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INTRODUCTION: 
Melanoma is the most aggressive skin cancer, and every year it kills nearly 10,000 Americans and roughly 
60,000 people worldwide. A greater understanding of the genetic basis for melanoma is essential for designing 
new ways to diagnose and treat this disease. Nearly a decade ago, it was discovered that mutations that 
inappropriately activate the BRAF gene are present in over half of all human melanomas. Activated BRAF 
mutations are necessary for formation of these melanomas, but numerous studies have shown that they are 
not sufficient. To find other genes that cooperate with BRAF in creating melanomas, we have used genomic 
studies and cross-species comparisons to identify several candidates. One of these candidates, GDF6, is a 
BMP factor that is recurrently amplified and upregulated in human and zebrafish melanomas. The purpose of 
this study is to functionally analyze the role of GDF6 in melanoma progression. In addition, this study aims to 
use gain and loss of function studies to determine how GDF6 acts in melanomas and normal melanocytes. A 
major goal of this research is to determine if GDF6 can be used as a diagnostic or prognostic marker in 
melanoma and is a potential therapeutic target. 
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ACCOMPLISHMENTS: 
 
Major goals of the project (as described in Statement of Work): 
 
Task 1: Perform gain and loss of function studies in zebrafish embryos and mammalian cultured cells to 
determine if GDF6 antagonizes melanocyte development. 
 
Task 2: Use established screening procedures in zebrafish to determine if GDF6 overexpression accelerates 
melanoma onset or exacerbates other properties of melanomas. In addition, use human melanoma cells to 
determine if GDF6 knockdown in GDF6-positive cells or overexpression in GDF6-minus cells affects 
tumorigenicity. 
 
Task 3: Use BMP pathway reporters to determine the dynamics of BMP activity in normal melanocytes and 
melanoma cells. Examine GDF6 expression and mutation status in human melanomas, benign melanocytic 
lesions and normal melanocytes to determine if modulation of GDF6 activity is consistent with a role in 
melanoma formation. 
 
Accomplishments under these goals: 
 
Task 1 
 In this task, studies in zebrafish and mammalian cultured cells were proposed to determine the effects 
of gdf6b overexpression and gdf6b loss on melanocyte development. Zebrafish expressing gdf6b in 
melanocyte progenitors fail to develop melanocytes, suggesting that gdf6b inhibits terminal differentiation of 
melanocytes. We have examined zebrafish with mutation in gdf6a. gdf6a mutant embryos have excess 
melanocytes as do embryos treated with the BMP inhibitor DMH1 (Fig. 1A,B). We are combining the existing 
gdf6a mutant with a mutant we obtained for gdf6b and will be examining these embryos for supernumerary 
melanocytes. Together these results indicate that gdf6 paralogs, via BMP signaling, play an important role in 
restricting melanocyte development during embryogenesis. 
 Experiments in cultured human melanoma cells suggest that gdf6 genes inhibit melanocyte 
development by promoting a neural crest identity. In these experiments we performed expression profiling of 
melanoma cells with a loss of GDF6 activity as compared to those with a gain in BMP signaling activity (Fig. 
2A). Differentially regulated genes were subjected to biological pathway analysis, and the pathways most 
significantly regulated by GDF6 were ossification and neural crest (Fig. 2B). GDF6 promoted expression of 
trunk neural crest genes (e.g. SOX10) but inhibited expression of cranial neural crest genes (e.g. SOX9) (Fig. 
2C). Based on these results we hypothesized that GDF6 promotes a neural crest identity in melanoma cells, 
enabling these cells to remain less differentiated, survive and proliferate. As part this analysis we discovered 
that the MITF gene, the master regulator of melanocyte development, is regulated by GDF6. Specifically, MITF 
expression is repressed by GDF6 (Fig. 3A). Through chromatin immunoprecipitation with next generation 
sequencing (ChIPseq) we discovered that phosphoSMAD1/5/8, which are downstream effectors of GDF6, bind 
to the MITF locus (Fig.3B). When GDF6 is knocked down, binding of phosphoSMAD1/5/8 is reduced (Fig. 
3B,C), MITF expression is increased, and melanoma cells begin to differentiate. We also probed the role of 
GDF6 in repressing SOX9 expression. Upon GDF6 knockdown, we found that SOX9 expression increased 
(Fig. 4A). Since SOX9 is a pro-apoptotic factor in melanomas, we asked whether the cell death that occurred 
upon GDF6 knockdown was dependent on SOX9. Indeed elimination of SOX9 prevented the death that was 
caused by GDF6 knockdown and enabled tumor growth even when GDF6 was knocked down (Fig. 4B,C). 
Thus, GDF6 promotes a trunk neural crest identity that involves repression of MITF and SOX9 to prevent 
differentiation and cell death. Together with the results described above, it is likely that a normal developmental 
role of GDF6 genes in regulating neural crest and melanocyte development is reiterated to promote tumor 
initiation and progression. 
 
Task 2 
 To address this task, a zebrafish screening scheme, termed the ‘MiniCoopR’ assay, was used to 
determine if gdf6b has an effect on melanoma progression. In this assay, melanocyte-deficient animals are 
injected with DNA that can both rescue melanocytes and overexpress a gene of interest. Zebrafish with 
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rescued melanocytes are monitored weekly for tumors to determine if the gene of interest affects tumor onset 
as compared to a control gene. When gdf6b was overexpressed using MiniCoopR, melanomas arose more 
quickly as compared to EGFP controls (Fig. 5A). GDF6 was also expressed in cultured human A375 
melanoma cells. GDF6 overexpressing cells were xenotransplanted into nude mice and tumor progression 
monitored as compared to control A375 cells. GDF6 overexpression caused tumors to grow much more quickly 
than controls (Fig. 5B). A375 and other human melanoma cell lines express endogenous GDF6, so we 
determined the effects of GDF6 knockdown in these cell lines. When GDF6 was knocked down using multiple, 
independent shRNAs A375 and other melanoma cells underwent programmed cell death (Fig. 5C). When 
knockdown cells were xenotransplanted prior to death, melanoma progression was markedly decreased (Fig. 
5D). (Note: no Department of Defense funds were used for xenotransplantation experiments). Taken together, 
these results indicate that GDF6 is an oncogene and the cell death resulting from its knockdown makes it an 
excellent target for anti-melanoma therapy.  
 Knockdown and overexpression cells are being used to determine how GDF6 acts. The GDF6 protein 
is initially made as a proprotein, which is cleaved in cells to generate mature, secreted GDF6. To determine if 
soluble, mature GDF6 acts as a pro-survival factor, we added media containing mature GDF6 to GDF6 
knockdown cells. GDF6-containing media rescued the effects of GDF6 knockdown (Fig. 6), indicating that 
GDF6 can act as a secreted protein to promote melanoma cell survival. These data suggest that targeting 
soluble, extracellular GDF6 is a therapeutic strategy for melanoma and possibly other types of tumors.  
 
Task 3 
 A major goal of this task is to assess the effects of GDF6 on BMP signaling activity. In zebrafish we 
initially proposed to use a fluorescent reporter to monitor transcriptional output of BMP activity – however, 
technical difficulties have made this approach untenable. Instead, we have used antibodies that recognized 
phosphorylated SMAD1/5/8 to measure BMP signaling activity. In zebrafish, melanomas have robust phospho-
SMAD expression (Fig. 7A). In cultured melanoma cells we similarly detect GDF6 and phospho-SMAD1/5/8 
expression. When GDF6 is knocked down, phospho-SMAD1/5/8 levels go down (Fig. 7B), consistent with the 
notion that GDF6 signals through SMAD1/5/8 and the BMP signaling pathway. 
 Additional experiments were performed to determine if GDF6 acts via the BMP signaling pathway. 
Knockdown of SMAD1 resulted in the same cell death phenotype as GDF6 knockdown, suggesting that both 
genes act in the same pathway. To directly assess whether GDF6 acts via the BMP signaling pathway we 
performed genetic epistasis analyses. In these epistasis experiments an activated variant of SMAD1 was used. 
This variant, SMAD1DVD, contains amino acid substitutions in key catalytic residues, resulting in a 
constitutively active protein. When GDF6 knockdown was performed in A375 cells expressing SMAD1DVD, 
cell death was suppressed (Fig. 7C), indicating that GDF6 acts upstream of or in parallel to SMAD1. When 
such cells were xenotransplanted into immunocompromised mice, they grew much more quickly than GDF6 
knockdown cells (Fig. 7D), again indicating that GDF6 acts upstream of SMAD1. (Note: no Department of 
Defense funds were used for xenotransplantation experiments) 
 To further study how GDF6 acts through BMP signaling, we performed ChIPseq using an antibody that 
recognizes phospho-SMAD1/5/8. In these studies we found that knockdown of GDF6 led to a diminution of 
phospho-SMAD1/5/8 binding to DNA (FIg. 3C). These results were reflected in several bound genes, including 
MITF (as described above) as well as the canonical BMP targets ID1 and ID3 (Fig. 8A,B). 
 Stainings of human tissue samples were used to further investigate the role of GDF6 and BMP 
signaling in melanoma. Robust expression of GDF6 and phospho-SMAD1/5/8 was observed in human 
melanoma sections (Fig. 9A,B). To determine if there is a correlation between GDF6 or phospho-SMAD1/5/8 
expression and clinical outcome, we stained a tissue microarray of human melanoma tissue cores, each of 
which has associated clinical data. An analysis of these stainings indicated a correlation between the level of 
GDF6 expression and patient survival (Fig. 9C). Specifically, patients whose tumors expressed high levels of 
GDF6 had poor survival as compared to patients whose tumors expressed low of no GDF6. These findings 
provide a rationale that inhibition of GDF6 could have therapeutic benefit. 
 
