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1. Introduction 

Additive manufacturing (AM) is a layer-by-layer manufacturing method that builds 
parts from the bottom up. This way of manufacturing is relatively new, first 
appearing in the 1980s. AM is different from the traditional subtractive 
manufacturing process, which cuts away material from a starting substrate to get a 
final component. Topology optimization (TO) is an extremely powerful free-form 
rigorous design method that was developed for designing structures. TO can 
produce efficient designs for prescribed objectives and constraints that make it ideal 
for AM. AM has the capacity to realize TO designs that are not realizable by 
traditional manufacturing processes due to cost, tool-path constraints, or operator 
limitations. While AM significantly widens the design space for TO, manufacturing 
constraints and limitations remain1 and should be addressed in the design process. 
An objective of this work is to consider manufacturing constraints, such as 
overhangs and enclosed pores, within the TO methodology for structural design.  

Fatigue is a fundamental mode of failure in vibrating structures such as rotorcraft. 
Current US Army rotorcraft maintenance schedules are costly as they can keep 
aircraft grounded for an extended time period and require manual labor to survey 
the structure for possible damage caused by fatigue. Structures with improved 
fatigue properties could therefore reduce maintenance costs. Traditional TO 
formulations for lightweighting (i.e., without consideration of fatigue) often 
produce designs with stress concentrations or singularities that cause a reduction in 
fatigue life. Manual adjustments or additional structural optimization are needed to 
fulfill engineering stress requirements. Therefore, a second objective of this work 
is to consider/couple fatigue within TO design for the lightweighting of structures.  

This report presents progress that has been made toward designing lightweight, 
fatigue-constrained topologically optimized structures using AM. To date, this 
research effort has been divided into 2 distinct components: 1) TO for AM, 2) TO 
for fatigue. Future plans call for these component algorithms to be combined and 
demonstrated as TO for AM and fatigue.  

The goal of TO for AM is to design structures that account for AM limitations 
within the design. The limitations of interest in this work are the production of 
support material and enclosed pores. Both limitations will be separately considered 
in the TO formulation.  

The goal of TO for fatigue is to codify and experimentally demonstrate a TO-
capability to maintain or enhance fatigue life. This will be done by selecting a 
published methodology for handling stress within TO and use it to develop 3-D TO 
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solutions. The solutions will be realized/proven/demonstrated using traditional 
manufacturing techniques and fatigue-testing protocols. Though a non-AM process 
will be used here, the novelty of this second effort is fatigue testing of a TO-
designed structure. This work will verify the selected stress handling methodology 
and produce test results that will serve as a benchmark for TO for stress and fatigue 
efforts.  

This report is outlined as follows: Section 2 gives an overview of the overhang and 
void-projection schemes used to account for AM constraints. Section 3 describes 
the TO problem formulation that is used to generate solutions for the presented 
projection schemes. Section 4 presents the solution to the problem formulation 
given in Section 3. Section 5 presents the approach selected for accounting for 
stress within a TO structure. Section 6 presents the TO problem formulation used 
to demonstrate the methodology presented in Section 5. Section 7 presents 
examples that solve the TO problem formulation given in Section 6. The report 
ends with a summary and concluding remarks in Sections 8 and 9. 

2. Overhang Projection and Void Projection 

An overhang is a solid feature that rises in the build direction, at a shallow angle to 
horizontal, with supporting material below it. In extrusion-based processes, support 
material is generated during fabrication to hold-up soft overhang material as it 
hardens to prevent part distortion. Following fabrication, support material removal 
can result in surface damage, trapped material, increased part time and fabrication 
cost. In metal powder bed fusion processes, support material is generated during 
fabrication to prevent solid feature distortion from residual stress accumulation 
because of thermal gradients within the sintered solid and to produce a conductive 
path from the point of melting/sintering to the build plate. Following fabrication, 
support material removal can lead to degraded surface finish, trapped material, 
increased part time, and fabrication cost. Therefore, several research efforts aim to 
remove overhangs from designed structures.1–11 In this work, overhangs are 
removed by making structures self-supporting. 

