx[x*N+t]*by[y*N+t];
}

Grid point index “t” is the fast index for coalescing
(corresponds to Kokkos::LayoutLeft)

Naïve Cuda Kernel – one thread per grid point

.135 s

Naïve

Runtime

y-dependent loads should hit in cache (or be promoted to registers) during loop over x.
I find that manually hoisting y-loads to a register does not affect performance.

Each x-load is used only once per outer y-loop iteration.
Probably won’t hit in cache on the next outer y-loop iteration.

32DISTRIBUTION A: Approved for public release; distribution unlimited. PA Clearance Number 17207

Standard CPU-informed strategy: tile the loop?

for(int yy = 0; yy < NS; yy += TILE_FACTOR)
for(int x = 0; x < NS; x++)

for(int y = yy; y < yy + TILE_FACTOR; y++)
output[N*(NS*y+x)+t] = ax[x*N+t]*ay[y*N+t] + bx[x*N+t]*by[y*N+t];

Recall why loop tiling helps on CPU:

33DISTRIBUTION A: Approved for public release; distribution unlimited. PA Clearance Number 17207

Standard CPU-informed strategy: tile the loop?

for(int yy = 0; yy < NS; yy += TILE_FACTOR)
for(int x = 0; x < NS; x++)

for(int y = yy; y < yy + TILE_FACTOR; y++)
output[N*(NS*y+x)+t] = ax[x*N+t]*ay[y*N+t] + bx[x*N+t]*by[y*N+t];

X-dependent loads should hit in cache
for the inner y-loop, and be reused
TILE_FACTOR times

Recall why loop tiling helps on CPU:

34DISTRIBUTION A: Approved for public release; distribution unlimited. PA Clearance Number 17207

Standard CPU-informed strategy: tile the loop?

(in fact, for a typical CPU cache and modest values of NS like 64, the entire working set should easily fit
in cache, and it’s not necessary to tile the loop at all.)

Pretty standard stuff…but do we expect this to work on a Kepler GPU?

for(int yy = 0; yy < NS; yy += TILE_FACTOR)
for(int x = 0; x < NS; x++)

for(int y = yy; y < yy + TILE_FACTOR; y++)
output[N*(NS*y+x)+t] = ax[x*N+t]*ay[y*N+t] + bx[x*N+t]*by[y*N+t];

X-dependent loads should hit in cache
for the inner y-loop, and be reused
TILE_FACTOR times

Each x-iteration now treats TILE_FACTOR
y-iterations instead of just one.

TILE_FACTOR y-dependent loads should
hit in cache on each iteration of the x-loop

Recall why loop tiling helps on CPU:

35DISTRIBUTION A: Approved for public release; distribution unlimited. PA Clearance Number 17207

Loop tiling on GPU
__global__ void tiled(…same args as naïve…)
{

int t = threadIdx.x + blockIdx.x*blockDim.x;
for(int yy = 0; yy < NS; yy += TILE_FACTOR)

for(int x = 0; x < NS; x++)
for(int y = yy; y < yy + TILE_FACTOR; y++)

output[N*(NS*y+x)+t] = ax[x*N+t]*ay[y*N+t]
+ bx[x*N+t]*by[y*N+t];

}

36DISTRIBUTION A: Approved for public release; distribution unlimited. PA Clearance Number 17207

Loop tiling on GPU

Tiling is worse than naïve. Cache per grid point
(thread) is just too small.

Read-only cache and L1 cache are only 48 KB each.
Whichever compiler chooses to use:

100% occupancy = 2048 threads
48 KB/2048 threads = only 3 doubles’ worth of cache per thread.

__global__ void tiled(…same args as naïve…)
{

int t = threadIdx.x + blockIdx.x*blockDim.x;
for(int yy = 0; yy < NS; yy += TILE_FACTOR)

for(int x = 0; x < NS; x++)
for(int y = yy; y < yy + TILE_FACTOR; y++)

output[N*(NS*y+x)+t] = ax[x*N+t]*ay[y*N+t]
+ bx[x*N+t]*by[y*N+t];

}

.135 s

.234 s .230 s
.209 s

Naïve TILE_FACTOR 2 4 8

Tiled Loop Runtimes

37DISTRIBUTION A: Approved for public release; distribution unlimited. PA Clearance Number 17207

Loop tiling on GPU

Tiling is worse than naïve. Cache per grid point
(thread) is just too small.

