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1. Introduction 

The US Department of Defense (DOD) envisions the use of autonomy (independent 
robotic systems) in dynamic and complex operational environments where there 
are substantial constraints on communications, sensing capability, and local 
processing, and many instances of autonomous systems exist that function very 
well in highly constrained situations and environments. Foreseeable future 
autonomy still will not have the ability to independently function in these scenarios. 
Therefore, to bridge this gap, we will need to rely on heterogeneous human–
autonomy systems for the effective integration of autonomy (e.g., the highly 
networked Soldier Future Squad with its accompanying few small robotic systems). 
This report describes fundamental research into the issues underlying the control of 
such heterogeneous systems and aims to lay the groundwork for the development 
of generalizable methodologies for the effective integration of heterogeneous 
agents in dynamic, information-variable environments. 

As various autonomies are proliferating across numerous DOD missions,  
human–autonomy integration is still largely implemented through hierarchical 
schemes that maintain the human as the ultimate decision authority. These 
frameworks in which humans must constantly monitor autonomous systems 
inadequately leverage the unique capabilities of different agents. Further, the 
substantial constraints on communications and the well-documented overloading 
of the Soldier are prohibitive to the employment of these approaches for even small 
heterogeneous teams. We hypothesized that 3 deficiencies on current control 
architectures have limited the ability of heterogeneous human–autonomy systems 
to adequately share decision-making authority between humans and machines. 
Specifically, control architectures have not been designed to 1) account for 
performance variability across and within human agents, 2) foster positive joint 
adaptation by human and autonomy to situation dynamics, and 3) enable robust 
human–machine interaction under changing communications, sensor, and 
processing constraints. 

Over the past 2 decades, there have been substantial research advancements that 
may lead to methodologies to address the deficiency in accounting for performance 
variability across and within human agents. This research has shown that humans 
are widely variable both between subjects and even within themselves due to an 
array of factors. This variability, which emerges across a wide range of time scales, 
is often ignored in human–autonomy systems.1 Current technologies to estimate 
individual humans’ abilities are providing more-precise capabilities that potentially 
could be incorporated into control architectures.2 However, even with near-future 
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technologies, such estimates will still include substantial signal uncertainty. 
Potential approaches to overcoming this issue may be found in the sensor fusion 
and human–autonomy-teaming research communities, which have illuminated 
approaches to joint estimation for combined decision making. These approaches 
show how multiple, disparate sensor systems with sometimes substantial 
uncertainty are integrated to yield reliable state estimates.3–5 However, these 
concepts have only focused on uncertainty in autonomy and have neither been 
extended across broad time scales nor have they been applied to human–autonomy 
systems.  

Regarding the deficiency in fostering positive joint adaptation by human and 
autonomy to situation dynamics, beyond the frequent use of modified hierarchical 
control schemes, human–autonomy estimations have largely not been addressed in 
the literature.4,6 This is due in part to a lack of generally accepted models for human 
decision making.7,8 It is well understood, though, that human decisions can be 
biased depending on the information they are given a priori.9 Robotic systems, 
conversely, often share a common decision-making model10 or at least an 
understanding of decision making in adjacent nodes,11 and, consequently, there has 
been substantial work on distributed decision making for autonomous systems 
under varying constraints.12 These distributed decision-making methods for 
autonomous systems often suffer from reinforcement of bad data13 and do not deal 
well with highly dynamic environments when there is communications latency.14  

Regarding the deficiency in robust human–machine interaction under changing 
constraints, an important question in system integration is how to merge the outputs 
of many independent, networked agents into a cohesive output. While weighted 
sum models, such as Kalman Filters15 and Bayesian approaches,16 are widely used 
for intranode decision making, they have been ineffective when applied to 
distributed systems. In the realm of autonomy, the 2 major approaches to addressing 
this issue are to either solve a distributed optimization problem to explicitly 
synchronize several agents, usually through an efficient mechanism such as 
auctions,17 or to let agents reach a stable solution through local interactions, as in 
the biologically inspired “flocking” techniques.18 

2. Approach 

We seek to enable the future of networked heterogeneous human–autonomy 
systems by addressing the 3 aforementioned deficiencies in current control 
architectures. In directly addressing the deficiencies, our approach has the 
following 4 broad research areas:  
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1) Directly accounting for human variability to enable better integration of human 
decisions. Human decision-making performance is highly variable and human 
decisions are fallible. Over the long term, we aim to establish probabilistic 
approaches to estimate human decision-making performance across a broad range 
of time scales. Such measures allow us to capture both variation among individuals 
and an assessment of the changing capabilities within an individual through time. 
We focused on metrics at multiple time scales and sought to validate both measures 
and confidence scores estimating human decision-making performance at each of 
these time scales. 

2) Data Fusion/Computer Vision. A critical barrier for fielding autonomous 
systems is the issue of human–autonomy integration. Effective methods for fusing 
information across human and autonomous agents are not yet robust to dynamics 
in human performance and in the environment. This effort focused on computer 
vision (CV) as the exemplar autonomous technology. Recently CV algorithms have 
dramatically improved, enabling an unprecedented level of accuracy in 
understanding the contents of images. Nevertheless, most algorithms are unable to 
function in highly dynamic and cluttered environments. We developed novel fusion 
approaches to extract complementary information from multiple types of CV 
algorithms and leveraged these fusion architectures to also integrate CV and human 
inputs. This approach can be leveraged to incorporate information about the 
dynamics in both the environment and human performance in an effort to rapidly 
adapt to these changes in real time. 

3) Agent Adaptation. In adaptive systems, dynamics in both the environment and 
in human performance can lead to a breakdown in performance for autonomous 
systems. Ultimately, we aim to develop novel approaches to enable the autonomous 
agents to dynamically adapt to both human and environmental variability. In this 
project, we focused on adaptations to dynamics in the environment. 

4) Networking dynamic teams of humans and machines. Building on objectives 1 
and 2, we seek to develop control and networking policies that best facilitate 
interactions within human–autonomy systems. These must adapt to, and be robust 
to sensor noise, scenario dynamics, competing priorities, intermittent 
communications, and processing limitations. Ultimately, we aim to develop 
systems that share authority among networked, heterogeneous human and 
autonomous agents and create an analytical framework for networked human–
machine decision making and control. In this project, we focused on control and 
networking policies for a small defined network functioning in specific contexts.  
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3. Human Variability 

Human decisions and actions are highly variable and this variability encompasses 
performance ranging from exceptionally good to exceptionally bad. This variability 
can complicate efforts to develop collaborative methods for human–autonomy 
interaction (HAI) by reducing the predictability of human performance. For 
example, human psychological and physiological states have been observed to vary 
considerably within an individual operator, even over short time scales1 or across 
immediately successive actions.19 In order to integrate human inputs with 
autonomy to enhance performance in complex, dynamic circumstances, system 
designers must develop strategies to account for and exploit this variability. To do 
so would enable powerful adaptive systems that leverage the unique strengths of 
each agent, while offsetting instances where their decisions or actions lead to 
potential failure or catastrophe. 

There has been considerable research into mitigating the potential impact of human 
variability and performance failures on HAI systems. The extant literature has most 
commonly offered substitution-based function allocation to toggle exclusive 
control or decision authority between humans and autonomous systems.20,21 Some 
function allocation concepts have considered task type and the level of autonomy22 
alongside typical “man-is-better-at”–“machine-is-better-at” roles.23 Such function-
allocation concepts have been instantiated in a number of different control 
frameworks, the most widely recognized of which is supervisory control.24 The 
supervisory control framework can be implemented in a variety of ways, ranging 
from autonomous waypoint navigation to shared control schemes in which both the 
human and the autonomous system provide control inputs with different relative 
contributions (e.g., Crandall and Goodrich25). Adaptive schemes have also been 
developed to enable active management of the balance of inputs from human and 
autonomous agents through user selection,26 based on cost-benefit estimates of the 
performance of the agents,27 or by enabling the autonomy to periodically query the 
operator for assistance.28,29 Unfortunately, the majority of these approaches have 
only succeeded in limited and controlled contexts and have not been widely adopted 
for real-world use. 

To overcome the issue of unpredictable human performance for HAI systems, we 
developed methods to characterize and quantify the reliability of human 
performance. Reliability was operationalized as measures of confidence. Decisions 
made during periods of low-reliability performance by one agent produced a lower 
confidence, which reduced the impact of those decisions on the overall joint 
decision. This is not a novel concept; rather, this is a fundamental aspect of decision 
theory.30–32 The goal of developing measures of confidence in human performance 
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was inspired by prior work on sensor fusion and human–autonomy integration that 
has shown how multiple, disparate sensor systems with sometimes substantial 
uncertainty could be integrated to yield reliable decisions.4,33 

Confidence metrics are typically derived from statistical uncertainty measures and 
can be directly integrated into a control system. The novel aspect here was in the 
application of confidence to human inputs as well as to data from other sensors. 
Several challenges must be met to develop and validate appropriate confidence 
metrics for human data. Given that human sources of input are typically treated as 
having little or no noise, they have historically been intentionally constrained to a 
level, such as a button press (BP), that was presumed to be unambiguous and 
effectively without noise. However obtained, human inputs have most often been 
trusted and then integrated as they were received.28,29,34,35 While it is well 
understood that human psychological and physiological states vary widely, both 
across and within individuals,1,19 it remains less well understood how to predict the 
expected variability given an observed state in a specific person working within a 
particular task environment. This is due in large part to an incomplete 
understanding of how states observed in similar contexts will change over time as 
well as across and within individuals.  

These challenges are further exacerbated by current human sensing techniques that 
produce data that are inconsistent, invalid, or both, when applied in real-world 
circumstances.36 As such, the available measures based on human-sensed data, 
including those from overt behavior and physiology, have not yet been widely 
integrated into human–autonomy systems.1,37 

In this effort, we focused our work on human variability using a 3-step process. 
First, we sought to characterize human performance on multiple time scales. Next, 
on the basis of this characterization, we identified behavioral and physiological 
features that relate to changes in task performance. Finally, we used these features 
to develop confidence measures that predict the reliability of task-related human 
performance. We focused this effort on 2 primary testbed tasks: target identification 
and exploration.  

Testbed Task 1: Rapid Serial Visual Presentation (RSVP)/Target ID 

Background 

Finding target images in large databases of candidate images is a difficult problem, 
and while CV algorithms are adequate for some tasks, for others human vision is 
required. A key insight to approaching this problem is that humans tasked with 
finding target images achieve high target-detection accuracy even if the images are 
shown very rapidly.38 Using RSVP with images displayed at rates of 2–10 Hz can 
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dramatically increase the rate at which target images are found in image databases 
compared to self-paced image viewing.39,40 To optimally incorporate human image 
processing into a heterogeneous team, a confidence metric is needed for human 
performance on RSVP target-identification tasks. We took 2 parallel approaches to 
developing confidence measures. First, we developed a method for improved 
quantification of human performance in a standard RSVP task.41 Second, we 
examined RSVP performance on a task with increased complexity, and will show 
how the inclusion of rudimentary confidence measures can improve performance.42  

3.1 Improved Characterization of Human Performance in RSVP 

RSVP target-detection task performance can be difficult to quantify due to 
response-time variability.39,43 Here we introduce a novel method for estimating 
performance on the RSVP target-detection task in settings in which image labels 
are known. This improved performance estimate can be derived from a training set 
of images with known labels.  

RSVP target-detection performance can be quantified by the subject’s hit rate (HR) 
and false alarm rate (FAR). Knowing whether a response is a hit or a false alarm 
requires knowing whether a target or a nontarget stimulus evoked the response. 
Because of response-time variability, it can be difficult to know what stimulus 
evoked a button-press response. For example, a response might be a relatively fast 
response to a target stimulus or a relatively slow response to the preceding nontarget 
stimulus. When the response-time variability substantially exceeds the  
inter-stimulus interval, situations arise in which a response could just as easily be 
attributed to any of several stimuli. One method currently in use for estimating HR 
and FAR entails establishing a temporal window after each target stimulus (e.g.,  
0–1 s relative to target onset) and declaring any response that falls in that window 
is a hit. Other methods estimate a response-time probability density function and 
use that to assign responses to stimuli. 

Under this program we developed a method of performance estimation that 
generally outperforms other methods currently in use for estimating the HR and 
FAR in RSVP target-detection tasks. Using simulations with known HRs and 
FARs, we showed that our method is more accurate than established methods. This 
advantage is especially clear when the stimulus presentation rate is high and/or the 
FAR is nonzero.  

  



 

Approved for public release; distribution is unlimited. 
7 

3.1.1 Established Methods for Estimating HR and FAR 

There are 2 classes of methods for determining HR and FAR in common use with 
RSVP target-detection tasks. The first uses a windowing approach, establishing a 
minimum and a maximum response time, typically from 0 to 1000 ms posttarget. 
Any response that falls within that window after a target is declared a hit, and then 
the HR is determined as the number of declared hits divided by the total number of 
targets. Responses that do not fall within a window corresponding to any target are 
declared false alarms, and the FAR is calculated as the number of false alarms 
divided by the number of nontarget stimuli (Fig. 1). Implementations of this method 
differ in how responses are scored when more than one response falls within a 
response window and/or what to do when a response falls within more than one 
response window. 

 
Fig. 1 Timelines illustrating existing response-assignment methods: blue hash marks 
indicate onset times of nontarget stimuli; red hash marks indicate onset times of target stimuli; 
downward green hashes indicate times a response occurred. Interstimulus interval is 0.5 s. In 
the A) window method, a window of time (typically 0–1 s posttarget) is established; responses 
falling within that window are declared hits. Here, the first and third responses would be 
classified as hits, second would be a false alarm. Same experimental timeline as analyzed with 
the B) distribution method: black curves are the response-time probability density function 
reversed and with its origin at the times of response; numbers below stimulus hashes show 
attribution resulting from the corresponding response.* Using maximum likelihood (max 
method) assigns response to the stimulus with the highest likelihood. 

The second class of methods for estimating HR and FAR uses a response-time 
distribution to estimate a response-time probability density function (RT-PDF) that 
is used to assign responses to specific stimuli.44 The likelihood that a BP was in 
response to a specific candidate stimulus is estimated as the probability of that 
particular response time relative to the time of the candidate stimulus (i.e., the 
estimated value of the RT-PDF). The likelihood is then normalized by dividing the 
likelihood for each candidate stimulus by the sum of the likelihoods for all 
candidate stimuli.45 From here the methods in this class diverge. One approach is 
to assign responsibility for the response to the stimulus with the maximum 

                                                 
* Corresponding response as computed using Eq. 1 on page 8. 
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likelihood. If that stimulus is a target, the response is counted as a hit; if the stimulus 
is a nontarget, the response is counted as a false alarm. The other approach is to 
distribute responsibility for the response to various stimuli according to the 
normalized likelihood that they generated the response. Because the distribution 
method is central to the method proposed in this report, it will be useful to define 
the function used to distribute responsibility, called here the apportionment 
function. Given times of stimulation S, a stimulus of interest at time Si, a response 
at time T, and an RT-PDF function f, the apportionment function is defined as 

 𝐴𝐴(𝑆𝑆𝑖𝑖,𝑇𝑇) =  𝑓𝑓(𝑇𝑇−𝑆𝑆𝑖𝑖)
∑ 𝑓𝑓(𝑇𝑇− 𝑆𝑆𝑗𝑗)𝑗𝑗

.                                   (1) 

Using this approach, if the apportionment worked out such that 0.52 of the response 
was apportioned to a target stimulus and the remaining 0.48 was apportioned to a 
nontarget stimulus, that response would count as 0.52 of a hit and 0.48 of a false 
alarm (as illustrated in Fig. 1). 

3.1.2 Proposed Method 

The regression method introduced here is based on the aforementioned 
apportionment method (Eq. 1). The proposed method estimates the expected 
response apportionment to each stimulus as a function of the probability that nearby 
stimuli will generate responses and the proportion of those possible responses that 
will be apportioned to the stimulus of interest. The expected response 
apportionment for the ith stimulus is the sum of the expected apportionment due to 
responses to all nearby stimuli, Sj. 

 𝐸𝐸[𝐴𝐴(𝑆𝑆𝑖𝑖)] =  ∑ 𝐸𝐸[𝐴𝐴𝑠𝑠�𝑆𝑆𝑗𝑗, 𝑆𝑆𝑖𝑖�]𝑗𝑗 ,           (2) 

where As(Sj,Si) is similar to A(Si) but only computes the attribution onto Si of 
responses actually generated by Sj. The expected value of As(Sj,Si) is 

 𝐸𝐸�𝐴𝐴𝑠𝑠�𝑆𝑆𝑗𝑗 , 𝑆𝑆𝑖𝑖�� = ∑ 𝑝𝑝(𝑇𝑇)𝐴𝐴(𝑆𝑆𝑖𝑖 ,𝑇𝑇)𝑇𝑇 .           (3) 

The term p(T) is the probability that a response elicited by Sj occurs at time T. This 
term can be split into the probability that any response is elicited by stimulus Sj, 
denoted 𝑝𝑝�𝑅𝑅�𝑆𝑆𝑗𝑗�, times the probability that a response occurs at a specific time. The 
latter quantity is obtained from the response-time probability density function, f. 

 𝐸𝐸�𝐴𝐴𝑠𝑠�𝑆𝑆𝑗𝑗 , 𝑆𝑆𝑖𝑖�� =  𝑝𝑝�𝑅𝑅�𝑆𝑆𝑗𝑗�  ∑ �𝑓𝑓�𝑆𝑆𝑗𝑗 − 𝑇𝑇�𝐴𝐴(𝑆𝑆𝑖𝑖,𝑇𝑇)�𝑇𝑇 . (4) 

Substituting this equation into Eq. 2 yields the following: 
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 𝐸𝐸[𝐴𝐴(𝑆𝑆𝑖𝑖)] =  ∑ �𝑝𝑝�𝑅𝑅�𝑆𝑆𝑗𝑗�  ∑ �𝑓𝑓�𝑆𝑆𝑗𝑗 − 𝑇𝑇�𝐴𝐴(𝑆𝑆𝑖𝑖,𝑇𝑇)�𝑇𝑇 �𝑗𝑗 . (5) 

Note that for simplicity of notation the limits of summation for j and T are not given. 
However, f(x) is zero for negative x and approaches zero as x increases, and A(Si,T) 
goes to zero as Si-T increases in magnitude, so in practice, only a limited range of j 
and T need to be calculated.  

This equation can be simplified under the assumptions of a typical RSVP  
target-detection experiment; namely, there are stimuli that are targets and stimuli 
that are nontargets, and that the probability of responding to a target is a constant 
hit rate HR, and the probability of responding to a nontarget is a constant false alarm 
rate FAR. If the stimulus at Sj is a target, then p(R|Sj, Sj ∈ tar) is HR. If the stimulus 
at Sj is a nontarget, then p(R|Sj, Sj∈ n.t.) is FAR. Separating out the target and 
nontarget stimuli near the stimulus of interest, the equation becomes the following: 

 
𝐸𝐸[𝐴𝐴(𝑆𝑆𝑖𝑖)] =  𝐻𝐻𝑅𝑅 × ∑  ∑ �𝑓𝑓�𝑆𝑆𝑗𝑗 − 𝑇𝑇�𝐴𝐴(𝑆𝑆𝑖𝑖,𝑇𝑇)�𝑇𝑇𝑆𝑆𝑗𝑗∈𝑡𝑡𝑡𝑡𝑡𝑡 + 𝐹𝐹𝐴𝐴𝑅𝑅 ×

∑  ∑ �𝑓𝑓�𝑆𝑆𝑗𝑗 − 𝑇𝑇�𝐴𝐴(𝑆𝑆𝑖𝑖,𝑇𝑇)�𝑇𝑇𝑆𝑆𝑗𝑗∈𝑛𝑛.𝑡𝑡. . 
(6) 

For each stimulus in the experiment, both summation terms can be computed based 
on the known stimulus timings and the RT-PDF. This yields a system of simple 
linear equations with one equation per stimulus with 2 unknowns: HR and FAR. 
Least-squares linear regression can then be used to find the values of HR and FAR 
that best fit the observed attribution for each stimulus; these are the estimates of the 
HR and FAR for the experiment. 

3.1.3 Evaluation Methods 

Having introduced the mechanics of the proposed method, simulations are 
described that compare the performance of the proposed method with  
state-of-the-art methods. The general approach was to simulate responses based on 
a known HR and FAR and then analyze the simulated data using the proposed 
method as well as the 3 other methods for estimating HR and FAR previously 
described (Fig. 2). To ensure that the stimulation timeline we used was 
wellfounded, we used the timeline of stimulus and response events from a RSVP  
target-detection experiment that has been described previously.46–48 Portions of the 
methods of that experiment are summarized here because the stimulus timeline and 
response-time distributions from that experiment were used in our simulations. 
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Fig. 2 Simulation method: the process for one iteration of the simulation. This process was 
repeated 250 times per combination of HR and FAR. Analysis was done separately using each 
of the 4 analytical methods described previously. 

3.1.4 Participants 

Fifteen participants (9 male, 6 female, ages 18–57, average 39.5) volunteered for 
the current study. Participants provided written informed consent, reported normal 
or corrected-to-normal vision, and reported no history of neurological problems. 
Fourteen of the 15 participants were right-handed. The voluntary, fully informed 
consent of the persons used in this research was obtained as required by federal and 
Army regulations.49,50 The investigator has adhered to Army policies for the 
protection of human subjects.50 

3.1.5 Stimuli and Procedure 

Stimuli consisted of short video clips that contained either people or vehicles in 
background scenes (target stimuli), or only background scenes (nontarget stimuli). 
Participants were instructed to make a manual BP with their dominant hand 
immediately when they detected a target, and to abstain from responding to 
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nontarget stimuli. Video clips consisted of 5 consecutive images each 100 ms in 
duration; each video clip was presented for 500 ms. There was no interval between 
videos such that the first frame was presented immediately after the last frame of 
the prior video. If a target appeared in the video clip, it was present on each  
100-ms image. The nontarget-to-target ratio was 90/10. RSVP sequences were 
presented in 2-min blocks, after which time participants were given a short break. 
Participants completed a total of 25 blocks.  

3.1.6 Simulations 

3.1.6.1 Extracting a Response Time Probability Density Function 

All simulations and analyses were done using custom scripts in MATLAB version 
2014a (MathWorks, Natick, Massachusetts).The RT-PDF used in the simulations 
was derived from the responses in the original timeline (Fig. 2, Step A). An 
empirical response-time distribution was created by iterating over all target stimuli 
and looking for any response that fell between 200 and 1500 ms after the target. 
The latency of responses relative to the associated target events was then fit with 
an ex-Gaussian distribution using maximum-likelihood estimation.51 The  
ex-Gaussian distribution is the sum of an exponential and a Gaussian; this 
distribution was selected because it compactly describes empirical response-time 
distributions reasonably well.52 After estimating the RT-PDF, the responses in the 
original timeline were no longer considered for the simulations.  

3.1.6.2 Simulating Responses 

Several simulations were then run to determine the accuracy with which the 
estimation methods described above recover the HR and FAR under different true 
values of those quantities. A total of 101 HRs, ranging uniformly from 0 to 1, were 
combined with 101 FARs, also ranging uniformly from 0 to 1, resulting in 10,201 
combinations of HR and FAR. To collect statistics on the performance at each 
combination of HR and FAR, each simulation was repeated 250 times.  

For each simulation, an HR and FAR were selected (Fig. 2, Step B). Then, a random 
subset of all targets and nontargets was selected to generate responses such that the 
simulated rates were as close as possible to the selected rates (while still having 
whole numbers of responses). When a response was generated, a random draw was 
taken from the response-time distribution (as described by the RT-PDF), and a 
response event was added at that time after the generating stimulus.  
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3.1.6.3 Analyzing the Simulated Experiment 

After simulating all of the responses necessary to generate the target HRs and 
FARs, the stimulus and simulated response timeline were analyzed using the 4 
methods previously described: the window method, the maximum likelihood 
method (max), the distribution method, and the regression method (Fig. 2, Step C). 
Three stimulus presentation rates (stimuli per second) were simulated as well: 2, 4, 
and 10 Hz. The original experiment used a presentation rate of 2 Hz. To simulate 
faster presentation rates, the sampling rate of the experiment was multiplied by 2 
and 5, respectively, while leaving the response-time distribution unchanged. This 
guaranteed that any change in the HR and FAR estimates was due to the 
presentation rate and not a difference in the total number of stimuli. 

Three of the 4 methods tested (all but the window method) make use of the  
RT-PDF. In the first round of simulations, these 3 methods used the same  
RT-PDF that generated the data. In an experimental setting, however, the RT-PDF 
is not known a priori and must be estimated. When the HR is high enough and the 
FAR is low enough, an RT-PDF can be estimated from the data, as outlined 
previously. However, if the HR is suspected to be low, the method may produce an 
inaccurate estimate of the RT-PDF. We wanted to examine the relative performance 
of these methods when the RT-PDF cannot be estimated. In the second round of 
simulations, to simulate a worst-case scenario, the 3 methods that rely on an  
RT-PDF estimate were provided an RT-PDF that was uniform over the interval  
[0, 1000 ms]. That interval was chosen to correspond to the interval used by the 
window method. This flat RT-PDF introduces a high probability of multiple stimuli 
receiving equal attribution for a given response. This is relevant to the max method, 
because it assigns full attribution to the stimulus with maximal attribution. To 
resolve ties, the max method attributes the response to the earliest stimulus with 
maximal attribution. 

Then, to examine the impact that the choice of method for HR and FAR estimation 
can have on experimental results, the HR and FAR were estimated using the actual 
(rather than simulated) response data. 

3.1.7 Results 

For each simulation, the HR and FAR estimation errors were computed as the 
difference between the simulated rate and the rate estimated by the estimation 
method under examination. For example, if the true HR were 0.8 but the method 
estimated the HR to be 0.75, the estimation error would be –0.05. 

The remainder of the results section is organized as follows: First, an illustrative 
subset of the simulation results is presented. This subset was chosen to show 
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simulation results for HRs and FARs that might be obtained with poor, good, or 
excellent target detection performance. Second, all of the simulation results are 
summarized to provide a comprehensive overview of the performance of these 4 
estimation methods. Third, results of statistical tests are presented that tested for 
bias in the estimation methods used. Fourth, the results of simulations with an 
inaccurate RT-PDF are summarized. Finally, the results of applying each of the 4 
estimation methods to real (rather than simulated) RSVP target-detection data are 
shown to illustrate the practical impact that the choice of estimation method can 
have. 

3.1.7.1 An Illustrative Subset of Results 

Although actual performance in RSVP target detection will depend heavily on the 
stimuli, task, and participant, 3 pairs of HR and FAR were chosen as illustrative 
exemplars of poor (HR 0.50, FAR 0.10), good (HR 0.80, FAR 0.02), and excellent 
(HR 0.99, FAR 0.01) performance (Fig. 3). Overall, when HR is high and FAR is 
low (i.e., in the good and excellent performances), the distribution and max 
methods make larger systematic errors than the other 2 methods, and the window 
method makes errors comparable to the regression method. As the presentation rate 
increases, the difference in the relative performance increases as well. In the poor 
performance case, the errors made by the regression method are clearly smaller than 
the others except at the 2-Hz presentation rate. At that rate, the regression, max, 
and distribution methods make comparable errors that are smaller than the errors 
made by the window method. 
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Fig. 3 Estimation method performance examples: plots illustrate estimation results for 
specific combinations of simulated HR and FAR when the true probability mass function of 
the response times was known. The pairs HR 0.50, FAR 0.10; HR 0.80, FAR 0.02; and HR 
0.99, FAR 0.01 were selected as illustrative of poor, good, and excellent RSVP target-detection 
performance, respectively. Bars show the median estimation error, and error bars show ±1 
standard deviation for each of the 4 estimation methods at 3 presentation rates. The upper 
row of panels shows HR estimation errors; the lower row shows FAR estimation errors.  

3.1.7.2 Full results 

Considering the full range of simulated HRs and FARs, for all but the regression 
method, substantial systematic errors were apparent that depended on a 
combination of the simulated HR, simulated FAR, and simulated presentation rate 
for HR estimation (Fig. 4) and FAR estimation (Fig. 5). Estimation errors taken 
over the entire range of simulated HR and FAR were smallest for the regression 
method at all simulated rates with median absolute difference among estimated and 
simulated HRs of 0.001, 0.002, and 0.004 for presentation rates of 2, 4, and 10 Hz, 
respectively (Table 1), and median absolute difference for FARs of 0.001, 0.002, 
and 0.002 for presentation rates of 2, 4, and 10 Hz, respectively (Table 2). However, 
the regression method also had the largest variability for HR estimates at 4 and 10 
Hz presentation and FAR at 10 Hz, measured as the standard deviation of all 
estimates after the median of all 250 estimates within a simulated HR/FAR cell had 
been subtracted (Tables 1 and 2). For the HR estimate, the regression method’s 
variability was 0.022 and 0.053 at 4 and 10 Hz, respectively, and for the FAR 
estimate, the regression method’s variability was 0.010 at 10 Hz. 
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Fig. 4 HR estimation error summary: panels show simulation results for estimation 
methods (columns) at a particular presentation rate (rows) when the true probability density 
function of the response times was known. Colors indicate the difference between median 
estimate of the HR and simulated value of HR clipped to an absolute value of 0.2. Within a 
panel, simulated FAR increases from left to right; simulated HR increases from bottom to top. 
All methods except regression have HR estimation errors that clearly depend on the simulated 
HR and FAR, and overall magnitude of errors increases as presentation rate increases. 

 
Fig. 5 FAR estimation error summary: panels show simulation results for estimation 
methods (columns) at a particular presentation rate (rows) when the true probability density 
function of the response times was known. Colors indicate difference between median estimate 
of FAR and simulated value of FAR clipped to an absolute value of 0.1. Within a panel, 
simulated FAR increases from left to right; simulated HR increases from bottom to top. All 
methods except regression have FAR estimation errors that clearly depend on the simulated 
HR and FAR, and overall magnitude of errors increases as presentation rate increases. 
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Table 1 HR estimate performance with accurate RT-PDF 

 Presentation rate (Hz) 

 2  4  10 
Method err std  err std  err std 
Window 0.280 0.016  0.447 0.012  0.518 0.008 
Distribution 0.016 0.007  0.106 0.016  0.260 0.013 
Max. attrib. 0.012 0.007  0.080 0.017  0.217 0.023 
Regression 0.001 0.008  0.002 0.022   0.004 0.053 

Notes: err = median absolute difference of each estimate from simulated values;  
std = standard deviation of estimates with median error subtracted. 

Table 2 FAR estimate performance with accurate RT-PDF 

 Presentation rate (Hz) 

 2  4  10 
Method err std  err std  err std 
Window 0.053 0.003 

 
0.085 0.002 

 
0.099 0.002 

Distribution 0.003 0.001 
 

0.020 0.003 
 

0.049 0.003 
Max. attrib. 0.010 0.002 

 
0.064 0.005 

 
0.144 0.006 

Regression 0.001 0.001 
 

0.002 0.004 
 

0.002 0.010 
Notes: err = median absolute difference of each estimate from simulated values; 
std = standard deviation of estimates with median error subtracted. 

3.1.7.3 Statistical Assessment of Bias in Estimation 

To statistically assess the extent to which estimation errors depended on simulated 
HR, simulated FAR, and simulated presentation rate, HR estimation errors were 
first analyzed with a 4-way analysis of variance (ANOVA) with a categorical factor 
of estimation method (window, max, distribution, and regression) and continuous 
factors of presentation rate (2, 4, and 10 Hz), simulated HR, and simulated FAR 
(both ranging from 0 to 1 at 0.01 increments). Because the estimation method 
interacted with all other factors, individual ANOVAs were run for each method 
with factors’ presentation rate, simulated HR, and simulated FAR. Results of 
method-specific analyses are in Table 3. In summary, all factors and interactions 
were statistically significant for the window method, with the 2 largest effects, 
measured with η2, being the HR (η2 = 0.226) and presentation rate (η2 = 0.225). For 
the max method, all factors and interactions were statistically significant, with the 
interaction of presentation rate with HR (η2 = 0.240) and the interaction of 
presentation rate with FAR (η2 = 0.355) being the 2 largest effects. For the 
distribution method, all factors and interactions except the main effect of 
presentation rate and the interaction of HR with FAR were statistically significant, 
with the interaction of presentation rate with HR (η2 = 0.370) and of presentation 
rate with FAR (η2 = 0.371) having the largest effects. For the regression method, 
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HR, FAR, and the interaction of those with presentation rate as well as the 3-way 
interaction were statistically significant, but the effect sizes of all factors and 
interactions were less than 10–4. This indicated that although the regression 
method’s estimates do systematically depend on the presentation rate, HR, and 
FAR, the effects each account for less than 0.01 of a percent of the variance in the 
data. The statistical analysis on the FAR estimation errors produced similar results. 