The proposed approach to make a structure self-supporting is to account for 
overhangs in the TO design formulation. The proposed method is 3-D and an 
extension of work done by Gaynor and Guest.6 In that work, overhangs were totally 
eliminated by a so-called overhang projection scheme. The idea behind the 
overhang projection scheme is simple: an element (e) may become a solid element 
if and only if the following occur: 1) the local design variables indicate material 
should be deposited into the element12 and 2) sufficient material exists in the 
supporting elements below e such that e does not violate the defined overhang 
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angle. If e becomes solid, it will not contribute to an overhang. Three variables are 
used to create this effect: 1) the ϕ is the vector of dependent variables that is passed 
through the Heaviside Projection Method (HPM) to create a spherical6 solid feature 
in the finite element space, 2) the ψ is the vector of independent design variables 
that indicates whether material should be deposited at a given location, and 3) the 
ρS is a subset of variables ϕ that exist in the neighborhood below the point of 
interest (Fig. 1) and indicate whether material can be deposited at the considered 
location (i.e., indicate whether or not the overhang condition is violated). The Ψ 
and ρS will be combined to form ϕ, which is then used to determine element volume 
fraction ρe: ϕi = Ψi * ρS

i. Whether material can be projected from a point 𝜑𝜑𝑖𝑖 onto 
the elemental domain is entirely dependent on the magnitudes of other 𝜑𝜑 variables 
below this point, and thus the algorithm must proceed in a layer-by-layer manner, 
essentially mimicking actual AM processes. The overhang support neighborhood 
that relates a given Ψi to the support region below it is shown in Fig. 1. In Fig. 1, 
the blue dots represent locations within the finite element domain that have an 
assigned variable Ψi. The green dots represent locations below Point i that represent 
the neighborhood where ρS is calculated. The Ψ and ρS determine if material should 
be placed at Point i.  

 

Fig. 1 3-D search design domain 

The density of an element is defined by Eq. 1. If ρe = 1, then the element is solid. 
If ρe = 0, then the element is void. The β is the regularization parameter dictating 
the aggressiveness of the regularized Heaviside function.12 The µe is the proximity 
weighted-average of design variables defined by ϕs in a spherical neighborhood 
with a prescribed radius (rmin) from an element of interest e. The ϕmax is the 
maximum magnitude of ϕ (herein = to 1). 

 𝜌𝜌𝑒𝑒 = 1 − 𝑒𝑒−𝛽𝛽𝜇𝜇𝑒𝑒(𝜑𝜑) + 𝜇𝜇𝑒𝑒(𝜑𝜑)
𝜑𝜑𝑚𝑚𝑚𝑚𝑚𝑚

𝑒𝑒−𝛽𝛽𝜑𝜑𝑚𝑚𝑚𝑚𝑚𝑚  (1) 

To recap, the elemental densities ρe are computed by Eq. 1 and are a function of 
dependent variable ϕi. The ϕi is a function of the independent optimization variable 
Ψi and the dependent support indicator variable ρS

i. The ρS
i is computed using a 
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relationship given in Gaynor and Guest6 and are a function of φ in the support 
neighborhood below the considered point, i. This last dependency means that the 
algorithm must proceed in a layer-by-layer manner starting from the bottom.  

Lastly, this underlying algorithm may be slightly adjusted to solve a completely 
different problem in TO for AM: the enclosed pore solution. Enclosed pores are 
hollow sections of a volume, which should be filled only with air. However, in 
metal powder bed fusion processes, these hollow sections will trap powder that is 
very difficult (if not impossible) to remove without severely damaging the 
structure. This may also be an issue in extrusion-based processes where support 
material can get trapped. This work proposes a simple approach to removing 
enclosed pores in TO design: void projection. Void projection can be accomplished 
in TO using Eq. 2:  

 𝜌𝜌𝑒𝑒 = −𝑒𝑒−𝛽𝛽𝜇𝜇𝑒𝑒(𝜑𝜑) + 𝜇𝜇𝑒𝑒(𝜑𝜑)
𝜑𝜑𝑚𝑚𝑚𝑚𝑚𝑚

𝑒𝑒−𝛽𝛽𝜑𝜑𝑚𝑚𝑚𝑚𝑚𝑚 . (2) 
 
The idea being that instead of projecting solid material from the design variables 
(which are located at the nodes), the algorithm project voids. When this is coupled 
to the layer-by-layer bottom-up approach discussed for overhang projections, the 
result is structures with void pathways that ensure material removal. This is further 
discussed in Section 4.2.  