Read-only cache and L1 cache are only 48 KB each.
Whichever compiler chooses to use:

100% occupancy = 2048 threads
48 KB/2048 threads = only 3 doubles’ worth of cache per thread.

nvprof confirms poor hit rates (results for TILE_FACTOR 2 shown):**
nvprof --kernels ::tiled:1 –metrics \
nc_cache_global_hit_rate,tex_cache_hit_rate ./a.out
. . . Min Max
. . . Non-Coherent Global Hit Rate 0.85% 0.85%
. . . Texture Cache Hit Rate 0.65% 0.65%

__global__ void tiled(…same args as naïve…)
{

int t = threadIdx.x + blockIdx.x*blockDim.x;
for(int yy = 0; yy < NS; yy += TILE_FACTOR)

for(int x = 0; x < NS; x++)
for(int y = yy; y < yy + TILE_FACTOR; y++)

output[N*(NS*y+x)+t] = ax[x*N+t]*ay[y*N+t]
+ bx[x*N+t]*by[y*N+t];

}

**As mentioned previously, the compiler appears to use read-only/texture cache for loads.
I’m not sure why there are separate metrics to describe “read-only cache accesses” and “texture cache accesses” (it’s the same hardware). Perhaps some Cuda ninja can explain?

.135 s

.234 s .230 s
.209 s

Naïve TILE_FACTOR 2 4 8

Tiled Loop Runtimes

38DISTRIBUTION A: Approved for public release; distribution unlimited. PA Clearance Number 17207

Tile with reduced occupancy
100% occupancy is not a strict requirement for peak performance.
Lower occupancy = more cache per grid point.**

Manually suppress occupancy by giving each block “dummy” shared memory.

For example: 16 KB shared memory is available on each SM.
If we assign each block 4096 B smem, only 4 blocks can fit on each SM.
4*256 = 1024 threads. 1024/2048 = 50% occupancy.

__global__ void tiled_reduced_occupancy(…)
{

extern __shared__ int smem[];
int t = threadIdx.x + blockIdx.x*blockDim.x;
for(int yy = 0; yy < NS; yy += TILE_FACTOR)

for(int x = 0; x < NS; x++)
for(int y = yy; y < yy + TILE_FACTOR; y++)

output[N*(NS*y+x)+t] = ax[x*N+t]*ay[y*N+t]
+ bx[x*N+t]*by[y*N+t];

}

**See “GPU Memory Bootcamp II: Beyond Best Practices” from GTC 2015 (http://on-demand.gputechconf.com/gtc/2015/presentation/S5376-Tony-Scudiero.pdf)
for a more detailed discussion of occupancy vs. hit rate.

http://on-demand.gputechconf.com/gtc/2015/presentation/S5376-Tony-Scudiero.pdf

39DISTRIBUTION A: Approved for public release; distribution unlimited. PA Clearance Number 17207

Tile with reduced occupancy

Mostly worse than naïve.

.193 s
.228 s

.188 s

.135 s

.248 s .254 s .254 s

.176 s

.127 s

.242 s

Naïve TILE_FACTOR 2 TILE_FACTOR 4 TILE_FACTOR 8

Runtime vs.
Occupancy

50% (4 KB smem/block)

25% (8 KB smem/block)

12.5% (16 KB smem/block)

100% occupancy is not a strict requirement for peak performance.
Lower occupancy = more cache per grid point.

Manually suppress occupancy by giving each block “dummy” shared memory.

For example: 16 KB shared memory is available on each SM.
If we assign each block 4096 B smem, only 4 blocks can fit on each SM.
4*256 = 1024 threads. 1024/2048 = 50% occupancy.