Opportunities for training and professional development: 
A graduate student in my laboratory, Arvind Venkatesan, conducted the bulk of the experiments described. He 
and I met regularly, once per week, to design experiments, discuss results, write manuscripts and create public 
presentations of our work. In each of these activities I served as a mentor to him. During the past reporting 
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period, Arvind was also able to attend several conferences, including the Zebrafish Disease Models 8 
conference in Boston, MA and Connecticut Valley Zebrafish Meetings throughout the northeast. 
 
Dissemination of results: 
Portions of this work have been presented at the following venues. Each of these groups included community 
and/or media members.  Primary attendees are listed in parentheses. 
• Tufts University American Cancer Society Relay for Life Seminar (local ACS chapter) 
• University of Massachusetts Medical School Media Fellowship (local media reporters) 
• University of Massachusetts Medical School community outreach (various community organizations) 
 
Plan for next reporting period: 
Nothing to Report. 
 
  



 
9 

IMPACT: 
 
Impact on the development of the principal discipline: 
This project straddles two disciplines – developmental biology and cancer biology. The findings described in 
this report identify a new role for GDF6 genes in the development of the melanocyte lineage. The effect on the 
melanocyte lineage likely stems from GDF6 activity in the embryonic neural crest, the tissue from which 
melanocytes are derived. We speculate that GDF6 normally promotes a neural crest identity in cells, and loss 
of GDF6 in embryogenesis causes neural crest cells to more readily adopt a melanocyte fate. Our findings 
support a model in which this embryonic activity of GDF6 is reiterated to promote oncogenesis. Specifically, 
GDF6 in tumors promotes a neural crest identity, thereby preventing differentiation and cell death. These 
results highlight a fundamental paradigm in which embryonic activities can be co-opted to promote 
tumorigenesis. 
 
Impact on other disciplines: 
These findings have a potential impact on the discipline of clinical oncology. Since inhibition of GDF6 can 
cause death of melanoma cells in culture, we are currently developing approaches to target GDF6 protein. It is 
a secreted molecule that can potentially be blocked with neutralizing antibodies. We have created a panel of 
mouse monoclonal antibodies and are currently developing assays to determine whether any inhibit binding of 
GDF6 to its receptor. Ultimately we aim to develop GDF6-blocking antibodies and test their efficacy as 
melanoma therapies. 
 
Impact on technology transfer: 
We are currently developing blocking antibodies and aim to partner with an industry sponsor to complete pre-
clinical studies and begin early-stage clinical trials. 
 
Impact on society beyond science and technology: 
Nothing to Report. 
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CHANGES/PROBLEMS: 
 
Changes in approach and reasons for change: 
Nothing to Report. 
 
Actual or anticipated problems or delays and actions or plans to resolve them: 
Nothing to Report. 
 
Changes that had a significant impact on expenditures: 
Nothing to Report. 
 
Significant changes in use or care of human subjects, vertebrate animals, biohazards, and/or select 
agents: 
Nothing to Report. 
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PRODUCTS: 
This career development award has helped to jump start my activities as an independent researcher. Below 
are examples of the products and opportunities that have arisen in part because of the funding from the 
Department of Defense CDMRP. I am very grateful for the support.  
 
Publications, conference papers, and presentations: 
 
 Journal publications 

• Iyengar, S., Kasheta, M. and Ceol, C.J. (2015). Poised regeneration of zebrafish melanocytes 
involves direct differentiation and concurrent replenishment of tissue-resident progenitor cells. 
Developmental Cell, 33, 631-43. 
• Wojciechowska, S., van Rooijen, E., Ceol, C., Patton, E.E. and White, R. (2016). Generation 
and analysis of zebrafish melanoma models. Methods in Cell Biology, in the press. 
• Moore, F.E., Garcia, E.G., Lobbardi, R., Jain, E., Tang, Q., Moore, J.C., Cortes, M., Molodtsov, 
A., Kasheta, M., Luo, C.C., Garcia, A.J., Mylvaganam, R., Yoder, J.A., Blackburn, J.S., 
Sadreyev, R.I., Ceol, C.J., North, T.E. and Langenau, D.M. (2016). Single-cell transcriptional 
analysis of normal, aberrant and malignant hematopoiesis in zebrafish. Journal of Experimental 
Medicine, in the press. 
• Wojciechowska, S., Zeng, Z., Lister, J.A., Ceol, C.J., Patton, E.E. (2016). Melanoma 
regression and recurrence in zebrafish. Methods Molecular Biology, in the press. 
• Venkatesan, A.M., Vyas, R., Dresser, K., Gujja, S., Bhatnagar, S., Chhangawala, S., Gomes, 
C., Xi, H.S., Lian, C.G., Houvras, Y., Edwards, Y.J.K., Deng, A., Green, M. and Ceol, C.J. 
(2016). GDF6 ligand-induced BMP signaling induces a neural crest identity and is critical for 
survival and growth of melanomas. Submitted. 
 

 Books or other non-periodical, one-time publications 
  Nothing to Report. 
 
 Other publications, conference papers, and presentations 

Conference Talks: 
• 52nd Annual Meeting of The American Society of Dermatopathology, San Francisco, CA 
• PanAmerican Society for Pigment Cell Research Conference, Irvine, CA 
• The Allied Genetics Conference, Orlando, FL 
• PanAmerican Society for Pigment Cell Research Conference, Baltimore, MD  
Invited seminars: 
• Tufts University, Medford, MA 

American Cancer Society Relay for Life Seminar   
• University of Massachusetts Medical School, Worcester, MA 

Division of Hematology/Oncology Grand Rounds 
• MassBiologics, Boston, MA 

MassBiologics Research Seminar  
• Yale University, New Haven, CT 

Internal Medicine Seminar Series 
 
 Websites or other internet sites 
  Nothing to Report. 
 
 Technologies or techniques 
  Nothing to Report. 
 
 Inventions, patent applications, and/or licenses 
  Patent application: 
  • Targeting GDF6 and BMP Signaling for Anti-Melanoma Therapy, US Serial No. 62/130,749 
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 Other products 
  Nothing to Report. 
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PARTICIPANTS AND OTHER COLLABORATING ORGANIZATIONS: 
 
 Individuals who worked on the project: 
  Arvind Venkatesan, Graduate Student, UMass Medical School 
  Craig Ceol, Assistant Professor, UMass Medical School 
 
 Change in active other support of the PD/PI since the last reporting period: 
 Nothing to Report. 
 
 Other organizations involved as partners: 
 Nothing to Report. 
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SPECIAL REPORTING REQUIREMENTS: 
Nothing to Report. 
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APPENDICES: 
Please see appended figures referred to in the Accomplishments section. 
Please see appended curriculum vitae for Dr. Ceol. 
Please see appended manuscript entitled ‘Ligand-dependent BMP signaling reawakens an embryonic neural 
crest identity to promote melanoma’, which is currently under review at the journal Science. 
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Abstract:  

Certain cancer-associated genetic changes are postulated to be programmatic in nature – they 

modify the identity of a nascent cancer cell thereby impacting multiple cellular processes to 

promote cancer progression. Melanomas adopt a neural crest identity, but the importance and 

mechanism of adopting such an identity are poorly understood. Through comparative 

oncogenomics of human and zebrafish melanomas, we identified a BMP ligand, GDF6, which 

reawakens neural crest features in melanoma cells, allowing them to remain undifferentiated and 

survive. Our study uncovers reiteration of ligand-dependent developmental signaling as a means 

to fundamentally alter cancer cell identity. Targeting GDF6 and other ligands can be achieved 

through conventional approaches, providing new avenues for cancer therapy. 



Main Text:  

Phenotypic hallmarks of cancer cells can be gained through a succession of genetic 

changes that affect cancer-relevant processes such as cell proliferation or cell death. However, 

certain genetic alterations, on their own, can be programmatic in nature, enabling a cell to gain 

several pro-tumorigenic activities simultaneously. Such an event has been proposed for 

melanomas, which adopt a neural crest identity even at the earliest stages of tumorigenesis (1). 

However, the means of adopting this identity and the cellular processes affected by it are 

unknown. As described below, through functional genomic analyses we have uncovered an 

embryonic signaling system that is used in melanomas to govern cell identity and tumorigenesis. 

We began our study by attempting to deconstruct the complex profile of copy number 

variation (CNV) in the melanoma genome. A major challenge in the field of cancer genomics has 

been to distinguish, from a chromosomal segment subject to CNV, tumor-promoting driver genes 

from large numbers of uninvolved passenger genes. To address this challenge we used 

comparative oncogenomics between human and zebrafish melanomas, because the genomic 

reorganization that has occurred over time is predicted to place orthologous driver genes next to 

different neighboring passenger genes in each species. We defined CNVs in melanomas from a 

Tg(mitfa:BRAFV600E); p53(lf) zebrafish strain (2) (Fig. 1A; Table S1). Genes from recurrently 

amplified intervals were compared to their human orthologs (3, 4). The degree of overlap 

between orthologs amplified in both species is greater than would be expected by chance (Fig. 