3. Problem Formulation (TO for AM) 

The proposed scheme for TO for AM is demonstrated using the well-known13 
minimum compliance (maximum stiffness) problem. The goal of the optimization 
will be to simultaneously satisfy the objective function and constraints while 
searching for the location within the design space where the gradient of the 
objective function is zero. The location within the designs space where the gradient 
is zero can be a local or global minimum or maximum to the objective function. To 
achieve its goal, the optimization process determines the material distribution, ρe, 
of the elements within the design domain. The optimization formulation takes on 
the following form: 

 �
min𝑭𝑭𝑇𝑇𝒅𝒅

𝑠𝑠. 𝑡𝑡. � 𝑲𝑲𝒅𝒅 = 𝑭𝑭,
∑𝜌𝜌𝑒𝑒𝑣𝑣𝑒𝑒 ≤ 𝑉𝑉  

, (3) 

where 𝑭𝑭𝑇𝑇𝒅𝒅 (compliance) is the objective function, 𝑲𝑲𝒅𝒅 = 𝑭𝑭 (equilibrium), and 
∑𝜌𝜌𝑒𝑒𝑣𝑣𝑒𝑒 ≤ 𝑉𝑉 is the volume constraint.  

F is the vector of applied nodal loads, d is the vector of nodal displacements, K(ψ) 
is the global stiffness matrix, ρe(ψ) is elemental volume fraction of element e, ve is 
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the volume of element e and V is the total allowable material volume. The Ψi varies 
between 0 and 1. The element density ρe affects structural equilibrium through the 
global stiffness matrix. The global stiffness definitions of interest in this work are 
RAMP and SIMP and RAMP defined in Eqs. 4 and 5, respectively13–15:  

 𝑲𝑲𝑒𝑒 = �𝜌𝜌𝑚𝑚𝑖𝑖𝑚𝑚 + 𝜌𝜌𝑒𝑒

1+𝛾𝛾(1−𝜌𝜌𝑒𝑒)
�𝑲𝑲0

𝑒𝑒 (4) 
 
 𝑲𝑲𝑒𝑒 = �𝜌𝜌𝑚𝑚𝑖𝑖𝑚𝑚 + 𝜌𝜌𝑒𝑒𝛾𝛾�𝑲𝑲0

𝑒𝑒 . (5) 
 
Both produce quality solutions, yet a preference has been developed for RAMP 
because of its nonzero gradient at ρe = 0. This property was useful as material grew 
out of void space below a structural feature to make said feature self-supporting. 
Similar benefits are seen in Guest16 where it was necessary for stiff inclusions to 
grow out of compliant matrix material. 

4. Examples (TO for AM) 

The proposed methodologies for overhang and void projection are demonstrated 
using simple 2-D and 3-D structures described in Sections 4.1 and 4.2. The radial 
length scale (rmin) prescribed in the 3-D overhang projection examples is 2 times 
the element length. The allowable volume fraction is 50% and the initial 
distribution of ψ is a uniform 50%. The SIMP exponent 5 is chosen to further make 
densities that are less than 1 inefficient by reducing their stiffness value. The β used 
in the density definition is 25. Selecting a value of 25 further increases the 
algorithm’s ability to eliminate intermediate density elements at the structure’s 
boundary. In all examples, the optimization process was run for several iterations 
until convergence was obtained.  

4.1 Overhang Projection 

The first example used to demonstrate the proposed 3-D solid projection self-
supporting scheme is the 3-D cantilever beam (Fig. 2). The mesh is composed of 
4-node brick elements that are 1:1:1 in aspect ratio. The angular self-support 
condition is 45° from horizontal. The solution (Fig. 3) shows that the imposed 
angular restriction of 45° has not been exceeded. This fundamentally demonstrates 
that the optimization process can build structures from the bottom up without 
violating the imposed constraint on the feature angle. The cliff that exist at the right-
most edge is needed to support the external load. The removed sections of the beam 
beneath the cliff and in the interiors result from the optimization process working 
to satisfy the volume fraction constraint of 50% and minimize compliance. 
Constraining the volume of the final solution is effectively how the optimization 
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process lightweights the structure. The obtained solution is a local minimum in a 
nonconvex design space.  