__global__ void tiled_reduced_occupancy(…)
{

extern __shared__ int smem[];
int t = threadIdx.x + blockIdx.x*blockDim.x;
for(int yy = 0; yy < NS; yy += TILE_FACTOR)

for(int x = 0; x < NS; x++)
for(int y = yy; y < yy + TILE_FACTOR; y++)

output[N*(NS*y+x)+t] = ax[x*N+t]*ay[y*N+t]
+ bx[x*N+t]*by[y*N+t];

}

40DISTRIBUTION A: Approved for public release; distribution unlimited. PA Clearance Number 17207

.193 s
.228 s

.188 s

.135 s

.248 s .254 s .254 s

.176 s

.127 s

.242 s

Naïve TILE_FACTOR 2 TILE_FACTOR 4 TILE_FACTOR 8

Runtime vs.
Occupancy

50% (4 KB smem/block)

25% (8 KB smem/block)

12.5% (16 KB smem/block)

Tile with reduced occupancy

Mostly worse than naïve. Sweet spot at TILE_FACTOR 4, 12.5% occupancy can be explained by cache hits:
nvprof --kernels ::tiled_reduced_occupancy:4 --metrics achieved_occupancy,nc_cache_global_hit_rate,tex_cache_hit_rate ./a.out

. . . Achieved Occupancy 0.124771 0.124771

. . . Non-Coherent Global Hit Rate 75.81% 75.81%

100% occupancy is not a strict requirement for peak performance.
Lower occupancy = more cache per grid point.

Manually suppress occupancy by giving each block “dummy” shared memory.

For example: 16 KB shared memory is available on each SM.
If we assign each block 4096 B smem, only 4 blocks can fit on each SM.
4*256 = 1024 threads. 1024/2048 = 50% occupancy.

__global__ void tiled_reduced_occupancy(…)
{

extern __shared__ int smem[];
int t = threadIdx.x + blockIdx.x*blockDim.x;
for(int yy = 0; yy < NS; yy += TILE_FACTOR)

for(int x = 0; x < NS; x++)
for(int y = yy; y < yy + TILE_FACTOR; y++)

output[N*(NS*y+x)+t] = ax[x*N+t]*ay[y*N+t]
+ bx[x*N+t]*by[y*N+t];

}

41DISTRIBUTION A: Approved for public release; distribution unlimited. PA Clearance Number 17207

Tile using both L1 and read-only cache

**On Kepler, local loads are cached in L1. On Maxwell, L1/tex is a single unified cache, and local loads are cached in L2 only. Therefore, I expect tiling with
local memory to be helpful on Kepler only. Maxwell has separate hardware for shared memory, so you could try using thread-local smem arrays instead.
See https://devblogs.nvidia.com/parallelforall/fast-dynamic-indexing-private-arrays-cuda/ for an in-depth discussion of where the compiler places thread-local arrays.
See http://docs.nvidia.com/cuda/kepler-tuning-guide/#l1-cache and http://docs.nvidia.com/cuda/maxwell-tuning-guide/#l1-cache for microarchitecture details.

__global__ void tiled_local_arrays(…)
{

double ay_local[TILE_FACTOR]; // Thread-local arrays
double by_local[TILE_FACTOR]; // (placed in local memory)
int t = threadIdx.x + blockIdx.x*blockDim.x;
for(int yy = 0; yy < NS; yy += TILE_FACTOR)
{

for(int y = yy; y < yy + TILE_FACTOR; y++)
{

ay_local[y-yy] = ay[y*N+t];
by_local[y-yy] = by[y*N+t];

}
for(int x = 0; x < NS; x++)

for(int y = yy; y < yy + TILE_FACTOR; y++)
output[N*(NS*y+x)+t] = ax[x*N+t]*ay_local[y-yy]

+ bx[x*N+t]*by_local[y-yy];
}

}

On Kepler, 48 KB read-only cache and 64 KB L1+shared cache are independent. Use both!

Tile using thread-local arrays :
(placed in a local memory stack frame. Allocated in device global memory, but cached in L1)**

https://devblogs.nvidia.com/parallelforall/fast-dynamic-indexing-private-arrays-cuda/
http://docs.nvidia.com/cuda/kepler-tuning-guide/#l1-cache
http://docs.nvidia.com/cuda/maxwell-tuning-guide/#l1-cache

42DISTRIBUTION A: Approved for public release; distribution unlimited. PA Clearance Number 17207