1B; Table S2), suggesting that amplification of similar driver genes mechanistically underlies 

tumor formation in both species. To further winnow the list of candidates, we analyzed 

transcriptional profiles of zebrafish melanomas and normal melanocytes and identified gdf6b, an 

ortholog of the BMP factor GDF6. In addition to being recurrently amplified, gdf6b mRNA and 



protein were upregulated in zebrafish melanomas (Fig. 1C,D; Fig. S1A,B; Fig. S2). The second 

zebrafish ortholog of human GDF6, gdf6a, although not amplified, was among the most 

transcriptionally upregulated genes in melanomas.  Along with being recurrently amplified, 

human GDF6 was also transcriptionally upregulated in melanomas (Fig. S1C). Expression of 

GDF6 orthologs in melanomas was interesting as normal expression of these genes is limited to 

embryonic tissues. 

We next assessed how a gain or loss of GDF6 affected melanoma progression. In 

zebrafish, gdf6b expression in the melanocyte lineage accelerated melanoma onset as compared 

to controls (Fig. 1E). Accelerated onset was dependent on BRAFV600E and loss of p53, as 

expression of gdf6b in Tg(mitfa:BRAFV600E) transgene (n=33) or p53(lf) (n=24) backgrounds 

alone did not produce tumors. In human melanoma cells, GDF6 overexpression improved 

growth of cells in vitro and of xenografts, whereas GDF6 knockdown had the opposite effect 

(Fig. 1F,G; Fig. S3A-H). Collectively these data indicate that GDF6 acts as an oncogene via 

elevated expression. Acceleration of melanoma onset in zebrafish support a role in tumor 

initiation, and the ability of GDF6 to facilitate growth and tumorigenic potential of melanoma 

cells suggests a further role in melanoma maintenance. 

 Encoding BMP ligands, GDF6 genes are predicted to act through SMAD1/5/8 

transcription factors. Indeed, we found robust phospho-SMAD1/5/8 nuclear staining in zebrafish 

melanomas (Fig. 2A). Furthermore, transcriptome analyses of these melanomas indicated: a) 

robust upregulation of genes that support BMP signaling (Fig. S4A) and b) that GDF6 orthologs 

were the only BMP ligands upregulated (Figure S4B). In human melanoma cells, GDF6 

modulation positively regulated phospho-SMAD1/5/8 levels (Fig. 2B; Fig. S5A). GDF6 

knockdown also reduced phospho-SMAD1/5/8 binding genome-wide (Fig. 2C; Fig. S5B). 



Reduced binding to canonical BMP targets ID1 and ID3 was associated with a drop in their 

transcript levels (Fig. S5C,D). Inhibition of BMP signaling, either by SMAD1 knockdown or the 

use of the small-molecule inhibitor DMH1, impaired growth of melanoma cells in vitro and of 

xenografts, similar to GDF6 knockdown (Fig. S6A-H). In epistasis analyses, GDF6 knockdown 

or DMH1 treatment had less impact on melanoma cells expressing an activated, phosphomimetic 

variant of SMAD1, SMAD1DVD (5) (Fig. 2D; Fig. S5D & S7). Together these data indicate that 

GDF6 acts, at least in part, through SMAD1 and therefore, the SMAD1/5/8 axis in promoting 

melanoma growth. 

 Since GDF6 and SMAD1 promote tumorigenesis, we sought to identify genes that were 

commonly regulated by both. Based on our genetic epistasis results, we predicted that expression 

of important genes would change upon GDF6 knockdown but such changes would be reversed 

when GDF6 knockdown was rescued by SMAD1DVD. We used RNAseq to define this set of 

reciprocally regulated genes (Fig. 2E; Table S3), and pathway analysis showed enrichment of 

genes defining ossification and neural crest pathways (Fig. 2F). Melanocytes initially develop 

from the embryonic neural crest. Several genes regulated by GDF6 and SMAD1DVD – SOX10, 

SOX9, TFAP2B, FOXD3, SNAI2 - are neural crest ‘specifiers’, genes that are initially expressed 

broadly in the neural crest and help to maintain neural crest identity (Fig. 2G) (6). As 

development proceeds, SOX10 and SOX9 expression becomes restricted to trunk and cranial 

neural crest, respectively. Since GDF6 and SMAD1DVD upregulate SOX10 and downregulate 

SOX9, the pattern of gene regulation most closely resembles trunk neural crest tissue that gives 

rise to melanocytes and other non-mesenchymal cells. Adopting a neural crest-like identity can 

contribute to the aggressive nature of melanoma cells (7, 8), and we hypothesized that GDF6 

promotes a trunk neural crest identity to facilitate melanoma initiation and progression.  



 To examine this hypothesis mechanistically, we focused on transcriptional targets of 

BMP signaling. ChIPseq data suggested that GDF6 activates SMAD1/5/8 to directly regulate 

MITF, a key regulator of melanocyte development during embryogenesis (Fig. 2H).  In control 

melanoma cells, phospho-SMAD1/5/8 bound to the MITF locus, and this binding was reduced in 

GDF6 knockdown cells. Loss of phospho-SMAD1/5/8 binding was accompanied by 

upregulation of MITF and its target, the melanin biosynthesis gene TRP1 (Fig. 2I). Upregulation 

of MITF and TRP1 was less pronounced when GDF6 knockdown was performed in 

SMAD1DVD-expressing cells. Depending on cofactors involved, phospho-SMAD1/5/8 can 

promote transcription, as with ID1 and ID3, or repress transcription, as we propose for MITF (9). 

In melanomas MITF expression is tuned to a moderate level, allowing proliferation without 

triggering differentiation that would be accompanied by exit from the cell cycle (8, 10). 

Therefore, we speculate that GDF6 and BMP signaling promote tumor formation by preventing 

terminal differentiation induced by high levels of MITF. Consistent with this possibility, we 

found that zebrafish embryos treated with DMH1 at a time when gdf6a and gdf6b are expressed 

in the neural crest (11) had increased expression of mitfa and typr1b and a significant expansion 

of melanocytes (Fig. 2J; Fig. S8A). Conversely, injection of gdf6b RNA into zebrafish embryos 

reduced mitfa expression (Fig. S8B-D).  

Transcriptome data also indicated a role for GDF6 in regulation of apoptosis. 

Specifically, gene set enrichment analysis (GSEA) revealed that GDF6 expression negatively 

correlated with expression of apoptotic pathway genes in cells with GDF6 modulation as well as 

in patient samples (Fig. 3A,B; Fig. S9A). In functional analyses, GDF6 or SMAD1 knockdown 

caused elevated melanoma cell death, whereas GDF6 overexpression had a protective effect 

(Fig. 3C-E; Fig. S9B-F, S10). GDF6-overexpressing xenografts had a slightly increased Ki67 



proliferative index, suggesting that the reduction in cell death did not result from the failure to 

generate new cells with the potential to die (Fig. S9G). Finally, the cell death caused by loss of 

GDF6 was rescued upon SMAD1DVD expression (Fig. 3F; Fig. S11A-C). Together these data 

indicate that GDF6-dependent BMP signaling protects melanoma cells from death. 

To identify factors that aid in GDF6-dependent melanoma cell survival, we focused on 

reciprocally regulated neural crest genes SNAI2 and SOX9, which are known to regulate 

melanoma cell death (12, 13). Whereas SNAI2 was not involved (Fig. S12), SOX9 was an 

important target of GDF6-dependent pro-survival activity. Both in zebrafish embryos and human 

melanoma cells, GDF6 and the BMP pathway negatively regulated SOX9 expression (Fig. 3G; 

Fig. S13A-C). Epistasis analyses showed that SOX9 knockdown rescued the cell growth defects 

and cell death caused by GDF6 knockdown (Fig. 3H,I; Fig. S13D-G). These data indicate that 

GDF6 represses SOX9 expression, thereby inhibiting cell death and promoting tumor growth.  

We next assessed GDF6 protein expression in human melanomas and examined potential 

clinical implications. In our own patient cohort, high levels of GDF6 and nuclear phospho-

SMAD1/5/8 proteins were present in human melanomas; however, normal melanocytes of 

adjacent skin (Fig. 4A,B) or tumor-infiltrating cells (Fig. S14) rarely expressed either. To 

determine whether GDF6 expression correlated with melanoma patient clinical characteristics, 

we used a tissue microarray with 104 patient melanoma tissue cores (78 primary melanomas and 

26 metastatic melanomas). Consistent with the initial cohort, robust GDF6 expression was 

observed in 80% of these melanomas. Importantly, patients whose tumors at diagnosis expressed 

high amounts of GDF6 had a lower survival probability than did patients whose tumors 

expressed no or low GDF6 (Fig. 4C; Table S4). This association was driven primarily by patients 

in the primary melanoma cohort (Fig. S15), suggesting that GDF6 could be an early predictor of 



patient outcome. GDF6 promotes melanoma progression, and these immunohistochemistry data 

indicate that tumors expressing GDF6 are associated with a poorer prognosis.  