 

Fig. 2 3-D cantilever beam 

 

 

Fig. 3 TO solution for 3-D cantilever beam 

The second example is a 3-D tall rectangular box that sits on a base (Fig. 4). The 
base represents the base plate in an AM machine—such as a Stratasys FDM printer. 
The printing direction is in the vertical direction from the base plate. This example 
is intended to show that the algorithm actively works to ensure that the structure is 
self-supporting by building the structure from the baseplate. It can be seen (Fig. 5) 
that no part of the structure has angular features less than 45°. The solution is 
multicolored, which means it is not physically realizable. A physically realizable 
solution would be an all-solid color (e.g., all red). Thus, interpretive work must be 
done by the designer to realize the solution (through thresholding out low-density 
elements, thus defining the solid structure by those finite elements above the 
threshold).  
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Fig. 4 3-D Column with AM base plate 

  

Fig. 5 Solution of 3-D column with AM base plate 

4.2 Void Projection 

The void projection scheme is demonstrated using 2-D (Figs. 6 and 7) and 3-D 
beam (Fig. 8) problems. In 2-D, the elements are 4-node quadrilaterals that have an 
aspect ratio of 1:1. The rim in the 2-D void projection example is 2 times the 
element length. The beam in Fig. 6 represents half of a Messerschmidt-Bolkow-
Blohm (MBB) beam. Since the load, geometry, and boundary conditions (3-point 
bending) are symmetric about the center of the beam, only half of the beam needs 
to be topologically optimized. The half solution can then be mirrored about the 
vertical line of symmetry of the beam. The half beam is used in solving the problem. 



 

Approved for public release; distribution is unlimited. 
 8 

The solution in Fig. 9 shows a full beam with a cutout section. Blue represents void 
(no material). Red represents solid (material). The cutout section defined by the 
optimization process is beneath the solid section because the void projection 
scheme will always opt to remove material from the bottom up unless doing so will 
violate the design constraints or equilibrium. The resulting physical topology is one 
that does not trap material. This is also seen in the topologically optimized solutions 
in Figs. 10–12.  

 

Fig. 6 2-D simply supported beam definition 

 

 

Fig. 7 2-D short beam definition 

 

 

Fig. 8 3-D cantilever beam definition 
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Fig. 9 Solution for simply supported beam in Fig. 6 

 

 

Fig. 10 Solution to short beam in Fig. 7 

 

 

Fig. 11 Solution to cantilever beam in Fig. 8 
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Fig. 12 Reorientation of solution in Fig. 11 

The short beam problem (Fig. 7) has a slanted load and is intended to demonstrate 
how the optimization process adjusts for load orientation. The solution in Fig. 10 is 
particularly interesting because a feature is extruded from the bulk solid section to 
support a slanted load (see Fig. 7 for the initial geometry and problem setup). The 
optimization process is formulated to remove at least 50% of the material from the 
bottom up and does so as seen in the large blue region. The remaining solid section 
is used for directing the load to the boundaries.  

In 3-D (Fig. 11), the same phenomenon is seen: the optimization process removes 
material from the bottom up to satisfy the volume constraint. The prescribed 
volume constraint is 50%. Solid material is removed from sections that have less 
impact on the load path from the load to the cantilever boundary conditions.  
Figure 11 shows a hole in the beam near the boundary. Figure 12 shows that the 
hole extends through to beam’s cross section. This hole is a discontinuity in the 
beam and therefore causes stress concentrations. This denotes the need to introduce 
stress constraints within the optimization process. Overall, the 2-D and 3-D 
examples show that the proposed void projection scheme produces solutions that 
are not likely to trap material. 

5. Clustered Fatigue Stress Measure and Stress Life Calculation 
(TO for Fatigue) 

Fatigue life can be enhanced or maintained while lightweighting by accounting for 
stress. That is, there is a direct correlation between stress reduction and prolonged 
fatigue life. As a result, the handling of stress is of primary importance. Within a 
finite-based TO realm, stress can be handled locally, globally, or in clusters. The 
approach of interest in this work is the clustered approach proposed by Holmberg 
et al.17 Clusters are groupings of stress from elements in the FE domain. The 
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number of groups can vary from 1 (i.e., globally: all elemental stresses are grouped 
into 1 set) to the maximum number of stresses calculated from the finite element 
system (i.e., locally: there is 1 cluster per integration point). The clustered stress 
definition is as follows: 

 𝜎𝜎𝑖𝑖𝑃𝑃𝑃𝑃 = � 1
𝑃𝑃𝑖𝑖
∑ �𝜎𝜎𝑎𝑎𝑣𝑣𝑣𝑣(𝒙𝒙)�𝑝𝑝𝑎𝑎∈𝜔𝜔𝑖𝑖 �

1
𝑝𝑝 . (6) 