Tile using both L1 and read-only cache

__global__ void tiled_local_arrays(…)
{

double ay_local[TILE_FACTOR]; // Thread-local arrays
double by_local[TILE_FACTOR]; // (placed in local memory)
int t = threadIdx.x + blockIdx.x*blockDim.x;
for(int yy = 0; yy < NS; yy += TILE_FACTOR)
{

for(int y = yy; y < yy + TILE_FACTOR; y++)
{

ay_local[y-yy] = ay[y*N+t];
by_local[y-yy] = by[y*N+t];

}
for(int x = 0; x < NS; x++)

for(int y = yy; y < yy + TILE_FACTOR; y++)
output[N*(NS*y+x)+t] = ax[x*N+t]*ay_local[y-yy]

+ bx[x*N+t]*by_local[y-yy];
}

}

Thread-local arrays for
Y-dependent loads (cached in L1)

On Kepler, 48 KB read-only cache and 64 KB L1+shared cache are independent. Use both!

Tile using thread-local arrays :
(placed in a local memory stack frame. Allocated in device global memory, but cached in L1)

43DISTRIBUTION A: Approved for public release; distribution unlimited. PA Clearance Number 17207

Tile using both L1 and read-only cache

__global__ void tiled_local_arrays(…)
{

double ay_local[TILE_FACTOR]; // Thread-local arrays
double by_local[TILE_FACTOR]; // (placed in local memory)
int t = threadIdx.x + blockIdx.x*blockDim.x;
for(int yy = 0; yy < NS; yy += TILE_FACTOR)
{

for(int y = yy; y < yy + TILE_FACTOR; y++)
{

ay_local[y-yy] = ay[y*N+t];
by_local[y-yy] = by[y*N+t];

}
for(int x = 0; x < NS; x++)

for(int y = yy; y < yy + TILE_FACTOR; y++)
output[N*(NS*y+x)+t] = ax[x*N+t]*ay_local[y-yy]

+ bx[x*N+t]*by_local[y-yy];
}

} X-dependent loads cached in read-only

Thread-local arrays for
Y-dependent loads (cached in L1)

On Kepler, 48 KB read-only cache and 64 KB L1+shared cache are independent. Use both!

Tile using thread-local arrays :
(placed in a local memory stack frame. Allocated in device global memory, but cached in L1)

44DISTRIBUTION A: Approved for public release; distribution unlimited. PA Clearance Number 17207

Tile using both L1 and read-only cache
On Kepler, 48 KB read-only cache and 64 KB L1+shared cache are independent. Use both!

Tile using thread-local arrays :
(placed in a local memory stack frame. Allocated in device global memory, but cached in L1)

.135 s
.096 s

.358 s

.266 s

Naïve 2 4 8

Tile with L1+Read-Only Runtimes

100%

23.13%

0.70%

TILE_FACTOR 2 4 8

l1_cache_local_hit_rate

Fast for TILE_FACTOR = 2! L1 cache fields all y-dependent loads (100% hit rate)

Slower for TILE_FACTOR = 4 and 8. Hit rate decreases.

__global__ void tiled_local_arrays(…)
{

double ay_local[TILE_FACTOR]; // Thread-local arrays
double by_local[TILE_FACTOR]; // (placed in local memory)
int t = threadIdx.x + blockIdx.x*blockDim.x;
for(int yy = 0; yy < NS; yy += TILE_FACTOR)
{

for(int y = yy; y < yy + TILE_FACTOR; y++)
{

ay_local[y-yy] = ay[y*N+t];
by_local[y-yy] = by[y*N+t];

}
for(int x = 0; x < NS; x++)

for(int y = yy; y < yy + TILE_FACTOR; y++)
output[N*(NS*y+x)+t] = ax[x*N+t]*ay_local[y-yy]

+ bx[x*N+t]*by_local[y-yy];
}

} X-dependent loads cached in read-only

Thread-local arrays for
Y-dependent loads (cached in L1)

45DISTRIBUTION A: Approved for public release; distribution unlimited. PA Clearance Number 17207

Tile with explicit register use (“unroll-and-jam”)
Kepler SM has 65,536 4B registers = 262 KB of near-core memory available as registers.

>2.5X more than read-only and L1 caches combined.