Table 3 Method-specific ANOVA 

Source d.f. F η2 p-value 
 Window method 
Rate 1 4.34 × 106 0.2245 0.0000 
HR 1 4.37 × 106 0.2264 0.0000 
FAR 1 2.08 × 105 0.0108 0.0000 
Rate*HR 1 1.28 × 105 0.0066 0.0000 
Rate*FAR 1 1.25 × 106 0.0645 0.0000 
HR*FAR 1 1.36 × 106 0.0702 0.0000 
Rate*HR*FAR 1 2.13 × 104 0.0011 0.0000 

Error 
7.65 × 
106 

 0.3960  

 Max attribution method 
Rate 1 2.61 × 104 0.0009 0.0000 
HR 1 1.53 × 106 0.0499 0.0000 
FAR 1 2.56 × 106 0.0838 0.0000 
Rate*HR 1 7.34 × 106 0.2400 0.0000 
Rate*FAR 1 1.09 × 107 0.3554 0.0000 
HR*FAR 1 5.83 × 104 0.0019 0.0000 
Rate*HR*FAR 1 5.58 × 105 0.0182 0.0000 

Error 
7.65 × 
106  

0.2500 
 

 Distribution method 
Rate 1 1.26 0.0000 0.2620 
HR 1 4.79 × 106 0.0718 0.0000 
FAR 1 4.81 × 106 0.0720 0.0000 
Rate*HR 1 2.47 × 107 0.3704 0.0000 
Rate*FAR 1 2.48 × 107 0.3711 0.0000 
HR*FAR 1 0.11 0.0000 0.7396 
Rate*HR*FAR 1 6.71 0.0000 0.0096 

Error 
7.65 × 
106  

0.1146 
 

 Regression method 
Rate 1 0.00 0.0000 0.9565 
HR 1 233.38 0.0000 0.0000 
FAR 1 115.08 0.0000 0.0000 
Rate*HR 1 101.94 0.0000 0.0000 
Rate*FAR 1.00 190.046 0.0000 0.0000 
HR*FAR 1.00 2.29 0.0000 0.1303 
Rate*HR*FAR 1.00 15.40 0.0000 0.0001 

Error 
7.65 × 
106  0.9999  
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3.1.7.4 Simulations Run with Inaccurate RT-PDF Estimates 

The second set of simulations used flat RT-PDF estimates to assess the performance 
of the RT-PDF-dependent methods when the estimated RT-PDF does not match the 
true RT-PDF. Numerical summaries for HR and FAR estimation are in Tables 4 
and 5. Compared with results with the correct RT-PDF, the distribution and max 
methods both had larger errors over a larger range of HR and FAR when using the 
flat RT-PDF. The regression method’s estimation errors increased somewhat by 
using the incorrect RT-PDF, but overall errors were smallest. 

Table 4 HR estimate performance with flat RT-PDF 

  Presentation rate (Hz) 
  2  4  10 
Method  err std  err std  err std 
Window  0.280 0.016  0.447 0.012  0.518 0.008 
Distribution  0.190 0.014  0.299 0.009  0.333 0.005 
Max attrib.  0.088 0.017  0.347 0.022  0.328 0.023 
Regression  0.010 0.030  0.027 0.058  0.033 0.105 

Notes: err = median absolute difference of each estimate from simulated values; std = standard 
deviation of estimates with median error subtracted. 

Table 5 FAR estimate performance with flat RT-PDF 

  Presentation rate (Hz) 
  2  4  10 
Method  err std  err std  err Std 
Window  0.280 0.016  0.447 0.012  0.518 0.008 
Distribution  0.190 0.014  0.299 0.009  0.333 0.005 
Max attrib.  0.088 0.017  0.347 0.022  0.328 0.023 
Regression  0.010 0.030  0.027 0.058  0.033 0.105 

Notes: err: median absolute difference of each estimate from simulated values; std = standard 
deviation of estimates with median error subtracted. 

3.1.7.5 Analyzing Experimental Data 

As an example of the effect of using different analytical methods on real data, the 
actual (rather than simulated) responses were analyzed. HR estimates are shown for 
each of the 15 subjects in Fig. 6. HRs were fairly high, ranging from 78.4% to 
90.5% across subjects and estimation methods. A one-way repeated measures 
ANOVA revealed a significant effect of analysis method on HR estimate (F(3,42) 
= 36.0, p = 1.1 x 10–11, η2 = 0.131). Follow-up paired comparisons (Bonferroni 
corrected) showed that the distribution (M = 0.843, SE = 0.002) and max 
(M = 0.848, SE = 0.002) estimates were not significantly different (p = 0.25), and 
the window (M = 0.864, SE = 0.002) and regression (M = 0.864, SE = 0.002) 
estimates were also not significantly different (p = 1.0), but both max and 
distribution estimates were significantly lower than both the window and regression 
estimates (all p < 0.00001).  
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Fig. 6 Estimated HRs from experimental data with 4 different estimation methods: HR 
estimated from the response data from 15 subjects using the distribution (d), max (x), window 
(w), and regression (r) methods. Colors for individual subject data are based on estimates 
from the regression method to illustrate how relative ordering of subjects changes based on 
estimation method. 

3.1.8 Summary and Discussion 

The primary goal of these simulations was to test how well the proposed regression 
method for estimating HR and FAR in RSVP target detection tasks could recover 
the true simulated HR and FAR relative to established methods. The simulation 
results showed that the proposed regression method was more accurate than 
established methods, although accuracy comes at the cost of some precision.  

The simulations comparing the performance of the 4 HR and FAR estimators 
revealed systematic errors in all 4 methods such that the error in HR and FAR 
estimates depended on some combination of the true value of the HR, FAR, and 
presentation rate, but the inaccuracy of the 4 methods were not equivalent.  

The window method overestimates the HR as the true HR decreases and/or the true 
FAR increases. This can be understood as a result of the benefit-of-the-doubt 
approach this method represents. Any response within a window of a target is 
declared a hit by this method, so any false alarm that occurs in temporal proximity 
to a target might be incorrectly classified as a hit. Additionally, responses to targets 
that are slow enough to fall outside the 1-s window will be misclassified as misses. 
An important property of the window method demonstrated in the results here is 
that when the true FAR is very low, this method yields fairly accurate estimates of 
HR and FAR. This is because as the FAR approaches zero, the vast majority of 
responses will actually be hits, and the vast majority of hits should fall within the 
window and therefore be correctly classified by this method. This was illustrated in 
the “excellent” performance simulation (Fig. 3) in which the HR was slightly 
underestimated and the FAR was slightly overestimated. 
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Overall, the max and distribution methods made smaller errors in HR estimation 
than the window method (Table 1), although errors were relatively large in the 
range of HR and FAR that might be associated with good or excellent task 
performance (Fig. 3). These methods both had their lowest estimation errors when 
the simulated HR and FAR were similar. Because RSVP experiments typically 
report fairly high HR and low FAR, in practice both of these methods are expected 
to underestimate the HR and overestimate the FAR. 

The regression method had lower estimation error than the other 3 methods, and 
the errors do not depend strongly on the true values of HR and FAR. The 
distribution method makes systematic errors that depend strongly on the true HR, 
FAR, and presentation rate (Table 3), and the regression method attempts to correct 
for those errors by accounting for how errors contribute to the expected value of 
the apportionment to any given stimulus using linear regression. The statistical 
analysis of the estimation errors of the regression method revealed a reliable effect 
of the interaction of FAR with presentation rate, but the effect size was less than 
10–4. The absence of nontrivial linear effects revealed in the ANOVA is evidence 
that the linear regression method accomplished its goal. Nonlinear effects could 
potentially affect the estimation error of the regression method, but given the small 
overall estimation error of the regression method (Tables 1 and 2), any such effects 
do not appear to have a major impact, at least under the conditions simulated here. 

The presentation rate had a sizeable impact on estimate accuracy in all of the 
estimation methods except the regression method, although the precision of the 
regression method’s estimates decreased as the presentation rate increased. The 
increases in estimation error can be understood as a consequence of the increasing 
ambiguity of which stimulus elicited a particular response. Although such a slow 
rate was not tested here, clearly if the stimuli are spaced far enough apart, then 
errors in response assignment would be very rare. As more stimuli fall into a 
temporal range of plausibly causing a response, the harder it will be to correctly 
assign that response to a stimulus.  

One potential caveat to the apparent success of the regression method is that in our 
simulations, the regression method was provided with the true probability density 
function for response times (RT-PDF). In practical use, the RT-PDF would have to 
be estimated from the available data. For completeness, simulations included true 
HRs that were low or zero. In those situations, estimating an RT-PDF would be 
difficult or impossible, so in our second set of simulations we provided all of the 
analytical methods with a highly incorrect, uniform RT-PDF (Tables 4 and 5). 
Having such a poor estimate of the RT-PDF did not obliterate the  
RT-PDF-dependent methods, although the performance of those methods did drop 
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somewhat. Based on this result, it seems that even if estimation of the RT-PDF is 
poor, the regression method may still be recommended. 

An assumption of the regression method is that responses to different stimuli are 
independent. Strictly, this assumption is incorrect for 2 reasons. First, the method 
assumes that it is possible for 2 responses to occur at the same time (e.g., a slow 
response to an earlier stimulus occurs simultaneously with a fast response to a later 
stimulus), but in practice there are limits to how quickly a person can press a button 
twice. This first assumption was in fact violated in the simulations run here because 
in the rare event that multiple responses occurred at the same time, those responses 
were conflated into a single response. The chance of response collisions increases 
as the number of overall responses increases, and this would be most prevalent at 
fast presentation rates with high FARs. It might also explain the small but 
significant interaction of FAR with presentation rate that impacted the estimation 
error of the regression method.  

Second, humans typically fail to perceive images that fall within a short window of 
time starting shortly after a target image. This phenomenon is called the attentional 
blink.53,54 This could temporarily lower the HR and/or the FAR by reducing the 
probability of responding for a short time after each response. There was no 
modeling of the attentional blink in the simulations done here, so its impact on any 
of the estimation methods here cannot be assessed.  

To illustrate the impact the choice of HR/FAR estimation method might have in an 
experimental setting, behavioral results from a target-detection experiment were 
analyzed using the 4 methods tested in simulations. The impact of analysis method 
on the overall HR and FAR estimates was statistically significant, and the effect of 
analysis method was consistent with the simulation results of good performance 
overall. Qualitatively, this provides support for the validity of our simulations. 
However, for some individuals, the regression method estimated a somewhat higher 
HR compared with the window method (Fig. 6). Inspection of the responses from 
the subjects for whom the regression method had a higher estimate than the window 
method revealed that these subjects appeared to occasionally respond twice within 
a 500-ms span (corresponding to the inter-stimulus interval). If a single target image 
elicits 2 responses, the window method calls one a hit and the other a false alarm, 
so double-responding would not inflate the HR estimate. The regression method, 
however, does not have special handling of double responses and they could inflate 
the HR estimate. Based on these data, we cannot know if these responses are 
examples of nonindependence. It could be that the subjects inadvertently pressed 
the response button twice after seeing a target image, or it could be that the 2 BPes 
were intended as responses to consecutive images.  
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Based on its better estimation of HR and FAR, the regression method proposed here 
would seem the best choice when estimating the HR and FAR is the primary 
interest. If the FAR is known to be essentially equal to 0, the window method may 
have an advantage because the window method is somewhat simpler to implement 
and is more precise with faster presentation rates. In the more general case in which 
the FAR may be nonnegligible and a fast presentation rate is used, the regression 
method is likely to provide the most accurate estimates of HR and FAR. 

Much like machine-learning classifiers, optimally incorporating human input into 
a heterogeneous target detection system requires a training set of labeled inputs to 
learn a confidence metric for the human detector. The method developed under this 
Director’s Strategic Initiative (DSI) affords better estimates of human performance 
than existing methods, which will allow optimal integration of human input into a 
human–autonomy team for target image detection. 

3.1.9 Future Work/Transitions 

Although the focus of this method is on target-detection accuracy in the RSVP 
paradigm, many related projects focus on using some physiological measure to 
enable a brain–computer interface (BCI) for target detection.43,44,55,56 
Electroencephalography (EEG)-based classification can sometimes classify images 
correctly even when the behavioral response was incorrect.57,58 

One transition of this work is toward integrating human input into heterogeneous 
teams of human and automated image detectors. To that end, software 
implementing the method described here was provided to a team operating under a 
complementary research effort that is engineering an integrated heterogeneous 
target-detection system. 

Recording EEG from a participant engaged in a RSVP target-detection task affords 
an opportunity to, in parallel with a direct BCI, identify physiological features that 
relate to changes in task performance. A future transition of this work will be to 
develop predictive models that accomplish this. Initial efforts have shown that the 
mean amplitude of alpha-band oscillations (8–12 Hz periodic activity in the 
ongoing EEG) within some window of time are correlated with the participants’ 
overall HR for that same window of time. This relationship shows between-subjects 
variability, however, such that the correlation between alpha and performance takes 
on a range of both positive and negative values. However, the magnitude of the 
correlation between short-time alpha amplitude and short-time performance 
changes is itself negatively correlated with the overall performance of the 
participants (Fig. 7). So it appears that changes in performance may be predicted 
from alpha-band activity in some individuals, but those individuals have overall 
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worse performance. Future work will determine if this alpha/performance 
relationship persists across multiple days, or if it varies situationally. Should this 
relationship be found to have some stability, it could be used to identify consistent 
high performers as well as indicate when more variable performers are likely to be 
at their best. 

 
Fig. 7 Correlation between short-time alpha-band activity and short-time HR is predictive 
of overall performance. Participants (N = 17) viewed images of a cluttered office and pressed 
a button when they saw target objects (e.g., a chair). HR and alpha-band EEG were estimated 
from a sliding 3-min window. The absolute value of the correlation between these 2 estimates 
is plotted on the ordinate; HR estimates for each subject from the entire time course of the 
experiment are on the abscissa. 

3.2 Developing Confidence in Human Performance for RSVP 
Performance on Complex Tasks 

Previous studies using RSVP tasks for rapid target detection have primarily focused 
on the 2-class discrimination problem of detecting target images within a set of 
distractor images.40,47,59–67 However, in many real-world environments there is 
likely to be a subset of distractor stimuli that share physical and semantic features 
with the target stimuli (e.g., consider a nontarget elk versus a target deer in a dense 
ensemble of forest imagery). While event-related potentials (ERPs) studies have 
analyzed the neural features evoked by rare nontargets within a series of rare targets 
and frequent background distractors using simple classes of stimuli (e.g., letters and 
colored shapes),68 it is unknown if similar effects occur in complex imagery more 
similar to real-world settings. Moreover, little research has been done to evaluate 
how current neural-based classification algorithms perform when 2 infrequent 
classes of stimuli with the same features (i.e., target and nontarget) are presented in 
a sequence of frequently occurring distractor images. It is possible that many 
classification algorithms used for RSVP target-detection studies are sensitive to 
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neural features primarily associated with the detection of infrequent stimuli rather 
than target detection/recognition, resulting in drastically reduced performance.  

The RSVP-based image triage process uses a measure of confidence in the classifier 
through the probability score as a means of quantifying the certainty of a decision. 
That is, the probability that a particular image is a target provides information 
regarding the likelihood a target was presented. The importance of confidence in 
systems with low signal-to-noise properties has long been understood in decision 
theory30–32 and control communities4,33 and peripherally exists in current 
instantiations of image triage BCIs.59,60,69,70 Additional uses of confidence measures 
in BCIs are demonstrated through the rejection of particular trials from analysis or 
the use of algorithms for the removal of artifacts. Thus, while the use of confidence 
measures for target-detection BCIs is not new, previous studies have not explicitly 
described their methods for deriving the confidence metric and have not quantified 
the accuracy of their confidence estimates or the unique contribution of confidence 
itself.  

This study explores how current RSVP-based BCI technologies may function in 
more-complex task environments by adding infrequent nontarget images that are 
not task-relevant but are physically and semantically similar to targets to 
presentations with rare targets and frequent background distractors. In the first half 
of this report, we examine participants’ ability to detect targets under 2 conditions: 
when targets are the only infrequent image class presented and when the targets are 
presented with infrequent nontargets in a standard RSVP task. Our analysis 
encompasses behavior, averaged ERPs, and single-trial classification of EEG data. 
The results demonstrate that both behavioral and single-trial classification 
performance of target images decline with the introduction of rare visually similar 
nontarget stimuli. We also examine the effects of using trial-by-trial confidence 
measures derived from the relationship between individual classifier outputs and 
the discriminating threshold between targets and nontargets to mitigate the drop in 
classifier performance. These results provide a unique perspective into how 
methods for EEG classification of visual imagery may perform in more-complex 
scenarios and the importance of incorporating confidence. 

3.2.1 Methods 

3.2.1.1 Participants 

Eighteen participants volunteered for the current study. Participants reported 
normal or corrected-to-normal vision and no history of neurological problems. Due 
to excessive artifacts in the EEG data, one participant was excluded from analysis. 
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The resulting 17 participants had an average age of 34.9 years, 14 were male, and 
all participants were right-handed with the exception of one left-handed male.  

The voluntary, fully informed consent of the persons used in this research was 
obtained as required by federal and Army regulations.49,50 The investigator adhered 
to Army policies for the protection of human subjects.50 

3.2.1.2 Stimuli and Procedure 

Participants were seated 75 cm from a monitor and viewed a series of images from 
a simulated desert–metropolitan environment in an RSVP paradigm (Fig. 1). 
Images (960 × 600 pixels, 96 dpi, subtending 36.3° × 22.5°) were presented using 
E-prime software for 500 ms (2 Hz) with no inter-stimulus interval.  

Data were analyzed from 2 conditions for all participants: Target Only (TO) and 
Target and Non Target (TN). The TO condition contained only background 
distractors (background scenes of a desert–metropolitan environment) and target 
images (background scenes with a person carrying a weapon). The TN condition 
contained nontarget distractor stimuli (background scene with a person without a 
weapon) along with both background and target stimuli (Fig. 8). Target stimuli 
(both TN and TO conditions) and nontarget distractor stimuli (TN condition only) 
were never presented back to back. At least 2 background stimuli were required to 
follow any target or nontarget stimulus to avoid issues with the attentional blink.71,72 
In both the TO and TN conditions, participants were instructed to press a button on 
a serial response box as rapidly and accurately as possible with their dominant index 
finger when they detected a target. Participants were also instructed to silently count 
the number of targets they detected and report this number at the end of each block.  

 
Fig. 8 RSVP task and stimuli in the current experiment: participants required to detect 
target images while ignoring nontargets and background distractors.  

Each condition contained 6 blocks of RSVP image sequences. Each block was a  
2-min image sequence in the TO condition and a 2-min-and-14-s sequence in the 
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TN condition. The interblock rest period was self-paced after a mandatory 10-s 
pause to report the target count. Each block began with a visual 5-s countdown 
presented at the center of the display. Participants were told to fixate toward the 
center of the display, as all target and nontarget stimuli appeared within 6.5° of the 
image center and would not appear on top of or occluded by buildings and trees or 
in windows. Block order was counterbalanced across participants. The individual 
blocks served to break up the RSVP presentation and allow subjects to periodically 
rest. Thus, data from the 6 blocks within each condition were concatenated and 
analyzed as a whole. 

The target-to-distractor ratio was 1:20 in the TO condition and 1:14 in the TN 
condition. The nontarget-to-distractor ratio in the TN condition was also 1:14. 
Participants were not aware of stimuli contingencies. Participants were given one 
block of practice on each RSVP stimulus condition and were required to correctly 
report at least 75% of targets to begin the experiment. All participants needed only 
one practice block in each condition to satisfy this requirement.  

3.2.1.3 EEG Recording and Preprocessing 

Electrophysiological recordings were digitally sampled at 1024 Hz from 64 scalp 
electrodes arranged in a 10–10 montage using a BioSemi Active Two system 
(Amsterdam, Netherlands). Impedances were kept below 25 kΩ. External leads 
were placed on the outer canthus of each eye and above and below the right orbital 
fossa to record electro-oculogram (EOG). Continuous EEG data were preprocessed 
using EEGLAB software.73 The EEG data were referenced to the average of the left 
and right earlobes, decimated to 512 Hz, and digitally filtered 0.1–50.0 Hz.  

Gross artifacts were removed through visual inspection of the continuous EEG data. 
Sections marked as artifacts were excised from the data. Subsequently, independent 
component analysis (ICA)74 was run. Independent components related to eye 
movements or muscle activity were manually identified and removed. The time 
series data resulting from the ICA-based cleaning was used for all further analyses. 

For single-trial classification, the signal was first bandpass filtered (Butterworth 
filter of order 4) with cutoff frequencies at 1 and 10.66 Hz and then downsampled 
to 32 Hz. This new sampling rate was chosen based on the sampling frequency used 
by the winning team of the competition in the 2010 IEEE Workshop on Machine 
Learning for Signal Processing.75 

3.2.1.4 Behavioral Analysis 

To quantify the behavioral performance, any BP that occurred between 200 and 
1000 ms after a target or nontarget stimulus was attributed to that trial. Button 
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presses attributed to target trials were counted as hits and all others as false positives 
(FPs). Reaction times were calculated as the time between stimulus presentation 
and BP.  

Hits (Hit), misses (Miss), correct rejects (CorrectReject), and FPs were calculated 
for each subject. The correct rejects and false alarms were calculated separately for 
nontargets and distractor trials in order to investigate the effect of adding the 
nontarget stimuli to the behavioral performance. These values were used to 
calculate d´ (d-prime), an index of accuracy that accounts for response bias,76 for 
each subject, as follows:  

𝐻𝐻𝑅𝑅 = 𝐻𝐻𝑖𝑖𝑡𝑡
𝐻𝐻𝑖𝑖𝑡𝑡+𝑀𝑀𝑖𝑖𝑠𝑠𝑠𝑠

       𝐹𝐹𝐹𝐹𝑅𝑅 = 𝐹𝐹𝐹𝐹
𝐹𝐹𝐹𝐹+𝐶𝐶𝐶𝐶𝑡𝑡𝑡𝑡𝐶𝐶𝐶𝐶𝑡𝑡𝐶𝐶𝐶𝐶𝑗𝑗𝐶𝐶𝐶𝐶𝑡𝑡

.  (7) 

𝑑𝑑′ =  𝑍𝑍(𝐻𝐻𝑅𝑅) −  𝑍𝑍(𝐹𝐹𝐹𝐹𝑅𝑅),  (8) 

where the function Z(p), p ∈ [0,1], is the inverse of the cumulative Gaussian 
distribution.  

3.2.1.5 ERP Analysis 

ERP data were processed and analyzed using ERPLAB.77 Artifact-free data were 
epoched [–500, 1000] ms around stimulus onset and binned according to the 
experimental condition. ERPs were baseline corrected by subtracting the mean of 
the activity of each channel from [–500, 0] ms from the epoched data. Only hits and 
correct rejections were included in the ERP analysis. ERPs were calculated for each 
stimulus type (background distractors, targets, and nontargets). P3 amplitude  
(400–800 ms) was separately calculated for each subject in each experimental 
condition at electrode Pz. The time segment analyzed was chosen based on the 
grand-average target ERP waveforms, which showed the maximum P3 amplitude 
occurring over electrode Pz 400–800 ms poststimulus. 

3.2.1.6 Single-Trial Classification 

To quantify the effects of adding rare, target-like nontarget stimuli at the  
single-trial level, EEG data were epoched to [0, 1000] ms, timelocked to stimulus 
onset, spatial filtered using xDAWN78, and classified with Bayesian linear 
discriminant analysis79 (collectively referred to as XD+BLDA).61,78,80,81  

XD+BLDA 

The xDAWN algorithm is a spatial filtering algorithm that identifies a linear 
combination of the raw neural signals that maximizes the signal-to-noise ratio 
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between targets and nontargets. Let 𝑈𝑈 ∈ ℝ𝑁𝑁𝑠𝑠𝑥𝑥𝑁𝑁𝑓𝑓 be the spatial filters, where Ns is 
the total number of sensors and Nf is the number of spatial filters. The signal after 
spatial filtering is defined by Xfilt= XU where 𝑋𝑋 ∈ ℝ𝑁𝑁𝑡𝑡𝑥𝑥𝑁𝑁𝑠𝑠 is the recorded signal and 
Nt is the number of sampling points. The expected waveform is considered spatially 
stable over time for the spatial dimension reduction step.  

In this framework, an algebraic model of the enhanced signals XU is composed of 
3 terms: the ERPs evoked by the targets (D1A1), a response common to all stimuli 
(D2A2), and the residual noise (H), which are spatially filtered with U. 

𝑋𝑋𝑈𝑈 = (𝐷𝐷1𝐴𝐴1 +  𝐷𝐷2𝐴𝐴2 +  𝐻𝐻)𝑈𝑈. (9) 

D1 and D2 are 2 real Toeplitz matrices of size Nt x N1 and Nt x N2, respectively. D1 
has its first column elements set to zero except for those that correspond to a target 
onset, which are set to 1. For D2, its first column elements are set to zero except for 
those that correspond to all stimulus onsets. A1 and A2 are 2 real matrices of size  
N1 × Ns and N2 × Ns, respectively. A1 represents the prototypical ERP in response 
to targets, and A2 represents the prototypical ERP in response to all stimuli. N1 and 
N2 are the number of sampling points representing the target and superimposed 
evoked potentials, respectively. H is a real matrix of size Nt × Ns.  

Let us define spatial filters U that maximize the signal to signal plus noise ratio 
(SSNR) as follows: 

𝑆𝑆𝑆𝑆𝑆𝑆𝑅𝑅(𝑈𝑈) =  𝑇𝑇𝑡𝑡(𝑈𝑈𝑇𝑇𝐴𝐴�1𝑇𝑇𝐷𝐷1𝑇𝑇𝐷𝐷1𝐴𝐴�1𝑈𝑈)
𝑇𝑇𝑡𝑡(𝑈𝑈𝑇𝑇𝑋𝑋𝑇𝑇𝑋𝑋𝑈𝑈)

, (10) 

where �̂�𝐴1 corresponds to the least mean square estimation of A1. 

�̂�𝐴 =  ��̂�𝐴1
�̂�𝐴2
� = ([𝐷𝐷1;𝐷𝐷2]𝑇𝑇[𝐷𝐷1;𝐷𝐷2])−1[𝐷𝐷1;𝐷𝐷2]𝑇𝑇𝑋𝑋, (11) 

where [D1;D2] is a matrix of size Nt * (N1+N2) obtained by concatenation of D1 and 
D2. Spatial filters are obtained through the Rayleigh quotient by maximizing the 
SSNR.78 The result of this process provides Nf spatial filters, which are ranked in 
terms of their SSNR.  

Eight spatial filters (Nf = 8) are then used as input to a BLDA classifier. The input 
vector is obtained by concatenating the Nf time-course signals across the resulting 
spatial filters. The BLDA classifier was selected because it is relatively robust to 
noise in the training data.79,82 
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Confidence 

Confidence measures were derived to identify the reliability of the classification 
made for each trial. A simple measure, the distance of the classifier score to the 
discriminating boundary, was used as confidence, as follows: 

𝐶𝐶𝐶𝐶𝐶𝐶𝑓𝑓 = �
𝑆𝑆𝐶𝐶𝐶𝐶𝑡𝑡𝐶𝐶−𝜅𝜅

max(𝑆𝑆𝐶𝐶𝐶𝐶𝑡𝑡𝐶𝐶)− 𝜅𝜅
   𝑆𝑆𝑆𝑆𝐶𝐶𝑆𝑆𝑆𝑆 > 𝜅𝜅

𝑆𝑆𝐶𝐶𝐶𝐶𝑡𝑡𝐶𝐶−𝜅𝜅
min(𝑆𝑆𝐶𝐶𝐶𝐶𝑡𝑡𝐶𝐶)− 𝜅𝜅

   𝑆𝑆𝑆𝑆𝐶𝐶𝑆𝑆𝑆𝑆 ≤ 𝜅𝜅
 , (12) 

where Score is the score produced by the XD+BLDA classification on a single trial. 
The classifier score represents a projection from the feature space down to the 
decision space that maximally separates the 2 classes. 𝜅𝜅 is the threshold established 
through XD+BLDA for discriminating targets from nontarget and background 
distractor stimuli. Max(Score) and min(Score) are the maximum and minimum 
scores over the entire training set. 

Performance Evaluation 

The effect of including the visually similar nontarget stimuli in the RSVP paradigm 
on classifier performance was explored by comparing the classifier performance 
across the TO and TN conditions 3 distinct discriminations. First, target stimuli 
were discriminated from background distractor stimuli in the TO condition. This 
discrimination represents the baseline RSVP paradigm with only 2 types of stimuli. 
Next, we discriminated target stimuli from background distractor stimuli in the TN 
condition, omitting the nontarget stimuli. Then we discriminated target stimuli from 
both nontarget and background distractor stimuli in the TN condition. 

For each discrimination, classifier performance was evaluated using a nested  
10-fold cross validation with 80% of the data used to train the spatial filter and 
classifier, 10% of the data used to test the classifier and establish discrimination 
thresholds, and the remaining 10% of the data were used as an independent 
validation set on which to apply the trained classifier and thresholds. This process 
was repeated 10 times, such that each contiguous 10% slice of data was used as the 
final validation set. Performance was evaluated based on the area under the receiver 
operating characteristic (ROC) curve (Az)83 and misclassification rate in the final 
validation sets.  

Misclassification rates were derived based on a discrimination threshold that 
maximizes the difference between the true positive rate and the FP rate from the 
classifier scores in the training set and then applying this threshold to the classifier 
scores in the validation set. Both Az and misclassification rates were also used to 
quantify the accuracy of the confidence measures presented here. To do so, a 
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threshold for dividing the data into high-confidence and low-confidence subsets 
was varied from 0% to 90% in steps of 10%. A confidence threshold of 0% meant 
that 0% of the data was included in the low-confidence subset, and all of the data 
was included in the high-confidence subset. A confidence threshold of 90% 
indicated that 90% of the data was included in the low-confidence subset and 10% 
of the data was included in the high-confidence subset. For each confidence 
threshold in this range, the Az and misclassification rates of the high-confidence 
subset were measured. Using these metrics, confidence values that accurately 
represent the reliability of performance should increase Az and decrease 
misclassification rates as the confidence threshold is raised. 

Mitigation Strategies 

The utility of applying confidence measures was further demonstrated by 
quantifying the improvement in image-labeling accuracy when the estimated 
confidence was used to trigger a corrective action. This study simulated a simple 
mitigation strategy where trials above the confidence threshold were classified 
using the neural classifier (NC) and trials below the confidence threshold were 
manually labeled by the participant. For the purpose of this simulation, we assume 
that a human participant given unlimited time to label the image will attain 100% 
accuracy; thus, the manually labeled trials were set to the actual image labels. The 
classification performance using this simulated mitigation strategy was evaluated 
using Az and misclassification rates for each stimulus class. 

3.2.2 Results 

Results across the behavioral, ERP, and single-trial classification analyses 
demonstrated that adding sparse, visually similar, nontarget images made it more 
difficult for participants to identity target images. 

3.2.2.1 Behavior 

Behavioral performance was characterized by comparing the error rate by stimulus 
type, reaction time, and d´ across the TO and TN conditions (Fig. 9). Across all 3 
measures, behavioral performance declined when nontargets were included. 
Adding nontargets more than doubled the average error rate for target stimuli 
(difference significant, Wilcoxon signed rank test, p < 0.01, Fig. 9A). Reaction 
times obtained from correct target trials were significantly faster in the TO 
condition (median RT of 514.67 ms) than in the TN condition (median RT of 
602.82 ms) (Wilcoxon signed rank test, p < 0.001, Fig. 9B). D-prime analysis 
showed that target discrimination performance was significantly better for TO trials 
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(median d´ of 4.25) over TN trials (median d´ of 3.49) (Wilcoxon signed rank test, 
p < 0.01, Fig. 9C). 

 

Fig. 9 Behavioral performance: Panel A shows error rates for each stimulus type for both 
TO (light gray) and TN (dark gray) conditions; Panel B shows target reaction time for both 
conditions; Panel C shows d´ measures for both. Error bars show highest and lowest data 
point within 1.5 times the interquartile range of upper and lower quartiles, respectively. 
Within each box, crosses indicate mean values and horizontal lines indicate median values. 