 In this study, we have discovered an indispensable role for GDF6 and BMP signaling in 

promoting a trunk neural crest identity in melanomas. Reawakening this identity endows 

melanoma cells with a suite of pro-tumorigenic features. Mechanistically, GDF6 acts via 

SMAD1/5/8-mediated BMP signaling to repress MITF, thereby blocking differentiation. As a 

part of this identity, GDF6 represses expression of the pro-apoptotic factor SOX9 (Model; Fig. 

4D). Our zebrafish embryo data and additional developmental studies in other systems (reviewed 

in (14)) suggest that normal embryonic activities of GDF6 are reawakened in melanomas to 

prevent differentiation and promote survival. Knockdown studies indicate that GDF6 inhibition 

slows tumor growth. As a secreted molecule, GDF6 inhibition could be accomplished in vivo by 

a variety of means, including cell-impermeable therapies. While great strides have been made in 

melanoma treatment through the use of targeted therapies and immune checkpoint inhibitors, a 

majority of patients with advanced disease still succumb within five years of diagnosis. Targets 

such as GDF6 represent excellent therapeutic opportunities to further treat this lethal disease. 
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Fig. 1. Identification of GDF6 as a melanoma oncogene 

(A) Circos plot displaying CNVs of zebrafish melanomas. –log10-transformed JISTIC Q-values 

(0.6 cut-off) are displayed as bold red (amplifications) and bold blue (deletions) lines. (B) 

Overlap of orthologous genes amplified in human and zebrafish melanomas from a total of 

10380 human-zebrafish orthologous gene pairs. (C) Genes significantly upregulated in zebrafish 

melanomas as compared to melanocytes are plotted in order of their fold change. (D) 

Immunostaining of Tg(mitfa:BRAF(V600E));p53(lf) zebrafish scales bearing melanoma cells or 

normal melanocytes. Scale bar, 10 µm. (E) Melanoma-free survival curves for 

Tg(mitfa:BRAF(V600E));p53(lf);mitfa(lf) zebrafish injected with miniCoopR-gdf6b or 

miniCoopR-EGFP. (F) Mouse xenograft assay with GDF6-overexpressing A375 cells. (G) 

Mouse xenograft assay with GDF6-knockdown A375 cells. Error bars indicate s.e.m.; n=3. Two-

tailed Student’s t-test, **P< 0.01, ***P< 0.001. 

 



 

 

 

 



Fig. 2. GDF6 acts via SMAD1 to induce a neural crest identity and inhibit differentiation in 

melanomas 

(A) Stained transverse sections of a Tg(mitfa:BRAF(V600E));p53(lf) zebrafish bearing an 

invasive melanoma in the dorsal musculature. Left, scale bar, 500 µm. Right, scale bar, 50 µm. 

T, tumor. N, normal. (B) Immunoblots of GDF6-knockdown A375 cells. (C) Aggregation plot of 

phospho-SMAD1/5/8 ChIPseq binding at annotated TSSs in GDF6-knockdown A375 cells. (D) 

Tumor formation in mice injected with A375-empty or A375-SMAD1DVD cells expressing 

shEGFP (left) or with GDF6 knockdown (right). (E) Genes differentially regulated upon GDF6 

knockdown (purple circle) and genes reciprocally regulated in SMAD1DVD-expressing cells 

upon GDF6 knockdown (green circle). (F) Pathway analysis with the 545 reciprocally regulated 

genes. (G) Heat map of neural crest genes identified in pathway analysis. (H) phospho-

SMAD1/5/8 ChIPseq reads across the MITF locus in GDF6-knockdown A375 cells. (I) qRT-

PCR of MITF (top) and TRP1 (bottom) in A375-empty or A375-SMAD1DVD cells with GDF6 

knockdown. Left brackets, expression is upregulated upon GDF6 knockdown. Right brackets, 

expression is less upregulated in SMAD1DVD-expressing cells upon GDF6 knockdown. (J) Top, 

epinephrine-treated zebrafish embryos at 5dpf incubated with DMSO vehicle control or 5µM 

DMH1. Scale bar: 500 µM. Bottom, melanocyte quantification.  Error bars indicate s.e.m.; n=3. 

Two-tailed Student’s t-test, ***P< 0.001. ns, not significant. 

  



 

 

 



Fig. 3. GDF6 and the BMP pathway repress SOX9 expression to enable melanoma cell 

survival  

(A) GSEA shows that expression of an apoptotic gene set (15) is negatively enriched in GDF6-

overexpression A375 cells. (B) GSEA shows that expression of an apoptotic gene set (15) is 

negatively enriched in high GDF6-expressing patient-derived melanomas (TCGA). (C) Caspase-

3/7 activity measured as relative luciferase units (RLU) in A375 cells upon GDF6 knockdown. 

(D) TUNEL staining of mouse xenografts of A375 cells upon GDF6 knockdown. Scale bar, 

25µm. (E) TUNEL staining of mouse xenografts of A375 cells upon GDF6 overexpression. 

Scale bar, 25µm. (F) TUNEL staining of mouse xenografts of A375 cells expressing 

SMAD1DVD upon GDF6 knockdown. Scale bar, 25µm. (G) Immunoblots of A375-empty or 

A375-SMAD1DVD cells with GDF6 knockdown. (H) Caspase-3/7 activity in A375-non-

silencing or A375-shSOX9 cells with GDF6 knockdown. (I) Mouse xenograft assay with A375-

non-silencing or A375-shSOX9 cells expressing shEGFP (left) or GDF6-targeted shRNAs 

(right). Error bars indicate s.e.m.; n=3 in C, H, I; n= 100 fields in D, E, F.  Two-tailed Student’s 

t-test, **P< 0.01, ***P< 0.001.  

  



 

 

 

 

 



Fig. 4. GDF6 expression is melanoma-specific and predicts patient outcome 

(A) Stained human melanoma and adjacent skin samples. Melanocytes are indicated 

(arrowheads). Scale bar, 25µm. Individual cells are shown below. Bottom, quantification of 

samples based on GDF6 expression. (B) phospho-SMAD1/5/8 immunostaining of the same 

sample cohort. (C) Top, quantification of tissue microarray sample cohort based on GDF6 

expression. Bottom, Kaplan-Meier analysis of patients with no or low versus high GDF6 

expression. (D) Model for GDF6 activation and function in melanomas. 
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Supplementary Materials 

Materials and Methods: 

Cell lines and cell culture 

A375, MeWo and HEK293T cells (ATCC) were maintained in Dulbecco’s Modified Eagle’s 

Medium (DMEM) and SK-MEL-28 cells (ATCC) were maintained in Roswell Park Memorial 

Institute (RPMI) 1640 media supplemented with 10% fetal bovine serum (FBS) and 2 µg/ml Pen 

Strep (Gibco) at 37°C and 5% CO2. Cells cultured at the same time were pooled, counted and 

then seeded in a 10cm dish. Wells/dishes were then subjected to treatment with lentiviral vectors. 

 

Lentiviral infection 

Lentiviral infections were performed as described previously (16). For stable gene knockdowns, 

we used pLKO-1 lentiviral vectors to deliver short hairpin sequences (shRNAs) (obtained from 

the RNAi Consortium (TRC)/Broad Institute through the UMMS RNAi core facility) specific for 

GDF6 (GDF6.1: TRCN0000141818, target sequence: GCCAAGTGTTACATTGAGCTT; 

GDF6.2: TRCN0000140097, target sequence: GTGTCCATGCTCTCAGACAAA) or SMAD1 

(SMAD1.1: TRCN0000021781, target sequence: CGGTTGCTTATGAGGAACCAA; 

SMAD1.2: TRCN0000021782, target sequence: GCCGATGGACACAAACATGAT) or EGFP 

(TRCN0000072181, target sequence: ACAACAGCCACAACGTCTATA). Virus was made 

using a second generation lentiviral packaging system in HEK293T cells and quantified using a 

p24 ELISA kit (Clontech). Cells were infected with virus at a multiplicity of infection of 2.5 with 

8 µg/ml polybrene followed by puromycin selection (2 µg/ml) for 2 days in appropriate media. 

For genetic epistasis experiments with SOX9, we used the pGIPZ lentiviral vectors (obtained 
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from Thermofisher Scientific through the UMMS RNAi core facility) to deliver shRNAs specific 

for SOX9 (V3LHS_396212, target sequence: AGTCGTACTGTGAGCGGGT) or used the non-

silencing control (target sequence: CTTACTCTCGCCCAAGCGAGAG) (17). A375 melanoma 

cells expressing an shRNA targeting GDF6 or EGFP were treated with virus delivering SOX9 or 

non-silencing shRNA. The viral dosage was determined such that 100% of the cells were EGFP-

positive and therefore contained the pGIPZ vector expressing either SOX9 or non-silencing 

shRNA. For transgene expression, we used Gateway cloning (Life Technologies) to insert the 

GDF6 or SNAI2 ORF (GE life sciences) or SMAD1DVD ORF (provided by Takenobu Katagiri) 

into the pLenti CMV Hygro DEST (w117-1) vector (provided by Paul Kaufman). Infection and 

monitoring was performed as described (16), except that selection was done with 300 ug/ml 

hygromycin for 10 days. 

