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ABSTRACT

Visually-distorted images can contain valuable information.

Indeed, in tactical MANET networks where throughput is ex-

tremely valuable and difficult to come by, guaranteeing the

delivery of every packet of an encoded image is impracti-

cal. However, designing a watermark that is resilient to the

types of visual distortion imparted on an image or video due

to channel losses is a difficult task. In this work, we intro-

duce a new watermarking scheme for JPEG-compressed im-

ages that incorporates ideas from compressed sensing (CS) to

achieve robustness against certain types of errors induced by

noisy communication channels.

This work uses CS techniques to embed a sparse water-

mark into L randomly selected quantized JPEG image co-

efficients. Sparse reconstruction techniques are then used to

reconstruct the watermark from the coefficients that were

received, including those that were incorrectly decoded.

Through the development of this watermarking scheme, we

would like to demonstrate and explore the effect of the error

resilience properties of CS encoded signals on the image wa-

termarking problem.We show through simulation that even

with significant visual distortion in the received image, the

CS encoded watermark can be detected with very high prob-

ability.

Index Terms— Watermarking, Error Coding, Com-

pressed Sensing, JPEG Compression, Erasure Channel

1. INTRODUCTION

Robust digital image watermarking [1], or the act of hiding

a hidden signal within an encoded image that is resilient to

both noise and tampering, has applications in both commer-

cial and military systems. In this work, we will focus on mili-

tary applications where an image is generated at some remote
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imaging sensor (i.e., a persistent surveillance system or an

unmanned aerial vehicle (UAV)) and transmitted in part over

very lossy tactical MANET links. While traditional digital

signatures can be used to verify that an image was received

from the stated sender, this may not go far enough to ensure

that the image was created by the sender. In addition, it may

be useful to be able to verify the source of an image long after

that images was transmitted, for instance in legal proceedings

or to determine the source of an information leak. Based on

these observations, the watermark should be embedded within

the image data so that after any transformation or distortion

that produces a useful image, the watermark is preserved.

In this work, we explore the use of compressed sensing

(CS) [2, 3, 4] in robust watermarking of JPEG encoded im-

ages [5]. While there are a number of alternatives that have

shown promise in these scenarios (specifically spread spec-

trum techniques [6, 7]), we believe that the combination of the

error resiliency of CS encoded signals along with the minimal

complexity required for CS encoding [8] justify its consider-

ation as a watermarking technology.

Compressed sensing is a compression scheme in which

sparse signal reconstruction techniques are used to recon-

struct a sparse message signal x from a small number of

noise-like random linear combinations y = Φx, where

Φ ∈ R
M×N , M < N is a noise-like sampling matrix.

While CS as a compression technique has a number of ob-

vious applications in multimedia signal compression [9], in

this work we are going to explore the impact of two other

properties of CS encoded signals. Specifically, we will look

at the error resilience of CS encoded signals, along with the

ability to interchange received CS samples, which removes

the dependence on any one specific sample. In this work, we

will show that these two properties can be used to design a

watermarking system that is surprisingly resilient to packet

erasures. The goal of this work is to determine whether the

error resilience properties of a CS encoded watermark justify

the design of yet another data hiding scheme. We believe that,

based on the resilience to extremely high error rates within

the JEPG encoded image, future work is indeed justified.



The remainder of this paper is organized as follows. In

Section 2, we explain the structure of the watermark and the

design of watermarking parameters, while Section 3 explains

the detection scheme. Section 4 describes the experimental

setup and discuss the simulation results. Finally, we discuss

future work and draw the main conclusions in Section 5.

2. WATERMARK DESIGN

2.1. Encoding the Watermark

To create the watermark, we generate a message vector x ∈
{−1, 0, 1}N such that ‖x‖0 = K , N ≫ K . Let A ∈ R

L×N

be a full rank matrix with L > N . Such a matrix can be

created with full rank with high probability [3] using a seeded

RNG to generate each entry. The watermark vector y is then

generated as y = Ax.

By design of the A matrix, y is a real-valued vector, while

the image coefficients z are quantized and coded digitally.

Thus, in order to practically implement the watermarking

scheme, we need to quantize y. Using a pre-computed code-

book with Qn quantization steps, we can find the quantized

watermark vector y(q) = y+ η, such that 0 ≤ Q(y
(q)
i ) < Qn

for i ∈ {0, 1, . . . , L− 1}, where Q(·) is the quantization

function and η represents the noise introduced by the quanti-

zation step.

There are various options to create the watermarked coef-

ficients w(·). Our implementation uses integer modulo mask-

ing:

wi(z) =
⌊ z

Qn

⌋

+Q(y
(q)
i ) (1)

for i ∈ {0, 1, . . . , L− 1}. This is analogous to k least signif-

icant bit masking when Qn = 2k for integer k.