3.2.2.2 ERP Analysis 

Statistical comparisons of grand-average ERP waveforms demonstrated that ERPs 
were significantly different across stimulus type, with visually similar nontargets 
generating ERPs with amplitudes between those of target stimuli and background 
distracters. In addition, ERPs for background distractor and target stimuli were not 
significantly different across the TO and TN conditions. A one-way ANOVA was 
used to analyze the mean amplitude (400–800 ms) from electrode Pz with stimulus 
(background distractor, target, and nontarget) as a main factor. There was a main 
effect for stimulus in the TO condition, (F(1,16) = 111.34, p < 0.001), indicating a 
significantly larger P3 amplitude for targets (mean amplitude: 13.66 µV) relative 
to background distractors (mean amplitude: –0.44 µV , Fig. 3A). A main effect was 
also obtained in the TN condition (F(2,32) = 83.01, p < 0.001). Subsequent multiple 
comparison tests using the Tukey–Kramer method showed that amplitudes from 
background distractors, targets, and nontargets were all significantly different from 
each other (Fig. 3B). A 2-way ANOVA was run with the factors of condition (TO 
or TN) and stimulus (distractor or target) to assess any differences between target 
P3 amplitude in the 2 conditions. There was a main effect of stimulus (F(1,16) = 
344.33, p < 0.001) but no main effect for condition (F(1,16) = 0.001, p = 0.978) or 
interaction (F(1,16) = 0.002, p = 0.964), indicating that both the background 
distractor and target activity was similar between the TO and TN conditions and 
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that there were significant differences between background distractor and target 
activity in both the TO and TN conditions (Fig. 10). 

 

Fig. 10 Grand-average ERP waveforms at electrode Pz and topographic voltage maps  
(400–800 ms); white dot indicates location of electrode Pz. Panel A shows grand-average ERP 
waveforms and topographic maps to target and background distractor stimuli in the TO 
condition; Panel B shows grand-average ERP waveforms and topographic maps to target, 
nontarget, and background distractor stimuli in the TN condition; Panel C shows difference 
waves created by subtracting background distractor from targets in TO condition and the 
background distractor from targets and nontargets in TN. 

3.2.2.3 Single-Trial Detection 

Overall classification performance declines when visually similar nontarget stimuli 
are present in the RSVP stream (Fig. 11). The TO condition represents the baseline 
RSVP discrimination of target versus background distractor. The classifier was 
highly accurate in this condition, producing average Az values greater than 0.97. 
When targets are discriminated from background distractor stimuli in the TN 
condition (ignoring nontarget stimuli) performance is not significantly different 
(Wilcoxon signed rank test, p = 0.06). However, when nontarget stimuli are 
included in the discrimination, performance is significantly worse than when they 
were not included (Wilcoxon signed rank test, p < 0.001).  
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Fig. 11 Overall classification performance under various conditions: left, target vs. 
background distractor (T v B) discrimination performance in TO condition; middle, target 
vs. background distractor (T v B) discrimination performance in TN; right, target vs. both 
background distractor and nontarget [T v (B+NT)] discrimination performance in TN. 

In addition to the Az measure, the classifier performance was also measured by 
quantifying the misclassification rate for each stimulus type (Fig. 12). Again, we 
focused on the same 3 discriminations: target versus background distractor in the 
TO condition (Fig. 12A), target versus background distractor in the TN condition 
(Fig. 12B), and target versus both nontarget and background distractor stimuli in 
the TN condition (Fig. 12C). In the baseline TO condition, misclassification rates 
were below 10% for both target and background distractor stimuli. This level of 
accuracy would be expected given the high Az levels achieved by in this condition 
(see Fig. 11).  
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Fig. 12 Misclassification rate for each stimulus type for each discrimination when threshold 
was calculated based on classifier scores from training set. Panel A shows the misclassification 
rate for target (T) and background distractor (B) stimuli in the TO condition; Panel B shows 
the misclassification rate for T and B stimuli in the TN when targets are discriminated from 
B only; Panel C shows the misclassification rate for T, B, and nontarget (NT) stimuli in the 
TN when targets are discriminated from both B and NT stimuli. Error bars show highest and 
lowest data. 

Moving from the TO condition to the TN condition resulted in no significant change 
in misclassification rates when discriminating target stimuli from background 
distractor stimuli (Wilcoxon signed rank test, p = 0.23 and p = 0.07 for target and 
background distractor stimuli respectively). Including nontarget stimuli in the 
discrimination increased misclassification rates for target stimuli (Wilcoxon signed 
rank test, p = 0.01) and resulted in an exceptionally high misclassification rate for 
nontarget stimuli (38.84% ± 8.71%). Misclassification rates for background 
distractor stimuli were slightly, yet significantly, reduced with the addition of the 
nontarget stimulus (Wilcoxon signed rank test, p = 0.049). 

The increase in misclassification rates in the nontarget condition is potentially 
problematic for many real-world applications of this technology where users will 
encounter instances of nontarget stimuli that share the same physical and semantic 
features as target stimuli. To address this issue, we explored applying confidence 
measures to the classifier outputs as a means to mitigate the misclassification rate 
(Figs. 13 and 14).  
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Fig. 13 Confidence ERPs for Subject S10: Panel A, ERPs across all trials; Panel B, ERPs 
for the high-confidence trials (e.g., top 25% trials when sorted by confidence); Panel C, ERPs 
for low-confidence trial (e.g., bottom 25% trials when sorted by confidence). The difference 
between high- and low-confidence waveform for all 3 stimulus categories is statistically 
significant (Wilcoxon signed rank test corrected for multiple comparisons using False 
Discovery Rate p < 0.001). High-confidence trials show greater separation between target and 
nontarget trials compared with low-confidence trials.  

Nontarget ERPs from high-confidence trials are more readily distinguished from 
target ERPs than in low-confidence trials, as shown for subject S10 in Fig. 13. Here, 
high and low-confidence trials are defined as the top 25% and bottom 25%, 
respectively. Trials labeled with high confidence showed greater separation 
between target trials and both nontarget and background distractor trials than trials 
with low confidence. A Wilcoxon signed rank test (corrected for multiple 
comparisons using False Discovery Rate)84,85 shows that the difference between the 
high- and low-confidence waveform for all 3 stimulus categories is statistically 
significant (p < 0.001). When this analysis is extended across all participants, 14 
out of 16 participants show significant differences between high- and  
low-confidence trials for all 3 stimulus categories (p-values corrected for multiple 
comparisons using False Discovery Rate, q = 0.05). All participants had significant 
differences between high- and low-confidence stimuli for at least 2 of the 3 stimulus 
categories. A similar analysis was carried out to compare behavioral performance 
between high- and low-confidence trials (as defined by the classifier), but no 
significant difference was found. 

Overall, nontarget stimuli have lower confidence than the target or background 
distractor stimuli (0.442 ± 0.0057, 0.5751± 0.0014, 0.3051 ± 0.0057 mean ± 
standard error for target, background, and nontarget stimuli, respectively; Fig. 
14A). For each participant, a one-way repeated measures ANOVA was used to 
analyze the confidence attributed to each stimulus type. When p-values are 
corrected for multiple comparisons using False Discovery Rate analysis,84,85 all 16 
participants showed a significant effect for stimulus type (q < 0.05). Across all 
participants, the multiple comparisons analysis showed that the confidence 
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attributed to nontarget trials was significantly lower than the confidence attributed 
to both background distractor and target trials for all participants. Additionally, 
confidence values for target stimuli were less than those for background distractor 
stimuli.  

The use of confidence measures also had a significant effect on classification 
performance. Figure 14B shows the area under the Az for classification 
performance for all trials as a function of confidence thresholds. As the confidence 
threshold is raised from the minimum to a value that matches the 90th percentile of 
confidence values for each subject, the average Az value across all participants 
increases to a nearly perfect classification (solid line in Fig. 14B). This 
improvement is further evidenced through the change in misclassification rates for 
each of the stimulus classes, as shown in Fig. 14C (solid lines). As the confidence 
threshold increases, misclassification rates for the target and background distractor 
stimuli fall to nearly zero. However, nontarget stimuli maintain a high level of 
misclassification regardless of confidence level. The improved performance 
obtained by raising the confidence threshold comes at the cost of ignoring portions 
of the dataset. The amount of data remaining for each stimulus class for increasing 
confidence thresholds is shown in Fig. 14D.  

Alternatively, however, instead of simply ignoring trials that fall below a 
confidence threshold, one might instead choose to seek alternative methods for 
classification. A simple example of an alternative method would be to manually 
label those images where the NCs failed to produce a highly confident outcome. 
The performance of such a system improves the overall classification accuracy, as 
shown in the dashed line in Fig. 14B, at the expense of the extra time needed to 
manually label images. The performance improvement through the manual labeling 
process is further evidenced through the reduction of misclassification rates for 
each stimulus class (Fig. 14C, dashed lines). For background and nontarget stimuli, 
the difference between the neural classification alone and the neural classification 
combined with manual labeling is significant for all confidence thresholds above 
0% (Wilcoxon signed rank test, p < 0.001 for both classes; p-values were also 
corrected for multiple comparisons through False Discovery Rate with q < 0.05). 
For target stimuli, the difference is significant for all confidence thresholds above 
0% and less than 90% (Wilcoxon signed rank test p < 0.001 for both classes,  
p-values were also corrected for multiple comparisons through False Discovery 
Rate with q < 0.05).  
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Fig. 14 Confidence: Panel A, confidence levels by stimulus type. Panel B, Az for trials as a 
function of confidence threshold (solid line shows the Az for trials exceeding confidence 
threshold given; dashed line shows Az when trials below confidence threshold are manually 
labeled while trials above threshold are labeled through neural classification; in both cases, as 
confidence increases, Az increases). Panel C, misclassification rates for trials exceeding a given 
confidence threshold. (Solid lines show misclassification rates for neural classification only. As 
confidence increases, misclassification rates for target and background distractor stimuli fall 
to nearly zero. Nontarget misclassification rates remain high regardless of confidence levels. 
Dashed lines show misclassification rates when trials below threshold are manually labeled, 
while trials above threshold use neural classification. Misclassification rates for all 3 stimulus 
classes are reduced through manual labeling process. Inset zooms in on lower portion of the 
graph, highlighting decrease in misclassification rates for target and background stimuli.) 
Panel D, percentage of trials exceeding a given confidence threshold. 

3.2.3 Discussion 

Prior work by many groups40,47,59–67 has demonstrated the effectiveness of using 
single-trial classification to detect targets in RSVP; however, little of this work 
explicitly examined how feature similarity between target and nontarget stimuli 
effected target-detection accuracy. We addressed this concern in the present study 
by introducing a more-realistic situation where target and nontarget stimuli, though 
each occurred infrequently, shared both physical and semantic features but only 
targets were task-relevant. We evaluated the impact of this manipulation on 
behavior, ERPs, and single-trial classification of the evoked neural response. 
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Results across the behavioral, ERP, and single-trial classification analyses 
demonstrated that adding sparse, visually similar, nontarget images made it more 
difficult for participants to identity target images and more difficult to classify 
images from neural data. 

3.2.3.1 Confidence  

Previous studies using RSVP-based neural technologies for image triage 
applications59,60,69,70 have employed statistical methods to identify a subset of trials 
most likely to be target images. As an extension of this previous work, we employed 
a confidence-based approach in an offline simulation to mitigate the drop in 
performance that occurred when nontargets were included in the RSVP stream. 

Confidence measures derived from the classifier score were used to sort the dataset 
based on likelihood of correct classification. A comparison of the ERPs and  
single-trial classification performance showed significant differences between the 
high- and low-confidence trials. The ERP analysis showed that high-confidence 
target trials were more separate from the nontarget and background distractor trials 
than low-confidence T trials. This increased separation led to an improved 
classification performance for high-confidence trials. Specifically, Fig. 14B shows 
that as we remove the lower-confidence trials from the performance analysis, 
classification accuracy improves.  

However, the use of a distance from threshold method for establishing confidence, 
as was done here, has been shown to be less than ideal in previous studies.86 
Employing more-robust confidence measures (for example, a density-based 
estimation method in the learned feature space) will likely further improve 
performance. Additionally, our confidence measures used only information from 
the classifier scores; however, there is potentially a large amount of information in 
a variety of sources that could further improve the estimate of confidence in a given 
decision (e.g., data from multiple sensor modalities, individual skill level/expertise, 
and sleep history). We envision that an accurate estimate of confidence in a 
particular decision (e.g., target versus nontarget for the current image) may require 
a combination of a number of the approaches above. Future studies will examine 
how to improve our confidence estimate by combining different approaches from 
those listed. Such endeavors may provide a more-robust estimate of confidence that 
will likely help further improve performance. 

Once the low performing trials have been identified, one can employ a number of 
mitigation strategies. The simplest mitigation strategy would be to simply manually 
label the low-confidence images. If we use the current data to simulate performance 
when the lowest 20% of trials are manually labeled, overall target-detection error 
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is reduced by 36%. While the manually relabeling may be the simplest option, it 
will dramatically increase the time needed to completely label the set of images. 
For example, Figure 14C shows that approximately 30% of the data must be 
manually labeled to reduce the nontarget error rate to 20%. If we assume that it 
takes a user an average of 1 s per manually labeled image, then the manual labeling 
will increase the total labeling time by 60%. While this increased labeling time may 
be acceptable for some applications, other strategies may be more efficient. For 
example, the low-confidence images can be redisplayed to the same person using 
RSVP, or sent to another person for target identification. Alternatively, we may 
also be able to couple the human-based target identification with an automatic 
target recognition system60,87 to improve performance. Such an endeavor is 
currently underway88 and will greatly benefit from the results presented here. 

The improvement demonstrated by the inclusion of confidence measures has broad 
implications for the development of future systems. While we focused on an  
RSVP-based target-detection paradigm, the use of confidence in human decisions 
can be extended to a wide range of human-in-the loop systems. The principle of 
confidence has been applied in control theory to account for variable or noisy 
sensors. Here we provide initial evidence that the same principle can be applied to 
account for inherent variability in human decisions.  

3.2.3.2 Top-Down Influences 

One aspect that was not explored in this study was how top-down influences due to 
task instructions may have affected performance. In this study, participants were 
told to explicitly look for people with weapons to test whether the participants and 
subsequently the classification algorithms could discern people with weapons 
(targets) from people without weapons (nontargets). The ERP analysis suggests that 
early stages (200–400 ms) of the P3 waveform may reflect an orienting response to 
stimulus novelty since rare target and nontarget waveforms were similar but 
different from the frequent background distractors. Later stages (400–600 ms) of 
the P3 show differences between targets, nontargets, and background distractors 
indicating processes related to target selection or nontarget inhibition. Since both 
targets and nontargets shared many properties (appearing infrequently, people), 
participants may have adopted a strategy to orient to any rare stimulus. Other 
research that included a nontarget stimulus in a standard oddball paradigm showed 
that nontargets have a neural response similar to the frequent background 
distractors and not the target89; however, the stimuli used in this study were simple-
shape stimuli containing different stimulus properties (e.g., circles, squares, 
triangles). This may have lead participants to select targets or possibly inhibit 
nontarget at an earlier stage of processing than what was seen in the current study. 
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The ERP waveforms and classification results may have been different if 
participants searched for targets that did not contain features similar to nontargets68 
or if the instructions had been to explicitly look for weapons (with no mention of 
people).  

3.2.4 Conclusion 

By evaluating the impact of adding a nontarget stimulus to a standard RSVP-based 
paradigm, this study begins the process of moving RSVP based target identification 
applications into more complex environments that include natural images. We have 
shown that the introduction of a nontarget stimulus yields a significant slowing of 
reaction time and reduction of d´. This decrement in behavioral performance is 
accompanied by a decrement in classification accuracy for single-trial detection and 
an increase in misclassification rates. Importantly, we show that incorporating 
measures of confidence can identify trials where the drop in performance is likely 
to occur. Using confidence measures, we enable these systems to employ a number 
of possible mitigation strategies that enable the integration of information from 
alternative sources as a means to improve classification performance. 

Testbed Task 2: Exploration 

3.3 Leveraging Human Perception to Improve Robotic 
Exploration and Mapping 

The just discussed target detection performance work assumes an incoming stream 
of images that may or may not include an object of interest. Many such image 
streams exist, including satellite and aerial photography. Automated, ground-based 
exploration robots enable more-detailed surveillance of mixed indoor–outdoor 
environments, but maps of unknown, complex environments may not exist. This 
introduces complication to target localization/identification because a map needs to 
be constructed simultaneously. This combination of tasks is referred to in the 
literature as simultaneous localization and mapping. When imagining a 
heterogeneous team of automated and human image analysts, some degree of image 
transmission will be necessary between exploration robots and human analysts. 
With this infrastructure in place, we sought to determine if human perception could 
be used to improve mapping as well as target localization.90 

3.3.1 Background 

In autonomous mapping,91,92 results are dramatically improved when the system is 
able to successfully detect loop closures when, for example, a previously visited 
location is recognized as such. This improvement applies to both single- and  
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multi-agent scenarios. However, recognizing a previously visited location is 
challenging in general because shifts in perspective can cause the location to appear 
very differently than it did in the past. For example, autonomous, computer-vision-
based systems proposed for this task93–95 experience difficulty in recognition due to 
factors such as illumination and viewpoint,92,96 and overcoming these limitations is 
still an active area of research. Humans, on the other hand, face and solve the  
loop-closure problem with what seems to be relative ease throughout the course of 
normal living. Therefore, it seems natural to wonder whether a joint human–
autonomy mapping system can be developed that allows the autonomous system to 
leverage the human ability to detect loop closures. In fact, exactly such a system 
was developed as part of Olson et al.97 with the goal of increasing performance in 
a map co-registration algorithm. However, this system relied on high-level 
guidance from expert human users. In contrast, we seek here a technique to gather 
low-level loop-closure guidance from nonexpert human users. 

To do so, we developed a task with which humans could be queried to determine 
whether or not a robot was visiting a previously visited location. Humans with no 
special training in, or knowledge of, robotic exploration were shown pairs of video 
clips recorded by a video camera attached to a ground-based exploration robot 
taken at 2 different times. The humans were simply asked to rate whether the clips 
were recorded from the same location or different locations. In this way, we sought 
to incorporate a task in which we expect most humans to be expert: location 
recognition. 

Given our specific task, the question remains whether human loop-closure skills 
can be applied reliably when experience of the location is mediated by the  
limited-field-of-view video recorded by a ground-based exploration robot. Human 
perception of natural scenes has been studied extensively, and several studies have 
revealed that human vision can almost immediately understand the gist of a natural 
scene.98–100 However, this broad categorization is insufficient for the task of 
determining whether a particular view or scene matches one in memory. Human 
scene recognition may depend on encoding the spatial layout of objects in a 
scene.101,102 Much of our understanding of human scene recognition comes from 
research involving highly distinctive objects in tabletop scenes or from static,  
high-resolution imagery; it is unclear how applicable these findings are to 
recognizing locations from different views in the real world.103 

Our video-mediated scene-recognition task differs from naturalistic human location 
recognition in other ways. For example, location recognition in the real world 
depends upon recognizing and localizing views from past experience,104 but 
matching views in short-term memory, as in our task, likely relies on different 
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mechanisms.105 Moreover, in physical navigation, additional cues like path 
integration might aid with location recognition.102 In single-robot-mediated 
exploration, video-mediated visual path integration might be possible but only if 
the entire putative loop were displayed to the human and other path integration cues 
like vestibular and somatosensory information would be absent. In multi-robot-
mediated exploration, 2 different robots might visit the same location from different 
directions. In that case, there is potentially no path over which to integrate, and 
visual recognition might be required to operate in isolation. 

To enrich our understanding of how humans might perform our scene-recognition 
task, we experimentally varied 2 properties of the video clips: clip duration and clip 
speedup. Duration was varied to see whether additional context would improve 
scene recognition. Adding context might help if participants used context to build 
up a mental map of a scene to develop a viewpoint-invariant representation106–109; 
however, participants might alternatively use the presence or absence of specific 
diagnostic objects or landmarks in a scene to recognize it. In that case, additional 
context may not help and may instead hurt performance because it adds potentially 
distracting information in the form of objects and landmarks that might be relatively 
far away from the target scene. The speedup manipulation was included to help 
determine if more- or less-dense frame sampling affected performance. By 
speeding up the clips, human operators may be able to derive the same amount of 
contextual information in less time and with less image-data transmission. 

An additional measure of interest was whether human performance improved over 
the course of the experiment. We expect that scene recognition of familiar 
environments should be better than unfamiliar environments, but under the 
circumstances of ground-robot-mediated exploration it is unknown how quickly 
that familiarity might form or if such familiarity will help with scene recognition. 
If ground-robot-mediated exposure to a new environment for tens of minutes allows 
human observers to learn the features of that environment, we would expect scene-
recognition performance to improve over the course of the experiment. However, 
prior experience of similar environments might transfer, so it could be that there is 
no room for additional learning in our experiment. 

Adding a human in the loop adds considerable overhead (in energy and time) to an 
exploration and mapping task because communicating relevant information (e.g., 
images) over long distances requires expenditure of power and because humans are 
typically slow relative to automated systems. To assess the extent to which that 
overhead is worthwhile, we compared human performance on the loop-closure task 
with that of a state-of-the-art, automated, visual loop-closure algorithm (FAB-MAP 
2.0).94,110  
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In the following, we present several experimental results for our task of showing 
pairs of video clips to human observers and asking them to judge whether the clips 
came from the same location or different locations. We varied clip duration and 
speedup. We found that humans performed the scene-recognition task well above 
chance levels and that performance did not vary significantly with clip duration, 
clip speedup, or learning over the course of the experiment. To assess whether 
human scene recognition could viably contribute to an automated mapping system, 
human performance was compared against an automated solution. Human scene-
recognition performance was better than automated scene recognition. These 
results support using human assistance in robotic exploration. 

3.3.2 Methods 

3.3.2.1 Military Operations in Urban Terrain (MOUT)-Site Database 

The video clips used in this experiment were extracted from a data set of robotic 
sensor readings at a MOUT training site. This data set was captured to simulate an 
exhaustive exploration of the site. A schematic map and some example views are 
shown in Fig. 15. Nodes representing a physical location and pose (facing north, 
south, east, or west) were defined both indoors and out, and nearby nodes, including 
all at the same location with different poses, were connected to each other by paths. 
There is approximately one node per indoor room, and exterior nodes were chosen 
as reasonable waypoints one might visit when traveling between buildings. An 
iRobot Packbot—equipped with a Prosilica high-resolution color camera 
(resolution 2752 × 2200; frame rate 1 Hz), an Asus Xtion Pro RGB (red, green, 
blue)-D camera (resolution 320 × 240; frame rate 30 Hz), an actuated Hokuyo 
LiDAR (light detection and ranging), and a Garmin GPS—traversed these paths at 
a speed of approximately 1.2 m/s while recording all sensor data. For the present 
experiment, only the Asus video images were used. 
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Fig. 15 Schematic and example views from the MOUT database: nodes (blue dots) are both 
indoor and outdoor locations; connecting paths (black lines) show the exploration robot’s 
paths; selected frames illustrate differences in lighting conditions and scene types. 

3.3.2.2 Stimuli, Protocol, and Participants 

Trials were presented in blocks by original recording length (2 levels: 6 and 12 s at 
30 frames/s) and temporal downsampling (2 levels: 3× and 6×). Temporal 
downsampling was achieved by only showing every third or sixth frame. Each 
block consisted of 26 matching pairs and 26 nonmatching pairs presented in random 
order. Additionally, participants were shown a 3-trial initial block (duration 9 s, 
speedup 4×; not analyzed) to familiarize them with the experiment interface. The 
ordering of the blocks was counterbalanced across subjects so that effects of clip 
types could be examined separately from effects of learning. Clips were displayed 
in original color at a resolution of 1280 × 960 pixels (upscaled with bilinear filtering 
from the original 320- × 240-pixel images) at 20 frames/s on an Asus VS248H full 
high-definition LED 24-inch monitor viewed at 0.7 m. The experiment was 
controlled in MATLAB using PsychToolBox.111 

The structure of a trial was the following. The participant pressed a button to 
indicate readiness, at which point the first clip was displayed. The clip was a 
segment extracted from the MOUT-site database previously described. After the 
clip, a black screen was displayed until the participant pressed a button to indicate 
readiness, and then the second clip was displayed. In matching trials, the second 
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clip included video recorded while the robot was at the same location (although not 
necessarily facing in the same direction) as in the first clip. In nonmatching trials, 
the second clip did not include any video from any node in the first clip. 
Nonmatching clips only included nodes that were at least 3 paths away from any 
node in the first clip. After the second clip, the participant was prompted to respond 
using buttons marked strong nonmatch, weak nonmatch, weak match, or strong 
match. After the participant responded, he/she was prompted to start the next trial. 

The voluntary, fully informed written consent of participants (N = 21) in this 
research was obtained as required by federal and Army regulations.112,113 The 
investigator adhered to Army policies for the protection of human subjects.113 All 
human subjects testing was approved by the Institutional Review Board of the US 
Army Research Laboratory (ARL). 

From the participant responses, the area under the Az was calculated for each clip 
type using Signal Detection Theory (SDT)114 to fit an Az to the observed responses 
using the unequal variance normal assumption.115 With 4 response buttons, 3 
criterion observations were possible, so a 2-parameter fit could be made. If a subject 
did not use all 4 buttons, a reduced ROC model using a unit-variance assumption 
was fit. Az was calculated as the analytical integral of the fit ROC. 

3.3.2.3 Automated Loop-Closure Baseline 

FAB-MAP 2.093,94 was used as a baseline for automated loop closure as 
implemented in Glover et al.110 The scenario presented to the subject in this 
experiment is different from the typical automated loop-closure-detection scenario 
in that the automated solution was designed to compare a current view against all 
previous views. As such, this work should not be seen as an evaluation of  
FAB-MAP 2.0; rather, it serves as a convenient baseline for comparison against 
human performance. To adapt FAB-MAP 2.0 to the current scenario, we computed 
a scene-similarity matrix for each pair of video clips by computing the similarity of 
each frame from the first clip against all of the frames from the second clip. This 
produced scores for both matching and nonmatching pairs. The maximum score in 
the similarity matrix was used as the overall score for the trial. This allowed for the 
fact that pairs of clips were considered matching if any portion of the clips 
overlapped in location. The SDT unequal-variance assumption did not fit the 
obtained ROC (see “Results”, Section 3.3.3), so area under the ROC curve was 
estimated using trapezoid integration.  

Just as with the human participants, we also wanted to determine if previous 
exposure to a particular environment improved the algorithm’s performance. We 
therefore evaluated automated performance in 2 training conditions: generic and 
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site specific. For the generic condition, the vocabulary was generated from a video 
gathered during a car ride through an urban environment.116 For the site-specific 
condition, the vocabulary was generated from views of the mock urban site that 
were not used in our experiment. The same number of training frames were used in 
both training conditions. 

To establish a fair baseline for comparison, the automated loop-closure detectors 
were tested by presenting them with the same clip pairs that human participants 
saw. This allowed us to extract automated performance for each block, resulting in 
21 participants by 4 conditions by 2 training conditions estimates of Az. 

3.3.3 Results 

3.3.3.1 Characterizing Human Scene-Recognition Performance 

Results (summarized as Az) for humans, site-trained automation, and generically 
trained automation for the 4 video clip conditions are in Fig. 16. The absence of 
learning over time is illustrated in Fig. 17. Across all stimulation conditions, human 
performance was high with mean Az = 0.865 (SD = 0.047, range [0.778 0.939]). 
To assess differences in human performance due to clip parameters, a  
repeated-measures ANOVA was run with factors of original clip duration (6 s, 12 
s), clip speedup (3×, 6×), and block order (first, second, third, fourth). None of these 
factors had a statistically significant effect on Az (all p > .05). There was a 
statistically reliable effect of subject, F(20, 57) = 1.86, p = 0.035, η2 = 0.39, 
indicating that between-subject variability was significantly greater than  
within-subject variability. An identical repeated-measures ANOVA using a logit 
transform of Az as well as repeated-measures ANOVAs using Az and  
logit-transformed Az as computed using trapezoid integration were run. All of these 
analyses had equivalent results. 
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Fig. 16 Human, site-specific (trained), and non-site-specific (generic) automated scene- 
recognition performance: large dots show means taken over all subject-specific clip sequence 
blocks; smaller symbols show results for each subject-specific sequence block; brackets 
indicate statistically significant differences in mean Az as determined by a paired-T test (df = 
20, p < 0.01, Bonferroni corrected). 

 
Fig. 17 No statistically significant learning was observed over the course of the experiment. 
Each dot (one color per participant) shows Az on an experimental block minus the group 
average performance for that block’s video-clip condition. Error bars show approximate 95% 
confidence intervals for the mean. 
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3.3.3.2 Automated Scene-Recognition Performance 

For the automated scene recognition, the unequal-variance assumption did not 
result in an ROC-curve estimate that matched well with the empirical ROC  
(Fig. 18), especially from the 2 shorter clip conditions, so trapezoid integration was 
used to estimate Az. Mean Az from our adaptation of the FAB-MAP 2.0 algorithm 
to our task with generic training was 0.636 (SD = 0.034) and with MOUT  
site-specific training was 0.743 (SD = 0.035). Figure 16 shows results for 
automated scene recognition in context with human performance. To assess the 
effects of our experimental manipulations, an ANOVA was run on the automated 
scene recognition Az estimates with factors of duration, speedup, and training type. 
An additional factor of clip set was included because even though it was the same 
algorithm evaluating each subject’s particular set of video clips, we wanted to 
account for the possibility that our pseudo-random sampling of clips resulted in 
more or less difficult clip sets. Full results are in Table 6. Significant (p < 0.05) 
main effects of training and clip duration were found, but there were also significant 
interactions of clip duration with speedup and of duration with training type.  

 

Fig. 18 ROC curves for site-specific trained (site) and site-nonspecific trained (generic) 
automated scene recognition. Performance shown is over all clip pairs of the indicated length 
and speedup. Fit lines show the unequal-variance normal distribution curve of best fit. 
Numbers in the panel legends indicate area under the ROC curve by trapezoid integration 
and by SDT in parenthesis.  



 

Approved for public release; distribution is unlimited. 
49 

Table 6 ANOVA result for automated scene-recognition performance 

Source Sum sq. d.f. F p-value eta squared 

Clip duration 0.1616 1 38.19 0.000 0.092 

Speedup 0.0093 1 2.19 0.141 0.005 

Training 0.4831 1 114.17 0.000 0.274 

Duration*speedup 0.0273 1 6.46 0.012 0.016 

Duration*training 0.3349 1 79.16 0.000 0.190 

Speedup*training 0.0099 1 2.35 0.128 0.006 

Duration*speedup*training 0.0049 1 1.17 0.282 0.003 

Clip set 0.1381 20 1.63 0.053 0.078 

3.3.3.3 Man vs. Machine vs. Machine 

To statistically assess differences in scene-recognition performance among 
humans, site-trained FAB-MAP, and generically trained FAB-MAP, we used a 
family of paired-T tests, controlling for differences in clip set difficulty. Within 
each clip condition, we compared human versus site trained, human versus 
generically trained, and site trained versus generically trained. To correct for 
multiple comparisons, we used Bonferroni correction for 12 comparisons (3 
contrasts per condition × 4 conditions). In all 4 conditions, human performance was 
significantly better than both CV instances, and site-trained performance was better 
than generically trained performance for the two 6-s clip conditions (all p < 0.01, 
Bonferroni corrected). Performance was not significantly different between the 2 
CV conditions for the 12-s clips. 

3.3.4 Discussion 

In summary, we found that human scene recognition was good and did not vary 
with respect to video-clip length, video speed, or time on task. We also found that 
human scene recognition was better than automated scene recognition. These 
results suggest that incorporating human scene recognition into human–autonomy 
teams for exploration and mapping is a promising way forward. Here, we first 
consider the results pertaining to the capacity of humans to complete our  
clip-matching task. We then discuss these findings in the context of  
human–autonomy teaming for the task of loop closure. 

3.3.4.1 Human Scene Recognition 

Our results showed that humans are able to accurately recognize scenes from 
different viewpoints using only brief video clips recorded by exploration robots. 
The average area under the ROC curve of human sensitivity to the distinction 
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between 2 views of the same scene versus views of 2 different scenes was 0.865. 
There was significant inter-individual variability, suggesting that, in a  
human–autonomy integration application, selecting a high-performing human 
operator should have even better results. The best performer in our sample had an 
estimated Az of 0.939. However, this performance is not perfect. Future work will 
examine whether scene-recognition accuracy in this range is sufficient to improve 
overall map accuracy. 