The von Mises stress measure, 𝜎𝜎𝑎𝑎𝑣𝑣𝑣𝑣, is calculated at an integrate point within a finite 
element. The Ni is the number of stress points considered in a cluster. It acts as a 
built-in scaling of 𝜎𝜎𝑖𝑖𝑃𝑃𝑃𝑃, which is beneficial for convergence in optimization 
problems. The p is called the p-Norm exponent and is set equal to 8.17 Von Mises 
is a function of 𝜎𝜎𝑎𝑎 given in Eq. 7. The 𝜎𝜎𝑎𝑎 is a function of penalization factor 𝛿𝛿𝑠𝑠, 
which is used to increase the stress values of element with intermediate density, 
thereby making them inefficient and candidates for elimination from the final 
design domain. The optimal final density distribution within the design domain is 
0–1. Intermediate densities require further analysis and interpretation by the 
designer.  

 𝜎𝜎𝑎𝑎(𝒙𝒙) = 𝛿𝛿𝑠𝑠(𝜌𝜌𝑒𝑒(𝒙𝒙))𝜎𝜎�𝑎𝑎(𝒙𝒙) (7) 

6. Problem Formulation (TO for Fatigue) 

The optimization problem formulation used to demonstrate fatigue life 
enhancement and preservation is handled using stress constraints. The formulation 
is as follows: 

 �

𝑚𝑚𝑚𝑚𝑚𝑚
𝑥𝑥

∑𝑚𝑚𝑒𝑒𝜌𝜌𝑒𝑒 (𝒙𝒙)

𝑠𝑠. 𝑡𝑡.  �
𝜎𝜎𝑖𝑖𝑃𝑃𝑃𝑃(𝒙𝒙) ≤ 𝜎𝜎�, 𝑚𝑚 = 1, … ,𝑚𝑚𝑐𝑐
𝑥𝑥𝑒𝑒 ≤ 𝑥𝑥𝑒𝑒 ≤ 𝑥𝑥𝑒𝑒���, 𝑒𝑒 = 1, … ,𝑚𝑚𝑒𝑒  

 , (8) 

where ne is the number of design variables and me is the solid element mass related 
to design variable e. The e:th variable8 is denoted ρe (x) and xe is the e:th design 
variable, limited by the box constraint limits xe = 1 and xe = e, where e is a small 
positive number used to avoid the stiffness matrix becoming singular. The stress 
measure is the modified P-norm based on von Mises stresses, which for cluster 
number i is denoted σi

PN(x). The number of clusters, or equally, the number of stress 
constraints, is denoted nc and 𝜎𝜎 �  is the stress limit. In the previous formulation, the 
equilibrium equation is not used as a constraint. Instead, the displacement vector 
results from the calculation of u=K-1(x) F within the algorithm (i.e., nested 
formulation). The stiffness penalization is SIMP as described previously in  
Section 4. 
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7. Examples (TO for Fatigue) 

The examples used to demonstrate Holmberg’s stress constraint formulation are the 
cantilever with shear load and the MMB beam. The elements used in the finite 
element domain are 2-D plane elements. The element type is 4-node quadrilaterals. 
The number of elements in the initial design domain is 300 (10 × 30). The solutions 
were run to 500 iterations. The topologically optimized solutions in Figs. 14 and 17 
show the density distributions. 

7.1 Cantilever in Shear 

The design domain for the problem is given in Fig. 13. The density and stress 
distributions are given in Figs. 14 and 15. The external load is distributed over 
several nodes to relieve stress concentrations that result from applying point loads. 
The initial distribution of ϕ is uniform at 2%. The optimization algorithm used to 
solve this problem is Matlab’s18 “fmincon”. The derivatives were provided to 
fmincon following the formulation in Holmberg.17 The Heaviside projection12 
method was used to calculate density. 

 

 

Fig. 13 Initial geometry for shear problem 

 

 

Fig. 14 Density distribution for geometry given in Fig. 13 



 

Approved for public release; distribution is unlimited. 
 13 

 

Fig. 15 Stress distribution for geometry given in Fig. 14 

The density distribution (Fig. 14) varies from 0 (void) to 1 (solid). The results show 
a solid-like structure with angled features that meet and connect with a rectangular 
base region. The base is needed to support the external shear load. The inner regions 
of the features are light red and surrounded by dark white-colored elements. This is 
a product of the optimization formulation to satisfy the given objectives and 
constraints. Since the objective of the problem is to minimize weight, the 
optimization process is formulated to satisfy this objective by inserting intermediate 
density elements that weigh less than full-density solid elements. As seen in Eq. 7, 
intermediate elements also carry less stress than full-density elements, which helps 
in satisfying the stress constraint. The intermediate solids can be pushed toward  
0–1 by increasing β in the Heaviside projection method or by artificially 
prescribing all elements with a density between 0 and 0.5 to 0, and prescribing all 
elements with a density between 0.1 and 1 to 1 during postprocessing. Figure 15 
shows the stress distribution. The von Mises stress in every element is less than the 
prescribed stress constraint.  