 

Mouse xenografts 

All animal protocols were approved by the UMMS Institution Animal Care and Use Committee 

(A-2016, A-2171). Mice were randomly allocated to individual experimental groups. No 

blinding was done as animal groups were identified by tagging and cage labeling. Animals were 

excluded, according to pre-established criteria, if the tumor volume reached >1,000 mm3; if 

tumor size or location affected the mobility or general health of animal, the animal was 

euthanized and excluded from the experiment or the complete experiment was terminated.  

A375 cells stably expressing an EGFP or GDF6 or SMAD1 shRNA and/or empty vector or 

GDF6-expressing vector or SMAD1DVD-overexpressing vector were subcutaneously injected 

into the flanks of 6-8-week-old BALB/c nu/nu female mice (Taconic Farms) to produce 

orthotopic primary tumors. Primary tumor growth was monitored every 3 days with calipers, and 
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tumor volume was calculated as described previously (18). For GDF6 knockdown, SMAD1 

knockdown and epistasis experiments with SMAD1DVD overexpression, 1 x 107 live cells were 

injected. For GDF6 overexpression experiments and epistasis experiments with SOX9 

knockdown, 1 x 106 live cells were injected. For GDF6 overexpression and GDF6 knockdowns, 

a representative of two independent experiments (n=3 animals per experiment) is shown. For 

DMH1 drug experiments, 1 x 106 live A375 cells were subcutaneously injected in the flanks of 

BALB/c nu/nu female mice. Beginning on the day cells were injected, mice were injected 

intraperitoneally with vehicle (12.5% 2-hydroxypropyl-β-cyclodextrin) or 25 mg/kg DMH1 in 

vehicle every other day. This experiment was repeated twice and the weighted average of both 

experiments (n=8 animals total) is represented. 

 

Growth curve, clonogenic and soft agar assays 

For growth curves 50,000 live cells were seeded per well in a 6-well tissue culture plate on day 

0. The numbers of live cells were calculated every day using an automated cell counter 

(Nexcelom Bioscience Cellometer Auto T4) following standard procedures. All assays were 

performed with technical replicates. For clonogenic assays, 3,000 live cells were seeded in a 10 

cm tissue culture plate. After 3 weeks, colonies were fixed and stained using bromophenol blue 

in acetone. ImageJ was used to quantify the number of colonies. In assays with DMH1 treatment, 

control or DMH1-containing media was replaced every other day. For soft agar assays a 0.5% 

bottom layer  (1:1 with 1% agar and 2XDMEM with 20% FBS) and a 0.3% top layer (1:1 with 

0.6% agar and 2XDMEM with 20% FBS) were used. 3,000 live cells per well of a 6-well tissue 

culture plate were added in the top layer. Media was added initially then replaced every 3 days. 

After 3 weeks, colonies were stained with nitroblue tetrazolium chloride overnight at 37°C. Once 
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stained, individual wells were photographed, and ImageJ was used to count the number of 

colonies. All these assays were done in triplicate, and experiments were repeated at least twice. 

 

Cell death assays 

A375 melanoma cells after stable knockdown and/or overexpression were stained for Annexin V 

and 7-AAD (BD Pharmingen PR Annexin V Apoptosis Detection kit) as per manufacturer’s 

instructions, followed by flow cytometry using a FACSCalibur instrument (BD Biosciences). 

Caspase3/7 activity was measured using the Caspase-Glo 3/7 assay (Promega) as per 

manufacturer’s instructions.  

 

miniCoopR assay 

The miniCoopR assay measuring the effect of gdf6b on melanoma onset in zebrafish was 

performed as previously described (16). For miniCoopR-EGFP experiments a weighted average 

of two independent experiments is represented, and for miniCoopR-gdf6b experiments a 

weighted average of four independent experiments is represented. 

 

Zebrafish drug experiments 

Wild-type zebrafish embryos were collected and plated at a density of 50 embryos per 10cm 

tissue culture plate. At 10 hours post fertilization (hpf), embryos were dechorionated with 

pronase (400 ug/ml), rinsed 5 times with E3 water, and transferred to an agarose-bedded 6-well 

tissue culture plate at a density of 10 embryos per well. 5µM DMH1 or DMSO vehicle was 

immediately added to these wells. At 24hpf, drug was removed, embryos were rinsed 5 times 
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with E3 water and allowed to grow in the incubator. At 5 days post fertilization, embryos were 

treated with epinephrine (1mg/ml) in E3 water to contract melanosomes and were mounted on 

slides with 3% methylcellulose. Using a light microscope, the embryos were imaged and the 

number of dorsal melanocytes counted.  

 

Zebrafish gdf6b RNA injections  

Wild-type or Tg(BRE:mRFP) zebrafish embryos (19) were injected with 10 pg of gdf6b RNA 

(synthesized using the mMESSAGE mMACHINE SP6 Transcription Kit (Thermofisher)) in 1nl 

per embryo. For controls, embryos were mock injected with 1nl of distilled water. BMP pathway 

activity was monitored in Tg(BRE:mRFP) embryos with a fluorescent microscope at the 20 

somite stage (20 hpf). 

 

cDNA synthesis and qRT-PCR 

For adult zebrafish, total RNA was extracted from melanoma cells and from normal scale-

associated melanocytes of Tg(mitfa:BRAF(V600E));  p53(lf); alb(lf); Tg(mitfa:EGFP) zebrafish. 

For isolation of melanoma cells, melanomas were dissected, dissociated using Liberase TH 

treatment and subjected to fluorescence activated cell sorting (FACS) to isolate EGFP-positive 

cells. The same protocol was used for normal melanocytes, except dorsal scales from zebrafish 

were plucked to isolate melanocytes. Total RNA from zebrafish melanomas and melanocytes 

was isolated using Trizol-chloroform extraction, followed by RNA clean up (Qiagen RNeasy). 

Total RNA was reverse transcribed using the Superscript 2 Reverse Transcriptase kit 

(Invitrogen).  qRT-PCR with SYBR green master mix (Biorad) was performed using the 
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following primers: gdf6a F: CTGAGAAACTGGGGCTCAAT, gdf6a R: 

CGACCAGCTCCTCTTTGTCT, gdf6b F: CGTCTAAAGCAGCAAACACC, gdf6b R: 

CCAAAGTGGAGAGTTCAAATGG, actb1 F: CGAGCAGGAGATGGGAACC, actb1 R: 

CAACGGAAACGCTCATTGC. For zebrafish embryos, drug treatment or RNA injections were 

performed as previously mentioned, except, for drug experiments 10µM DMH1 was used and 

total RNA was isolated at 20 hpf in the same manner. qRT-PCR was performed using the 

following primers: mitfa F: CTGGACCATGTGGCAAGTTT, mitfa R: 

GAGGTTGTGGTTGTCCTTCT, tyrp1b F: CGACAACCTGGGATACACCT, tyrp1b R: 

AACCAGCACCACTGCAACTA, sox9b F: TGACGAGTTGTTCTCCAGAG, sox9b R: 

AGGCCACACGTCTATAACCC. 

For A375 human melanoma cells with GDF6 and/or SMAD1DVD modulation, total RNA was 

prepared in the same manner, and qRT-PCR was performed using the following primers: ID1 F: 

CCAACGCGCCTCGCCGGATC, ID1 R: CTCCTCGCCAGTGCCTCAG, ID3 F: 

CTGGACGACATGAACCACTG, ID3 R: GTAGTCGATGACGCGCTGTA, SNAI2 F: 

TGTTGCAGTGAGGGCAAGAA, SNAI2 R: GACCCTGGTTGCTTCAAGGA, SOX9 F: 

GTACCCGCACTTGCACAAC, SOX9 R: TCTCGCTCTCGTTCAGAAGTC, MITF F: 

AAACCCCACCAAGTACCACA, MITF R: ACATGGCAAGCTCAGGAC, TRP1 F: 

GTAACAGCACCGAGGATGG, TRP1 R: TCCAAGCACTGAGCGACAT, GAPDH F: 

TGCACCACCAACTGCTTAGC, GAPDH R: GGCATGGACTGTGGTCATGAG. 

 

Antibody production 

Antibodies recognizing Gdf6b were generated by injecting a glutathione S-transferase-tagged 

gdf6b, GST-gdf6b, into two guinea pigs. Antibodies were validated by comparing reactivity of 
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pre- and post-immune sera to bacterially-expressed GST-gdf6b. Results from one of the 

antibodies are shown. 

 

Immunofluorescence 

For adults, dorsal scales bearing normal melanocytes or melanomas were plucked from 

anesthetized zebrafish. After fixation, scales were bleached of melanin pigment to visualize 

fluorescence after staining. Scales were incubated with primary antibody (Gdf6b (1:250), Mitfa 

(1:250)) overnight. Subsequently the scales were washed, incubated in appropriate secondary 

antibodies (Jackson Labs), incubated with DAPI, mounted on slides with Vectashield 

(Vectorlabs), and visualized using confocal fluorescence microscopy.  

