

NAVAL MEDICAL RESEARCH UNIT DAYTON

Availability of acute and/or subacute toxicokinetic data for select compounds for the rat and physiologically based pharmacokinetic (PBPK) models for rats and humans for those compounds

LISA M. SWEENEY AND MICHELLE R. GOODWIN

NAMRU-D REPORT NUMBER 17-94

Enclosure (2)

Reviewed and Approved 08 JUNE 2017

Rees hhere

Rees L. Lee, CAPT, MC, USN Commanding Officer

The views expressed in this article are those of the authors and do not necessarily reflect the official policy or position of the Department of the Navy, Department of Defense, nor the U.S. Government.

This work was funded by work unit number H1608.

I am an employee of the U.S. Government. This work was prepared as part of my official duties. Title 17 U.S.C. §105 provides that 'Copyright protection under this title is not available for any work of the United States Government.' Title 17 U.S.C. §101 defines a U.S. Government work as a work prepared by a military service member or employee of the U.S. Government as part of that person's official duties.

Approved for public release; distribution is unlimited.

REPORT DOCUMENTATION PAGE

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB Control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS .		
1. REPORT DATE (DD MM YY)2. REPORT TYPE04-05-17Final	3. DATES COVERED (from - to) May 2016-May 2017	
 4. TITLE Availability of acute and/or subacute toxicokinetic data for select compound and physiologically based pharmacokinetic (PBPK) models for rats and hun those compounds 6. AUTHORS Sweeney, Lisa M. and Goodwin, Michelle R. 	5a. Contract Number:5b. Grant Number:5c. Program Element Number:5d. Project Number:5e. Task Number:5f. Work Unit Number: H1608	
 Naval Medical Research Unit Dayton 2624 Q Street, Bldg. 851, Area B Wright-Patterson AFB, OH 45433-7955 	8. PERFORMING ORGANIZATION REPORT	
8. SPONSORING/MONITORING AGENCY NAMES(S) AND ADDRESS(ES) United States Army Center for Environmental Health Research (USACEHR)	NUMBER Report No. NAMRU-D-17-94	
568 Doughten Dr. Fort Detrick MD 21702	10. SPONSOR/MONITOR'S ACRONYM(S) USACEHR	
	11. SPONSOR/MONITOR'S REPORT NUMBER(s)	
12. DISTRIBUTION/AVAILABILITY STATEMENT Distribution Statement A: Approved for public release; distribution	is unlimited	
13. SUPPLEMENTARY NOTES		
14. ABSTRACT US Army Center for Environmental Health Research (USACEHR) has expressed a need for support for the physiologically based pharmacokinetic (PBPK) modeling efforts. Specifically, information has been requested regarding the availability of acute and/or subacute toxicokinetic data and PBPK models for arsenic, cadmium, chromium, cobalt, lead, nickel, allyl alcohol, bromobenzene, and carbon tetrachloride, in the rat. As the interest in these models pertains to data development in the rat and extrapolation to humans, PBPK models for humans were also of interest. Short-term toxicokinetic data in the rat were identified for all compounds of interest. Toxicokinetic/biokinetic models for at least one species (rat or human) exist for all compounds of interest except nickel and bromobenzene.		
15. SUBJECT TERMS Toxicokinetics, physiologically based pharmacokinetic models, PE	3PK models, solvents, metals	
16. SECURITY CLASSIFICATION OF: 17. LIMITATION 18. NUMBER a. REPORT b. ABSTRACT c. THIS PAGE OF ABSTRACT OF PAGES UNCL UNCL UNCL 069	18a. NAME OF RESPONSIBLE PERSON CAPT Rees L. Lee, MC, USN Commanding Officer Naval Medical Research Unit Dayton	
	18b. TELEPHONE NUMBER (INCLUDING AREA CODE) COMM/DSN: 937-938-3872 (DSN: 798) Standard Form 208 (Poy: 9.09)	

Availability of acute and/or subacute toxicokinetic data for select compounds for the rat and physiologically based pharmacokinetic (PBPK) models for rats and humans for those compounds

Prepared for the US Army Center for Environmental Health Research (USACEHR), Fort Detrick, MD

Lisa M. Sweeney¹ and Michelle R. Goodwin^{1,2}

¹Naval Medical Research Unit Dayton (NAMRUD), Wright-Patterson Air Force Base, OH

²Henry M. Jackson Foundation for the Advancement of Military Medicine, Wright-Patterson Air Force Base, OH

May 4, 2017

EXECUTIVE SUMMARY

US Army Center for Environmental Health Research (USACEHR) has expressed a need for support for the physiologically based pharmacokinetic (PBPK) modeling efforts. Specifically, information has been requested regarding the availability of acute and/or subacute toxicokinetic data and PBPK models for arsenic, cadmium, chromium, cobalt, lead, nickel, allyl alcohol, bromobenzene, and carbon tetrachloride, in the rat. As the interest in these models pertains to data development in the rat and extrapolation to humans, PBPK models for humans were also of interest.