2.2. Embedding the Watermark

In this work we embed the watermark vector into a JPEG en-

coded image. However, the basic watermarking framework is

not specific to the compression technique. The watermark can

be embedded into any set of image transform coefficients (or

even the original image). We chose to use the JPEG standard

primarily for its popularity.

In JPEG encoding, the DCT coefficients within each of

the J macroblocks are scaled through element-wise integer

division with quality matrix B(q), where 0 < q ≤ 100 is

the quality level of the image. To embed the watermark, we

modify these scaled block-DCT coefficients of macroblock

intensities. In particular, we modify the subset S of the J
scaled DC coefficients z of this block-DCT (the DC coeffi-

cient of each macroblock is the lowest frequency component

of the DCT of that macroblock).

Let S ⊂ {0, 1, . . . , J − 1} such that |S| = L, and S(i)
denotes the ith element of S. Set S of L image coefficient

indices can be randomly selected using the seeded RNG. The

vector z̃ represents the quantized DC coefficients with the wa-

termark will be embedded. The coefficients z̃S(i) = wi(zS(i))
for i ∈ {0, 1, . . . , L− 1} are watermarked, while the coeffi-

cients z̃j = zj for j /∈ S remain unmodified. By watermark-

ing a subset of all coefficients, our scheme allows for some

additional security against falsifying. However, note that if

L = J , then this is equivalent to modifying all coefficients.

Once the watermarked quantized coefficients z̃ have been

computed, they are compressed using variable-length Huff-

man encoding and periodically marked with reset markers

(RST) (to mark the points at which the Huffman decoding

process can realign in the case of corrupted or missing bits).

3. WATERMARK DETECTION

In this work we assume the worst-case scenario in that our wa-

termark decoder has no cross-layer information to determine

which packets were discarded at the lower layers. While some

of the corrupted macroblocks will have a zero amplitude and

can therefore easily be removed, we can clearly see in Fig. 1

that many packet losses will result in a “valid” but incorrect

decoded macroblock. While it would be feasible to design a

parity based detection scheme to find the errors in CS encoded

signal (as in [10]), we show that even in this worst-case sce-

nario our scheme is able to maintain high detection rates at

high packet error rates with moderate sparsity and expansion

levels.

After having removed the detected corrupt macroblocks,

we have M watermarked macroblocks remaining. Due to the

use of RST, the decoder can determine which M of the re-

maining blocks originally contained the embedded watermark

coefficients. As long as enough blocks are received such that

M & K log(N), the receiver can correctly reconstruct the

watermark.

3.1. Decoding the Watermark

Let U be the set of indices of the M watermarked block-

DCT coefficients not classified as corrupted after detection,

and U(i) be the ith element of U . The received signal ŷ is

then defined element-wise as

ŷi = Q−1

(

ẑU(i) −

⌊

ẑU(i)

Qn

⌋)

. (2)

Then let Â = A(U , :) be the corresponding matrix with row

indices U from A. In other words, the missing samples (those

that were detected as incorrect) are removed from the set of

received samples along with the corresponding rows in the

sampling matrix. Since CS only requires that enough sam-

ples are received for decoding (i.e., the samples are inter-

changable), the watermark will be able to be detected as long

as enough correct samples are received and the magnitude of

the errors is bounded and small [3].



We then find x̂ by solving the optimization problem

minimize
x

||x||1

subject to: ||y −Ax||22 < ǫ,
(3)

which can be shown to be equivalent to finding the “spars-

est” vector x that matches the received signal vector ŷ within

some error tolerance ǫ.

Finally, since the recovered x̂ ∈ R will be continuous-

valued while the original message only takes values xi ∈
{−1, 0, 1}, we will need to quantize x̂. Letting max(x,K)
be the set of xi with the largest K absolute values, we set
ˆ

x
(q)
i = sgn(xi) for xi ∈ max(x,K) and x̂

(q)
i = 0 otherwise.

We measure the MSE between the quantized recovered

message and original message

MSE =
‖x− x(q)‖22

K
. (4)

From this definition, it is clear that 0 ≤ MSE ≤ 4. We

note that typical values range from 0 ≤ MSE ≤ 2 since

MSE = 4 ⇒ x(q) = −x, while MSE = 2 likely implies

that the recovery chose all incorrect indices as support for our

estimated message. Thus we claim to detect the original mes-

sage x when MSE < 1.

3.2. Selecting Watermark Parameters

Since this scheme requires the watermark to be restricted to be

a K-sparse signal, we need to verify that that restriction does

not make the resulting watermark too “easy” for an adversary

to guess using brute-force. We wish to design our watermark

such that a third party who knows the watermarking scheme

but does not have full information about the shared secrets (A

or x) will not be able to generate a “correct” but unauthorized

watermark. In the case where the third party only has knowl-

edge of the message, then the matrix A must be guessed.