 

Immunoblotting 

Protein extracts were separated on 12% SDS-PAGE gels. Blots were probed with primary 

antibodies (GDF6 (Sigma PRS4691; 1:1000), phospho-SMAD1/5/8 (Cell Signaling 13820; 

1:1000), SMAD1 (Cell Signaling 9743; 1:500), Total SMAD1/5/8 (Santa Cruz sc-6031-R; 

1:1000), FLAG (Sigma F3165, 1:2000), SOX9 (Cell Signaling 82630S; 1:1000), GAPDH 

(Abcam 8245; 1:2000)) overnight at 4°C, washed five times in TBS plus 0.1% Tween (TBST) 

and then incubated with the appropriate HRP-conjugated secondary antibody (Jackson Labs) for 

1 hour at room temperature. Membranes were washed five times in TBST and visualized on 

autoradiography film after incubating with ECL reagent (Supersignal West Pico or Supersignal 

West Femto; Thermo Scientific). 
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Immunohistochemistry (IHC) and TUNEL staining 

From mouse xenografts, formalin-fixed, paraffin-embedded tissues were processed to obtain 

5µm sections. Sections were stained with H&E, cleaved Caspase-3 (Cell signaling 9664; 1:100), 

Ki-67 (Dako M7240; 1:100) and evaluated. TUNEL staining was performed on sections using 

the In Situ Cell Death Detection kit (Roche) as per manufacturer’s protocol. The numbers of 

TUNEL-positive or cleaved Caspase-3-positive or Ki67-positive cells were counted manually 

and the total number of cells in each field was calculated using ImageJ software. 

Individual patient melanoma and tissue microarray cores consisted of 5 µm sections of formalin-

fixed, paraffin-embedded tissues. Slides were first deparaffinized with two changes of xylene, 

and rehydrated with changes of decreasing concentrations of alcohols, then rinsed in distilled 

water. Antigen retrieval was carried out with 0.01M citrate buffer at pH 6.0, or 0.001M EDTA at 

pH 8.0.  Slides were heated in a 770W microwave oven for 14 minutes, cooled to room 

temperature, and rinsed in distilled water. The sections were first blocked for endogenous non-

specific protein and peroxidase activity with an application of Dual Endogenous Block (Dako) 

for 10 minutes, followed by a buffer wash, followed by staining with antibodies recognizing 

GDF6 (Sigma PRS4691; 1:1000) and phospho-SMAD1/5/8 (Cell signaling 9664; 1:100) for 30 

minutes. Staining with a second antibody recognizing GDF6 (Sigma HPA045206; 1:100) yielded 

concordant results. For negative controls, non-immune immunoglobulin G (a cocktail of Mouse 

Whole IgG and Rabbit Whole IgG (Pierce antibodies 31204 and 31207, respectively; both 

1ug/ml)) staining was used. Following a buffer wash, sections were incubated with the 

EnVision+ Dual Link (Dako) detection reagent for 30 minutes. The sections were washed, and 

treated with a solution of diaminobenzidine and hydrogen peroxide (Dako) for 10 minutes, to 

produce the visible brown pigment.  After rinsing, a toning solution (DAB Enhancer, Dako) was 
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used for 2 minutes to enrich the final color. The sections were counterstained with hematoxylin, 

dehydrated, and coverslipped with permanent mounting media. Positive signal was defined as 

dark brown staining. Scant, or fine granular background staining, or no staining was considered 

negative.  

Zebrafish formalin-fixed, 5mM EDTA treated, paraffin-embedded tissues were processed to 

obtain 5µm transverse sections. Sections were stained as mentioned above with phospho-

SMAD1/5/8 (Cell Signaling 9511; 1:150) and also counterstained with hematoxylin, dehydrated, 

and coverslipped with permanent mounting media.  

IHC scoring 

For both the UMass patient cohort and the tissue microarray, a modified visual semi-quantitative 

method was used. Sections were scored for immunointensity (0-4) and immunopositivity (0-3), 

which were then multiplied. For the UMMS patient cohort, scoring was done by C.J.C. and 

A.M.V., and the scores were averaged. Scores were verified by A.D. For the tissue microarray 

cohort, scoring was conducted independently by C.L. and C.B.F.G. and the scores were 

averaged. Sections with scores less than or equal to four were binned into the low or no staining 

group and sections with scores greater than four were binned into the high staining group.  

Gene set enrichment analysis (GSEA) and pathway analysis 

For GSEA, the enrichment score (ES), normalized enrichment score (NES) and familywise error 

rate (FWER) were calculated based on a running metric, which increased when a gene (vertical 

line in the graphical representation) in the gene set was encountered and decreased when one was 
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not. For GSEA of the apoptotic pathway gene signature (15), a rank-ordered gene list was made 

with FPKM values from GDF6-overexpressing A375 melanoma cells as compared to empty 

vector control cells or A375 cells expressing an shRNA targeting EGFP as compared to GDF6.1 

shRNA-expressing cells. Default parameters of GSEA were used and the Student’s t-test was 

used to calculate significance. For GSEA based on TCGA samples, a rank-ordered gene list was 

derived from the expression profiles of 385 melanoma samples, using GDF6 expression level as 

a continuous variable. Default parameters of GSEA were used, and Pearson correlation was used 

to calculate significance. Pathway analysis was performed using the WEB-based Gene SeT 

AnaLysis Toolkit (WebGestalt) (20, 21). Default parameters were used, except the minimum 

number of genes for a category was set to 10 and an adjusted P-value cut-off of 0.01 was used. 

 

Chromatin immunoprecipitation (ChIP) sequencing and analysis 

ChIP was performed using the Simple ChIP Plus Enzymatic Chromatin IP kit as per 

manufacturer’s instructions (Cell Signaling 9001) with the phospho-SMAD1/5/8 antibody (Cell 

Signaling 11971; 1:100). ChIP-DNA from A375 melanoma cells expressing an shRNA targeting 

GDF6, GDF6.1 or EGFP or a 2% input control was used for library preparation using the 

TruSeq ChIP Library Prep Kit for ChIP-Seq (Illumina). Fastq files were aligned to the human 

reference genome (ENSEMBL GRCH37) by Bowtie (version 1.0.0) (22) allowing uniquely 

mapped reads and removing PCR duplicates. For aggregation plotting, aligned reads were 

processed in HOMER (23) using annotatePeaks to bin the regions of interest in 20-bp windows 

resulting in average enrichment with normalized reads for all genes. MACS2 (version 

2.1.1.20160226) (24) was used for peak calling. Peaks with a false discovery cutoff of 1% were 

used. The alignment files were converted to bedGraph files and loaded as custom tracks in the 
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UCSC genome browser to visualize regions of interest. ChIPpeakAnno (version 3.5.12) (25) was 

used to visualize and compare the overlapping pSMAD1/5/8 peaks for genes bound by 

pSMAD1/5/8 in wild-type and GDF6 knockdown A375 cells. The P-value was calculated using 

the Kolmogorov-Smirnov tests after summing TSS-proximal reads for each gene (n=49,344 

TSSs). 

 

aCGH probe design 

We custom designed the G3 array format of 2x400K probes for the Zebrafish ZV9 genome 

assembly using Agilent’s eArray (eArray ID 036041). The array has 398426 unique probes 

covering 97% of the zebrafish genome (based on Zv9 assembly). The probes are 60 bases long 

and are spaced across the genome with an average separation of 3550 bases.  

 

aCGH, JISTIC analysis and comparative analysis 

aCGH was performed as per Agilent’s array-based genomic DNA hybridization protocol. 

Briefly, genomic DNA was extracted from zebrafish melanomas or a normal region of the same 

fish using the Qiagen DNeasy Blood and Tissue kit. 5 µg of tumor or matched normal gDNA 

was fragmented to 200-500bp by sonication (Covaris S220R High Performance Sample 

Preparation Ultrasonicator System 220x S), labeled in a random-primed reaction using Cy5-

dCTP or Cy3-dCTP, respectively, and hybridized in Agilent’s hybridization buffer with Cot1 

DNA (1mg/ml) at 65°C overnight. Arrays were then washed, and Cy5 and Cy3 signals were 

measured using an Agilent G2565 Microarray Scanner. Raw data was generated from scanned 

images with the Agilent Feature Extraction software (v10.7). Raw values were normalized using 
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the Agilent Genomic workbench and copy number alterations were detected. The JISTIC 

algorithm was used in limited peel-off mode to calculate significantly altered regions, and peak 

calling was done using a q-value cut-off of 0.25. Gene-based JISTIC G-scores and –log10 

transformed q-values are represented using the Circos package (26). For representation of data, 

the G-score scale for amplifications was 0 (minimum) and 1550 (maximum), and for deletions it 

was 0 (minimum) and 2150 (maximum). The -log10-transformed q-value scale for both 

amplifications and deletions was 0 (minimum) and 11 (maximum). In Fig. 1A, dotted circles 

represent -log10-transformed q-value of 0 (center) and 11 (outer: amplification and inner: 

deletion). For human melanomas, copy number data was downloaded from Tumorscape (3, 4), 

and JISTIC analysis was conducted as described above. Genes from within peaks were pooled to 

define species-specific sets of recurrently amplified genes. Human orthologs of zebrafish genes 

were determined using Ensembl (27, 28) and supplemented by performing BLAST (29). 

Recurrently amplified zebrafish and human genes, as determined by JISTIC, were compared to 

find the overlapping set of commonly amplified genes.  