__global__ void unroll_and_jam_by2_registers(…)
{

// Encourage these to be placed in registers
double ay_local0, by_local0, ay_local1, by_local1;
int t = threadIdx.x + blockIdx.x*blockDim.x;
#pragma unroll 1
for(int yy = 0; yy < NS; yy += 2)
{ ay_local0 = ay[(yy+0)*N+t];

by_local0 = by[(yy+0)*N+t];
ay_local1 = ay[(yy+1)*N+t];
by_local1 = by[(yy+1)*N+t];
pragma unroll 1
for(int x = 0; x < NS; x++)
{

output[N*(NS*(yy+0)+x)+t] = ax[x*N+t]*ay_local0
+ bx[x*N+t]*by_local0;

output[N*(NS*(yy+1)+x)+t] = ax[x*N+t]*ay_local1
+ bx[x*N+t]*by_local1;

}
}

}

46DISTRIBUTION A: Approved for public release; distribution unlimited. PA Clearance Number 17207

Tile with explicit register use (“unroll-and-jam”)
Kepler SM has 65,536 4B registers = 262 KB of near-core memory available as registers.

>2.5X more than read-only and L1 caches combined.

__global__ void unroll_and_jam_by2_registers(…)
{

// Encourage these to be placed in registers
double ay_local0, by_local0, ay_local1, by_local1;
int t = threadIdx.x + blockIdx.x*blockDim.x;
#pragma unroll 1
for(int yy = 0; yy < NS; yy += 2)
{ ay_local0 = ay[(yy+0)*N+t];

by_local0 = by[(yy+0)*N+t];
ay_local1 = ay[(yy+1)*N+t];
by_local1 = by[(yy+1)*N+t];
pragma unroll 1
for(int x = 0; x < NS; x++)
{

output[N*(NS*(yy+0)+x)+t] = ax[x*N+t]*ay_local0
+ bx[x*N+t]*by_local0;

output[N*(NS*(yy+1)+x)+t] = ax[x*N+t]*ay_local1
+ bx[x*N+t]*by_local1;

}
}

}

Y-dependent loads reused
x times in x-loop

47DISTRIBUTION A: Approved for public release; distribution unlimited. PA Clearance Number 17207

Tile with explicit register use (“unroll-and-jam”)
Kepler SM has 65,536 4B registers = 262 KB of near-core memory available as registers.

>2.5X more than read-only and L1 caches combined.

__global__ void unroll_and_jam_by2_registers(…)
{

// Encourage these to be placed in registers
double ay_local0, by_local0, ay_local1, by_local1;
int t = threadIdx.x + blockIdx.x*blockDim.x;
#pragma unroll 1
for(int yy = 0; yy < NS; yy += 2)
{ ay_local0 = ay[(yy+0)*N+t];

by_local0 = by[(yy+0)*N+t];
ay_local1 = ay[(yy+1)*N+t];
by_local1 = by[(yy+1)*N+t];
pragma unroll 1
for(int x = 0; x < NS; x++)
{

output[N*(NS*(yy+0)+x)+t] = ax[x*N+t]*ay_local0
+ bx[x*N+t]*by_local0;

output[N*(NS*(yy+1)+x)+t] = ax[x*N+t]*ay_local1
+ bx[x*N+t]*by_local1;

}
}

}

Y-dependent loads reused
x times in x-loop

X-dependent loads used twice

48DISTRIBUTION A: Approved for public release; distribution unlimited. PA Clearance Number 17207

Tile with explicit register use (“unroll-and-jam”)

In practice I like this approach.

At 50% occupancy you can use up to 64 registers (32 DP values) for
tiling. Unrolling by 2 or 4 is not too annoying for a few
performance-limiting kernels.

…but don’t do it for all your kernels.
“Premature optimization is the root of all evil”

Kepler SM has 65,536 4B registers = 262 KB of near-core memory available as registers.

>2.5X more than read-only and L1 caches combined.