Table 1 shows what happens to cycles-to-failure19 as weight is reduced. Cycles-to-
failure reduces by almost 100% as weight is drastically reduced. This highlights the 
need to constrain cycles-to-failure as weight is reduced. The cycles-to-failure 
calculation is a rough estimate because the density distribution is composed of 
intermediate elements. Making the solution fully solid would result in a better 
estimate of cycles-to-failure. 

Table 1 Weight vs. cycles-to-failure comparison for cantilever in shear 

 Initial Final Reduction (%) 
Weight 300 86 71 
Cycles-

to-failure 8 × 1014 3 × 1012 99.6 
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7.2 MMB 

A second example that further demonstrates lightweighting and fatigue life is the 
2-D MMB beam. The initial distribution of ϕ is uniform at 99%. The gradient-based 
optimization process used to solve these problems is “fmincon”. The derivatives 
were provided to fmincon following the formulation in Holmberg et al.17 Instead of 
distributing the load across several nodes, the method of element exclusion 
suggested by Holmberg17 for reducing stress near the point of application was 
implemented. The density and stress distribution plots are given in Figs. 17 and 18, 
respectively. The density plot shows regions of full, intermediate, and void 
elements. The stress distribution plot shows that the maximum von Mises stress is 
near the application of the point load. However, the von Mises stress has not been 
exceeded. As in Table 1, Table 2 also shows the penalty on cycles-to-failure as 
weight is reduced.  

 

Table 2 Weight vs. cycles-to-failure comparison for MMB 

 Initial Final Reduction (%) 
Weight 300 134 55 

Cycles-to-
failure 4 × 104 1 × 104 75 

 
 
 

 
Fig. 16 Initial MMB, half-symmetry 
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Fig. 17 Density distribution for half-symmetry MMB 

 

 

Fig. 18 Stress distribution for half-symmetry MMB 

 

8. Summary 

This report documents current progress made toward developing a methodology for 
AM structures that are TO when considering fatigue. To address this topic, the 
research has been split into 2 separate efforts: TO for AM and TO for fatigue. The 
TO for AM efforts are focused on accounting for AM constraints within design: 1) 
removal of support material and 2) the elimination of enclosed pores. To date, the 
3-D projection method produces topologies with features that do not violate the 
overhang constraint and are therefore self-supporting. Also, the void projection 
scheme produces topologies with outlets for trapped material. The TO for fatigue 
effort is focused on using a published methodology to design structures considering 
fatigue. The selected methodology is Holmberg’s clustered approach.17 The 
methodology was successful in producing topologies that do not violate imposed 
stress constraints. However, it was also shown that reducing weight penalizes 
fatigue life. 
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9. Conclusions 

The methodology for developing self-supporting AM structures is currently 
programmed to design structures with various angles, but this report showed 
examples of the typical design situation of 45°. Any subsequent shape or size 
optimizations should account for the angular overhang constraint if the structure is 
to remain self-supporting. The void projection method produces orifices to release 
trapped material. It is currently programmed to develop orifices from the bottom 
up. Therefore, the structures that will likely be produced are those that will allow 
material to escape from the bottom. It may be useful to implement an aesthetic 
constraint that minimizes the size of gaping orifices that are currently being 
produced while maintaining structural properties such as stiffness, buckling, and 
eigen frequency. 

In considering TO for fatigue, the current solutions were developed with no 
attention given to the structure’s fatigue life before optimization. The result was a 
worsening of fatigue properties. This effect can be mitigated by first assessing the 
fatigue life of the initial structure, then setting the fatigue constraint to this value 
while reducing mass. This would ensure that mass is decreased while maintaining 
fatigue life. In addition to maintaining fatigue life, it is proposed that TO can also 
be used to improve fatigue life. This can be done be allowing mass redistribution 
instead of mass removal. Thus, the TO for fatigue problems can be described as 
follows: 1) keep mass constant and change fatigue properties or 2) keep fatigue 
properties constant and change mass. Addressing these problems will be the focus 
of future work. 
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