 

cDNA amplification and microarray analysis 

Total RNA was extracted and prepared from melanoma cells and from normal scale-associated 

melanocytes of Tg(mitfa:BRAF(V600E));  p53(lf); alb(lf); Tg(mitfa:EGFP) zebrafish as described 

above. Total RNA was amplified using the Nugen Ovation RNA Amplification system V2 as per 

manufacturer’s protocol. For microarrays, amplified cDNA was hybridized to a 385K microarray 

(NimbleGen 0711105Zv7EXPR) as per manufacturer’s protocol. Briefly, amplified cDNA from 

melanomas and melanocytes were labeled with Cy3 independently, hybridized to the microarray, 
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washed and scanned with a GenePix 4000B Scanner. Images were analyzed and normalized 

using NimbleScan software, and differentially expressed genes were identified.  

Massively parallel RNA sequencing 

For zebrafish melanomas and melanocytes, total RNA was isolated as described above and 

libraries were prepared using the TrueSeq Stranded mRNA Library Prep Kit as per 

manufacturer’s protocol (Illumina). FASTQ files were analyzed using FASTQC v0.10.1(30) to 

ensure uniform read quality (phred>30). Paired-end reads were aligned to the zebrafish genome 

using STAR v2.3 (31) (Zv9). The mapped reads were counted using htseq-count (v0.6.0, 

parameters –t exon) (32) and gene models from the Ensembl transcriptome (27). Analyses of 

differential gene expression were performed using DESeq2 (33). Orthology to human genes was 

determined using Ensembl (27, 28) and supplemented by performing BLAST (29). The heatmap 

of BMP pathway genes (REACTOME_SIGNALING_BY_BMP; MSigDB (Broad Institute)) 

was created using human orthologs of differentially expressed BMP pathway genes. The fish 

orthologs of human genes represented are SMAD5=smad5, SMAD4=si:dkey-239n17.4, 

ACVR2A=acvr2a, ACVR2B=acvr2b, BMPR1A=bmpr1aa, FSTL1=fstl1b, SMAD7=smad7, 

BMPR2=bmpr2a, SMURF2=smurf2, SMAD6=smad6b, ZFYVE16=zfyve16, SKI=skib, 

GREM2=grem2, SMURF1=smurf1, UBE2D1=ube2d1, CER1=dand5, NOG=nog, BMP2=bmp2b, 

BMPR1B=bmpr1bb. For A375 human melanoma cells with GDF6 and/or SMAD1DVD 

modulation, total RNA was isolated and libraries prepared as described above. Prepared libraries 

were sequenced using Illumina Hiseq technology (NY Genome Center). FASTQC v0.10.1 (30) 

was used on the FASTQ sequences for the A375 samples to generate sequence quality reports. 

Data were analyzed using two different bioinformatics pipelines. In the first pipeline, reads were 

aligned to the human reference genome (Ensembl GRCh37) using Bowtie2 (v 2-2.1.0) (34) and 
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Tophat2 (v 2.0.9) (35). Samtools (v 0.0.19) (36) and IGV (v 2.3.60) (37) were used for indexing 

the alignment files and viewing the aligned reads, respectively. Gene expression was quantitated 

as fragments per kilobase of exon model per million mapped fragments (FPKM) using Cufflinks 

(v 2.2.0) (38). Differentially-expressed genes were identified using the Cufflinks tools 

(Cuffmerge and Cuffdiff). cummeRbund (v 2.4.1) (38) was used to assess replicate concordance. 

In the second pipeline, reads were mapped against the human reference genome (Ensembl 

GRCh37) using the aligner STAR (v 2.4.2a), and gene level counts of uniquely mapped reads 

were obtained using htseq-count (v 0.6.1) (32). Differential expression analysis was performed 

using DESeq2 (39) for each pairwise condition using a p-adj threshold of 0.05. The FPKM-based 

method and the counts-based method generated concordant results. Analyses using the FPKM-

based method have been represented in results.  

 

Human melanocyte and melanoma transcriptome analysis 

Three hundred and eighty-five human RNA-seq samples were downloaded from the Cancer 

Genomics Hub (CGHub) (https://cghub.ucsc.edu) using GeneTorrent (v 3.8.5a) (40). The 

RNAseq TCGA dataset is comprised of three sample types: 302 metastatic melanoma samples, 

82 primary melanomas, and 1 solid tissue normal (41). For the normal melanocyte datasets, two 

RNAseq samples were downloaded from the Short Read Archive (SRA) 

(https://www.ncbi.nlm.nih.gov/sra/; accession codes: SRR522118, SRR522119)(42) and two 

from the ENCODE project (https://www.encodeproject.org/; experiment: ENCSR000CUQ) (43). 

The datasets downloaded from TCGA, SRA and ENCODE were aligned to the human reference 

genome (Ensembl GRCh37) and analyzed using the FPKM-based method described above. 
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Fig. S1. GDF6 orthologs are amplified and upregulated in human and zebrafish 

melanomas 

(A) Left, heat map showing copy number of the human GDF6 locus across 111 human 

melanomas. Right, heatmap showing copy number of the zebrafish gdf6b locus across 38 

zebrafish melanomas. Red indicates amplification, blue indicates deletion. (B) Log2-transformed 

fold change of gdf6a and gdf6b expression in zebrafish melanomas as compared to melanocytes 

as determined by qRT-PCR. (C) GDF6 transcript FPKM values of normal human melanocytes 

and melanomas. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 18 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 19 

Fig. S2. Specificity of zebrafish Gdf6b and Mitfa antibodies 

(A) Immunoblots with recombinant GST-Gdf6b-expressing bacterial cell lysate using Gdf6b 

antibody (left) and pre-immune serum (right). The GST-Gdf6b molecular weight is predicted to 

be 73 kD. (B) Left, Immunostaining with Mitfa antibody in wild-type AB zebrafish embryos. 

Right, Immunostaining with Mitfa antibody in mitfa(lf) zebrafish embryos. Mitfa (top), DAPI 

(bottom). Scale bars, 100 uM. 
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Fig. S3. GDF6 modulation affects melanoma cell growth 

(A) Immunoblots showing expression of GDF6 and GAPDH in A375 melanoma cells 

overexpressing GDF6 or empty vector control. (B) Soft agar assay with A375 cells 

overexpressing GDF6 or empty vector control. Growth in culture and colony formation were not 

affected by GDF6 overexpression (data not shown). (C) Immunoblots showing expression of 

GDF6 and GAPDH in A375 melanoma cells expressing an shRNA targeting EGFP or two 

independent GDF6-targeted shRNAs. (D) Growth curves of A375 cells expressing shEGFP, 

shGDF6.1 or shGDF6.2. (E) Colony formation assay with A375 cells expressing an shRNA 

targeting EGFP or two independent GDF6-targeted shRNAs. (F) Immunoblots of GDF6 and 

GAPDH in SK-MEL-28 melanoma cells (top) and MeWo melanoma cells (bottom) expressing 

shEGFP or shGDF6.2. (G) Colony formation assay with SK-MEL-28 melanoma cells (left) and 

MeWo melanoma cells (right) expressing shEGFP or shGDF6.2. (H) GDF6 staining of mouse 

xenografts of A375 cells showing elevated levels of GDF6 in GDF6-overexpressing xenografts 

compared to controls. Scale bars, 50 µm. Error bars indicate s.e.m.; n=3. Two-tailed Student’s t-

test,  *P< 0.05, **P< 0.01, ***P< 0.001.
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Fig. S4. Expression of BMP pathway components in zebrafish melanomas and melanocytes 

(A) Heat map of gene expression of BMP pathway genes (Reactome gene set) in zebrafish 

melanomas compared to melanocytes. (B) log2-transformed fold change of gene expression in 

zebrafish melanomas as compared to melanocytes (y-axis). BMP ligands (p-value<0.05) in 

microarray analysis (left) and RNAseq analysis (right). 
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Fig. S5. GDF6 knockdown abrogates phospho-SMAD1/5/8 DNA binding in A375 

melanoma cells 

(A) Immunoblots of GDF6-overexpressing A375 cells. (B) Comparison of ChIPseq maps of 

phospho-SMAD1/5/8 binding in control and GDF6-depeleted cells. The heat map extends from -

2kb to +2kb from the context of each bound region, with each row representing a unique bound 

region and enrichment denoted in red. The heat map is sorted based on phsopho-SMAD1/5/8 

binding in control cells. (C) phospho-SMAD1/5/8 binding to the ID1 locus (left) and ID3 locus 

(right) in A375 melanoma cells expressing shEGFP or shGDF6.1. (D) qRT-PCR showing 

expression of ID1 (left) and ID3 (right) in A375-empty or A375-SMAD1DVD cells expressing an 

shRNA targeting EGFP or two independent GDF6-targeted shRNAs. Left two brackets, ID gene 

expression is downregulated upon GDF6 knockdown. Right two brackets, downregulation of ID 

gene expression is reversed in SMAD1DVD-expressing cells upon GDF6 knockdown. Error bars 

indicate s.e.m.; n=3. Two-tailed Student’s t-test, ***P< 0.001. 
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Fig. S6. Inhibition of BMP signaling affects A375 melanoma cell growth 

(A) Immunoblots of A375 melanoma cells expressing shEGFP, shSMAD1.1 or shSMAD1.2. (B) 