__global__ void unroll_and_jam_by2_registers(…)
{

// Encourage these to be placed in registers
double ay_local0, by_local0, ay_local1, by_local1;
int t = threadIdx.x + blockIdx.x*blockDim.x;
#pragma unroll 1
for(int yy = 0; yy < NS; yy += 2)
{ ay_local0 = ay[(yy+0)*N+t];

by_local0 = by[(yy+0)*N+t];
ay_local1 = ay[(yy+1)*N+t];
by_local1 = by[(yy+1)*N+t];
pragma unroll 1
for(int x = 0; x < NS; x++)
{

output[N*(NS*(yy+0)+x)+t] = ax[x*N+t]*ay_local0
+ bx[x*N+t]*by_local0;

output[N*(NS*(yy+1)+x)+t] = ax[x*N+t]*ay_local1
+ bx[x*N+t]*by_local1;

}
}

}

.135 s

.106 s

.126 s
.114 s

Naïve UJ by 2 UJ by 4 UJ by 8

Unroll and Jam Runtimes

Y-dependent loads reused
x times in x-loop

X-dependent loads used twice

49DISTRIBUTION A: Approved for public release; distribution unlimited. PA Clearance Number 17207

Cooperative pattern
Each grid point handled by a single thread a warp.

__global__ void warp_team(…)
{

int warpid = (threadIdx.x + blockIdx.x*blockDim.x)/32;
int laneid = threadIdx.x%32;
int t = warpid;
#pragma unroll 1
for(int y = laneid; y < NS; y += 32)
{

double ayy = ay[NS*t+y];
double byy = by[NS*t+y];
pragma unroll 1
for(int x = 0; x < NS; x++)

output[NS*NS*t+NS*x+y] = ax[NS*t+x]*ayy + bx[NS*t+x]*byy;
}

}

50DISTRIBUTION A: Approved for public release; distribution unlimited. PA Clearance Number 17207

Cooperative pattern
Each grid point handled by a single thread a warp.

__global__ void warp_team(…)
{

int warpid = (threadIdx.x + blockIdx.x*blockDim.x)/32;
int laneid = threadIdx.x%32;
int t = warpid;
#pragma unroll 1
for(int y = laneid; y < NS; y += 32)
{

double ayy = ay[NS*t+y];
double byy = by[NS*t+y];
pragma unroll 1
for(int x = 0; x < NS; x++)

output[NS*NS*t+NS*x+y] = ax[NS*t+x]*ayy + bx[NS*t+x]*byy;
}

}

Y-dependent loads are coalesced.

51DISTRIBUTION A: Approved for public release; distribution unlimited. PA Clearance Number 17207

Cooperative pattern
Each grid point handled by a single thread a warp.

__global__ void warp_team(…)
{

int warpid = (threadIdx.x + blockIdx.x*blockDim.x)/32;
int laneid = threadIdx.x%32;
int t = warpid;
#pragma unroll 1
for(int y = laneid; y < NS; y += 32)
{

double ayy = ay[NS*t+y];
double byy = by[NS*t+y];
pragma unroll 1
for(int x = 0; x < NS; x++)

output[NS*NS*t+NS*x+y] = ax[NS*t+x]*ayy + bx[NS*t+x]*byy;
}

}

Y-dependent loads are coalesced.

X-loads are uncoalesced…BUT next x-iteration accesses next contiguous location in memory…
AND effective cache per grid point is now 32X higher…perhaps the next x-load will hit?

X-dependent loads broadcast a value across the warp. Uncoalesced.

52DISTRIBUTION A: Approved for public release; distribution unlimited. PA Clearance Number 17207

Cooperative pattern is fastest!
Each grid point handled by a single thread a warp.

__global__ void warp_team(…)
{

int warpid = (threadIdx.x + blockIdx.x*blockDim.x)/32;
int laneid = threadIdx.x%32;
int t = warpid;
#pragma unroll 1
for(int y = laneid; y < NS; y += 32)
{

double ayy = ay[NS*t+y];
double byy = by[NS*t+y];
pragma unroll 1
for(int x = 0; x < NS; x++)

output[NS*NS*t+NS*x+y] = ax[NS*t+x]*ayy + bx[NS*t+x]*byy;
}

}

Y-dependent loads are coalesced.

X-loads are uncoalesced…BUT next x-iteration accesses next contiguous location in memory…
AND effective cache per grid point is now 32X higher…perhaps the next x-load will hit?