We found no statistically reliable difference in human scene-recognition 
performance based on video-clip duration. This suggests that the additional spatial 
context derived from the longer clips did not provide additional useful information 
or that whatever useful information they provided was counteracted by distracting 
information. This result is compatible with an account of scene recognition based 
on diagnostic objects or landmarks in the target scene. Longer clips may have 
provided views of more objects or landmarks overall, but objects viewed while 
approaching a scene from one direction might not be visible when approaching 
from another direction, so the additional objects might overload working memory 
without affording any performance improvement. Future work will use eye tracking 
to infer whether fixation on the same object viewed in a pair of clips is associated 
with accurate scene recognition. We also found no reliable effect of clip speedup. 
This indicates that, at least in the limited range we tested, human time efficiency 
can be boosted by speeding up video recorded by exploration robots. 

On average, human performance did not change significantly over the course of the 
experiment. For this observation there are 2 primary explanations. The first 
possibility is that the natural statistics of the scenes in the experiment were 
sufficiently similar to those in the human observer’s experience that there was 
effectively nothing for the observer to learn. The other possibility is that there is 
something to be gained from extensive experience of a specific environment but 
that learning takes place at a different time scale, possibly hours or days. 

In the loop-closure literature, loop-closure performance is often given as recall at 
100% precision. This is equivalent to hit rate at FAR = 0. Our model of human 
performance from SDT prohibits FARs of 0, so this measure cannot be readily 
computed. However, humans typically were able to use our 4 response buttons 
appropriately; increasing certainty of match corresponded to an increase of 
precision and decrease in recall. Perhaps precision of 100% could be obtained by 
giving humans a button marked “100% definitely a match”. 

To summarize the human scene-recognition results, human performance was 
approximately equally good over the conditions we tested. Although increasing the 
number of humans in a system is not as easy as increasing the number of robots, 
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the task humans performed here requires essentially no training other than that 
obtained in the course of normal daily life. Although human performance was fairly 
high, it is important to know if human performance was better than performance by 
automated solutions. 

3.3.4.2 Comparison with Automated Scene Recognition 

To address the question of whether human input generated by our task might be 
useful in automated scene recognition, we compared human performance with a 
state-of-the-art, vision-only scene-recognition algorithm: FAB-MAP 2.0. In an 
attempt at a fair comparison, 2 variants of this algorithm were used. The first used 
a visual vocabulary that was generated by analyzing a generic video clip. The 
second variant used a visual vocabulary generated from analyzing images of our 
specific experiment environment. Neither variant resulted in performance that 
approached that of our human participants. However, FAB-MAP 2.0 was not 
specifically designed for the task here, so additional development might improve 
automated solutions. Also, in a practical application, an exploration robot would 
potentially have access to odometry, pose estimation, and nonphotographic 
measurements of the environment (e.g., LiDAR). These additional information 
sources would presumably improve automated scene recognition to some extent. 

We examined automated scene recognition with generic and with site-specific 
training, and we found that overall the best automated performance was obtained 
with site-specific training. But the difference between site-specific and generic 
training was largest for the shorter, more-sped-up clips. On the longer clips, the 
difference between specific and generic training was negligible. It was somewhat 
surprising that the generic training was able to perform as well as it did; the generic 
training video was recorded by a car travelling on paved roads through a suburban 
environment, while the testing video was recorded by a slow-moving robot 
travelling through both indoor and outdoor scenes. This result suggests that training 
on a large set of images from varied environments might be suitable for exploration 
in novel environments, at least under some conditions. However, site-specific 
training outperformed generic training on the shorter video clips, and automated 
performance was best for the site-specific training on the shortest, most-sped-up 
clips.  

One explanation for obtaining the best performance on the clips with the fewest 
frames available is that any pair of randomly selected frames has a chance of 
returning a strong, false match. This is referred to as perceptual aliasing. Our  
clip-matching score was computed as the peak frame-matching score. This strategy 
could be unnecessarily sensitive to FPs, and a method that models trajectories, for 
example,117 might reduce FPs. However, the specific task in this experiment is 
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about identifying when clips show the same location and is explicitly not about 
whether the clips follow the same trajectory, so trajectory matching might also 
reduce the hit rate of an automated solution for this specific problem. It was not 
surprising that site-specific training improved performance, but it was somewhat 
surprising that the advantage of the site-trained algorithm vanishes for the longer 
video clips. It might be that with longer clips, the perceptual aliasing hazard washes 
out any advantage of site-specific training.  

3.3.5 Summary 

Fully autonomous robotic operation allows for efficient scaling of robot team size97; 
however, fully autonomous and highly accurate performance on perceptual tasks 
such as object and scene recognition has not yet been achieved, especially with 
unconstrained task parameters. The upper limits of performance on such tasks are 
unknown, but human performance on these tasks serves as an example of 
performance that is better than current autonomous solutions. This observation 
motivates at least 2 lines of research. The first is toward improvement of 
autonomous solutions; a reasonable goal is to match human performance for the 
task we used here. Second, in parallel to improvements in autonomous solutions, 
research is needed to identify when and how to efficiently include human 
perceptual decisions in human–autonomy teams. 

In conclusion, we developed a task that required no special expertise beyond that 
typical of human vision to aid in autonomous robotic mapping. We showed that 
human performance on this task was high and did not significantly vary with 
changes in video-clip duration, speedup, or learning. We compared performance 
with state-of-the-art autonomous scene recognition and found that human 
performance was better. More work is needed to determine the extent of 
improvements human vision can offer over strictly autonomous solutions, but based 
on these results, incorporating human scene recognition is a promising approach 
for human–autonomy teams. 

Moving forward, this experiment was replicated with an additional 14 participants 
from whom we simultaneously recorded EEG and eye-tracking data while they 
performed the loop-closure task. The EEG and eye-tracking data will be analyzed 
to assess whether these features can be used to construct a confidence metric on 
human loop-closure performance. An initial step in this direction was undertaken 
by an undergraduate summer research intern supervised by HIVE team members. 
The intern found that fusing pupil-size measurement with behavioral responses 
resulted in a small but statistically significant improvement in loop-closure 
classification. 
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4. Sensor Fusion/Computer Vision 

A critical barrier for fielding autonomous systems is the issue of human–autonomy 
integration. Effective methods for fusing information from multiple disparate 
sensor modalities are limited. Of specific interest here are methods that enable 
appropriate fusion of inputs from human and autonomous systems to enable 
effective leveraging of the specific strengths of each agent. We focused on 
developing novel fusion techniques that can dynamically incorporate information 
from a changing environment and changing human performance in an effort to 
rapidly adapt to these changes in real time. We chose to start with CV as the 
exemplar autonomous technology as a complement to the human target-
identification studies carried out under the human variability section. Recently, CV 
algorithms have dramatically improved enabling an unprecedented level of 
accuracy in understanding the contents of images. Nevertheless, most algorithms 
are unable to function in highly dynamic and cluttered environments. In the 
following sections, we first describe a novel fusion method known as Dynamic 
Belief Fusion (DBF).118 Then, we demonstrate that applying this novel method to 
combine human and CV inputs can significantly improve target-detection 
performance.119 Finally, we show that this new method can also be applied across 
a range of tasks for improving performance.120 

4.1 Dynamic Belief Fusion 

Current methods for fusing multiple object detectors are often specific to a subset 
of detectors with shared features.121–124 However, the field of object detection is 
undergoing a state of rapid advancement.125–127 Many detection algorithms and, 
hence, feature-specific fusion algorithms, are quickly becoming obsolete. There is 
an increasing need for fusion methods that can combine object detection algorithms 
regardless of their structure. One effective solution in this case can be late fusion, 
a process which conditions the “trust” in individual detector outputs on their prior 
performance, and then intelligently combines the trust-weighted outputs. 

Several approaches to late fusion exist, including Bayesian fusion and Dempster–
Shafer Theory (DST) fusion. However, Bayesian fusion typically does not yield 
significant improvements in performance due to its inherent characteristics. 
Bayesian fusion handles uncertainty in a detector’s output by associating a 
probability to each hypothesis (e.g., 30% chance of target and 70% chance of 
nontarget); however, the Bayesian approach does not indicate the level of trust to 
be placed in the probability assignments themselves. Belief theory, a component of 
DST developed by Shafer,128 takes a step in the right direction to address the 
ambiguity in detector quality through its use of compound hypotheses. In 
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considering 2 hypotheses, target and nontarget, Shafer’s belief theory assigns 
probability to the information that directly supports the target and nontarget 
hypotheses, and also instantiates an intermediate state, target or nontarget, with its 
own probability quantifying the level of ambiguity that makes either hypothesis 
plausible. In this manner, a detector output with a high level of ambiguity can be 
ignored/down-weighted in favor of a more trustworthy, low-ambiguity detector 
output. However, assigning these belief probabilities is not a trivial task, and choice 
of assignment method is critical to fusion performance. 

We propose a novel approach, DBF, which assigns probability to hypotheses 
dynamically under the framework of DST. In this approach, trust in an information 
source is characterized as a continuous function of its output by assigning a 
corresponding set of probabilities to each output value. The DBF process is partly 
illustrated in Fig. 19, in which 3 heterogeneous detectors generate scores for a 
target-candidate window. Similar to other late fusion methods, these scores are 
cross-referenced with the detectors’ trust models to obtain a set of probability 
assignments, essentially reweighting the outputs of each detector. The probabilities 
from multiple detectors are then combined into a single fused detection score via 
Dempster’s combination rule.129 
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Fig. 19 Dynamic Belief Fusion: 3 detectors—blue, red, and yellow—detect a car in an image 
shown. A combined detection vector is constructed by collecting detection scores whose 
windows overlap. For each detector, basic probabilities of target (red), nontarget (blue), and 
intermediate state (target or nontarget—pink), shown at the bottom, which dynamically vary 
as a function of detection score in conjunction with the trust model representing prior 
information of each detector, are assigned. (In each plot, the circle radius represents 
magnitude of basic probability assignment.) Dempster’s combination rule combines basic 
probabilities of each detector and returns a fused confidence score.  

To generate continuous probability assignments (also known as belief functions or 
trust models) for target, nontarget, and intermediate-state hypotheses in the context 
of object detection, we employ the precision recall (PR) model of each detector in 
a validation step. Specifically, to compute the probability assigned to the 
intermediate state, we devise the notion of a best possible detector, a theoretical 
detector trained over a limited number of images that can generate the best detection 
performance possible close to a theoretical limit. We estimate the PR curve of the 
best possible detector and treat the difference in precision between any individual 
detector and the best possible detector as the ambiguity in the decision of the 
individual detector and, thus, assign it to the probability of the individual detector’s 
intermediate state. 
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Our contributions are summarized as the following: 

• We introduce a novel late-fusion framework by optimally modeling joint 
relationships between a priori and current information of individual 
detectors. The proposed fusion approach can robustly extract 
complementary information from multiple disparate detection approaches 
consistently generating superior performance over the best individual 
detector. We believe these results, as well as the clear improvement over 
existing late-fusion algorithms, will inspire greater efforts along the lines of 
late-fusion research. 

• Our novel approach computes the probabilities dynamically, which are 
assigned to all constituent hypotheses, including an intermediate state 
(target or nontarget), by optimally linking the current confidence levels in 
detection (i.e., detection scores) to the PR relationships estimated from a 
validation set as prior information. 

The proposed DBF method is evaluated using ARL130 and PASCAL VOC 07131 
image sets. DBF is compared with other well-known fusion methods. In these 
experiments, DBF outperforms all individual CV methods as well as other fusion 
methods. 

4.1.1 Related Works 

We can split the literature concerning the fusion of multiple heterogeneous 
information sources into the following 2 categories: 

• building a joint model by integrating multiple approaches  

• fusing the output of multiple approaches 

Kwon and Lee proposed 2 approaches integrating multiple sample-based tracking 
approaches using an interactive Markov Chain Monte Carlo framework132 and 
using sampling in tracker space modeled by Markov Chain Monte Carlo method,133 
respectively. Wu et al.134 introduced an approach combining detectors of different 
modalities (concept, text, and speech) by using relationships among the modes in 
the event detection. However, in general, modeling the dependencies in fusion 
among multiple approaches built on different principles is infeasible. 

In the case where modeling dependency among multiple approaches is not possible, 
fusion can be performed over their outputs (late fusion). Bailer et al.135 introduced 
a fusion framework in the target-tracking paradigm. They collected trajectories 
from multiple tracking algorithms and computed one fused trajectory to improve 
accuracy, trajectory continuity, and smoothness. However, since temporal 
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information obtained from trajectory cannot be applicable in the object-detection 
task, a different fusion framework is necessary for our problem. Kim et al.136 and 
Liu et al.137 used weighted sum (WS) methods to fuse multiple types of data for 
object detection. Their WS method learns weights in a manner that estimates trust 
in multiple data sources. However, since weights optimization is usually performed 
to maximize distance between positive and negative samples, like Bayesian fusion, 
WS does not provide a way to indicate ambiguity between the positives and 
negatives, which degrades fusion performance, as previously mentioned. The 
works of Ma and Yuen138 and Liu et al.139 employing Bayesian fusion also show 
limited performance. 

To improve upon these late-fusion results, we introduce DBF, a general fusion 
framework for object detection, employing DST to interpret and leverage 
ambiguity more completely. Experiments demonstrate the prominent performance 
of our proposed approach against WS and Bayesian fusion, as well as other existing 
methods. 

4.1.2 Dempster–Shafer Theory 

In this section we detail components of DST, which form the foundation of our 
proposed DBF method. DST128,129 is based on Shafer’s belief theory128 that obtains 
a degree of belief for a hypothesis by combining evidences from probabilities of 
related hypotheses. DST combines such beliefs from multiple independent sources 
using a method developed by Arthur Dempster. 

4.1.2.1 Shafer’s Belief Theory 

Let X be a universal set consisting of M exhaustive and mutually exclusive 
hypotheses (X = {1, 2, · · · , M}). The power set 2X is the set of all subsets of X. 
Basic probability in the range [0 1] is assigned to each element of the power set  
2X. A function defined as m: 2X → [0 1] is called a basic probability assignment 
(BPA). Subsets consisting of compound hypotheses in X represent ambiguity 
among the constituent hypotheses; the BPA given to the subset measures the 
level of ambiguity. A BPA has 2 properties: (i) m(∅) = 0 (the mass of the empty 
set is zero) and (ii) ∑ 𝑚𝑚(𝐴𝐴) = 1𝐴𝐴∈2𝑋𝑋  (the BPA values of the members of the 
power set sum to one).  

From the BPAs, the belief function bel(A) for a set A can be defined as the sum 
of all masses, which are subsets of the set of interest:  

 𝑏𝑏𝑆𝑆𝑏𝑏(𝐴𝐴) = ∑ 𝑚𝑚(𝐵𝐵)𝐵𝐵|𝐵𝐵∈𝐴𝐴 .  (13) 

Belief represents the information in direct support of A. 
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4.1.2.2 Dempster’s Combination Rule 

Dempster’s combination rule can be applied to calculate a “ joint BPA” from 
separate BPAs. Under the condition that the evidence from each pair is 
independent of the other, Dempster’s combination rule defines a joint BPA mf = m1 
⊕ m2, which represents the combined effect of m1 and m2: 

 𝑚𝑚𝑓𝑓(𝐴𝐴) =  𝑚𝑚1⊕𝑚𝑚2 = 1
𝑆𝑆� ∑ 𝑚𝑚1(𝑋𝑋)𝑚𝑚2(𝑌𝑌)𝑋𝑋∩𝑌𝑌=𝐴𝐴,𝐴𝐴≠∅ , (14) 

where N = ∑ 𝑚𝑚1(𝑋𝑋)𝑚𝑚2(𝑌𝑌)𝑋𝑋∩𝑌𝑌≠∅  and X and Y are subsets of 2X . N is a measure 
of the amount of any mass whose common evidence is not the null set. Dempster’s 
rule can be extended for multiple pieces of evidence (e.g., multiple detectors) using 
the associative and commutative properties of BPAs, mf = m1 ⊕m2 ⊕· · · ⊕mK , with 
the following formula: 

 𝑚𝑚𝑓𝑓(𝐴𝐴) = 1
𝑆𝑆� ∑ ∏ 𝑚𝑚𝑖𝑖(𝑋𝑋𝑖𝑖)𝐾𝐾

𝑖𝑖=1𝑋𝑋1∩𝑋𝑋2∩…∩𝑋𝑋𝐾𝐾 . (15) 

4.1.3 The Proposed Fusion Approach: Overview of the Fusion of 
Detectors 

The proposed fusion of object detectors is performed in 3 steps: 1) individual 
detectors are trained on the training set, 2) a PR relationship used as a prior 
information for the fusion is calculated for each detector on the validation set with 
detection scores and ground truth information, and 3) in testing, each detection 
score is converted to probabilities associated with corresponding detection 
hypotheses for all individual detectors. The probabilities are, for each detector, 
estimated by adaptively linking corresponding detection score to the PR models 
previously calculated on the validation set. Joint exploitation of the detection 
scores in the test set and the PR model in the validation set is used to estimate 
trustworthiness of the detection in conjunction with the general performance of 
individual detectors. The estimated probabilities for individual hypotheses are 
separately fused over different detection approaches. Figure 20 illustrates the 
fusion process of the proposed DBF algorithm. Details of the proposed fusion 
process follow.  
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Fig. 20 Flow diagram of proposed fusion algorithm: in fourth and fifth columns (right side 
of “DBF”) of the “test” step, darker windows indicate higher confidence. 

4.1.3.1 Building a Trust Model as A Prior Performance Model for Individual 
Detectors (Validation) 

Detectors are applied to validation images in a scanning window fashion and to 
search for potential objects of interest. To construct the trust model of each detector 
we first estimate the PR relationships of all the detectors. In building the PR model, 
all detection windows are labeled as true, FP, or undecided by comparing them with 
ground truth (annotated windows containing the objects of interest). Any detection 
window that has an intersection-over-union overlap (PASCAL VOC criteria)131 of 
greater than 0.5 with a ground-truth window is assigned true positive. If there is no 
overlap between a detection window and a ground-truth window, the detection is 
assigned FP. The remaining detections are labeled undecided. The PR model is 
constructed using the labeled detection results. 

4.1.3.2 Constructing A Combined Detection Vector from Detection Windows 
for Fusion (Test) 

Let di , i = 1, 2, · · · , K, j = 1, 2, · · · j, Wi be the jth window of the ith detector 
associated with detection score ci . K is the number of detectors and Wi is the 
number of detection windows of the ith detector. For each detection from all of 
the detectors given a test image we collect the detection windows from the 
remaining detectors that significantly overlap the subject detection window (see the 
second column of the test phase in Fig. 20). Two detections, di and dk , 𝑖𝑖 ≠ 𝑘𝑘, 
are considered significantly overlapping if the intersection over-union overlap 
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of their windows is greater than 0.5. A K-dimensional detection vector c =  
[c1

1j c2
2j ,,, cK

Kj] is then constructed consisting of the score of the subject 
detection window and those of the overlapped windows from other detectors. 
If multiple windows from the same detector overlap the subject detection 
window, the window with the maximum detection score between them is used. 
If no overlaps exist for a particular detector, the corresponding element of the 
combined detection vector is filled by a value of negative infinity to ignore the 
influence of the detector in fusion. 

4.1.3.3 Fusing Detection Windows (Test) 

Fusion is performed over the combined detection vector using DBF. Details of DBF 
are described in the following subsection. DBF dynamically assigns basic 
probabilities to the hypotheses of a given observation by adaptively mapping 
current detection scores to the PR model, which are fused over all the detectors by 
the Dempster’s combination rule. After rescoring all windows by applying DBF, 
nonmaximum suppression is applied to merge windows whose intersection over 
union overlap is greater than 0.5. The final output of the fusion procedure is a 
consolidated set of windows, each with a fused detection score. 

4.1.4 Dynamic Belief Fusion 

In binary object detection, the universal set X is defined as {T, ¬T}, and thus its 
power set is expressed as {∅, T, ¬T, {T, ¬T}}, where T is a target hypothesis and 
¬T = X - T is a nontarget hypothesis. The {T, ¬T} in the power set represents 
detection ambiguity, denoted by I (intermediate state), which indicates that the 
subject observation could be either target or nontarget. We assign basic 
probabilities to all hypotheses based on prior detection performance of detectors. 
We employ the PR model to represent the prior information of individual detectors 
and compute basic probabilities of the hypotheses for a given observation. Since 
the PR relationship is obtained by varying a threshold against detection scores, ci

j , 
the basic probabilities being assigned dynamically change as ci

j changes. Hence, 
we refer to this assignment as dynamic basic probability assignments.  

In DBF, as shown in Fig. 21, each element of the combined detection vector, ci
j , is 

first mapped to the corresponding recall and the corresponding precision (p) is 
assigned as the basic probability of target hypothesis. Then, 1 - p needs to be split 
to account for 2 basic probabilities of nontarget and intermediate state since it 
includes information about both hypotheses. This is because precision is only 
defined for targets (not backgrounds). Note that the recall of background (i.e., recall 
when “positive” refers to background) cannot be calculated because the number of 
backgrounds is close to infinite.  
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Fig. 21 DBP assignment: Left plot shows a PR curve for an individual detector and a best 
possible detector. The rates of values along the precision axis corresponding to recall r(s) are 
assigned as the basic probabilities to target, nontarget, and intermediate state, where s is a 
detection score. Right plot presents basic probabilities with respect to a detection score, which 
converted from the PR curve. 

Since the split cannot be achieved based solely on the given PR relationship, we 
introduce a theoretical best possible detector whose performance can possibly 
achieve a level close to a theoretical limit. Ideally, individual detectors can also 
achieve the same performance of the theoretical detector if they are provided with 
complete information about target and nontarget. In reality, individual detectors do 
not have complete information in training. We treat the difference between the 
precision of an individual detector and that of the best possible detector as the 
detection ambiguity (i.e., the probability of the intermediate state) caused by the 
lack of complete information in training. In our work, the PR curve of the best 
possible detector, �̂�𝑝𝑏𝑏𝑏𝑏𝑏𝑏, is modeled as  

 �̂�𝑝𝑏𝑏𝑏𝑏𝑏𝑏 = 1 − 𝑆𝑆𝑛𝑛, (16) 

where r is recall. This model is proposed because in general �̂�𝑝𝑏𝑏𝑏𝑏𝑏𝑏 should mimic the 
typical behavior of a highly accurate detector, a concave function approaching the 
top-right corner of the plot such as the car detector in Dalal and Triggs.126 The m(I) 
is defined by �̂�𝑝𝑏𝑏𝑏𝑏𝑏𝑏 − p and the remaining fraction of precision 1 -�̂�𝑝𝑏𝑏𝑏𝑏𝑏𝑏 is assigned 
to m(¬T). As n approaches infinity, the best-possible detector becomes the perfect 
detector (i.e., no FPs). Dynamic basic-probability assignment is shown in Fig. 21. 
Fusion of the detections from multiple individual detectors is achieved by 
computing fused basic-probability assignments of target and nontarget hypotheses, 
mf(T) and mf(¬T), by Dempster’s combination rule in Eq. 15. The overall fusion 
score is given by s = bel(T) - bel(¬T), where in our experiments, bel(T) and bel(¬T) 
are actually mf(T) and mf (¬T), respectively, according to Eq. 13 since T and ¬T 
are sets of a single element.  
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4.1.5 Experiments 

4.1.5.1 Evaluation Setting 

Eight object detectors with unique detection structures whose codes are readily 
available online were selected: 2 support vector machine (SVM)-based detectors 
incorporating both histogram of oriented gradient (HOG)126 and dense scale-
invariant feature transform (DSIFT),139 2 deformable part models (DPMs) with 
HOG 127 and color attribute,140 transductive annotation by graph (TAG),141 
exemplar SVM,125 and 2 convolutional neural network (CNN)-based detectors 
(fine-tuned CNN142 and regional [R]CNN).143 Given an image, the detection score 
indicates a degree of confidence about the decision. The 8 selected detectors use 
different feature-extraction methods (e.g., HOG, DSIFT, color attributes, and CNN 
features) and different principles of detecting objects of interest. 

Baselines (Fusion)  

As a baseline, we used 5 approaches: Platt scaling,86 WS, Bayesian fusion, local 
expert forest (LEF),144 and Detect2Rank (D2R).145 The Platt scaling learns a logistic 
regression model on the detection scores of true and FP detections. We applied Platt 
scaling to all the detectors on validation images. At test time, detections from 
multiple different detectors can be reconciled by fitting the distribution of detection 
scores of each detector to that of the Platt-scaled validation set. After scaling, the 
maximum value of the combined detector vector c is used as the final fused score. 
The WS approach finds weights of detection scores that maximize the product of a 
weight vector w and the detection vector of detector scores c, fWS(c) = wT c; w is 
learned through linear SVM optimization. In WS, detection scores are converted 
into probabilities by Platt scaling as well because negative infinity scores in the 
combined detection score for the non-overlapping windows can hurt the SVM 
optimization. For Bayesian fusion, we use a naive Bayesian model assuming that 
all the approaches are independent of each other. In other words, the joint likelihood 
can be decomposed as the product of the likelihoods of each detector, while the 
posterior is expressed as the product of the prior and the joint likelihood (i.e., 
Bayes’ rule). The remaining 2 approaches, LEF144 and D2R,145 have been recently 
introduced. Karaoglu et al.145 implemented 4 ranking approaches, and we have used 
PoW2, the best among the 4. These current works are compared with our proposed 
algorithm only using PASCAL VOC07 data set.  

To demonstrate the advantages of dynamic basic probability assignment in the 
proposed DBF, we also implement a regular DST fusion method that employs only 
static basic probability assignment,146 in which each detector’s previous 
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performance is characterized by the probabilities of the 3 hypotheses at the fixed 
precision value corresponding to a recall of 0.2. 

4.1.5.2 Evaluation of ARL Dataset 

The ARL image data set was originally created for the purpose of analyzing human 
performance in RSVP130 tasks, but is also applicable to object-detection tasks. (In 
future work, we plan to integrate computer-vision-based object detection with 
human decisions.) The dataset contains 3000 images of both indoor and outdoor 
scenes, 1438 images of which contain at least one object of interest. The target 
objects include chair, container, door, poster, and stair. Figure 22 displays several 
example images of all 5 objects as well as background images. The number of 
images in the ARL dataset is relatively small compared with that of other 
benchmark datasets such as PASCAL VOC 07 and ImageNet. However, with 
regard to the mean average precision (mAP), the ARL dataset (0.253 for DPM) is 
not considerably less challenging than the benchmark datasets (0.239 for DPM on 
PASCAL VOC 07).  

 
Fig. 22 ARL dataset130 

The proposed DBF algorithm was evaluated on the ARL dataset and its average 
precision (AP) was compared to that of 4 individual detection algorithms (the 
HOG–SVM detector was not used on the ARL dataset) and 4 other “baseline” 
fusion methods (Platt, Bayes, WS, and DST) for each object class. Results are 
shown in Table 7.  
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Table 7 AP on the ARL dataset27 

 

4.1.5.3 Evaluation of PASCAL VOC 07 Dataset 

The fusion and individual detection methods were also evaluated on the PASCAL 
VOC 07 dataset.131 PASCAL VOC 07 provides train, val, trainval, and test, where 
the trainval set consists of images of train and val sets. While previous works that 
used individual detectors employed in our fusion method use the trainval set, we 
learn the detectors and trust models on train and val set, respectively. This split is 
made to avoid building trust models that overfit the training dataset. Therefore, the 
performance of the individual detectors used in our work is worse than the 
performance reported in the original literature with regard to the individual 
detectors, as we are using a smaller training data set. 

The mAP of each individual detector and fusion method is reported in Table 8. To 
evaluate fusion on the PASCAL VOC 07 dataset, 8 individual detectors (DSIFT–
SVM, HOG–SVM, TAG, Exemplar SVM, 2 DPMs employing HOG and color 
attributes, separately, fine-tuned CNN (FTCNN), and RCNN) were selected and 
fusion of their detection results was conducted. 
  



 

Approved for public release; distribution is unlimited. 
65 

Table 8 AP on the PASCAL VOC 07 dataset4 

 

4.1.5.4 Discussion 

Both mAP and ROC performance metrics show that DBF outperformed all of the 
baseline fusion algorithms as well as individual detectors on both ARL and 
PASCAL VOC 07 datasets. DBF demonstrates the best results for 4 of 5 categories 
in the ARL dataset and 12 of 20 categories in the PASCAL VOC 07 dataset. DBF 
is the only fusion approaches that outperforms RCNN on the PASCAL VOC 07 
though improvement is small. Only a minor improvement is achieved because the 
performance of RCNN is much greater than the other detectors. Therefore, we 
evaluated fusion performance again but without RCNN: the mAP for Platt, 0.268; 
WS, 0.271; LEF, 0.283; D2R, 0.261; Bayes 0.253; DST, 0.257; and DBF, 0.341. 
DBF still outperformed all baseline fusion methods and all individual detectors 
with a significant gain in mAP (0.06 from LEF and 0.10 from color attributes). The 
clear difference in performance between conventional DST fusion and the proposed 
DBF demonstrates the strength of dynamic basic probability assignment over the 
conventional method of static assignment. Likewise, the fact that DBF outperforms 
Bayesian fusion demonstrates the benefits of adding an intermediate state to the set 
of hypotheses.  

In addition, we analyzed top-ranked FPs on the PASCAL VOC 07 and categorize 
them into 4 types according to Hoiem et al.147 in Fig. 23: 1) poor localization (Loc), 
2) confusion with similar classes (Sim), 3) confusion with dissimilar object 
categories (Oth), and 4) confusion with background (BG). Notably, most of FP in 
CNN performance is from poor localization. We can guess that CNN performed 
much worse than expectation because coarse-grid scanning windows and aspect 
ratio of windows fixed as square bring localization error. FPs detected by RCNN 
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have similar fractions to CNN. Once accurate localization approaches replace 
coarse-grid sliding windows (employed by CNN) or objectness (employed by 
RCNN), CNN-based detector may achieve much better performance. The charts 
also demonstrates that, as compared with RCNN, DBF increases the performance 
by reducing inaccurately localized FPs.  

 
Fig. 23 Analysis of top-ranked FPs: Pie charts present fractions of 4 types of top-ranked 
FPs. Analysis is performed on PASCAL VOC 07 data set. Among 20 object categories in 
PASCAL VOC 07 data set, all animals including person are in “Animal”; all vehicles are in 
“Vehicle”; and “chair”, “dining table” and “sofa” are assigned to “Furniture”. Loc error, 
confusion with Sim classes, confusion with Oth categories, and confusion with BG are 
indicated by blue, red, green, and purple, respectively. 

To further investigate whether (and to what degree) complementary information is 
provided by each detector using DBF, mAP was calculated while varying the 
number of individual detectors used in fusion. For each combination number K, 
detectors with the K highest mAP were selected. The results, shown in Table 9 for 
both the ARL and PASCAL data sets, illustrate that performance improves as the 
number of detectors increases, at a decreasing rate. 
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Table 9 Comparison of fusion performance with respect to the combination of multiple 
detectors 

 

The final row corresponds to the maximum number of combined detectors (4 for 
ARL, 5 for PASCAL). Figure 24 illustrates the variation in mAP as the shape of 
the PR curve of the best possible detector is varied for each object category in the 
ARL dataset. The optimal value of the parameter n (Eq. 4), which dictates the shape 
(and, hence, estimated performance) of the best possible detector, is different for 
different object categories. However, the notional perfect detector (n = ∞) 
underperforms other choices of n in every object category. This result suggests that 
our method of splitting the FPs into nontarget and intermediate state categories is 
actually beneficial. 

 
Fig. 24 Comparison of fusion performance with respect to the various theoretical best-
possible detectors; n in x axis is the exponent in Eq. 4 

4.1.5.5 Conclusions 

DBF is proposed to improve upon current late fusion methods in the context of 
object detection. DBF employs prior information in the form of dynamic basic 
probability assignments. For object detection, these dynamic basic probability 
assignments (target, nontarget, and intermediate state) are generated from the 
precision-recall curve of a validation image set. To properly separate the nontarget 
and intermediate states, the concept of a best possible detector is introduced and 
applied. Dempster’s combination rule is used to combine the resulting basic 
probabilities of detections from different detectors.  
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Experimental results on 2 datasets, ARL and PASCAL VOC 07, demonstrate that 
DBF outperforms all baseline fusion approaches as well as all individual detectors 
in terms of mAP DBF also achieved performance improvement over RCNN on 
PASCAL VOC 07. Its superior performance compared with the DST-based fusion 
approach (incorporating fixed levels of basic probabilities) clearly illustrates the 
robustness of dynamic basic probability assignment. Enhanced performance over 
Bayesian fusion supports the use of an intermediate belief state, which was 
achieved in this context via the instantiation of a best possible detector.  