Growth curves of A375 cells expressing shEGFP, shSMAD1.1 or shSMAD1.2. (C) Colony 

formation assay with A375 cells expressing shEGFP, shSMAD1.1 or shSMAD1.2. (D) Tumor 

formation in mice injected with A375 cells expressing shEGFP or shSMAD1.2. (E) Immunoblots 

showing expression of phospho-SMAD1/5/8 and total SMAD1/5/8 in A375 melanoma cells after 

treatment with 0.1% DMSO (vehicle) or 10µM DMH1 in 0.1% DMSO. (F) Growth curves of 

A375 cells treated with 0.1% DMSO (vehicle) or 10µM DMH1 in 0.1% DMSO. (G) Colony 

formation assay with A375 cells treated with 0.1% DMSO (vehicle) or 10µM DMH1 in 0.1% 

DMSO. (H) Tumor formation in mice injected with A375 cells treated with vehicle control or 25 

mg/kg DMH1 every other day. Error bars indicate s.e.m.; n=3 in B, C, D, F, G; n=8 in H. Two-

tailed Student’s t-test, **P< 0.01, ***P< 0.001.	
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Fig. S7. A375 cell growth defects caused by GDF6 knockdown or DMH1 treatment are 

rescued by SMAD1DVD expression 

(A) Immunoblots of A375 cells overexpressing Flag-tagged SMAD1DVD. (B) Colony formation 

assay with A375-EMPTY (top) or A375-SMAD1DVD (bottom) cells expressing shEGFP, 

shGDF6.1 or shGDF6.2. (C) Colony formation assay with A375-empty or A375-SMAD1DVD 

cells treated with 0.1% DMSO (vehicle) or 10µM DMH1 in 0.1% DMSO. Error bars indicate 

s.e.m.; n=3. Two-tailed Student’s t-test, **P< 0.01, ***P< 0.001. 
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Fig. S8. gdf6 ortholog and BMP pathway modulation affects expression of melanocyte 

lineage genes 

(A) qRT-PCR showing expression of mitfa (left) and tyrp1b (right) in 20 somite-stage zebrafish 

embryos treated with DMSO vehicle control or 10µM DMH1. (B) qRT-PCR showing expression 

of mitfa in gdf6b RNA or mock-injected 20 somite-stage zebrafish embryos. (C) qRT-PCR 

validating that elevated levels of gdf6b RNA are present in 20 somite-stage zebrafish embryos 

injected with gdf6b RNA. (D) BMP pathway activity, as measured by the Tg(BRE:mRFP) 

reporter, is elevated in 20 somite-stage gdf6b RNA-injected zebrafish embryos. Error bars 

indicate s.e.m.; n=3. Two-tailed Student’s t-test, **P< 0.01, ***P< 0.001.  
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Fig. S9. GDF6 modulation affects melanoma cell survival 

(A) GSEA shows that expression of an apoptotic gene set (15) is positively enriched in GDF6-

knockdown A375 cells  (B) Flow cytometry analysis of annexinV-positivity of A375 cells 

expressing an shRNA targeting EGFP or two independent GDF6-targeted shRNAs. (C) 

Caspase-3/7 activity measured as relative luciferase units (RLU; Caspase-Glo assay) in SK-

MEL-28 cells (left) and MeWo cells (right) expressing an shRNA expressing shEGFP or 

shGDF6.2. (D) Flow cytometry analysis of annexinV-positivity of SK-MEL-28 cells (left) and 

MeWo cells (right) expressing an shRNA expressing shEGFP or shGDF6.2. (E) Cleaved 

Caspase-3 staining of mouse xenografts of A375 cells expressing shEGFP (top) or shGDF6.1 

(bottom). Scale bar, 25µm. (F) Cleaved Caspase-3 staining of mouse xenografts of A375 cells 

overexpressing empty vector (top) or GDF6 (bottom). Scale bars, 25µm. (G) Ki67 staining of 

mouse xenografts of A375 cells overexpressing GDF6 or empty vector control. Scale bar, 

25µm.; Error bars indicate s.e.m.; n=3 in B, C, D; n=100 fields in E, F, G. Two-tailed Student’s 

t-test, *P< 0.05, **P< 0.01, ***P< 0.001. 
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Fig. S10. SMAD1 knockdown induces apoptotic cell death in A375 melanoma cells 

(A) Caspase-3/7 activity measured as relative luciferase units (RLU; caspase-glo assay) in A375 

cells expressing an shRNA targeting EGFP or two independent SMAD1-targeted shRNAs. (B) 

Flow cytometry analysis of annexinV-positivity of A375 cells expressing an shRNA targeting 

EGFP or two independent SMAD1-targeted shRNAs. (C) TUNEL staining of mouse xenografts 

of A375 cells expressing shEGFP (top) or shSMAD1.2 (bottom). Scale bar, 25µm. (D) Cleaved 

Caspase-3 staining of mouse xenografts of A375 cells expressing shEGFP (top) or shSMAD1.2 

(bottom). Scale bar, 25µm. Error bars indicate s.e.m.; n=3 in A, B; n=100 fields in C, D. Two-

tailed Student’s t-test, **P< 0.01, ***P< 0.001. 
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Fig. S11. A375 melanoma cell death caused by GDF6 knockdown is rescued by 

SMAD1DVD expression 

(A) Caspase-3/7 activity measured as relative luciferase units (RLU; caspase-glo assay) in A375-

empty or A375-SMAD1DVD cells expressing shEGFP or shGDF6.1. (B) Flow cytometry 

analysis of annexinV-positivity of A375-empty or A375-SMAD1DVD cells expressing shEGFP 

or shGDF6.1. (C) Cleaved Caspase-3 staining of mouse xenografts of A375-empty or A375-

SMAD1DVD cells expressing shEGFP or shGDF6.1. Scale bar, 25µm. Error bars indicate s.e.m.; 

n=3 in A, B; n=100 fields in C. Two-tailed Student’s t-test, **P< 0.01, ***P< 0.001.	
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Fig. S12.  SNAI2 expression does not rescue the A375 melanoma cell growth defects and 

death caused by GDF6 knockdown  

(A) qRT-PCR showing expression of SNAI2 in A375-empty or A375-SNAI2 cells expressing 

shEGFP or shGDF6.1. Left bracket, SNAI2 expression is downregulated upon GDF6 

knockdown. Right bracket, SNAI2 overexpression in GDF6 knockdown cells. (B) Colony 

formation assay of A375-empty (top) or A375-SNAI2 (bottom) cells expressing an shRNA 

targeting EGFP or two independent GDF6-targeted shRNAs. (C) Caspase-3/7 activity measured 

as relative luciferase units (RLU; caspase-glo assay) in A375-empty or A375-SNAI2 cells 

expressing shEGFP or shGDF6.1. (D) Flow cytometry analysis of annexinV-positivity of A375-

empty or A375-SNAI2 cells expressing shEGFP or shGDF6.1. Error bars indicate s.e.m.; n=3. 

Two-tailed Student’s t-test, ***P< 0.001. ns, not significant. 
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S13. GDF6 and BMP signaling act via SOX9 repression to aid in melanoma cell survival 

(A) qRT-PCR showing expression of sox9b in gdf6b RNA or mock-injected zebrafish embryos. 

(B) qRT-PCR showing expression of sox9b in zebrafish embryos treated with DMSO vehicle 

control or 10µM DMH1. (C) qRT-PCR of SOX9 in A375-empty or A375-SMAD1DVD cells 

with GDF6 knockdown. Left bracket, SOX9 expression is upregulated upon GDF6 knockdown. 

Right bracket, SOX9 expression is less upregulated in SMAD1DVD-expressing cells upon GDF6 

knockdown. (D) qRT-PCR showing expression of SOX9 in A375-non-silencing or A375-

shSOX9 cells with GDF6 knockdown. Left bracket, SOX9 expression is upregulated upon GDF6 

knockdown. Right bracket, knockdown of SOX9 expression in GDF6 knockdown cells. (E) 

Immunoblots showing expression of SOX9 and GAPDH in of A375-non-silencing or A375-

shSOX9 cells expressing shEGFP or shGDF6.1. (F) Colony formation assay with A375-non-

silencing (top) or A375-shSOX9 (bottom) cells expressing an shRNA targeting EGFP or two 

independent GDF6-targeted shRNAs. (G) Flow cytometry analysis of annexinV-positivity of 

A375-non-silencing or A375-shSOX9 cells expressing shEGFP or shGDF6.1. Error bars indicate 

s.e.m.; n=3. Two-tailed Student’s t-test, ***P< 0.001. NS, non-silencing 
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Fig. S14. GDF6 and phospho-SMAD1/5/8 expression in a patient melanoma section 

Sections of a metastatic human melanoma with tumor-infiltrating lymphocytes (TIL). Top, 

hematoxylin and eosin staining. Middle, GDF6 staining. Bottom, phospho-SMAD1/5/8 staining. 

Left, low magnification. Scale bar, 50 µm. Center, melanoma region, and, right, TIL region. 

Scale bar, 25 µm. 
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Fig. S15. Correlation of GDF6 expression with melanoma patient survival 

Kaplan-Meier analysis showing overall survival of patients with primary melanomas (left) and 

metastatic melanomas (right) that have no or low GDF6 expression (blue line) versus high GDF6 

expression (red line). 
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