However, since guessing each element of the sampling ma-

trix A in infeasible1, we only consider the more tractable case

in which the third party has knowledge of the matrix A but

not of the message x.

The total number of messages of length N and sparsity K

is T = 2K
(

N
K

)

. Assuming that every message has an equal

chance of being generated by the third party, the probability of

guessing the exact message is the reciprocal of this quantity.

However, since we do not require perfect recovery for detec-

tion of the message, we examine the probability of guessing

a detectable message. The number of detectable messages is

1While our preliminary studies have shown that some information can be

gained if an attacker can correctly guess 80% of the sampling matrix elements

within ǫ, for even our smallest case, the sampling matrix A is a real valued

64 × 256 matrix. This would require an attacker to correctly guess at least

13,108 real valued elements, which is clearly not practical.

N K p

64 4 4.22× 10−3

64 16 4.45× 10−5

128 4 1.08× 10−3

128 16 2.67× 10−7

256 4 2.72× 10−4

256 16 1.23× 10−9

Table 1. Probabilities of randomly generating detectable

message by guessing for different values of K and N

given by

R =

K
∑

i=⌈K/2⌉

i−⌈K/2⌉
∑

j=0

2K−i−j

(

K
i

)(

K − i
j

)(

N −K
K − i − j

)

(5)

where by convention

(

n
r

)

= 0 if r > n. Then the probabil-

ity of generating a detectable message to spoof an unauthen-

ticated watermark is R/T . Probabilities for randomly gener-

ating a detectable message is shown in Table 1.

This also shows that a number of distinct messages

{x0,x1, . . . ,xP } can be designed for a single matrix A

to generate watermarks for P different authentic sources

without being detected as a different authentic message.

4. SIMULATIONS AND RESULTS

4.1. Experiments

We use the classic 512× 512 grayscale Lenna test image [11]

for our simulations, and gradient projection for sparse recon-

struction (GPSR) [12] to solve the convex optimization prob-

lem. We chose a packet size of 128 bytes and inserted a RST

marker every 64 macroblocks which corresponds to one at

the end of each horizontal row. We assume the JPEG header

is transmitted intact.

Figure 1 shows a typical watermarked image and a re-

ceived image at PER = 0.18. For this work, we assume a

Gaussian packet erasure channel. We see the structure of the

errors from the lost packets in 1(b). Note that even in the

presence of relatively high PER, there is some visually signif-

icant information present in the transmitted image that may

be worth verifying.

Figure 2 shows the watermark recovery step performed

on a typical instance of a received image. The recovered x is

continuous-valued but sparse with the correct support, so the

quantization to xq still matches the original message exactly

and is detectable.

In our simulations, we examined the effects of several pa-

rameters of the detection rate of the watermark across varying

PER. These parameters included sparsity level N/K , expan-

sion level L/N , and number of quantization steps Qn. The



(a) (b)

Fig. 1. (a) shows the watermarked image with no transmission

errors; (b) shows the received image at PER = 0.18.
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Fig. 2. Recovery step

detection rate for each set of parameters was calculated as the

ratio between the number of times the true watermark was

detected and the total number of trials. Each setting was run

with 100 Monte Carlo trials.

Figure 4 shows that the detection rates across all packet

error rates can be increased by increasing the expansion level

L/N . Figure 3 similarly shows that detection rates across

packet error rates can be increased by increasing the sparsity

N/K of the message x. Comparing this result to the analysis

from Table 1, we see that there is a tradeoff between security

and error protecting performance in designing the sparsity of

the message.
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Fig. 3. Detection rate across packet error rates at varying spar-

sity levels N/K
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Fig. 4. Detection rate across packet error rates at varying ex-

pansion levels L/N
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Fig. 5. Detection rate across packet error rates at varying

quantization levels Qn

Figure 5 demonstrates increasing the quantization levels

used to embed the watermark can also increase performance.

However, there seems to be a point at which this increase no

longer results in significant increase in detection rate. This

could be due to the fact that increasing the quantization levels

increases the magnitude of the gross errors.

5. CONCLUSION

In this work we introduced the application of CS to robust

image watermarking. This was done by introducing a wa-

termarking scheme for JPEG encoded images and showing

that it was effective in noisy communication channels. Our

scheme takes advantage of sparse recovery ideas borrowed

from compressed sensing to achieve performance in very

noisy conditions. We demonstrated this performance under

certain parameters and analyzed the security of the authen-

tication provided by the scheme. Future work includes ex-

tending our scheme to video watermarking. We believe our

scheme is particularly well-suited for streaming video, since

our protocol can handle discarded packets and does not rely

on knowledge of the original image. In addition, alternate

embedding techniques and types of attacks could be studied.
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