DBF is a novel approach guaranteed to provide improved fusion performance over 
the best detector in conjunction with other detectors in the fusion pool through 
dynamic belief assignments and the Dempster–Shafer combination of assigned 
probabilities. Therefore, addition and removal of individual detectors from the 
fusion pool can only further improve fusion performance as state-of-the-art 
detectors, such as deep learning approaches, are introduced. 

4.2 DBF for Joint Human–Computer Vision Image Labelling 

4.2.1 Introduction 

Human–autonomy sensor fusion combines the raw processing power and 
consistent response of autonomous systems with the context awareness, vast 
experience, and adaptability of humans. Of particular interest, considering the 
current capabilities and limitations of autonomy, is the object detection task, 
typically defined as indicating the location of a specific target within an image. 
CV-based methods, which rely on feature extraction and pattern matching, have 
steadily improved over the past decade148 and are being used in real-world 
applications such as facial recognition149–151 and action/event detection.152 

Speed and accuracy are both paramount in a wide variety of time-critical  
object-detection scenarios. While humans possess an unparalleled ability to 
detect objects in images, the speed at which they are able to report detections is 
limited. The opposite is true of autonomous systems: With enough computing 
power, object detection speed is negligible, but accuracy currently does not rival 
that of humans. Even state-of-the art methods cannot fully account for context 
and are prone to mistakes in the case of uneven lighting and/or clutter. Most 
importantly, humans and autonomous detectors are heterogeneous systems that 
often contain complementary information; therefore, proper combination may 
significantly improve detection accuracy in comparison to either agent alone. 

Similar approaches have been investigated in prior work. Wang et al. performed 
experiments with a single NC and a graph-based pattern-mining system to identify 
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relevant images from an image pool, demonstrating improvements over NC alone.87 
Our own previous work used multiple NCs with the same graph-based pattern 
mining system to show that combining human vision and CV can improve image 
classification over either source independently.88 In both of these previous 
studies, however, the system did not attempt to localize target objects within the 
images (i.e., detection). Human–autonomy sensor fusion has also been explored 
in other areas. For example, Fanaee and Gama proposed various architectures for 
combining data-anomaly detection and background knowledge for event 
labeling, including the addition of human experts, but did not use images.153 
Prosthetics have been developed that rely on both mechanical and physiological 
sensor information to better decode user intent.154–156 

The objective of this work is to assess the benefits of human–autonomy fusion 
in target detection tasks, as well as the advantages and limitations of various 
fusion methods when applied for this purpose. We develop a fusion procedure 
that adapts CV-based target-detection algorithms to incorporate human responses. 
To capitalize on human detection abilities while maintaining high throughput, 
RSVP is employed. In most previous cases, RSVP is limited to image classification 
(target presence or absence) and provides no information about target location. 
It is important to stress the difference between object detection, which refers to 
estimating the bounding boxes of each object of a given object class in a test 
image,148 and object classification, which only requires predicting the 
presence/absence of at least one object of a given class in a test image. Our 
methodology augments CV-based object detection with classification of human 
response. 

To properly fuse these heterogeneous information sources, an intermediate step is 
introduced in the fusion process whereby detector fusion and classifier fusion 
are performed separately. Then a final fusion step is implemented to augment 
detection scores with classifier information, as illustrated in Fig. 25. Human 
classifiers score on a per image basis, while CV detectors score multiple 
detection windows within an image. Although CV can be applied to images in 
real time (e.g., as a human is undergoing RSVP), in this experiment detection was 
performed offline. Three candidate fusion algorithms were evaluated: 1) Bayesian, 
2) Dempster–Shafer, and 3) Dynamic Dempster–Shafer fusion. These “late 
fusion” methods are independent of the detectors/classifiers employed, and unlike 
feature-level fusion methods remain applicable as new detection and classification 
methods are introduced. The fused detection windows generated for each image 
are compared against ground-truth windows, and PR is employed to evaluate 
performance. 
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Fig. 25 Fusion of CV-based object detection with human neural and button-press 
classification; CV = CV detector, NC = NC, and BP = BP classifier 

The fusion of human-based classifiers and CV-based detectors generally provide an 
improvement in average precision over either method alone. This improvement 
illustrates that our methods can reliably extract complementary human and CV 
information. In contrast to previous studies, where BP and NCs each contributed 
to improving image classification,88 we found that for object detection, BP was 
shown to provide the greatest benefit, while the XD+BLDA NC also provided 
similar benefit. Other NCs tested provided negligible benefit and in some cases 
were detrimental. Results also show an inherent limit to the performance boost 
provided by classification, indicating that localization information from human 
eye tracking may be beneficial in future work. A novel method of fusion from 
Lee et al.,118 Dynamic DST Fusion (also known as DBF), was the highest-
performing fusion algorithm for all of the classifier/detector combinations tested. 
Overall, this report provides initial evidence that joint human–CV systems have 
the potential to dramatically improve object detection. Work in related fields such 
as event detection and target tracking may also benefit from our methods. 

4.2.2 Human-Centric Binary Classification Experiment 

4.2.2.1 Overview 

RSVP to humans has been explored in previous studies72,157 and is fairly 
straightforward. Subjects are placed in front of a visual screen that presents a 
sequence of images, normally at a constant rate. The subjects are instructed to 
search for a specific target (or target type) and press a button when the target is 
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observed. Control over the pace of image switching allows the 
experimenter/operator to reach a desired balance between speed and accuracy. 

The RSVP experiment used in the present study, summarized in Touryan  
et al.130 was conducted with 18 human subjects to obtain EEG and button-press 
responses to images containing 0–4 “targets”. The following are the number of 
targets per image: 1) 0 targets, 1347 images; 2) 1 target, 886 images; 3) 2 targets, 
553 images; 4) 3 targets, 157 images, 5) 4 targets, 48 images, and 6) 5 targets, 9 
images. An “office objects” data set of 3000 unique images was used in the 
presentations, with 5 different target types available: chairs, containers, doors, 
posters, and stairs. These images were collected and annotated by hand. In each 
experiment, subjects outfitted with EEG (BioSemi Active Two system, 256 
channels) were notified of the designated target type and instructed to watch for 
targets. Subjects were also told to press a button if a target was observed. Note 
that the neural and BP data are used for classification, or categorizing full images 
as containing or not containing targets. The fraction of target to nontarget images 
ranged from 0.01 to 0.13 in each trial. Because of the small size of the image 
database, many of the same images (overwhelmingly nontarget images) were 
shown to the subjects multiple times; however, only the first instance of each 
image was used in the subsequent fusion experiment. The rate of image 
presentation was set at a constant 5 Hz (new image every 200 ms). Over a full set 
(6 trials), each subject was presented with approximately 17,000 images. 

Trials were divided into 3 sets for each subject, one each for classifier training, 
fusion training (classifier testing), and fusion testing. Chronological order was 
maintained, and cross-validation was performed between different target classes in 
a specific temporal sequence to preserve set independence. 

4.2.2.2 Neural Classification 

Prior to neural classification, data was sampled and preprocessed according to 
Touryan et al.130 The 256 channel dataset was down-selected to a subset of 64 
that most closely matched the electrode locations in the standard BioSemi 32 EEG 
electrode arrangement. Offline, the EEG data were referenced to the average 
activity recorded at the mastoids, decimated to 256 Hz, and digitally band-pass 
filtered between 0.5 and 50.0 Hz. The 3 neural classification algorithms used in 
the present study follow: 

• Hierarchical discriminant component analysis (HDCA): Ensemble method 
using temporally staggered logistic regression discriminators applied to 10 
nonoverlapping windows in the first stage plus a separate logistic regression 
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discriminator applied over all first-stage discriminator outputs in the second 
stage.59 

• XD+BLDA: XDAWN spatial filtering identifies a linear combination of the 
raw neural signals that maximizes the SSNR with regard to typical target 
and nontarget responses, then uses the weighted signal in a Bayesian linear 
discriminant classifier to calculate the final score.61,78 

• Common spatial patterns (CSP) + BLDA: Spatial filtering method used to 
identify linear combinations of raw neural signals that maximize the variance 
between targets and nontargets.158 Bayesian linear discriminant classifier 
calculates the final score. 

These classifiers require a training step in which ground truth data is paired with 
actual responses, and the feature space dominated by target responses is 
separated from the space dominated by nontarget responses. In both training and 
testing, EEG data are broken up into epochs that correspond to per-image 
neural responses. These epochs are individually parsed by the NCs so that each 
image is assigned one score per classifier. 

4.2.2.3 Button Press 

A BP response to a target observation is a more concrete indication of an 
intentional human decision than EEG, which often contains high levels of noise. 
However, the timing of BPs relative to stimulus appearance is delayed and irregular, 
as shown in Sajda et al.,157 typically occurring 2–5 images after stimulus onset (for 
RSVP at 5 Hz). Therefore, the likelihood of target presence in any preceding 
image is considered a function of the time between image onset and a BP. For each 
BP, images appearing in the preceding 1 s are assumed to have some probability 
of having caused the BP. As such, the BP “score” is calculated as the normalized 
difference between the reaction time and the median reaction time (empirically 
calculated from the training set). 

4.2.3 Autonomous Object Detection 

4.2.3.1 Object Detectors 

Object detection is a quickly evolving area in the field of CV.148 In our work, 
we apply 4 current algorithms based on graphical models: 

• DPM: This method represents objects as a set of parts that can be 
deformed; using 2 different scales of HOG features, latent features, and a 
deformation cost.127 
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• SVM-based DSIFT: method based on matching densely sampled, pixelwise 
SIFT features between 2 images while preserving spatial discontinuities.139 

• Exemplar SVM (ESVM): ESVM learns a separate classifier for each 
positive training image using a rigid HOG template and scores candidate 
detections based on “distance” to exemplars.125 

• TAG: graph-based label propagation method using a small set of labeled 
images to derive likely labels based on image similarity metrics.141 

4.2.3.2 Results and Discussion 

Fusion of object detectors was conducted with and without augmentation by 
human-based classifiers, and performance comparisons were drawn between 
classifier/detector combinations, fusion methods, target objects, and human 
subjects. Similar to the analysis of object detection algorithms in related literature, 
we use average precision as the main indicator of detector performance.148 

Table 10 documents average precision scores from individual CV-based detectors 
and individual human-generated classifiers. Among these detectors, DPM 
demonstrated the best performance (in every target category) followed by 
ESVM. While detection scores in current literature have surpassed these values 
(on different, but comparable datasets),148 we reiterate that the fusion methods 
presented in this work are valid for any type of detector. The objective of this 
work is not to compete with state-of-the-art detection methods but to demonstrate 
that human and CV information can be combined to produce improved results, 
which will likely carry over to other detector combinations. In terms of human 
classifiers (here averaged over the first 5 subjects), BP yields the highest mAP, 
while XD+BLDA is the highest-performing NC. It must be stressed that average 
precision for a classification task cannot be directly compared with AP in a 
detection task, because detection requires localization while classification does 
not. Table 11 shows average precision scores using the 3 fusion algorithms on CV 
detections only. In terms of average precision, DBF is the best-performing fusion 
method in all target categories. 
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Table 10 Average precision, individual detectors, and individual classifiers 

Detector Chair Container Door Poster Stair mAP 
TAG 0.045 0.123 0.159 0.066 0.008 0.080 
SVM 0.143 0.037 0.073 0.143 0.061 0.091 
ESVM 0.125 0.318 0.150 0.236 0.122 0.190 
DPM 0.188 0.396 0.194 0.342 0.143 0.253 
Classifier Chair Container Door Poster Stair mAP 
HDCA 0.229 0.135 0.152 0.165 0.195 0.175 
XD+BLDA 0.346 0.224 0.234 0.226 0.289 0.264 
CSP 0.183 0.106 0.134 0.145 0.185 0.151 
BP 0.476 0.366 0.332 0.346 0.426 0.389 

Table 11 Average precision, CV only 

Fusion Chair Container Door Poster Stair mAP 
Bayes 0.218 0.376 0.269 0.324 0.128 0.263 
DST 0.198 0.318 0.163 0.273 0.124 0.222 
DBF 0.280 0.406 0.327 0.360 0.174 0.309 

Results of fusion output with the inclusion of human response are highlighted in 
Table 10. Here we focus on DBF because it was the best-performing fusion 
method. The first set of rows, incorporating CV detectors and all NCs (CV+NC) 
(but not BP [BP]) for 5 different human subjects, produces m scores (0.302–
0.308) that are slightly lower than CV-only DBF (0.309). The second set of 
rows shows CV fused with BP (CV+BP), generating the second-highest mean 
scores (0.318–0.328) of any other set of combinations or fusion methods tested 
(CV+XD+BP was the highest [Table 12]). The third set of rows, which includes 
information from all detectors/classifiers (CV+NC+BP) actually produces lower 
average precision (0.301–0.310) than CV+BP. From these results, we can deduce 
that one or more of the NCs provides more contradictory than complementary 
information, leading to lower performance. Interestingly, target type did make a 
difference; for instance, DBF fusion of human information consistently improved 
“chair” detection, while it was consistently detrimental to “door” detection. 
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Table 12 Average precision, DBF fusion 

 CV+NC 
Subject Chair Container Door Poster Stair mAP 

1 0.287 0.391 0.313 0.374 0.159 0.305 
2 0.313 0.386 0.332 0.361 0.144 0.307 
3 0.335 0.368 0.281 0.375 0.162 0.304 
4 0.265 0.411 0.312 0.380 0.170 0.308 
5 0.282 0.439 0.312 0.351 0.127 0.302 

 CV+BP 
Subject Chair Container Door Poster Stair mAP 

1 0.322 0.399 0.331 0.377 0.167 0.319 
2 0.320 0.396 0.316 0.367 0.210 0.322 
3 0.317 0.397 0.319 0.392 0.195 0.324 
4 0.273 0.432 0.320 0.385 0.229 0.328 
5 0.331 0.422 0.322 0.358 0.159 0.318 

 CV+NC+BP 
Subject Chair Container Door Poster Stair mAP 

1 0.292 0.376 0.310 0.364 0.161 0.301 
2 0.321 0.373 0.315 0.352 0.148 0.302 
3 0.345 0.353 0.252 0.387 0.169 0.301 
4 0.255 0.415 0.304 0.387 0.191 0.310 
5 0.305 0.431 0.295 0.341 0.122 0.299 

 

Table 13 compares the mAP for more combinations of detectors and classifiers 
and for each of the 3 fusion methods. It was noted that the XD+BLDA (XD) NC 
had much higher performance than the other 2 methods (HDCA and CSP). 
Therefore, fusion with CV+XD and CV+BP+XD was also investigated. In many 
cases CV+BP+XD produced higher results than CV+BP. Furthermore, averaged 
over the 5 subjects, CV+XD+BP yields the highest mean average precision. 
This provides strong evidence that combining BP and some types of neural 
classification can aid object detection. 
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Table 13 Mean average precision of different classifier combinations and different fusion 
methods 

 Bayesian Fusion: CV+... 
Subject NC+BP BP XD+BP XD NC CV Only 

1 

 

0.284 0.284 0.284 0.269 0.257 0.263 
2 

 

0.284 0.284 0.284 0.261 0.264 0.263 
3 

 

0.291 0.291 0.291 0.274 0.269 0.263 
4 

 

0.285 0.285 0.285 0.268 0.261 0.263 
5 

 

0.277 0.277 0.277 0.267 0.260 0.263 
Mean 0.284 0.284 0.284 0.268 0.262 0.263 

 DST Fusion: CV+... 
Subject NC+BP BP XD+BP XD NC CV Only 

1 

 

0.206 0.221 0.211 0.202 0.201 0.222 
2 

 

0.204 0.226 0.210 0.196 0.195 0.222 
3 

 

0.205 0.237 0.208 0.202 0.203 0.222 
4 

 

0.214 0.239 0.224 0.222 0.212 0.222 
5 

 

0.218 0.221 0.227 0.221 0.222 0.222 
Mean 0.209 0.229 0.216 0.209 0.207 0.222 

 Dynamic DST Fusion: CV+... 
Subject NC+BP BP XD+BP XD NC CV Only 

1 

 

0.301 0.319 0.326 0.325 0.305 0.309 
2 

 

0.302 0.322 0.314 0.313 0.307 0.309 
3 

 

0.301 0.324 0.327 0.324 0.304 0.309 
4 

 

0.310 0.328 0.335 0.324 0.308 0.309 
5 

 

0.299 0.318 0.318 0.315 0.302 0.309 
Mean 0.303 0.322 0.324 0.320 0.305 0.309 

 

To obtain a relative comparison of our classification performance in this detection 
task, a “perfect classifier” that correctly filters out all detection windows from 
nontarget images was simulated. When combined with CV detectors, an mPA of 
0.385 was obtained for DBF, a difference of 0.052 from the highest fusion 
combination (Subject 4, CV+XD+BP). This puts the seemingly minor 
improvements obtained from the XD+BLDA and BP in perspective, suggesting the 
relative strength of the classifiers themselves and the limitations of classification in 
a detection paradigm. Coupling human EEG/BP response with gaze data (via eye 
tracking) would provide localization information to improve filtering of CV 
detection windows. This will be performed in future work. 

Figure 26 shows the PR curves for different fusion algorithms, with 2 distinct 
levels of information (CV-only and CV+XD+BP) for 3 target types. As was 
indicated in Section 4.1.5.4, DBF outperforms DST and Bayesian fusion. In 
general, the addition of the XD+BLDA NCBPNC and BP response improves 
performance; however, the curves for CV-only and CV+XD+BP are similar in most 
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cases, suggesting that CV results dominate and accuracy of object detection. For 
practical applications, a real-time, hierarchical image-triage system could be set up 
to prioritize the most controversial/uncertain images to be inspected by a higher-
level human operating at a much slower pace than RSVP.88 Additionally, active 
interaction and active/proactive learning can be implemented in a real-time system. 

 
Fig. 26 Comparison of fusion methods and fusion combinations (CV-only vs. CV+XD+BP, 
Subject 4); multiple target types 

4.2.3.3 Conclusions 

A human–autonomy sensor fusion methodology was developed for the purpose of 
rapid object detection, demonstrating significant and consistent improvements in 
detection performance over CV algorithms alone across a range of different target 
objects. Of the various fusion algorithms and classifier combinations evaluated, 
Dynamic DST Fusion combining BP classification, XD+BLDA neural 
classification, and autonomous object detection yielded the greatest performance, 
indicating the potential of this new method. As late fusion methods are applicable 
to a wide range of information inputs, different human information and CV 
algorithms will be investigated and incorporated in future work. 

4.3 Task Conversion 

4.3.1 Introduction 

Humans are unparalleled in their ability to recognize objects against complex or 
cluttered backgrounds. However, human perception is limited in throughput and 
may be substantially impacted by factors such as fatigue, boredom, and heavy 
cognitive workload. Furthermore, attempts to exploit human processing directly 
through the use of neurophysiological signals suffer a range of challenges that in 
most cases render them inferior to near-real-time graphics processing unit 
implementations of CV algorithms.143 

In this report, we demonstrate that fusion of human detection with CV can enhance 
detection performance. We make use of the RSVP paradigm used by Touryan  
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et al.130 In RSVP experiments, participants are instructed to press a button when 
target images are seen among images presented at a rate of 5 Hz. EEG signals are 
concurrently monitored for a signature that occurs after presentation of a target 
image, indicating a positive detection. The responses to RSVP denote the presence 
or absence of a target but do not identify the specific target type or localize it within 
an image. CV may be used to provide this additional information by applying 
specific target object models against location hypotheses in the image. 

Using the unique conditions and capabilities of the 2 modalities, a family of 
algorithms was created to perform 4 related but distinct “tasks”: determine 1) 
presence or absence of any target in an image, 2) presence or absence of a specific 
target type within an image, 3) presence or absence and location of a target within 
an image, and 4) presence or absence and location of a specific target type in an 
image. Figure 27 demonstrates queries given to the human and machine, responses, 
and fusion results for each of the 4 tasks. Because of the binary (presence or 
absence)-only nature of the RSVP paradigm, the human is only directly able to 
perform Task 1, while the computer can hypothetically perform all 4 tasks. (For 
this RSVP study, we treat incomplete results from Task 2 as complete results for 
Task 1. This has the effect of artificially deflating human performance figures but 
does not impact the validity of the fusion result. See discussion in Experiments and 
Conclusion, Section 4.3.5.) One way to mitigate this shortcoming of RSVP is to 
convert the information provided to a new form to encode the necessary 
information in an RSVP-compatible task. To that end, we introduce “task-
conversion” strategies to allow for a meaningful human response in any of the 4 
tasks and apply a combination of fusion approaches to exploit these jointly with 
CV detections. 
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Fig. 27 Integration of human and machine perception in 4 different tasks: 4 approaches 
using human perception (H 1–4) and 4 approaches using machine perception (M 1–4). (top 
left) Query is given to the human subject. (top right) Machine perception results superimposed 
on image. (bottom) Fusion outputs of integrated human and machine perception. 

4.3.2 Related Work 

The RSVP paradigm traces its origins to the work of Potter and Levy,159 who 
originally developed the approach to test the amount of information that human 
subjects could absorb at speeds that would not allow for deep periods of cognitive 
fixation. Early research was heavily biased toward text processing,160 then there 
was a concurrent shift in latter decades toward practical applications in human-in-
the-loop information processing. Mills and Weldon69 proposed an RSVP-driven 
framework for dynamic text presentation that demonstrated mixed results versus 
other speed-reading approaches. 
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In the past 2 decades, there has been an accelerating body of research in the use of 
RSVP for human-in-the-loop image processing. The Defense Advanced Research 
Projects Agency’s (DARPA’s) Neurotechnology for Intelligence Analysts 
program161 applied the technique, along with EEG processing, to the reduction in 
the search space of large amounts of previously unindexed imagery by human 
analysts.59,62,162 Fei-Fei et al.163 made the distinction between identification of 
targets in a scene, generally well correlated with the P300 EEG signal (onset at  
300 ms after stimulus presentation) and the gist of images, which could be reliably 
detected in RSVP after a presentation of less than 100 ms. Evans and Treisman164 
found that when the contrast between foreground and background objects is strong, 
as with man-made objects with regular geometry against a natural background, with 
average time to detection in RSVP as little as 113 ms. Other groups47,59,61,62,130,162 
have demonstrated broad success in the use of RSVP to increase the throughput of 
human subjects analyzing imagery. 

Recently, groups have attempted to integrate human-in-the-loop processing in a 
fully closed-loop system. Branson et al.165 propose a “twenty questions” paradigm 
in which positive human response to one or more images in an RSVP set flags those 
images for downstream processing as a means of disambiguating between closely 
related classes of targets. Other attempts166,167 at fused human–machine recognition 
systems generally interleave human interaction with an “active learning” phase, 
sequentially asking users to label examples in order to steer the underlying 
algorithm. Our previous work integrates human classifiers with  
CV-based detectors by a novel DBF approach in a heuristic way in object 
detection.119 The task conversion we addressed in this report allows fusion in all 4 
tasks. 

4.3.3 Task Conversion and Fusion Strategies 

4.3.3.1 Task-Conversion Techniques 

The objective of this study was to effectively fuse responses from human and 
machine vision approaches. We identified the following 4 tasks that might be 
performed given human and machine responses to images, as illustrated in Fig. 28: 

• Detect images containing any of the objects of interest  

• Detect images containing a specific object of interest (for each object 
category)  

• Detect location of any of the objects of interest  

• Detect location of a specific object of interest (for each object category) 
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Fig. 28 Tasks 1–4 are categorizing images as 1) containing any of the objects of interest 
without localization, 2) classifying images for each object-of-interest class without localization, 
3) categorizing images as containing any of the objects of interest with localization, and 4) 
classifying images from each object-of-interest class with localization 

As previously stated, there is an inherent challenge in that human responses in this 
experimental design do not yield identity or location information for specific 
targets. The human is therefore only directly able to perform Task 1 while the 
computer can hypothetically perform all 4 tasks. In operation, object-detection 
algorithms generate candidate windows of various sizes and locations within the 
image and search for target features within each window. The output is a scored set 
of windows performed. When this procedure is done for each specific target class, 
it is analogous to Task 4. 

Figure 29 demonstrates task conversion strategies for employing the output of  
CV-based object detectors in all 4 tasks. Initially, detectors search possible 
windows in the image for a particular object and assign each a detection score (i.e., 
Task 4). Each object of interest has an associated detector and the confidence scores 
of the detectors cannot be compared directly due to difference in scale (i.e., score 
range). We employ Platt scaling,86 which calibrates the results of multiple detectors 
to allow them to be compared. Platt scaling, the process of rescaling and shifting 
the decision boundary of classifiers to create one unique boundary,125 demonstrates 
that Platt scaling greatly improves the interdetector ordering while each decision 
boundary is no longer an optimal solution for learning each detector. Platt scaling 
learns parameters α and β, which are used in fitting a probability distribution of 
outputs of detectors to a shared validation set. (Here, the probability distribution is 
assumed to follow a sigmoid function with 2 parameters α and β.) The calibrated 
score fs for the detection with detection score sc of the ith detector is as follows:  

 𝑓𝑓𝑠𝑠,(𝛼𝛼𝑖𝑖,𝛽𝛽𝑖𝑖)(𝑠𝑠𝑆𝑆) = 1
1+𝐶𝐶𝑎𝑎𝑖𝑖𝑠𝑠𝑠𝑠+𝛽𝛽𝑖𝑖

. (17) 



 

Approved for public release; distribution is unlimited. 
82 

 
Fig. 29 Task conversion for CV-based object detectors 

Details of implementation are described in 2 publications of the Institute of 
Electrical and Electronics Engineers.118,119 Note that this generates a confidence 
score between 0 and 1 for each detector’s candidate window(s), as in the top-middle 
image in Fig. 29, and preserves these scores when converting to a class-agnostic 
representation (Task 3), as in the bottom-middle image in Fig. 29. 

We use the following aggregation formula to convert detection-level scores from 
Platt-scaled Task 4 (or Task 3) to a single image-level score in Task 2 (or Task 1): 

  𝑠𝑠𝑆𝑆𝐶𝐶𝑆𝑆𝑆𝑆𝐼𝐼(𝐻𝐻) = 1
𝑁𝑁
∑ 𝑠𝑠𝑆𝑆𝐶𝐶𝑆𝑆𝑆𝑆𝑗𝑗(𝐻𝐻)𝑘𝑘𝑁𝑁
𝑗𝑗=1 , (18) 

where scorej(H) is the score of jth detection for a certain hypothesis H localized on 
image I, N is the number of detections in the image, and 𝑘𝑘 ≥ 1 is an empirical 
parameter. We choose a constant N for each image (15 in evaluation), resulting in 
equal reweighting across all images. If the original number of detections in an 
image is larger than N, only the N top-scoring detections are selected, and if the 
number is less than N, we consider the missing detections to be zero-scoring. We 
use the value of k = 5, which empirically proved to be effective in converting from 
a detection task to a classification task in Oquab et al.142 Note that a higher k 
increases the contribution of high-scoring detections compared with lower-scoring 
detections. This aggregation formula is used for converting from scaled confidence 
for each object to Task 2 as well as from Task 3 to Task 1. 

Figure 30 demonstrates task conversion strategies for the human response. It is 
impossible to directly infer object identity or location from the output of classifiers 
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because identification and localization are more difficult than pure classification. 
Similarly, estimating the location of objects of interest from the output of classifiers 
is also impossible. The performance of tasks requiring more-detailed inference 
should be worse, as in the sample PR curves shown in a right-most image of  
Fig. 30. (In a PR curve, greater area under the curve [AUC] denotes higher 
precision.) In a training step, we are able to identify classifiers and detectors that 
perform poorly compared with others. Here, we show that DBF effectively 
integrates human decisions with CV-based object detectors in all 4 tasks by treating 
the portion of performance caused by these factors as “uncertainty”. 

 
Fig. 30 Task conversion for human perception and precision and recall curve for all 4 tasks. 
Precision and recall are calculated for Subject 1’s perception ability. For Task 2 and 4, the PR 
curve for the “chair” category is shown. 

4.3.3.2 Integrating Outputs of Multiple Classifiers/Detectors 

Figure 31 illustrates the strategy used to fuse multiple classifiers used in Tasks 1 
and 2, in which each classifier produces only one score per image corresponding to 
the target hypothesis. To integrate the outputs of multiple classifiers, we fuse the 
image-level scores s = [s1 s2 … sK] where si is the output score of the ith detector. 
K is a number of classifiers. 

 
Fig. 31 Clustering process for Task 1 and 2 

Figure 32 illustrates how detection-level scores (as produced in Tasks 3 and 4) from 
multiple detectors are fused. In Tasks 3 and 4, each detector outputs and scores 
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multiple candidate windows per image for the target hypothesis. We cluster 
detection windows that possibly contain the same target at the same general 
location and generate the score vector s = [s1 j1 s2 j2 … sK jK] for each cluster, where 
si ji is the output score of jith detection window of an ith detector. Here, we consider 
2 windows to be placed in the same location if the intersection over the union of 
their bounding boxes is over 0.5. Since clustering is performed for all individual 
windows of multiple detectors, multiple clusters corresponding to the same target 
hypothesis can exist. (For example, 3 clusters, each of which is detected in each 
image, contain the same chair in Fig. 32.) If a cluster contains more than one 
detection from the same detector, only the maximum score is inserted to the 
corresponding bin of the score vector. If a particular detector does not contain an 
overlapping detection window (of a particular target class) where others do, −∞ is 
inserted to the corresponding bin, indicating no detection information is provided 
to the fusion from the detector. After calculating fusion score for all window 
clusters, we employ nonmaximum suppression to remove the clusters with lower 
fusion scores than other clusters in the same location. 

 
Fig. 32 Clustering process for Task 3 and 4 

Fusion approaches: Naive Bayesian Fusion and Dynamic Belief Fusion 

We employ 2 probabilistic approaches, naive Bayesian fusion146 and DBF,118 to 
create the final score vector s.  

Naive Bayesian Fusion assumes the classification and/or detection approaches to 
be fused are independent. The combination law, known as Bayes’ rule, is given as 

 𝑝𝑝(𝑆𝑆|𝒔𝒔) ∝ 𝑝𝑝(𝑆𝑆)𝑝𝑝(𝒔𝒔|𝑆𝑆), (19) 
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where c is a particular hypothesis, s = [s1, s2, ..., sK] is the set of recognition scores 
from the constituent classifiers/detectors, and p(c) and p(s|c) are the prior 
probability of hypothesis c and the likelihood of score s given the hypothesis, 
respectively. In this case, the possible hypotheses are presence and absence. These 
hypotheses can be applied at the image level (as obtained from the human RSVP 
response for any object category) or at the detection level (as obtained from 
machine perception for specific object categories). With the assumption of 
independence, a joint likelihood can be developed as the product of the likelihoods 
of K approaches:  

 𝑝𝑝(𝒔𝒔|𝑆𝑆) = ∏ 𝑝𝑝(𝑠𝑠𝑖𝑖|𝑆𝑆)𝐾𝐾
𝑖𝑖=1 .  (20) 

The opposite hypothesis, p(¬c|s) can be calculated in the same manner. A model 
containing p(c), p(¬c), p(si|c), and p(si|¬c) was generated by aggregating scores in 
a validation set. During testing, prior and likelihood information were determined 
for each approach by referencing the model, and the final “fused” score was 
calculated as p(c|s) - p(¬c|s). 