Nvprof confirms: high hit rates => fast kernel!!

nc_cache_global_hit_rate = 95.39%, tex_cache_hit_rate = 95.39%

.135 s

.052 s

Naïve Warp team

Warp Team Runtime

X-dependent loads broadcast a value across the warp. Uncoalesced.

53DISTRIBUTION A: Approved for public release; distribution unlimited. PA Clearance Number 17207

Downside to cooperative: need different memory layout.
Kernel with each thread handling a grid point Cooperative kernel

__global__ void naive(…)
{

int t = threadIdx.x + blockIdx.x*blockDim.x;
#pragma unroll 1
for(int y = 0; y < NS; y++)

pragma unroll 1
for(int x = 0; x < NS; x++)

output[N*(NS*y+x)+t] =
ax[x*N+t]*ay[y*N+t] +
bx[x*N+t]*by[y*N+t];

}

__global__ void warp_team(…)
{

int warpid = (threadIdx.x + blockIdx.x*blockDim.x)/32;
int laneid = threadIdx.x%32;
int t = warpid;
#pragma unroll 1
for(int y = laneid; y < Ns; y += 32)
{

double ayy = ay[NS*t+y];
double byy = by[NS*t+y];
pragma unroll 1
for(int x = 0; x < NS; x++)

output[NS*NS*t+NS*x+y] =
ax[NS*t+x]*ayy +
bx[NS*t+x]*byy;

}
}

Each warp handles one grid point.

Fast index must be species index x or y (they are symmetric)
for spatially local accesses by warps.

Corresponds to Kokkos::LayoutRight

Grid point index t is fast index for output, ax, ay, bx, by.

Consecutive threads handle consecutive grid points =>
coalesced access.

Corresponds to Kokkos::LayoutLeft

54DISTRIBUTION A: Approved for public release; distribution unlimited. PA Clearance Number 17207

.135 s

.209 s

.127 s

.096 s
.106 s

.052 s

Naïve Tiled, TILE_FACTOR 8 12.5% occupancy,
TILE_FACTOR 4

Tiled using L1 and
readonly,

TILE_FACTOR 2

Unroll-and-jam by 2 Warp team

Hall of fame

55DISTRIBUTION A: Approved for public release; distribution unlimited. PA Clearance Number 17207

Questions?

	17-066_VG.pdf
	Using Kokkos for Performant Cross-Platform Acceleration of Liquid Rocket Simulations
	SPACE-LRC: Scalable Physics-based Advanced Computational �Engineering Platform for Liquid Rocket Combustion Simulation
	Components of SPACE-LRC
	Slide Number 4
	What is Kokkos?
	Enabling Kokkos in CASTLES
	Identify critical subroutines – CPU profile
	Identify critical subroutines – CPU profile
	Peng-Robinson equation of state and Chung transport model
	Architecture of my Kokkos framework
	Architecture of my Kokkos framework
	Architecture of my Kokkos framework
	For modularity and consistency: one subroutine->one kernel
	Slide Number 14
	Integrating Kokkos with CASTLES: Interface Functions
	Communicating Data
	Data marshalling challenges
	Cluster-level concerns: Multiple GPUs per node
	Cluster-level concerns: Nvidia Multi-Process Service (MPS)
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Bandwidth Optimizations for Per-Grid-Point Inner Loops
	Bandwidth Optimizations for Per-Grid-Point Inner Loops
	Testing Parameters
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Standard CPU-informed strategy: tile the loop?
	Standard CPU-informed strategy: tile the loop?
	Standard CPU-informed strategy: tile the loop?
	Loop tiling on GPU
	Loop tiling on GPU
	Loop tiling on GPU
	Tile with reduced occupancy
	Tile with reduced occupancy
	Tile with reduced occupancy
	Tile using both L1 and read-only cache
	Tile using both L1 and read-only cache
	Tile using both L1 and read-only cache
	Tile using both L1 and read-only cache
	Tile with explicit register use (“unroll-and-jam”)
	Tile with explicit register use (“unroll-and-jam”)
	Tile with explicit register use (“unroll-and-jam”)
	Tile with explicit register use (“unroll-and-jam”)
	Cooperative pattern
	Cooperative pattern
	Cooperative pattern
	Cooperative pattern is fastest!
	Downside to cooperative: need different memory layout.
	Slide Number 54
	Questions?