Dynamic Belief Fusion118 is an approach we previously developed to assign 
probability to hypotheses dynamically under the framework of DST.128,129 DST is 
based on Shafer's belief theory.128 Considering the 2 hypotheses, target (c) and 
nontarget (¬c), it assigns probabilities that directly support those hypotheses and 
instantiates an intermediate state I, which represents evidence that could plausibly 
support either hypothesis. This intermediate state is given its own probability, 
quantifying the level of ambiguity that makes either hypothesis plausible. The 
belief function bel(A) for a set A can be defined as  

 𝑏𝑏𝑆𝑆𝑏𝑏(𝐴𝐴) =  ∑ 𝑝𝑝(𝐵𝐵)𝐵𝐵|𝐵𝐵∈𝐴𝐴 . (21) 

If the probability is assigned to each of the 3 hypotheses, bel(c) = p(c) and bel(¬c) 
= p(¬c). [Note that bel(I) = p(c) + p(¬c) + p(I).] Once all classification and 
detection approaches assign probability to each hypothesis (including the 
intermediate state), Dempster’s combination rule129 can be applied to calculate a 
joint probability:  

 𝑝𝑝1⊕𝑝𝑝2(𝑆𝑆|𝑠𝑠1, 𝑠𝑠2) = 1
𝐿𝐿� ∑ 𝑝𝑝1(𝑋𝑋|𝑠𝑠1)𝑝𝑝2(𝑌𝑌|𝑠𝑠2)𝑋𝑋∩𝑌𝑌=𝐶𝐶,𝐶𝐶≠∅ , (22) 

where L = ∑ 𝑝𝑝1(𝑋𝑋|𝑠𝑠1)𝑝𝑝2(𝑌𝑌|𝑠𝑠2)𝑋𝑋∩𝑌𝑌≠∅  and X and Y are subsets of 2X. L is the sum 
total of probability mass whose common evidence is not the null set. Dempster’s 
rule can be extended for multiple approaches using the associative and commutative 
properties of probabilities (i.e., pf = p1 ⊕p2 ⊕… ⊕pK) with the following formula:  
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 𝑝𝑝𝑓𝑓(𝑆𝑆|𝒔𝒔) = 1
𝐿𝐿� ∑ ∏ 𝑝𝑝𝑖𝑖(𝑋𝑋𝑖𝑖|𝑠𝑠𝑖𝑖)𝐾𝐾

𝑖𝑖=1𝑋𝑋1∩𝑋𝑋2∩…∩𝑋𝑋𝐾𝐾=𝐶𝐶,𝐶𝐶≠∅ , (23) 

where 𝐿𝐿 = ∑ ∏ 𝑝𝑝𝑖𝑖(𝑋𝑋𝑖𝑖|𝑠𝑠𝑖𝑖)𝐾𝐾
𝑖𝑖=1𝑋𝑋1∩𝑋𝑋2∩…∩𝑋𝑋𝐾𝐾≠∅ . 

Dynamic Basic Probability Assignment. In Fig. 21, the left plot shows a PR curve 
for an individual detector and a best-possible detector. The rates of values along the 
precision axis corresponding to recall r(s) are assigned as the basic probabilities to 
target, nontarget, and intermediate state, where s is a detection score. The right plot 
presents the basic probabilities with respect to a detection score, which converted 
from the PR curve. 

For the ith classifier/detector, probabilities for a set of hypotheses {c, ¬c, I} are 
calculated using precision and recall information calculated in a validation set. For 
a given score s, the corresponding probabilities are given by  

𝑝𝑝𝑖𝑖(c|s) = 𝑝𝑝𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖(𝑠𝑠), 

𝑝𝑝𝑖𝑖(¬𝑆𝑆|𝑠𝑠) = 1 − 𝑝𝑝𝑆𝑆𝑆𝑆𝑆𝑆𝑏𝑏𝑏𝑏𝑏𝑏(𝑠𝑠) = 𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖(𝑠𝑠)𝑛𝑛, 

𝑝𝑝𝑖𝑖(𝐼𝐼|𝑠𝑠) = 𝑝𝑝𝑆𝑆𝑆𝑆𝑆𝑆𝑏𝑏𝑏𝑏𝑏𝑏(𝑠𝑠) − 𝑝𝑝𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖(𝑠𝑠) = 1 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖(𝑠𝑠)𝑛𝑛 − 𝑝𝑝𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖(𝑠𝑠),               (24) 

where preci and reci are precision and recall for the ith approach, respectively. 
precbpd is the precision of a theoretical best-possible detector, which is assumed to 
have no ambiguity and is defined as 1 - reci(s)n, where n is a parameter obtained by 
cross-validation and shared between all classifiers/detectors.118  

After preci and reci are computed in a validation set, testing is performed. Values 
corresponding to the test recognition score are used in the individual probability 
assignments for {c, ¬c, I}. Similar to naive Bayesian fusion, pf(c|s) - pf(¬c|s) is 
used as the final “fused” score. 

4.3.3.3 Approaches Analyzing Human Perception and Machine Perception 

In the proposed fusion approach, we employ 3 NCs, BP, and 4 CV object detectors. 

Approaches Analyzing Human Perception 

Human visual perception can be estimated via biometric signals such as EEG or 
BP. For EEG, we employ 3 standard neural classification algorithms: HDCA,59 

XD+BLDA,61,78 and CSP+BLDA.158 

Each classifier is described in Marathe et al.168 These classifiers require a training 
step in which actual responses are paired with ground-truth labels (target vs. 
nontarget) and the feature space dominated by target responses is separated from 
the space dominated by nontarget responses. 
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Compared with noisy EEG, BPs are a more concrete indication of a classification 
decision. However, when images are presented at a rapid rate, as is generally the 
case in RSVP, the timing of the BP relative to the stimulus presentation is usually 
delayed and irregular.157 The likelihood that an image resulted in a BP is therefore 
some function of the time delay between presentation and BP. The BP classification 
score s(tp) at an image presentation time tp is calculated by  

 𝑠𝑠(𝑡𝑡𝑏𝑏) = �𝑡𝑡𝑏𝑏 − (𝑡𝑡𝑡𝑡 − ∆𝑡𝑡𝑚𝑚)�, (25) 

where tr and ∆𝑡𝑡𝑚𝑚 are the BP response time and the median reaction time, 
respectively. ∆𝑡𝑡𝑚𝑚is empirically calculated from the training set. Figure 33 shows 
the BP classification-score computation. 

 
Fig. 33 BP classification-score computation: first and second rows demonstrate images 
presented by RSVP and BP response of participant when looking at a target, respectively; BP 
classification-score computation is shown in third row. 

Machine-Learning Approaches for Machine Perception 

The following 4 CV-based object detectors were selected for fusion with human 
decision: 

• HOG+SVM)126: HOG features are employed to represent object appearance 
in terms of a distribution of gradients. An SVM is then trained to distinguish 
object from background. 

• Exemplar SVM (ESVM)125: ESVM learns a SVM-based separate classifier 
for each positive training image (called as an exemplar) using a HOG 
feature, and scores candidate detections based on “distance” to exemplars. 

• DPM90: Objects are represented as sets of parts that can be deformed using 
HOG features at 2 scales and latent features, with a deformation cost. 
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• FTCNN142 is based on AlexNet169 pretrained on a very large image data set, 
ImageNet.170 The target-image data set used in this work contains much 
fewer images than ImageNet with quite different visual characteristics. To 
adapt the CNN structure of AlexNet to category distribution and 
characteristics of the target dataset, the final fully connected layer referred 
a classification layer is learned again over the target dataset. 

Each of these techniques uses distinct principles for feature extraction and 
synthesis. We expect this will lead to the generation and fusion of complementary 
information. 

4.3.4 Experiments 

4.3.4.1 RSVP Data Set and Data Partition for Evaluation 

The RSVP experiment used in this analysis presented images at 5 Hz (200 ms per 
image). The complete experiment consisted of 6 blocks of 10 min each 
(approximately 3000 images were selected for each block). Images in each block 
were randomly chosen but contained a specific ratio of target/nontarget images (this 
was a variable of interest in the preceding study). Six different ratios (0.01, 0.03, 
0.05, 0.07, 0.09, and 0.11) were randomly assigned to the 6 blocks. Target images 
depicted at least 1 of 5 object categories: chair, container, door, poster, and stair. 
Because of the relatively small size of the dataset, images (mostly nontarget 
images) were repeated within blocks and between blocks. 

Fifteen subjects participated in the RSVP experiments. The subjects were instructed 
to watch the sequence of images and to press a button when an object of interest 
was seen, for each target category (Task 2). Because of the incomplete performance 
of the task through the range of object categories, the results were ultimately treated 
as equivalent to Task 1. EEG data were collected in parallel using a BioSemi Active 
Two system with 256 channels (downselected to a subset of 64 channels that most 
closely matched electrode locations in the standard 10–10 arrangement), digitally 
sampled at 1024 Hz. Offline, the EEG data were decimated to 256 Hz and digitally 
band-pass filtered between 0.5 and 50 Hz. The neural and BP classifiers were 
trained and tested through a cross validation that preserved independence of these 
2 sets in each cross validation. 

In this experiment, partitioning of images for the RSVP task was random, with a 
fixed ratio of targets to distractors for each subject to enable the demonstration of 
the human–CV fusion concept. In subsequent work, we will further explore the 
effect of target to distractor ratios as well as individual choices of images by 
repeating multiple randomizations across subjects. 
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Unlike human perception, in which the response to an image can be altered by the 
subject’s physiological state (fatigue, workload, etc.) or influenced by the 
preceding images, a (nonadaptive) CV-based algorithm will consistently produce 
the same outputs for the same image. As stated, CV algorithms cannot be trained, 
validated, or tested using repeated images due to the possibility of overfitting. Thus, 
the training, validation, and test sets were separate and nonoverlapping. 

A specific data set partitioning procedure was performed to generate common 
validation and test sets, as illustrated in Fig. 34. The final 300 images from each 
RSVP test block were used as the fusion test set, as we hypothesize that the data at 
the end of each RSVP block elicit a steady-state subject performance level (to be 
validated in future work). The remaining RSVP images were collected to form a 
training set used for training the CV object detectors and a validation set used for 
computing the prior performance and likelihood model for each approach: 
essentially “fusion training”. The partitioning between training and validation sets 
was done randomly at a 2:1 ratio. If repeat images from the RSVP task are not 
counted, the ratio among the train/validation/test sets was 2:1:2. 

 
Fig. 34 Proposed partition of the image set used in the RSVP task: image set consists of 6 
blocks; for each block, the last 300 images are used for testing. Images not contained in test 
set are randomly split into training and validation sets at a 2:1 ratio. 
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4.3.4.2 Performance Comparisons 

Performance was evaluated using AP for Tasks 1 and 3, and using mAP across 
object categories for Tasks 2 and 4. AP is a standard metric in the CV field, obtained 
by averaging precision values across the range of recall; in that sense, it is 
semantically similar to the AUC metric. AP/mAP results from naive Bayesian 
fusion and DBF were calculated and averaged over all subjects. The fusion 
performance of human-only, machine-only, and human+machine (i.e., “all”) 
perception are shown in Fig. 35.  

 
Fig. 35 Performance comparison of individual approaches and fusion approaches (Bayesian 
fusion and DBF). For each fusion approach, 3 bars indicate results of integrating of human-
perception approaches only, CV-based approaches only, and all perception approaches. 
Fusion is performed in 4 tasks and results are shown in order; error bars denote standard 
deviation across subjects. 

For all tasks, we employed one-way ANOVA tests to assess the effect of fusion 
method on AP/mAP. Each one-way ANOVA considered the choice of individual 
approaches (e.g., DPM) or fusion approaches (e.g., DBF-machine) as a main effect 
(14 approaches total). The results across 15 subjects are as follows: [F(13,182) = 
73.87, p < 0.001], [F(13,182) = 375.27, p < 0.001], [F(13,182) = 237.39, p < 0.001], and 
[F (13,182) = 378.41, p < 0.001] for Tasks 1, 2, 3, and 4, respectively. These results 
imply that, at the very least, there were statistically significant differences between 
the best and worst approaches in each task. As a follow-on test, we compared the 
statistical difference between any pair of 14 approaches by using a multiple 
comparisons test. Although the statistical difference between DBF-machine and the 
best individual approach (DPM or FTCNN, depending on the task) is not significant 
in Tasks 1–3, by fusing human and machine perception (DBF-all), performance 
does yield statistically greater performance than all other approaches. Note that this 
occurs even in Tasks 3 and 4, where human-only performance with DBF is very 
poor. These results support our hypothesis that human and machine perception 
yield complementary information that can be leveraged for improved performance. 
Bayesian fusion is statistically lower-performing than the best individual approach 
in all 4 tasks, is negatively influenced by poor-performing approaches (i.e., human 
perception), and cannot adequately resolve conflicting information. Furthermore, 
the performance of human+machine Bayesian fusion consistently drops below 
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machine-only fusion; the opposite is true for DBF. This supports the key concept 
behind DBF, that modeling an intermediate state to represent “uncertainty” in 
detector outputs can be beneficial. The fact that these results are consistent across 
all tasks suggests that the structure of tasks themselves do not affect the outcome. 

The results of each task cannot be directly compared with one another. For instance, 
Task 2 is more complex than Task 1; thus, it is understandable that AP/mAP will 
be lower. However, it is interesting to see that DBF-machine and DBF-all in Task 
4 (target-specific) outperform Task 3 (target-agnostic). This may be because the 
task-conversion algorithm from Task 4 to 3 did not adequately convey the relative 
certainty between target types (e.g., a score of 0.27 for a poster target may not 
actually represent the same confidence level as a score of 0.27 for a chair target). 
The 0.02–0.03 mAP performance loss during task-conversion of certain individual 
approaches (ESVM and DPM) caused a significant performance loss in fusion (0.07 
for DBF-machine and 0.08 for DBF-all). Pairwise t-tests indicated a statistically 
significant difference (p < 0.001) for each pair of tasks, including Tasks 3 and 4. 

To evaluate the effectiveness of fusion between subjects, we compare the 6 fusion 
approaches against the best human-based classifier and machine-based detector for 
each of the 15 subjects for all tasks in Fig. 37. For all except the fifth subject in all 
tasks, DBF-all demonstrated the greatest performance. For Task 1, DBF-human 
outperforms the best human-based classifier 12 of the 15 subjects and DBF-
machine outperforms the best machine approach for all subjects. As suggested by 
the previous analysis, the combination of human and machine information using 
Bayesian fusion underperforms the best individual human and machine approaches 
for all subjects. The comparisons in Tasks 2–4 shows similar tendency as in  
Fig. 36. 
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Fig. 36 Performance of best human and machine approaches as well as fusion approaches 
per subject 

One possible confound in using mAP as the metric for comparison is that the 
measure of precision does not incorporate the number of “misses” for a given 
classifier. For an object detection task (Tasks 3 and 4), this type of metric is 
appropriate; however, for a classification task (Tasks 1 and 2) the misses are often 
just as important as the accuracy of hits. Thus, to verify that the performance 
differences we saw using mAP for the classification tasks were not simply a product 
of the chosen metric, Tasks 1 and 2 were also evaluated using AUC, a conventional 
metric for classification tasks. A comparison of AUC for all individual and fused 
approaches is shown in Fig. 37. DBF-all outperforms all individual 
classifier/detector approaches as well as all fusion approaches, as was observed 
using the AP/mAP metric. DBF-machine and DBF-all fusion also outperform all 
versions of Bayesian fusion. A one-way ANOVA test was performed on these 
results with fusion approach as the main effect, obtaining [F(13,182) = 35.54, p < 
0.001] and [F(13,182) = 66.65, p < 0.001] for Tasks 1 and 2, respectively. Subsequent 
multiple-comparisons tests demonstrated that DBF-all yields statistically superior 
mean performance over all approaches except DBF-machine and FT-CNN (the best 
CV approach). Note that DBF-all outperforms all other approaches in 13 of 15 and 
11 of 15 subjects for Tasks 1 and 2, respectively, indicating a strong trend toward 
the superiority of DBF-all. We conclude that generating DBF likelihood models 
provides superior fusion performance based on a combination of the mAP and AUC 
performance metrics. 
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Fig. 37 Performance comparison with AUC: error bars denote the standard deviation 
across subjects 

4.3.5 Conclusion 

We have shown that combining RSVP with CV algorithms in a fusion framework 
can substantially improve target recognition performance using the precise 
localization and identification capabilities of CV in combination with the precise 
detection capabilities of a human operator. We have specifically leveraged 
perception feedback detected from an EEG signal in combination with BP response, 
applying positive detections to 4 state-of-the-art CV approaches. Additionally, we 
have implemented a unique task conversion protocol that overcomes some of the 
limits of human detection via RSVP, namely the lack of localization and 
identification feedback.  

The treatment of incomplete results for Task 2 as being equivalent to Task 1 has 
the effect of artificially deflating performance numbers for the human subject 
response. However, fusion via DBF is still able to leverage unique information from 
both sources in order to increase overall detection performance. These results 
suggest that human performance in high cognitive workload situations may be 
enhanced by integration with fusion approaches, including a novel DBF approach. 
Future work will further explore the effect of randomization of image sequences 
across subjects and the effects of variable human-subject performance over time. 

5. Agent Adaptation 

In adaptive systems, dynamics in both the environment and in human performance 
can lead to a breakdown in performance for autonomous systems. Here we focus 
on adaptations to dynamics in the environment. In these situations, most algorithms 
fail, catastrophically, the first time they are exposed to more-complicated  
real-world scenarios. These include the effects of variable lighting and nonstatic 
backgrounds, such as waving trees, and state estimation errors due to mobile agents 
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present in the field of view, such a Soldiers completing a mission. As we anticipate 
this problem occurring, we have taken steps to mitigate the problems will know are 
coming. We describe a study that address the issues of dynamic lighting and 
dynamic scenes.171  

5.1 Dynamic Lighting 

This project was motivated by time our team spent embedded in an infantry unit in 
a forest in Columbus, Georgia. The Soldiers requested an unmanned aerial vehicle 
(UAV) that could be pulled out of a pack, turned on, and then fly through the trees, 
find a clearing, exit the canopy, surveil the area while transmitting video data back 
to the ground station, reenter the canopy, and return to the operator. We have chosen 
to address the forest environment such a UAV would operate in. Forests are highly 
complex environments. In addition to natural variations in illumination due to 
passing clouds, the trees create irregularly placed, occasionally mobile beams of 
light. Furthermore, we are constrained to a theoretical small-scale, easily  
man-packable UAV with an extremely limited payload that must move at 
operational tempo, currently defined by DARPA as 20 m/s.172 We anticipate this 
platform will have the bare-minimum number of sensors, possibly only a single 
monocular, grayscale camera, and we have designed this system to be robust to 
such a possibility.  

To enable stable flight on pocket-sized, highly dynamic unmanned aerial systems 
(UASs), the control loop requires extremely high update rates, but such platforms 
have only a minimal payload to handle the computational burdens. As system size 
decreases, high-fidelity sensors, such as LiDAR, become too large to carry, 
requiring a shift to smaller sensors for state estimation. Optical systems, which 
easily scale down, typically use either stereo vision or optical flow to generate state 
estimates. Both methods rely on the objects in the scene maintaining a static 
representation for correlation, which causes them to be susceptible to dynamic 
lighting-induced errors. Even large systems that can carry LiDAR and substantial 
computation often couple high-fidelity systems with optical systems to increase 
their effective range.173 While there are many optical navigation techniques 
available, we have chosen to limit the scope of this problem to optic flow due to its 
low computational burden and proven real-time usability. 

Traditionally, optic flow, including variants of Lukas–Kanade,174 elementary 
motion detectors,175 and Horn and Schunck,176 has been tied to a static 
representation of the world. All of these algorithms assume that color 
representations remain consistent from one frame to the next, allowing perceived 
motion to be tracked by observing pixelwise changes between the 2 images.176 This 
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assumption becomes a problem when lighting conditions change unpredictably, a 
fairly common occurrence outdoors, as it becomes nearly impossible to track the 
motion of individual pixels that have now lost their primary signature. As lighting 
regularly ranges from 80 lux indoors to 1000 lux outdoors on an overcast day to 
more than 130,000 lux in direct sunlight,177 this is a substantial problem.  

5.1.1 Related Work 

Before we address similar research, we would like to mention auto-exposure and 
similar in-system camera settings that deal with varying lighting conditions. While 
such adjustments, including histogram shifts and other sorts of calibrations, may 
produce an image that is similar and comprehensible to the human eye, the actual 
pixel values (as represented from 0–255 in a grayscale image) often differ beyond 
what is recognizable for an algorithm making a correlation from frame to frame.  

While there have been numerous explorations into illumination invariance, there 
remains no standard method to improve the performance of optic-flow systems in 
dynamically lit, complex, novel environments. Illumination mitigation techniques 
run the gamut from computationally expensive postprocessing using a variety of 
filters and masks on the imagery to preprocessing to alter the imagery before it goes 
into the optic-flow algorithms.178–192 Some, such as Dederscheck et al.,178 work in 
highly constrained environments, such as highways, and assume that the light will 
shift evenly over the entire image.178,179  

As our system is intended for a forested environment, such constraints were felt to 
be unrealistic. For similar reasons, we move past methods that perform object 
identification, and the comparison of the colors found to those of a template were 
used to estimate the lighting changes and correct the image as a whole.180–182 We 
do not wish to correct the image but rather simply use it to compare against another 
image. Understanding what it represents is not within the current scope of our 
investigation.  

Much closer to our problem space are methods that look to buttress optic flow 
estimation through the use of additional sensing modalities, such as LiDAR,183 
inertial measurement unit (IMU),184 or temperature scans.185 While we 
acknowledge the utility of these methods, they do not address our chosen problem 
of unaided optic flow. A small-scale UAV is highly constrained by its payload 
capacity and processor and such methods are often infeasible. In Zimmer et al.,186 
the authors investigate an implementation of optic flow in HSV (hue saturation 
value) color space, where they found the hue channel is invariant under a variety of 
illumination changes and does not show marked reaction to shadows or 
specularities. We feel this is a very interesting avenue of investigation, but it was 
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not utilized, as our target platform uses grayscale cameras because we are 
attempting to reduce the computational burden, and tripling the number of pixels 
involved would not further that goal. The authors would also like to differentiate 
this technique from gradient-based optic flow.187,188 Our method preprocesses the 
input to any optic flow algorithm but is not one itself.  

The techniques most similar to our approach look at preprocessing the input prior 
to putting it through an optic flow algorithm. Christmas189 shows the use of a spatial 
filter to reduce the effects of temporal aliasing on image pairs with a large 
discontinuity. This work found that in an experiment with constant illumination and 
even motion pattern it was possible to reduce temporal effects using a low-pass 
filter. However, due to the sizes of the filters investigated, they predicted difficulty 
in real-time applications.  

In Lempitsky et al.190 the authors removed the effects of shadows by subtracting 
from the first image, the result of that image was convolved with a Gaussian kernel. 
Beyond the fact that this work continues in RGB color space and is finally 
computed with bicubic interpolation, which is far more computationally complex 
an approach than we will be able to use for our application, is the fact that this 
technique ignores higher-order variations. Sellent et al.191 come at the problem from 
a completely different angle, choosing to deal with natural variation in lighting by 
extending exposure time and using the camera itself to prefilter sharp variations out 
of the imagery. While this approach is not practical during flight, it is a clever 
approach for static platforms. In Sharmin and Brad,192 images are filtered prior to 
use in an optic flow algorithm, and like the work presented in Sellent et al.,191 they 
have used a Gaussian smoothing filter, although that paper presents a filter tuned 
specifically for a Lucas–Kanade implementation at each pyramidal level, and it too 
suffers from computational complexity limiting its real-time applicability. 

Our investigations have found that, unlike standard electro-optical (EO) imagery, 
the double derivatives of those same images remain fairly stable in dynamic 
lighting conditions. Image derivatives provide the rate of the change of local 
intensity; in other words, highlighting the edges and corners. Whether the scene is 
brightly or dimly lit will not change the textures of the objects in the scene, and 
barring extremes, such as near-darkness or imager saturation, things like tree bark 
look more or less the same no matter how they are lit. However, with image 
derivatives, there is an overall reduction in the amount of information available. 
Fine details disappear, color is removed, and boundaries that lack a sharp textural 
difference can merge into one. While our approach has been discounted in prior 
work due to this loss of information,183 we find that there is sufficient complexity 
in realistic outdoor environments to maintain a high enough information content to 
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allow navigation and control using only the double-derivative image. Even in 
relatively sparse environments such as images with large tracks of sky, where the 
estimation uncertainty grows, there is a sufficient quantity of information that our 
method does not experience the catastrophic failures associated with other optical 
methods. 

5.1.2 Methodology 

The method presented here is intentionally very simple. Small-scale aerial 
platforms do not have the capacity for complex, real-time calculations while flying 
at Army-desired operational tempos.171 There are 3 steps to our method: 1) solve 
for the double derivative, 2) apply optic-flow algorithm of choice and, 3) isolate the 
true flow using a mask, as shown in Fig. 38. 

 
Fig. 38 Flow chart of proposed method, showing the 3 steps employed in our method 

Standard derivative calculations were used, incorporating both the x and y 
components. While several different filter operators were tried during the course of 
the project, we chose [1,- 1] (or its transposed pair, for y). Numerous other standard 
filters (Gaussian, Laplacian, etc.) were tried and produced no significant increase 
in performance. Due to the continued focus on reducing the total number of 
computations required, a smaller filter operator was preferred. 
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where 𝑓𝑓 = is the value of the pixel at the (x,y) position, and the second spatial 
derivative of f is the gradient of the image (∇f), as shown in Eq. 26. 

Those areas of the image without any texture will result in no detected motion from 
optic flow algorithms. To avoid biasing the state estimation, and to still allow for 
the possibility that there may not have been any ego-motion, we created a mask to 
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put over the resultant optic-flow vector field. This mask is based on the 
information-poor areas of the filtered image. Through experimentation, we found 
that masking all areas where the double derivative image pixel value was below 10 
(on a scale of 0–255) removed the majority of the spurious data. 

Regarding complexity, let n = w x h be the number of pixels in each image frame. 
We assume the use of optic flow algorithms to which the input consists of 
sequential pairs of frames in a time sequence. In the case of Lucas–Kanade, the 
time complexity of each iteration of optical flow is dominated by the computation 
of the Hessian, which is linear in n but quadratic in the number of warp parameters  
m (≈ O(nm2)).193 In the case of iterative global methods such as Horn–Schunck, 
analysis of the computational cost has additional dependencies including whether 
the algorithm is allowed to converge. At its core, the Horn–Schunck algorithm is 
the Jacobi iterative method applied to the interior of the image194 and requires 
computation of first-order partial derivatives with a complexity at least linear in 
n.195 A highly optimized implementation may precompute certain pixelwise 
quantities prior to entering the iterative phase. Even so, it has been demonstrated 
practically that Horn–Schunck requires on average substantially more 
computations per pixel than Lucas–Kanade.196 Our technique is a preprocessing 
step requiring a single convolution over each image to be taken as input to the 
chosen optic flow algorithm. The results of the derivative computation may be 
stored for later use at a cost no greater than that of the input image. Let k be the size 
of the convolution kernel (k = 2 in the method suggested previously). We assert that 
the complexity of our method is linear in n, and the subsequent masking operation 
requires constant time per pixel, resulting in an overall complexity O(nk + cn). We 
posit that this complexity is generally dwarfed by that of the downstream optical 
flow algorithm. 

The implementation of Lucas–Kanade197 employed for these experiments used 3 
pyramids and 3 iterations, while that of Horn–Schunck198 used an alpha of one and 
maximum iteration of 100. In both cases the algorithms were received pretuned and 
were not altered. 

The authors are aware that this method is not robust to the “features” created by 
strong shadows. However, from our experience embedded with infantry units in 
realistic conditions and the point-of-view video data gathered during those 
experiments, strong shadows remain relatively static, and we are more concerned 
with dynamic changes such as the passage of clouds overhead, which will affect all 
shadows and lighting conditions equally. However, we have begun investigation in 
texture patterns which may mitigate the shadow problem.  

  



 

Approved for public release; distribution is unlimited. 
99 

5.1.3 Data 

The images used in the following experiments were collected in a field at  
Fort Benning, Georgia, during a live exercise199 using a GoPro Hero3 and in an 
office using a Logitech C920 Webcam. Stage lighting was used to create 
controllable and repeatable dynamic lighting conditions for the indoor space. The 
outdoor data collection occurred on a cloudless and extremely sunny day, and its 
lighting is considered to be static. 

For ease of comparison, both datasets were collected with a static camera. To create 
the companion “dynamic motion” sets, the “static motion” sets were subsampled 
and only a portion of each successive frame was used. The location of this region 
within the base image was altered by a known number of pixels, which became the 
ground truth for the optic flow estimations. To ensure that the data were 
comparable, the static sets used an identically sized subsampled area from the 
original images, although in this case the location of the window did not alter 
between frames. Each dataset comprises 100 sequential images, selections of which 
are shown in the videos in the following subsection. 

There have been several data sets created to test visual-state estimation under a 
variety of circumstances, most notably the KITTI200 and Sintel201 data sets. Both 
include a variety of lighting conditions; however, we did not find known 
illuminance values associated with the imagery. As this is preliminary work in 
which we hoped to explicitly measure the relationship between changes in 
illumination and the amount of noise added to an optic flow estimate, we chose to 
create our own data set. In future iterations of this work we plan to use established 
datasets to allow for rigorous comparison between methods. 

5.1.4 Experimental Scenarios 

In the following scenarios, the term “algorithms” refers to both Horn–Schunck and 
Lucas–Kanade with both standard and prefiltered inputs. 

Scenario 1: Static Camera, Static Lighting 

To ensure that any error was due to the input, rather than the algorithms, we first 
tested the performance of the optic-flow methods using the statically lit data set and 
a static camera location. With no motion and no sensory noise, an ideal output 
would show a cluster of dots around the (0,0) point. 
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Scenario 2: Static Camera, Dynamic Lighting 

In this case, we wished to measure how the algorithms responded to changes in 
illumination only. With a static camera and static scene, any resulting “motion” 
must be due to the illumination shift. 

Scenario 3: Dynamic Camera, Static Lighting 

To determine how accurately each algorithm responded to actual motion, we tested 
them using a dynamic camera position and static lighting condition. In this scenario, 
any deviation from ground truth must be due to errors in state estimation of the 
algorithms themselves. 

Scenario 4: Dynamic Camera, Dynamic Lighting 

The final scenario investigates a mobile camera in dynamic lighting conditions. We 
believe this is the most similar to true field-operation conditions and shows how 
accuracy of the algorithms’ state estimation. In this case, deviation from ground 
truth is due to a combination of motion and lighting conditions. 

The results of the first 2 scenarios may be found in Fig. 39 and the last 2 in Fig. 40. 

 

Fig. 39 Measured responses for a static camera position and static picture with dynamic 
changes in lighting, where a) and b) show the position estimation and deviation from ground 
truth for Scenario 1 and c) and d) show the results of Scenario 2 
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Fig. 40 Measured responses for a dynamic camera position and static picture with dynamic 
changes in lighting, where a) and b) show the position estimation and deviation from ground 
truth for Scenario 3 and c) and d) show the results of Scenario 4 

5.1.5 Results 

The following graphs represent the results of processing the aforementioned 
lighting conditions with and without the prefiltering step. In each figure, the same 
camera path is shown in both static and dynamic lighting conditions. By showing 
how the algorithms respond to their expected input (statically lit images) as well as 
how they respond to the dynamic lighting, the reader may see which errors are due 
to the implementations of the algorithms and which are due to the input data format. 
Furthermore, we include the same implementation with and without the prefiltering 
step, so that the reader may directly see the difference it makes. The left column of 
each figure shows the actual plotted position of each state estimate as well as the 
true position, while the right column show the Euclidean disparity between the 
estimate point and ground truth at each position in the run. Deviation is measured 
in pixels. 

Figure 39 shows the results of static (a,b) and dynamic (c,d) lighting on optic flow 
using data collection with a stationary camera to demonstrate the error added to 
state estimation through variation in lighting alone. The camera is static; any 
perceived “motion” must be due to estimation error. As may be seen in the top row, 
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all algorithms perform as expected, showing subpixel motion when presented with 
no motion and static lighting. However, in the bottom row, one may see the results 
of varied lighting conditions and that the filtered implementations are far more 
robust it effects. 

Figure 40 shows the results of optic flow in both static (a,b) and dynamic (c,d) 
lighting conditions as captured by a dynamic camera. In this case, motion may be 
due to either actual change or lighting, although as may be seen by comparing the 
top (static lighting) and bottom (dynamic lighting) rows, all algorithms perform 
well in static lighting, while the prefiltered versions are far more robust in the 
dynamic conditions. 

As anticipated, the standard-input optic flow algorithms produce nearly perfect 
results in static lighting conditions with a mean error of 1.6 pixels for both 
algorithms and a standard deviation of 0.77 and 0.79 for Horn–Schunck and  
Lucas–Kanade, respectively. The prefiltered version results overshot the mark 
slightly with mean errors of 4.8 and 5.9 pixels and standard deviations of 2.8 and 
3.5 pixels for Horn–Schunck and Lucas–Kanade, respectively.  
However, in dynamic lighting conditions the prefiltered results remain very close 
to the ground truth and do not deviate significantly over time. In this case, they 
averaged 1.8 and 4.1 pixels of error with standard deviations of 0.7 and 2.2 pixels 
for Horn–Schunck and Lucas–Kanade, respectively. Conversely, the standard input 
algorithms are not reliable under such conditions with mean errors of 10.9 and 
31.45 pixels and standard deviations of 5.1 and 33.7 pixels for Horn–Schunck and 
Lucas–Kanade, respectively. The prefiltered optic flow does better in dynamic 
lighting than it does in static, and we are currently investigating how this can be 
generally applied. 

To begin testing the boundaries of this method, we created the experiment presented 
in Fig. 5 by comparing a reference image at a known illumination with a series of 
other images of the same object captured at a variety of known illumination levels. 
The algorithms used here are identical to those used earlier in the report. For 
context, a change of 100 lux is within the deviation allowed within a well-lit office. 
Realistically, changes in illumination are often far more radical. A cloud passing in 
front of the sun can easily case variations on the order of 5000 lux. While the degree 
of variation in illuminance from frame to frame is dependent on the frame rate of 
the camera and the conditions the system is operating in, our method’s robustness 
to changes of more than 600 lux per transition, and our planned frame rate of  
30 fps, give us confidence that even and indoor/outdoor transition of 10,000 lux 
would be manageable.  
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5.1.6 Conclusion 

The primary assumption of traditional optic flow is that illumination remains 
constant, and under such conditions it performs admirably. However, the real world 
is a dynamic and irregular place, and any system that intends to operate within it 
must be robust to constantly changing conditions. As shown in Figs. 39, 40, and 
41, simply by changing the input from a standard image to the double derivative of 
that image, we are able to produce a significant increase in position estimation 
accuracy under dynamic lighting conditions. The next big push in robotics is for 
small, autonomous systems to quickly navigate complex environments, specifically 
below the canopy in forests.172  

 
Fig. 41 Filtered and unfiltered optic flow’s responses to extreme variations in illuminance 

We have found that prefiltering is a useful tool for real-world navigation and 
particularly for size, weight, and power (SWaP)-constrained systems that cannot 
carry more than a single camera. It is computationally reasonable, as creating an 
image double derivate is substantially less expensive than the host optical flow 
algorithm, and it does not require any sort of a priori information. Our approach is 
robust to significant variations in lighting while also being very easily implemented 
and added to existing system. Despite the information lost by taking the derivative 
of the image prior to optic flow calculations, and the subsequent masking of the 
dead zones, we find that sufficient, relevant information persists for this method 
produces useful results. 

5.1.7 Future Work 

There is still a great deal of work to be done to make optic flow robust to vagaries 
of outdoor operation. We plan to investigate how best to identify and eliminate 
features due to strong shadows rather than actual environmental features. Despite 
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the strong edges and image variations caused by shadows, the textures of the objects 
within the scene remain the same. We have considered a method that compares the 
patterns and significant deviations. 

Another typical source of error is dynamic backgrounds, such as windblown trees 
and grass. Such objects have fixed locations but nonetheless add a great deal of 
noise to the vector field and disrupt the flow patterns usually used to determine  
ego-motion and the presence of outside agents. Furthermore, when resident on a 
vehicle, there are likely to be ego-motion errors, such as vehicle drift and vibration 
that will need to be accounted for. 

We look forward to combining all of these problems in future investigations into 
dynamic environments with highly constrained systems.  

5.2 Dynamic Scenes 

The present work was motivated by the authors’ experiences during time spent 
embedded in an infantry unit in a forest in Columbus, Georgia.171 We found that 
many elegant perception and localization algorithms fail dramatically when 
confronted with the realities of fielded operation. Forests are geometrically 
irregular and highly complex, consisting of heterogeneous and highly deformable 
elements, each of which may vary considerably from frame to frame in full-motion 
video. Additionally, there occur significant frame-to-frame perturbations in lighting 
and occlusion that have a significant effect on CV algorithms, the vast majority of 
which either explicitly or implicitly make rigid body assumptions about foreground 
objects and similarly rigid, regular lattice assumptions about background. We 
propose a method of computationally efficient object classification in a dynamic 
scene, where “dynamic” may refer to physical motion of the platform, background 
elements, and lighting occlusions. Certain phenomena, such as trees waving or 
people walking, have repeatable and recognizable patterns when viewed through 
an optic-flow vector field. In this report, we identify such patterns and show how 
to differentiate between dynamic and static background elements, mobile agents, 
and ego-motion produced by the platform. We emphasize that the purpose of this 
approach is not the explicit identification of people or trees but to differentiate 
between types of coherent motion and determine which areas are benign (e.g., trees 
having a limited and static area of influence) and which may constitute active 
threats, such as humans. 

We will also discuss patterns of motion associated with other varieties of mobile 
agents, and show how these phenomena may be used to improve visual odometry 
based state estimation, by removing elements of the flow field that are not due to 
ego-motion. 
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The security field has been conducting significant investigations in detecting 
anomalies in crowds, as represented by a continuous flow field derived from video 
representations of pedestrians. Although this work is intended for security cameras, 
and as such is conducted from a static platform, it has many similarities to the initial 
stages of our work. Ryan et al.202 identify disturbances from bicyclists and motor 
vehicles moving through areas that are typically populated only by pedestrians. As 
with our work, the focus is not on individual object detection but on general 
characterization of coherent motion patterns. However, the proposed disturbance 
detection method was found to be too computationally expensive for an aerial 
vehicle that must navigate in real time. Mehran et al.203 also looked at the flow 
patterns created by large groups of people walking together and uses variations to 
identify anomalies. Unlike Ryan et al.,202 whose computational burden came from 
overlapping regions of interest for multiple levels of examination, Mehran et al.204 
requires the full video sequence be ingested and processed forensically in batch 
mode. While this is acceptable for a static platform intended for surveillance and a 
posteriori analysis, it will not do for real-time flight.  

Investigations of optic-flow-based obstacle avoidance from a mobile platform 
include the work in wide field integration by researchers at the University of 
Maryland.204,205 Their work assumes an expected pattern of the unobstructed vector 
flow field and compares it with the input field. Disparities between actual and 
expected responses trigger evasive action, and they have been able to successfully 
navigate across cluttered environments. While this is an excellent system for known 
ego-motion and static backgrounds, it is unlikely that it would be able to handle a 
fully dynamic environment in which there were perpetual disparities between the 
responses. 

Bideau and Learned-Miller206 use optic-flow vectors to segment moving objects 
from complex backgrounds as observed from mobile platforms. However, their 
processing chain requires, among other steps, a random sample consensus 
evaluation of the estimated background motion. While this certainly assists in 
producing clean segmentation, sample consensus methods in general are too 
computational expensive to be responsive for our application space. 

Our contribution is 2-fold. The first is an understanding of the level of danger 
presented by any particular phenomena without having to perform an in-depth 
analysis of the scene. From a navigational and collision avoidance perspective, the 
precise number of people in a region is irrelevant; however, knowing whether or 
not they are there or if the region is empty and all anomalies are due to wind-blown 
vegetation is extremely valuable. The second is that this approach is 
computationally lean. Rather than comparing large numbers of visual reference 



 

Approved for public release; distribution is unlimited. 
106 

features, we extract information from patterns in the vector field. A more thorough 
comparison is laid out in Section 5.2.2 of this report.  

5.2.1 Data Set 

We evaluated our method using data collected locally. We have chosen not to use 
either the KITTI207 or Sintel201 data sets. While captured on a mobile platform, 
KITTI largely observes unpopulated, static environments. Sintel is animation, and, 
as such, the motion of the characters and scenic elements do not directly correlate 
to their real-world counterparts. We prefer not to introduce unnecessary noise into 
our problem space.  

Many of the publically available datasets, including those previously discussed, are 
not representative of Army-relevant conditions; as such, we have chosen to collect 
our own. We are in the process of publicly releasing it in the hope that it will prove 
useful to the community. Our videos were first collected from a tripod to test motion 
in the environment, exclusive of platform noise, and then from onboard a DJI 
Inspire One quadrotor and a handheld GoPro camera to add in noise due to ego 
motion, platform jitter, and the like. All data were collected outdoors, in the  
mid-Atlantic United States in fair weather. Videos include a variety of 
backgrounds, wind conditions, standoff distances from targets of interest, image 
resolutions, and an assortment of mobile-agent target types. These mobile agents 
include a variety of people and gait styles, other robots, and motor vehicles. Video 
sequences were captured at approximately 30 Hz; however, these have been 
downsampled to closer to 10 Hz to enhance the visibility of ego motion between 
frames. 

In future versions of this work we intend to include clips from the Berkeley 
Segmentation data set,208 as well as other relevant publically available sets, to allow 
for true comparison with state-of-the-art systems.  

5.2.2 Technical Approach 

Our method is predicated on the assumption that a precalculated optic flow vector 
field has been produced by a vision-aided state estimation algorithm, such as 
Parallel Tracking and Mapping209 and other visual odometry techniques in an  
IMU-fusion framework,210,211 and is readily available for our use. By utilizing 
precomputed flow fields, we can reduce the overall computational requirements of 
the system. A natural limitation of this method is that it will only work in 
environmental conditions conducive to optic flow; total darkness or featureless 
environments are known sources of failure for any optical-flow-based technique 
using visible-spectrum EO data. By considering the motion vectors in terms of polar 
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coordinates, they are easily divisible into magnitude and orientation. As seen in  
Fig. 42, different phenomena present different-magnitude signatures. Static scene 
elements will show very little local variation in the magnitude of its vectors. 
Dynamic scene elements, such as mobile agents or windblown vegetation, will 
show significant local variation. During our time embedded with an infantry unit, 
the primary sources of scene dynamics were humans and vegetation. 
Differentiating between these 2 patterns and ego-motion was the first phase of our 
experiment, and we find it is still a useful dichotomy to explain the methodology. 
The forms taken by these local variations very with the phenomena from which 
they are produced. Regardless of the degree of the oscillation experienced by a tree 
in the wind, all the branches are moving together, and there is limited local 
variation. Conversely, a walking human will present a large variety of vector 
magnitudes representing the separate motion of the arms, legs, head, and torso.  

 
Fig. 42 People walking in front of windblown trees as seen through (left) one of the original 
images used in the optic-flow calculation and (right) the vector magnitudes it produced. The 
range in magnitudes is described by the colors: dark red being the longest and dark blue the 
shortest. 

We have experimentally determined that the disturbance patterns are regular, 
reproducible, and agonistic to the physical characteristics of the system, such as 
lens size and shape or imager size and resolution. The magnitudes of the vectors 
vary with the capture modality, capture rate, and platform velocity, but the patterns 
remain consistent. Although the examples shown are limited to vegetation and 
humans (Fig. 43), the methodology is easily expandable to other categories. Motor 
vehicles, an oft-requested category, appear as a group of spatially related vectors 
with identical orientations and minimal variations in magnitude. 
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Fig. 43 Variation in magnitude of optic flow vectors of 2 types of dynamic scene elements, 
as represented by 5 video sequences for each 

5.2.3 Methods 

The categorization methodology has been intentionally kept as lean as possible, to 
ensure its fieldability on a constrained processors resident on man-packable UAS.  

To investigate local variations, the optic flow field of an image pair is first divided 
up into sections (known as “bins”) in an nxm array, and the variance of the vector 
magnitudes is calculated for each (Eq. 27), where G is the variance field, x and y 
are pixel locations in the original image, μ is the mean over the grid cell, n∈N, and 
m∈M. 

𝐺𝐺(𝐶𝐶,𝑚𝑚) ≜  ∑ 𝑂𝑂𝐹𝐹(𝑥𝑥′,𝜕𝜕′)−𝜇𝜇𝑛𝑛,𝑚𝑚
𝑋𝑋
𝑁𝑁∗ 𝑌𝑌𝑀𝑀

𝑥𝑥′,𝜕𝜕′  , 

where 

 𝑥𝑥′ ∈ �𝐶𝐶 𝑋𝑋
𝑁𝑁

, (𝐶𝐶 + 1) 𝑋𝑋
𝑁𝑁
�  

 and 

 𝑦𝑦′ ∈ [𝑚𝑚 𝑌𝑌
𝑀𝑀

, (𝑚𝑚 + 1) 𝑌𝑌
𝑀𝑀

]. 

    (27) 

As ego-motion will add additional “noise” to the classification process, we estimate 
its impact and remove it from the values to be considered. This is accomplished by 
determining the maximum variance value over all bins (Eq. 28) and determining 
which bins in the set are less than or equal to the ego-motion scale factor multiplied 
by the maximum value (Eqs. 29 and 30). In the case of the data presented in this 
paper, that scale factor is 0.7, which was arrived at empirically. Where B is the 
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maximum over all the grid cells, Γ defines the bins to be included, and T is a 
threshold, currently set to 0.7, 

𝐵𝐵 =  max
𝑛𝑛∈𝑁𝑁
𝑚𝑚∈𝑀𝑀

(𝐺𝐺(𝐶𝐶,𝑚𝑚)).      (28) 

Γ(𝐶𝐶,𝑚𝑚) ≜  𝛿𝛿𝑛𝑛𝑚𝑚 ∗ 𝐺𝐺(𝐶𝐶,𝑚𝑚),      (29) 

where 

𝛿𝛿𝑛𝑛𝑚𝑚 ≜ { 1 𝑖𝑖𝑓𝑓 𝐺𝐺(𝐶𝐶,𝑚𝑚) < 𝑇𝑇 ∗ 𝐵𝐵
0 𝐶𝐶𝑡𝑡ℎ𝑆𝑆𝑆𝑆𝑒𝑒𝑖𝑖𝑠𝑠𝑆𝑆

.      (30) 

Ego-motion is estimated to be the mean variance of those bins that fit the preceding 
criteria (Eq. 31), where P is the estimated ego-motion.  

𝐹𝐹 =  ∑ Γ(𝑛𝑛,𝑚𝑚)𝑛𝑛,𝑚𝑚
∑ 𝛿𝛿𝑛𝑛𝑚𝑚𝑛𝑛,𝑚𝑚

.      (31) 

The ego-motion estimation (mean variance) is subtracted from all the original 
variance values in each of the bins so as to bring the magnitudes in line with what 
would be observed by a stationary platform (Eq. 32). Where H is estimated scene 
motion, 

𝐻𝐻(𝐶𝐶,𝑚𝑚)  ≜ 𝐺𝐺(𝐶𝐶,𝑚𝑚) − 𝐹𝐹.      (32) 

Categorization thresholds are applied to determine how the degree of variation 
found in each of the bins compares with previously calculated thresholds (T1-6) 
(Eq. 33). 

𝐽𝐽(𝐶𝐶,𝑚𝑚) = { 
T1 <  H(n, m) < T2
𝑇𝑇3 < 𝐻𝐻(𝐶𝐶,𝑚𝑚) < 𝑇𝑇4
𝑇𝑇5 < 𝐻𝐻(𝐶𝐶,𝑚𝑚) < 𝑇𝑇6

.     (33) 

When capturing imagery on a static platform, it is possible to use hard-coded 
thresholds for agent classification. However, when working with mobile platforms, 
the vectors created by the dynamic scene elements are added to those created by 
the ego-motion of the vehicle, which renders hardcoded values obsolete. 
Nevertheless, the disturbance patterns remain consistent regardless of the scale of 
the vectors. To ensure that the thresholds match the scale of the image, we apply a 
scale factor based on image size. The initial threshold values are derived from the 
vector magnitudes of the base image size. The base size was arbitrarily chosen from 
the data collected, as some sort of standard comparison point was required. The 
current image resolution is compared with that of the base image, and the correct 
fraction is multiplied against the classification variance thresholds. 

Our system requires no a priori information about the image resolution, and 
recalculates the thresholds and ego-motion on the fly. The threshold values cannot 
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be hardcoded for 2 reasons. The first is that doing so would limit the ease of 
deployment on novel platforms. The less we have to change, the better. The second 
is the increasing reliance on algorithms that would change the resolution of imagery 
data depending on mission need. As such, we anticipate having to be robust to 
significant variation even within a single mission profile. 

We are fully aware that this system does not offer perfect accuracy; however, exact 
segmentation is not particularly relevant for our application. Our objective is not to 
correctly classify all potentially relevant segments but rather to classify enough to 
keep from crashing. We offer further discussion of this point in Section 5.2.4.  

What this approach offers is computational efficiency, which is particularly suited 
to small-scale UASs. As the Army moves toward man-packable, cargo-pocket 
UASs, we anticipate severely SWaP and computationally limited platforms that are 
not capable of significant processing loads. When an image is divided into nxm 
bins, C is the overhead to load the images and calculated averages, and P is the 
number of pixels per bin, the computational load is described as 

𝐿𝐿𝐶𝐶𝐿𝐿𝑑𝑑 = (4𝑆𝑆𝑁𝑁𝐹𝐹) + 𝐶𝐶.      (34) 

In the case of a 12 × 12 array of bins, this works out to be approximately  
576*P+16 computations per image, regardless of image size. The processors being 
used by our team (Odroid-XU4) are capable of 4000 million instructions per 
second, which leaves the overwhelming majority of the processor available for 
other requirements and goals.  

5.2.4 Results 

A video of the algorithms accurately finding mobile agents, in a variety of scenes 
from a variety of platforms may be found at https://github.com 
/usarmyresearchlab/dynamic scenesvideo.  

Unlike traditional CV investigations, we are less interested in precisely segmented 
obstacles than in a functional fieldable system. It does not really matter if there are 
3 people standing in a clump or 5, or even just one. What is important is the ability 
to mark coarse segments of the frame as obstacle locations or locations that are safe 
for travel, as well as the ability to determine which static scene elements may be 
used for platform state estimation (Fig. 44). 
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Fig. 44 Do we really care there are 3 people or 4—or, just that some areas are clear and 
others are not? It really does depend on the application. 

To quantitatively measure results in the current stage of development, we are 
looking at accuracy as compared with ground truth, mean processing time per 
image set, and FP rate. To count as a true FP, we required a 40% overlap of each 
annotated area with the classification regions (Fig. 45).  

   

Fig. 45 (left) Classifications (red boxes) overlaid with annotations (cyan lines) and (right) 
true and FPs and negatives 

5.2.5 Conclusion 

In addition to being useful for scene categorization, the framework presented in this 
work would be a useful step toward improving visual state estimation. If all of the 
identified areas of “noise” in the flow field can be removed, the remaining flow 
vectors may be determined to represent the ego motion of the platform. 

Although the scope of this report is focused on the feasibility of using optic flow 
vectors as a scene categorization technique, in future work we will investigate the 
utility of this method to identify anomalies in the vector field and the degree of 
improvement in state estimation when mobile agents are removed and only ego-
motion is utilized.  

This methodology is robust to a variety of realistic environmental conditions, image 
resolutions, and platform dynamics (Table 14). While it does not purport to find 
every disturbance in the flow field, it finds them with sufficient frequency to add 
value to a state estimation system. Static objects in the scene will either not move 
at all, as seen from a static platform, or will move together, as seen from a mobile 
platform. As such, this approach is not intended for individual object detection and 
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classification. Rather, it is intended to eventually help eliminate noise sources from 
state estimation problems and as assist in coarse obstacle avoidance.  

As described later, the US Army Maneuver Center for Excellence’s (MCOE’s) 
Infantry School has shown interest in this methodology and has requested that we 
test it under a variety of scenarios. Additionally, this method could be used for 
efficient postprocessing of the enormous quantity of data being produced by 
national assets. Due to the massive proliferation of sensors and data-acquisition 
platforms fielded, the majority of collected data are never reviewed, and human 
operators spend an inordinate amount of time on data that are not “interesting” from 
a mission perspective. If an algorithm could highlight areas of interest, human 
operators would be able to focus their time and attention on relevant video clips, 
with potential positive effects on operator efficacy and fatigue.  

Table 14 Video clips and associated metrics 

Video clip Image resolution Annotated agents 
in video clip 

Agents detected 
in video clip 

Mean percentage 
FPs 

Average time to 
process frame (s) 

3 people in woods 540×960×3 57 39 5 0.1 

One person in front 
of trees 1296×2304×3 17 17 3 0.2 

People walking away 
on path 650×1201×3 122 87 7 0.1 

2 people walking 
near trees 1296×2304×3 66 66 7 0.2 

People in woods, off 
the path 601×1200×3 127 64 8 0.1 

People running near 
507 1080×1920×3 201 130 7 0.1 

From above, at 507 270×480×3 126 74 2 0.09 

People throwing 
leaves 540×960×3 100 46 9 0.1 

3 cars driving 324×576×3 20 19 4 0.09 

Truck driving 1296×2304×3 8 5 5 0.2 

3 people on path 1080×1920×3 23 21 17 0.1 

People and a 
quadrotor 501×1001×3 89 70 16 0.1 
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6. Dynamic Teaming 

In pursuit of autonomous systems that are able to operate effectively in dynamic 
environments with human teammates, we focused on developing online and 
distributed techniques for general machine learning. Online techniques perform 
machine learning incrementally as data are provided, giving an agent the ability to 
adapt to new and changing information in real time. Distributed techniques perform 
a joint machine-learning task across a network, enabling a team of agents to jointly 
learn from the experiences of individual agents and thereby reducing the overall 
time it takes for the team to adapt to new information. Our main result is 
Decentralized Dynamic Discriminative Dictionary Learning (D4L): an algorithm 
we developed to perform online, distributed, discriminative dictionary learning and 
applied to a task involving several unmanned ground vehicles (UGVs) exploring a 
new environment. To broaden the applicability, we extended the concepts behind 
D4L in 2 ways: 1) by adapting the framework such that it can be used for a  
lower-level, self-supervised robot-maneuver task and 2) by developing a more 
general online technique capable of performing nonparametric function 
approximation. D4L has been featured in several publications.212–217 

6.1 Decentralized Dynamic Discriminative Dictionary Learning 

D4L is an algorithm for discriminative dictionary learning in a distributed online 
setting.1–3 D4L provides a new framework with which a team of networked 
autonomous agents may jointly perform dictionary learning using the observations 
of the constituent members. We applied D4L to the problem of a robotic team 
seeking to autonomously classify textures in an unknown environment. 

Dictionary learning is an unsupervised technique for creating a low-dimensional 
representation of a data domain that is constructed from the observed data rather 
than relying on a hand-engineered representation. In practice, having such a  
low-dimensional representation of the input domain is critical to developing 
tractable models for regression or classification. With D4L, we simultaneously 
learn the representation (dictionary) as well as the classification model on top of 
this representation, also known as Discriminative Dictionary Learning. 

Because the algorithm is distributed, we can perform this joint representation and 
classifier learning in domains where different agents have access to different 
portions of the data distribution (e.g., a team of ground robots occupying disparate 
regions of a battlefield [Fig. 46]). In such a case, D4L can effectively use the team’s 
communication network to transfer knowledge gleaned from the observations of 
one agent to the others, even when the other agents have not made similar 
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observations themselves. And because D4L is an online algorithm, a team that uses 
it is able to continuously update the learned knowledge and therefore adapt to any 
changes in the environment. 

 
Fig. 46 Sample task for which D4L may be applied: Individual autonomous agents aim to 
jointly learn how to classify textures using their own observations, information from human 
teammates, and model information transmitted over the network. 

In our work we specifically considered the case in which a network of agents aims 
to estimate model parameters, including a common set of feature-space dictionary 
elements, for a supervised machine learning task on the basis of sequentially 
received observations. We formulated this problem as a distributed stochastic 
program with a nonconvex objective and proposed using a block variant of the 
Arrow–Hurwicz saddle point algorithm to solve it. Model information need only 
be exchanged between neighboring nodes, and we enforced consensus through 
Lagrange multipliers that penalize the model discrepancy between neighbors. Our 
theoretical results demonstrated that decisions made with this saddle point 
algorithm asymptotically achieve a first-order stationarity condition on average for 
a learning rate that depends on the specific signal source, network, and 
discriminative task. 

Our experiments focused on learning to classify textures such as the one seen in 
Fig. 47. Such texture classification is a useful precursor for evaluating navigability 
in driving tasks and could form the basis for the navigation system of a UGV. 
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Fig. 47 Sample texture from the Brodatz texture database 

For certain network structures, we observed that the performance of the distributed 
D4L algorithm was comparable to that of a centralized version (Fig. 48). We also 
analyzed the learning capability of D4L when individual agents made observations 
of their own unique part of the data space. That is, each agent was restricted to an 
“incomplete” view of the data space while, overall, the team makes observations 
from the overall distribution. While we observed slightly worse performance in this 
case (compared with one in which each agent made observations of the whole 
space), we also note that D4L did allow the network to jointly improve its 
performance as more observations were made (Fig. 49). 

 
Fig. 48 Performance of D4L for the centralized and complete-graph scenarios: For this 
network structure, the distributed algorithm performs just as well as its centralized 
counterpart. 
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Fig. 49 Performance of D4L for complete and incomplete data observations: “Complete” 
refers to case in which each agent made observations over entire data space; “Incomplete” 
refers to case in which each agent made observations from its own unique part of the data 
space.  

Finally, we also analyzed the case in which the network size varies. As one might 
expect, joint learning in the network happened more slowly with an increase in the 
number of nodes. However, joint learning occurred in all cases we considered  
(Fig. 50). 

 
Fig. 50 Performance of D4L for networks with a varying number of nodes 
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6.2 Online Learning for Characterizing Unknown Environments 
in Ground Robotic Vehicle Models 

Inspired by the success of D4L, but motivated by the desire for a  
less-human-intensive task, we considered the problem of trying to increase the 
autonomous driving performance of a UGV in unmodeled environments (Fig 51), 
a learning task that is more self-supervised in nature. We sought to predict the 
distribution of structural state-estimation error due to poorly modeled platform 
dynamics as well as environmental effects. Such predictions are a critical 
component of any modern control approach that uses uncertainty information to 
provide robustness in control design. We used an online-learning, algorithm-based 
D4L to fit a statistical model of error that provides enough expressive power to 
enable prediction directly from motion control signals and low-level visual 
features.4 We called the proposed technique Online Learning for Drivability 
Assessment (OLDA). 

 

Fig. 51 Robot-centric view of the environment: In this work, we develop a way to predict 
driving model disturbance on the basis of the camera image and the planned path, as shown 
here. 

OLDA models disturbances as Gaussian random variables, where the mean and 
variance are each functions of both visual features of the local terrain and the 
desired control signal. Since the relationship between the model disturbance and 
these quantities is likely to be extremely complicated, we expected it to be highly 
nonlinear and therefore modeled the mean and variance as functions of sparse codes 
of the data observations. We formulated the problem of learning the mean and 
variance functions as a task-driven dictionary learning problem (as in Section 6.1) 
and proceeded to use a centralized learning algorithm to perform the function 
estimation. 
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We quantified the advantages of our algorithm in a real-world experimental setting. 
To do so, we collected data on an iRobot Packbot, which is a ground platform 
equipped with a skid-steer tracked drive system with onboard computation and, 
among other sensors, an IMU to detect disturbance and a camera to gather images 
of the terrain. In Fig. 52, we compare our OLDA technique with that of 2 others: 1) 
an average model that estimates the disturbance as the running average over all past 
disturbance data and 2) a windowed average model that performs the averaging 
only over a recent time period. While Fig. 52 shows our dictionary-based model 
achieved lower loss values than these other models, the real effect of this is seen in 
Fig. 53, where the predicted distribution in blue seems to match the actual 
disturbance data quite well. In Fig. 54, the effect of this on positional state 
forecasting can be seen in that our technique provided predictions that characterize 
well the actual path traversed by the platform. 

 
Fig. 52 Loss values for our model (gray) and the average (red) and windowed average (blue) 
techniques—lower is better 

 
Fig. 53 Statistics of the disturbance prediction across test set is visualized in blue as a solid 
line for the mean predicted disturbance and a shaded envelope depicting the “two-sigma” 
envelope; true disturbance is shown in green. 
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Fig. 54 State uncertainty propagated according to model prediction and control-input time 
series for an example drawn from the terrain and grass test sets before training (top) and after 
training (bottom). Green dashed line is actual driven path; blue-filled ellipses show prediction 
based on our dictionary learning algorithm; red path/ellipses depict the average model. 
Prediction generated by our method almost exactly matches actual disturbance experienced 
by the platform, meaning we successfully predicted where steering mistakes were likely along 
a future reference trajectory. 

6.3 Parsimonious Online Learning with Kernels via Sparse 
Projections in Function Space 

Given the reasonable success of parametric methods in an online setting, we also 
worked on extending nonparametric techniques to be applicable in an online 
setting. Despite their attractiveness, popular perception is that techniques for 
nonparametric function approximation do not scale to streaming data due to an 
intractable growth in the amount of storage they require. To solve this problem in 
a memory-affordable way, we proposed an online technique based on functional 
stochastic gradient descent in tandem with supervised sparsification based on 
greedy function subspace projections. The method, called Parsimonious Online 
Learning with Kernels (POLK),215.216 provides a controllable tradeoff between its 
solution accuracy and the amount of memory it requires. 

More specifically, POLK is a new technique for learning nonparametric function 
approximations in a Reproducing Kernel Hilbert Space that respects optimality and 
ameliorates the complexity issues classically associated with such techniques. We 
accomplished this by 1) shifting the goal from that of finding an approximation that 
is optimal to that of finding an approximation that is optimal within a class of 
parsimonious (sparse) kernel representations and 2) designing a training method 
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that follows a trajectory of intermediate representations that are also parsimonious. 
The algorithm also admits theoretical guarantees that neither complexity nor (lack 
of overall) optimality become untenable. 

We validated POLK using several datasets, including a synthetic one drawn from a 
multiclass Gaussian mixture model (see Fig. 55), the Mixed National Institute of 
Standards and Technology (MNIST) handwritten digits (Fig. 56), and the texture 
database we used when evaluating D4L. For each data set, we saw that POLK 
compared favorably with other online nonparametric techniques (Figs. 57 and 58), 
and found that it was the only algorithm that could be used for several data set/loss 
combinations (e.g., logistic regression on MNIST). Moreover, compared with batch 
solutions like that of the popular LIBSVM software, POLK yielded a test-set error 
just 1.0% higher while using an order of magnitude fewer model points. 
Additionally, POLK is able to run online, with streaming data, whereas batch 
solutions like LIBSVM cannot. 

 
Fig. 55 Synthetic data set and learned kernel logistic regressor: Training examples from 
distinct classes are assigned a unique color. Grid colors represent the classification decision of 
the learned classifier; bold black dots are selected kernel dictionary elements concentrating at 
modes of the joint data distribution; solid curved lines show the class boundaries, while the 
dashed depict the confidence intervals. 
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Fig. 56 Example images from the MNIST handwritten digit data set 

 
Fig. 57 Classification error for the MNIST data set using the hinge loss function 

 
Fig. 58 Model order for MNIST data set using the hinge loss function; POLK has a model 
order that is able to change during the learning procedure 
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7. Integrated Experiment 

To close out this 3-year effort, we have begun an integrated experiment in which a 
heterogeneous network of human and robot agents are tasked to identify potential 
targets and explore a novel environment in real time. Our initial efforts have been 
directed toward the target-identification task. Here, we describe our progress 
examining the effect of variable communications bandwidth and connectivity on 
the collective target-identification performance of this heterogeneous team. 
Subsequently, we will outline the next steps toward an integrated simulation of the 
effects of intermittent or variable communications on simultaneous target 
identification and exploration by a heterogeneous network. 

7.1 Target Identification 

The target-identification task examines the effect of constrained communications 
on target-detection performance. We define this scenario as shown in Fig. 59. An 
autonomous agent is engaged in target detection and exploration and acquires  
high-resolution images from its environment. Using its onboard resources, the 
autonomous agent is capable of performing some limited CV analysis on the images 
in an attempt to identify targets of interest. Additionally, the agent can downsample 
or compress the images to transmit them back to the tactical operations center 
(TOC). The level of compression can be tailored to account for the communication 
constraints at that time. At the TOC, images sent from the autonomous agent are 
processed by both human and CV agents. At the TOC, the CV agents are free of 
many of the processing restrictions that may exist on a fielded autonomous agent 
(memory, power, etc.); thus, the CV agents are able to make use of state-of-the-art 
approaches to identify targets of interest. Labels from both the CV agent and human 
agent are then fused and relayed back to the autonomous agent where the image 
originated. The decision from the TOC may be combined with a decision made 
locally by the autonomous agent. 
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Fig. 59 Schematic of the target-identification scenario used within the integrated 
experiment 

In this scenario, we imagine time to be of the essence. Under the assumption of 
unlimited processing power at the TOC, CV algorithms can be assumed to return 
an immediate result, but human image analysts might respond slowly, especially 
when given an open-ended search task. RSVP, in which human agents are shown a 
series of images in rapid succession (here, 4/s) with the task of pressing a button 
whenever a target image is seen, can dramatically increase the throughput of 
examined images without substantially degrading image-labelling 
performance.39,40 

Within this scenario, there are a number of questions that warrant further 
exploration (numbered red circles in Fig. 60).  

1) How does human target-identification performance change when viewing 
compressed images? Can we develop appropriate confidence measures to 
capture the variability in performance in these situations? 

2) How does CV-based target-identification performance change when using 
compressed images? We can also explore variants of this question that look 
at the effect of training and testing the CV algorithms on either the same or 
different levels of compression. Large drops in performance when 
compression levels between training and testing sets are mismatched 
indicate that systems would require pretraining at prescribed compression 
levels to make such a situation plausible. Conversely, the lack of significant 
drops in performance when compression levels between training and test 



 

Approved for public release; distribution is unlimited. 
124 

sets are mismatched would indicate that a generically trained classifier 
might work across a range of compression values.  

3) How is the fusion of human and CV decisions impacted when attempting to 
identify targets in compressed images? Does the utility of each agent vary 
with compression level? 

4) Which CV methods can be deployed onto an autonomous platform? Such a 
method would need to minimize power and memory consumption and use 
limited processing power to apply CV algorithms to a novel image. We 
should also differentiate between algorithms that can be trained on the 
autonomous agents versus algorithms that would need to be trained in a 
more traditional computing environment. This differentiation becomes 
important if we need to adapt the models of targets during operations. 
Algorithms that can be efficiently trained without extensive processor, 
memory, or power requirements are candidates for adaptive systems.  

5) How does the severity of degraded communications impact the fusion of a 
limited CV algorithm operating on full-resolution images and joint  
human–CV analysis on compressed images? Under what conditions does 
the limited CV algorithm enhance the decisions made by the joint analysis 
of compressed images? Under what conditions does the joint analysis of 
compressed images fail to improve the decisions provided by the limited 
CV algorithms? 

In the efforts completed thus far, we have run an experiment that will allow us to 
answer Questions 1–3. The remaining 2 questions will continue to be examined in 
the near future. Here, we describe the methods we used in collecting the data for 
our experiment along with plans for data analysis. 

7.1.1 Impact of Image Compression on Human Target Identification 
Performance 

7.1.1.1 Participants 

Participants (N = 16, all right-handed, mean age = 31.2, standard deviation = 7.8) 
had normal or corrected-to-normal vision and were free of neurological illness or 
trauma by self-report. The voluntary, fully informed written consent of participants 
in this research was obtained as required by federal and US Army regulations.112,113 
The investigator adhered to Army policies for the protection of human subjects.113 
All human subjects testing was approved by the ARL’s Institutional Review Board. 
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7.1.1.2 Stimuli 

Stimuli for this experiment came from a library of digital photographs (512 pixels 
wide by 662 pixels tall, encoded as lossless jpeg files) taken in and around a large 
mixed-use office complex. A more complete description of this data set can be 
found in Touryan et al.130; relevant details are included here. This complex included 
occupied and unoccupied office space, laboratory space, classroom space, and 
outdoor areas. In contrast with many existing image libraries in which some object 
of interest is centered in the frame, these photos were taken without any particular 
object or framing intention. No formal procedure for randomizing the photographs 
was used at the time of photography, but the intent was to simulate a random 
sampling of views from a cluttered office-like environment that an autonomous 
system might encounter when exploring such an environment. 

The images in this library were manually tagged with metadata, including whether 
the images included each of 5 object categories (chairs, doors, stairs, containers, 
and posters). From this library of 3000 images, 1800 were selected for use in this 
experiment. A total of 180 images that included chairs were pseudorandomly 
selected as target stimuli, and 1,620 nontarget images were pseudorandomly 
selected from the remaining images that did not include chairs. Prior to selection, 
all images were reviewed and those that included objects that might be semantically 
ambiguous chairs (e.g., stools, benches, and couches) were excluded from 
selection. 

A main factor of interest in this experiment was image compression. To achieve 4 
distinct levels of compression, the JPEG2000 compression algorithm218 as 
implemented in MATLAB version 2014a was used. This algorithm was chosen for 
its good performance, convenience of use and because the standard implements 
several features that make it especially suitable for wireless transmission in 
bandwidth-limited circumstances, including bit-error resilience and transmission at 
increasing levels of detail. Requested compression ratios, in terms of the ratio of 
number of bits in the uncompressed image (i.e., 24 bits per pixel) to the number of 
bits in the compressed image, were 1 (i.e., uncompressed), 500, 1000, and 2000. 
The implementation of the JPEG2000 compression algorithm we used does not 
afford precise control over compression levels, so actual compression ratios were 
measured from the resulting files. For the requested ratio of 500, actual 
compression ratios ranged from 500.2 to 584.7 (mean = 506.1, median = 503.6). 
For the requested ratio of 1000, actual compression ratios ranged from 1000.8 to 
1290.4 (mean = 1018.2, median = 1011.8). For the requested ratio of 2000, actual 
compression ratios ranged from 2001.6 to 2661.9 (mean = 2051.0, 
median = 2033.7). Example images at the 4 compression levels appear in Fig. 60. 
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Fig. 60 Example images at the 4 levels of compression: no compression, low (500:1), medium 
(1000:1), and high (2000:1) 

7.1.1.3 Procedure 

Images were displayed to the participant on a 24-inch, liquid-crystal display 
monitor at a distance of approximately 0.7 m. Images were centered and subtended 
approximately 11.4° by 14.7° of visual angle. Images were displayed in a rapid 
serial visual-presentation paradigm, at a rate of 4 images/s. After every 9 s of 
stimulus presentation, a screen with the word “blink” appeared for 2 s to allow 
participants time to blink without missing a stimulus presentation.  

Participants were instructed to monitor the stream of images and press a button on 
a response box whenever they saw a chair in the image. Of the 1800 images in the 
experiment, 180 included chairs, and the rest did not include any chair. This 
resulted in a target frequency of 0.1. 

The full experiment was divided into 5 blocks. The first block was a familiarization 
block in which 180 images were shown to the participant who was then offered the 
opportunity to ask clarifying questions about the task. Data collected during the 
familiarization block were not analyzed. After any questions were answered, the 
remaining 4 experimental blocks were run. At the midpoint of each block and 
between each block, the participant was given the opportunity to take a self-paced 
break. 
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Each block consisted of all 1800 images presented at a particular compression level. 
The order of compression level was counterbalanced across subjects. Within each 
block, stimulus order was pseudorandomized with constraints. To facilitate  
cross-validation, the 1800 images were each assigned to belong to one of 10 equally 
sized chunks. The order of the chunks within a block was pseudorandomized for 
each block. The effect of this chunking procedure was to ensure that the images 
within a chunk were always displayed in a contiguous period of time. An additional 
constraint was on the placement of targets in the image stream. Target frequency 
was 0.1 within each chunk, and images were ordered such that at least 2 nontarget 
images were interposed between target images. 

7.1.1.4 Behavioral Analysis 

BPs were collected using a Cedrus (San Pedro, California) response box, which 
offers 2- to 3-ms response-time precision. From these responses, participant 
performance, expressed as HR and FAR, and a classification score were calculated 
using the method of Files and Marathe,219 which will be summarized here. For each 
subject, a sample of response times was obtained by looking for any responses that 
occurred within 1.5 s of a target image throughout that subject’s run. From this 
sample, an RT-PDF was estimated as an ex-Gaussian distribution with parameters 
set using maximum likelihood estimation.51 This RT-PDF was used to apportion 
credit for each BP response to the preceding stimuli according to their relative 
likelihoods. The expected value of this apportionment function for stimulus at time 
Si is given in Eq. 35 (Files and Marathe219, Eq. 6): 

, (35)

 

where f is the RT-PDF, T is the time the response occurred, Sj is the time at which 
other recent stimuli occurred, and A(S, T) is the apportionment onto a stimulus at 
time S of a response at time T. Because all quantities on the right-hand side of the 
equation are known except HR and FAR, this equation reduces to HR × Ai + FAR 
× Bi, for each stimulus i. The values of HR and FAR are solved by regression 
against the actual attribution each image received, yielding an estimate of HR and 
FAR for that block. 

For BP-based classification, each compression-level block was treated separately. 
Within a block, cross-validation was done with respect to chunks of 180 images, 
all of which were displayed in one contiguous period of time. For each of 10  

𝐸𝐸[𝐴𝐴(𝑆𝑆𝑖𝑖  )] =  𝐻𝐻𝑅𝑅 × �  ��𝑓𝑓�𝑆𝑆𝑗𝑗 − 𝑇𝑇�𝐴𝐴(𝑆𝑆𝑖𝑖 ,𝑇𝑇)�
𝑇𝑇𝑆𝑆𝑗𝑗∈𝑡𝑡𝐿𝐿𝑆𝑆
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𝑇𝑇𝑆𝑆𝑗𝑗∈𝐶𝐶 .𝑡𝑡.
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cross-validation folds, 6 chunks were selected as training chunks, and the remaining 
4 were considered testing chunks. Using only the training chunks, an RT-PDF and 
subject performance (HR and FAR) were estimated using the previously described 
method. Also using only the training chunks, each image in the training chunk was 
assigned a score using the method described. Next, a threshold was found that 
minimized a hinge loss function with the slope of the loss function defined to pass 
through the threshold at zero and to reach 1 at the extreme (minimum or maximum) 
of all the scores in the training set. To summarize, from training data we estimated 
the subject’s HR and FAR for that block, the subject’s RT-PDF, a minimum and 
maximum score for the images in the training block, as well as an optimized 
threshold for separating targets from nontargets. 

For testing, images were assigned a score based on the apportionment of each BP 
onto the preceding stimuli according to their relative likelihoods from the trained 
RT-PDF. As an estimated confidence on the score, the hinge loss function from 
training was used to assign confidence equal to the loss expected if this label is 
incorrect. When combining a BP-derived score with other classifier modalities, it 
is weighted by a confidence measure derived from the block-level performance of 
that participant estimated from the training set as p(Target)*HR/(p(Target)*HR + 
(1-p(Target))*FAR). This is the prior probability that a response from this 
participant is in response to a target image. 

7.1.1.5 Electroencephalography Recording and Preprocessing 

Data from 64-channel EEG were recorded using a Biosemi ActiveTwo system. In 
addition, 6 external input channels were used to acquire bipolar EOG measurements 
related to horizontal and vertical eye movements and mastoids. EEG signals were 
digitized at 2 kHz and offline were decimated to 512 Hz.  

Offline, EEG data were imported into EEGLAB,220 rereferenced to the average of 
the mastoid electrodes, and band-pass filtered to 0.1–50 Hz using the EEGLAB 
function pop_eegfiltnew. To remove the potential influence of eye blinks on the 
EEG, an independent components analysis was run using Infomax ICA,221 and 
those components with strong correlation with the EOG were manually inspected 
and eliminated from the data if they appeared to reflect genuine eye movement or 
eye blink activity. 

7.1.1.6 Hierarchical Discriminant Component Analysis  

HDCA is a single-trial classification method that can be used to determine the 
presence of an ERP related to the target within the EEG signal. HDCA is a binary 
classification method based on an ensemble of logistic regression classifiers. 
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HDCA transforms multichannel EEG data collected over a temporal window 
relative to image onset into a single interest score. Ideally, the interest score is 
generated so that the range of scores for each class are distinct, thereby allowing 
for simple discrimination of the 2 classes.  

Generating interest scores from HDCA involves a 2-stage classification. In the first 
stage, a set of 10 logistic regression discriminators are applied to 10 equally sized, 
nonoverlapping time windows that range from image onset up to 1-s postimage 
onset. The choice of 10 Stage-1 discriminators was based on previous studies.60 
Other studies have used 20 Stage-1 discriminators and reported no significant 
difference when comparing classification performance using 10 versus 20 Stage-1 
discriminators. Each of the 10 discriminators are trained independently. Each of 
these 20 discriminators serve to collapse the information contained in all 64 EEG 
channels collected over the course of the corresponding time window into a single 
value for discriminating between the neural signals evoked by the 2 image classes. 
In the second stage, a separate logistic regression discriminator is applied to the 
output of the 10 Stage-1 discriminators to create a single interest score that can 
efficiently discriminate between the 2 image classes.  

Similar to the BP analysis, for HDCA classification each compression-level block 
is treated separately. Within a block, cross-validation is done with respect to the 
chunks of 180 images, all of which are displayed in one contiguous period of time. 
For each of 10 cross-validation folds, 6 chunks are selected as training chunks, 2 
chunks are selected as testing chunks, and the final 2 chunks are left out for 
validation of fusion across multiple classifiers. Fusion analyses are described in 
more detail in the following. 

7.1.1.7 Fusion of Neural Classifier and Behavior 

The purpose of including a NC is to assess whether it provides any additional 
information to the button score, particularly at high image-compression levels when 
behavioral performance degraded. The added value of the NC is measured by 
comparing the accuracy of target identification of either classifier alone against the 
accuracy when both HDCA and behavioral result are combined using a fusion 
classifier such as the dynamic belief fusion method described in Section 4.  

7.1.2 Impact of Image Compression on CV-Based Target-Identification 
Performance 

Having described the method by which our data were collected and the plans for 
analysis of both behavioral and neural data to further understand how image 
degradation affects human target detection performance, we now turn to how such 
degradation might affect CV algorithms. 
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7.1.2.1 Overview of CV Analyses 

The CV analyses are designed to complement the analyses applied to the human 
data described above. As such, CV-based object detection algorithms are applied 
to the same sets of images that were presented to the human participants.  

7.1.2.1.1 CV Algorithms and Sensor Fusion 

The individual images are each processed by a set of algorithms to classify target 
images. The selected algorithms use different feature extraction methods (e.g., 
HOG, dense SIFT, color attributes, and CNN features) and different principles of 
detecting objects of interest. This heterogeneity in detectors enhances the 
possibility that each algorithm will contribute unique information regarding each 
image. Each algorithm, when applied to an image, produces a classification score 
that indicates a degree of confidence about a particular decision (target versus 
nontarget). The following specific algorithms are applied: 

• DPM: This method represents objects as a set of parts that can be 
deformed using 2 different scales of HOG features, latent features, and a 
deformation cost.222 

• SVM-based Dense SIFT: This method is based on matching densely 
sampled, pixelwise SIFT features between 2 images while preserving spatial 
discontinuities.139 

• ESVM: This method learns a separate classifier for each positive training 
image, using a rigid HOG template, and scores candidate detections based 
on “distance” to exemplars.125 

• CNNs: This method leverages a deep learning framework to combine feature 
extraction and classification on images. Two variants are explored here.142, 223 

The output of each of the specified CV algorithms will be fused to generate an 
overall CV classification for each image. The output of this fused CV classifier will 
be used to address Question 2 (Section 7.1 and Fig. 60). The output of the overall 
CV classification will be fused with the output of the classifiers operating on the 
human data to generate an overall human–CV classification for each image. The 
output of the overall human–CV classifier will be used to address Question 3 
(Section 7.1 and Fig. 60). 

Both fusion stages (CV and human–CV), will apply the DBF approach described 
in Section 4.118 Briefly, DBF is a novel late-fusion framework that models joint 
relationships between a priori and current information of individual detectors. This 
approach robustly extracts complementary information from multiple information 
sources. 
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7.1.2.1.2 Cross Validation 

To enable direct comparison and fusion of CV results with the human results, the 
training and testing of the individual object detection algorithms and the fusion 
algorithms follow a similar approach to cross-validation as the human data 
described previously. At all stages, the classifiers and fusion algorithms are trained 
and tested on non-overlapping data. Table 15 details the iterative 6–2–1–1  
cross-validation sequence used. Table 15, Line A, shows that the first 6 of the 10 
total chunks provide training data for the individual classifiers. Chunks 7 and 8 are 
then used as both test data for the individual classifiers and as training data for the 
CV fusion classifier that combines data across the individual object detectors. 
Chunk 9 provides the test data for the CV fusion classifier and training data for the 
human–CV fusion classifier, which combines human and computer outputs. 
Finally, Chunk 10 provides the test data for the final result of the human–CV 
classifier. This procedure is then repeated, such that in the second iteration Chunks 
2–7 train the individual classifiers, Chunks 8 and 9 test the individual classifiers 
and train the CV fusion classifier, and Chunk 10 trains the human–CV classifier, 
which is then tested on Chunk 1 (Table 15, Line B). This 6–2–1–1 cross-validation 
sequence is carried out 10 times (Table 15, Lines A–J), rotating the data subsets 
such that, when complete, each image category serves as both training and test data 
for each level of integration. 
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Table 15 Cross-validation procedure for training and testing human and CV classifiers 

Decision level 1 2 3 4 

Train Individual 
classifiers 

CV fusion 
classifier 

Human–CV 
fusion classifier 

… 

Test … Individual 
classifiers 

CV fusion 
classifier 

Human–CV 
fusion classifier 

A 1–6 7–8 9 10 

B 2–7 8–9 10 1 

C 3–8 9–10 1 2 

D 4–9 10,1 2 3 

E 5–10 1–2 3 4 

F 6–10,1 2–3 4 5 

G 7–10,1–2 3–4 5 6 

H 8–10,1–3 4–5 6 7 

I 9–10, 1–4 5–6 7 8 

J 10, 1–5 6–7 8 9 

7.1.2.2 Summary and Impact 

The approach described here will enable an effective fusion of human and CV 
target-identification decisions. As such, this work should clarify the impact of 
degraded communications on a heterogeneous human–autonomous-agent team’s 
overall target-identification performance. However, when autonomous agents are 
tasked with finding targets in an unknown environment, 2 tasks must be 
accomplished simultaneously: target identification and environment exploration. 
As a future direction of this work, we describe a scenario on which simulations can 
be based to see the impacts of degraded communications on team performance. 

7.2 Scenario Overview 

We describe a scenario upon which simulations may be built in which a mixed team 
of human and robot agents is tasked to explore an unknown environment and 
identify targets of interest. To facilitate experimentation, and to enable examination 
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of the broadest set of questions, both the exploration and target identification will 
take place in the simulated environment represented by the MOUT-site database 
described in Section 3 and Fig. 61.  

 
Fig. 61 Schematic and example views from the MOUT site database: nodes (blue dots) are 
both indoor and outdoor locations; connecting paths (black lines) show where the robot 
travelled; selected frames illustrate differences in lighting conditions and scene types. 

The database includes video clips used in this experiment that were extracted from 
a data set of robotic sensor readings at a MOUT training site. This data set was 
captured to simulate an exhaustive exploration of the site, and some example views 
are in Fig. 3. Nodes representing a physical location and pose (facing north, south, 
east, or west) were defined both indoors and out, and nearby nodes, including all at 
the same location with different poses, were connected to each other by paths. An 
iRobot Packbot, equipped with a Prosilica high-resolution color camera (resolution 
2752 × 2200, frame rate 1 Hz), an Asus Xtion Pro RGB-D camera (resolution 320 
× 240, frame rate 30 Hz), an actuated Hokuyo LiDAR, and a Garmin GPS), 
traversed these paths at a speed of about 1.2 m/s while recording all sensor data. 

Orange soccer balls were included at various points throughout the environment as 
potential targets of interest. While their inclusion was meant to facilitate 
incorporation of some type of target-identification tasks within the environment, 
the brightly colored soccer balls tend to easily stand out. As such, both human and 
CV agents are easily able to identify the targets without much error. Because of the 
ease with which both agents could identify these targets, we use the soccer balls as 
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target markers rather than targets themselves. As target markers, these soccer balls 
represent locations where the autonomous agent and the human simulate a series of 
joint target-identification tasks under specific communication constraints using a 
separate target-identification data set (as described in Section 7.1). 

7.2.1 Planned Simulations 

The integrated simulations are designed to examine the impact of team composition 
and communications quality on the overall performance of a mixed-agent team on 
2 different tasks. Each simulation run involves a team of one human agent and 2–4 
autonomous agents. They are tasked with exploring a novel environment that is 
instantiated by using a subset of the MOUT-site database with targets located in up 
to 10 randomized locations. The autonomous agents are randomly placed within 
the environment, while the human agent is assumed to be operating from a nearby 
TOC location. The autonomous agents begin exploring the environment and 
generating a map. For the exploration, we will compare a variety of established 
techniques with some of the novel approaches we developed in this project. As the 
exploration proceeds, each time an autonomous agent encounters the target marker 
(i.e., orange soccer ball), a target-identification session is triggered, sampled from 
the target-identification experiment already done. Once the  
target-identification session is complete, the results from that session are saved, and 
the autonomous agents continue exploration. As the robot explores the 
environment, if a potential loop closure is identified a human user is queried to 
determine if the loop closure does in fact exist. This query is resolved by looking 
at the results of loop-closure experiment described in Section 3. These processes 
continue until the autonomous agents have fully mapped the location and have 
achieved a prescribed level of performance on each of the target-marker locations. 
For each run, the time to completion, accuracy of the map, and accuracy of target 
detection will be used to quantify performance. This entire process can be repeated 
with different numbers of agents, different numbers of target-marker locations, and 
various levels of communications constraints. 

This simulation framework will allow us to build upon already completed work to 
more fully explore the impacts of information variability in heterogeneous  
human–autonomous teams carrying out a simultaneous exploration and  
target-identification task.  
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8. Work Products and Transitions 

We have divided our work products and transitions into sections, with summary 
statistics listed in parenthesis when appropriate. Over 3 years, we have supported 5 
postdoctoral fellows and one contractor with onsite research projects. Of these 
individuals, 2 have been hired as civilian employees and one has transitioned into 
civilian service with the US Navy at the Space and Naval Warfare Systems 
Command in San Diego, California. Additionally, one of our researchers was hired 
directly into civilian service. We have also identified several transition points for 
the research conducted under this DSI project.  

The human-variability research focused on developing confidence measures that 
estimate expected performance of human agents on the basis of behavioral and 
physiological data. This research will continue under fiscal year 2017 (FY17) Big 
Idea as Continuous Multi-faceted Soldier Characterization for Adaptive 
Technologies. This project will focus on developing a basic understanding of the 
factors that contribute to variability in human behavior and techniques to predict 
changes in performance. Furthermore, the techniques developed here will also be 
used by a new DSI entitled Decentralized Learning of Network-of-Networks of 
Heterogeneous Multi-Agent Systems.  

The CV and sensor fusion work focuses on developing novel CV and sensor fusion 
methods. The sensor fusion approaches have been shown to extract complementary 
information from multiple sources, and may be useful for applications beyond the 
scope of CV alone. This work will continue under the FY17 project Vision Aided 
Position, Navigation, and Timing (PNT) in Contested Environments. Additionally, 
transitions are being explored with Communications-Electronics Research, 
Development and Engineering Center/NightVision.  

The agent-adaptation research focused on creating sensing techniques that are 
robust to complex and dynamic environments to enable operational-tempo 
navigation in real-world scenarios. This work will continue under the FY17 project 
Vision Aided PNT in Contested Environments. The MCOE’s Infantry School has 
shown interest in this methodology and has requested that we test it under a variety 
of scenarios, to include forests, around the motor pool, amid cluttered urban areas, 
in a barracks with people, around other robots, and on and off road. They have 
requested an algorithm that is sufficiently reliable for the safety teams to allow 
Soldiers within 2 m of the robots. Solders are now prohibited from coming within 
12 m of UGVs, as their obstacle-avoidance capabilities are insufficiently reliable. 

Work on dynamic teaming has planned transitions into 3 major efforts. First, the 
FY19 Big Idea, Novel Forms of Joint Human–System Decision Making, has a focus 
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on data- and time-constrained deep learning and learning with statistically 
mismatched data. Our work on nonparametric techniques (POLK) provides an 
important alternative to traditional parametric deep-learning techniques because it 
is possible to geometrically characterize where there are gaps in the model due to 
missing data, and we plan to use this work as a starting point for alternative research 
under this upcoming program. Second, the FY17 DSI project, Modeling Networks 
of Networks of Heterogeneous Multi-Agent Teams, focuses on adapting 
reinforcement learning using human interaction. The reference architectures for this 
task are built upon deep learning using convolutional neural networks, but we 
anticipate that our work on nonparametric techniques (POLK) could provide an 
alternative formulation for some or all of the architecture and provide an intuitive 
way to incorporate examples demonstrated by a human. Third, we are further 
expanding the OLDA work as part of a reinforcement learning framework to 
develop control policies for robot navigation in outdoor environments as part of our 
FY17 Information Sciences Division mission proposal. 

We have 4 published journal publications: one in press, one under review, and 2 in 
preparation for submission. We also have 13 published conference proceedings and 
one in press, 2 under review, and 3 in preparation. We also have one published ARL 
technical reports and 2 more in preparation for submission.  

8.1 Personnel 

We have built an in-house research group through several mechanisms to enhance 
ARL’s in-house capability to perform research related to teaming of heterogeneous 
agents. Five postdocs have been involved in onsite projects. Three of those 5 
postdocs transitioned to civilian employees (Amar Marathe, Jamie Lukos, and 
Benjamin Files). Dr Amar Marathe assumed the role of principal investigator of 
this DSI shortly after transitioning. Dr Jamie Lukos joined as a civilian employee 
at the Space and Naval Warfare Systems Command in San Diego, where she 
continues to interact with ARL researchers. Dr Benjamin Files joined ARL–West 
and is working to build up research efforts in that facility. Garrett Warnell joined 
ARL as a civilian employee early in this DSI effort. He has since transitioned from 
Adelphi to ARL–South. Allison Mathis joined ARL as a contractor and continues 
to work with the Sensors and Electron Devices Directorate. 
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8.2 Journal Publications (4 Published, 1 in Press, 1 under 
Review, 2 in Preparation) 

1. Files BT, Lawhern VJ, Ries AJ, Marathe AR. A permutation test for 
unbalanced paired comparisons of global field power. Brain Topography. 
2016;29(3):345–357. 

2. Files BT, Marathe AR. A regression method for estimating performance in 
a rapid serial visual presentation target detection task. Journal of 
Neuroscience Methods. 2016;258(30):114–123.  

3. Marathe AR, Ries AJ, Lawhern VJ, Lance BJ, Touryan J, McDowell K, 
Cecotti H. The effect of target and nontarget similarity on neural 
classification performance: a boost from confidence. Frontiers in 
Neuroscience. 2015;9:270. 

4. Tsiligkaridis T, Sadler BM, Hero AO 3rd. On decentralized estimation with 
active queries. IEEE Transactions on Signal Processing. 63.10. 2015:2610–
2622.  

5. Koppel A, Warnell G, Stump E, Ribeiro A. D4L: decentralized, dynamic, 
dictionary learning. IEEE Transactions on Signal and Information 
Processing; 2017 in press. 

6. Koppel A, Warnell G, Stump E, Ribeiro A. Parsimonious online learning 
with kernels via sparse projections in function space. Journal of Machine 
Learning Research; 2017 submitted. 

7. Lee H, Kwon H, Robinson R, Nothwang W, Marathe AR. Dynamic belief 
fusion. IEEE Transactions on Pattern Analysis and Machine Intelligence; 
2017 in preparation.  

8. Lee H, Kwon H, Robinson R, Nothwang W, Marathe AR. Human-machine 
sensor fusion in unified tasks. IEEE Transactions on Systems, Man, and 
Cybernetics; 2017 in preparation. 

8.3 Conference Publications (13 Published, 1 in Press, 2 under 
Review, 3 in Preparation) 

1. McDowell K, Marathe AR, Lance BJ, Metcalfe JS, Sajda P. Neuro-robotic 
technologies and social interactions. Proceedings of the ACM/IEEE 
International Conference on Human-Robot Interaction; 2014.  

2. Koppel A, Warnell G, Stump E, Ribeiro A. D4L: decentralized dynamic 
discriminative dictionary learning. Presented at the 2015 IEEE/RSJ 
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International Conference on Intelligent Robots and Systems; 2015 Sep 28–
Oct 2; Hamburg, Germany. 

3. Koppel A, Warnell G, Stump E, Ribeiro A. A stochastic primal-dual 
algorithm for task-driven dictionary learning in networks. Presented at the 
Asilmoar Conference on Signals, Systems, and Computers; 2015 Nov 8–
11; Pacific Grove, CA.  

4. Robinson R, Lee H, McCourt M, Marathe AR, Kwon H, Ton C, Nothwang 
W. Human-autonomy sensor fusion for rapid object detection. Presented at 
the IEEE/RSJ International Conference on Intelligent Robots and Systems; 
2015 Sep 28–Oct 2; Hamburg, Germany. 

5. Lee H, Kwon H, Nothwang W, Robinson R, Marathe AR. Dynamic belief 
fusion for object detection. Proceedings of the Winter Conference on 
Applications of Computer Vision; 2016:1–9. 

6. Lee H, Kwon H, Robinson R, Nothwang W. DTM: deformable template 
matching. Presented at the IEEE International Conference on Acoustics, 
Speech, and Signal Processing; 2016 Mar 20–25; Shanghai, China. 

7. Lee H, Kwon H, Robinson R, Donavanik D, Nothwang W, Marathe AR. 
Task-conversions for integrating human and machine perception in a 
unified task. Presented at the 2015 IEEE/RSJ International Conference on 
Intelligent Robots and Systems; 2015 Sep 28–Oct 2; Hamburg, Germany. 

8. Files BT, Canady J, Warnell G, Stump EA, Nothwang WM, Marathe AR. 
Human assisted robot exploration. Presented at SPIE Defense and 
Commercial Sensing; 2016 Apr 17–21; Baltimore, MD. 

9. Shamwell EJ, Lee H, Kwon H, Marathe AR, Lawhern VJ, Nothwang W. 
Single-trial EEG RSVP classification using convolutional neural networks. 
Presented at SPIE Defense and Commercial Sensing, 2016 Apr 17–21; 
Baltimore, MD. 

10. Lee H, Kwon H, Robinson RM, Nothwang WD, Marathe AR. An efficient 
fusion approach for combining human and machine decisions. Presented at 
SPIE Defense and Commercial Sensing; 2016 Apr 17–21; Baltimore, MD. 

11. Mathis AM, Donavanik D, Nothwang WD. Computationally Efficient 
scene categorization in complex dynamic environments. Presented at the 
IEEE Applied Imagery Pattern Recognition Workshop; 2016 Oct 18–20; 
Washington, DC. 
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12. Koppel A, Fink J, Warnell G, Stump E, Ribeiro A. Online learning for 
characterizing unknown environments in ground robotic vehicle models. 
Presented at the 2015 IEEE/RSJ International Conference on Intelligent 
Robots and Systems; 2015 Sep 28–Oct 2; Hamburg, Germany. 

13. Bency A, Kwon H, Lee H, Vadivel K, Manjunath BS. Weakly supervised 
localization using deep feature maps. Presented at the European Conference 
on Computer Vision; 2016 Oct 8–16; Amsterdam, The Netherlands. 

14. Koppel A, Warnell G, Stump E, Ribeiro A. Parsimonious online learning 
with kernels via sparse projections in function space. Proceedings of the 
IEEE International Conference on Audio, Speech, and Signal Processing; 
2017 in press. 

15. Cao Y*, Lee H*, Kwon H. Enhanced object detection via fusion with prior 
beliefs from image classification. IEEE International Conference on Image 
Processing (ICIP); 2017 submitted. (*indicates equal contribution.) 

16. Eum S*, Lee H*, Kwon H, Doermann D. OI-CNN: integrating 
architecturally different object detection networks for event recognition. 
IEEE International Conference on Image Processing (ICIP); 2017 
submitted. (*indicates equal contribution.) 

17. Files BT, Canady JD, Drnec K, Marathe AR. Image compression degrades 
both behavioral and neural classification performance on RSVP task; 2017 
in preparation. 

18. Lee H, Kwon H, Nothwang W, Canady JD, Files BT, Marathe A. 
Perceptions on the compressed RSVP dataset; 2017 in preparation. 

19. Lee H, Kwon H, Nothwang W, Canady JD, Drnec K, Files, BT, Marathe A. 
Late fusion of human and machine perceptions via DBF on the compressed 
RSVP dataset; 2017 in preparation.  

8.4 Technical Reports (1 Published, 2 in Preparation) 

1. Mathis A, Nothwang W, Donavanik D, Conroy J, Shamwell J, Robinson R. 
Making optic flow robust to dynamic lighting conditions for real-time 
operation. Adelphi Laboratory Center (MD): Army Research Laboratory 
(US); 2016 Mar. Report No.: ARL-TR-7629. 

2. Canady J, Files BT, Marathe AR. An implementation of a regression-based 
method for estimating performance in a rapid serial visual presentation 
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target detection task. Aberdeen Proving Ground (MD): Army Research 
Laboratory (US); 2017 in preparation.  

3. Canady J, Files BT, Marathe AR. Development of an interface for 
incorporating human-assistance to improve loop closure detection in robotic 
exploration. Aberdeen Proving Ground (MD): Army Research Laboratory 
(US); 2017 in preparation. 
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