Arsenic: Available PBPK models primarily address long-term human exposure, but a model for rats has been developed. Toxicokinetic data not previously considered in rat PBPK model development are available for various forms of arsenic.

Cadmium: Human "biokinetic" models of cadmium exist, but are not generally amenable to interspecies extrapolation. Cadmium mass balance and tissue time course data are available for the rat.

Chromium: PBPK models for rats and humans exist, but primarily address long-term exposure. Most of the available rat toxicokinetic data have been used in model validation/calibration.

Cobalt: No PBPK models of cobalt disposition in the rat were identified in the literature. The existing cobalt models for humans are not generally amenable to interspecies extrapolation. Many mass balance and tissue time course data sets pertaining to cobalt are available for the rat.

Lead (Pb): PBPK models emphasizing long-term exposure have been developed for rats and humans have been developed. Limited evaluation suggests that they are also consistent with short-term exposure data.

Nickel: No PBPK model of nickel exist. Mass balance and tissue time course data were identified for rats.

Allyl alcohol: A single PBPK model was identified for rats, and none for humans, but the model was not validated and has deficiencies. Limited toxicokinetic data for rats were identified.

Bromobenzene: No PBPK models were identified for bromobenzene for any species. Mass balance and tissue time course were identified for rats.

Carbon tetrachloride: Validated/calibrated PBPK models were identified for rats and humans, primarily addressing the inhalation route. Additional rat toxicokinetic data addressing blood and tissue concentrations after oral and inhalation exposure were identified.

BACKGROUND

As delineated in Agreement NMR-9704/USAMRMC No. 11180578, US Army Center for Health Research (USACEHR) has expressed a need for support for the physiologically based pharmacokinetic (PBPK) modeling efforts. Specifically, information has been requested regarding the availability of acute and/or subacute toxicokinetic data and PBPK models for arsenic, cadmium, chromium, cobalt, lead, nickel, allyl alcohol, bromobenzene, and carbon tetrachloride, in the rat. As the interest in these models pertains to data development in the rat and extrapolation to humans, PBPK models for humans were also of interest.

METHODS

The primary literature searches were conducted using the PubMed database (http://www.ncbi.nlm.nih.gov/pubmed). In order to search broadly with in the available PBPK modeling literature, chemical names of interest were combined with the search "(((pbpk OR pbtk)) OR (((physiologic[Text Word] OR physiologically[Text Word] OR physiological[Text Word]) AND (pharmacokinetic[Text Word] OR pharmacokinetics[Text Word]) AND (model[Text Word] OR models[Text Word] OR modeling[Text Word]))) AND ((English[lang]))) OR (pbpk[All Fields] OR pbtk[All Fields] OR ((physiologic[Text Word] OR physiologically[Text Word] OR physiological[Text Word]) AND based[All Fields] AND (pharmacokinetic[Text Word] OR toxicokinetic[Text Word] OR pharmacokinetics[Text Word]) AND (model[Text Word] OR models[Text Word] OR modeling[Text Word])))". The lead author of this report (LMS) receives daily notifications of new database entries matching the above search strategy for PBPK models, so relevant new models will be identified. In addition, weekly notifications are received for search strategies of the chemical name in combination with "(pharmacokinetic* OR toxicokinetic*) AND rat" to identify new toxicokinetic data of potential interest (rat toxicokinetic data with single or short-term dosing). The lead author of the report reviewed abstracts and promising papers were retrieved and reviewed. Retrieved papers also had their references reviewed to identify relevant literature missed by the primary searches. Key papers were entered into Google Scholar (http://scholar.google.com/) to identify subsequent publications that cited these key papers. If appropriate, the citing papers were also retrieved as part of the literature review.

Key information from identified, relevant papers was extracted (test species, route of exposure, matrices in which test article was measured, model language), entered into tables, and provided below. For each chemical, findings pertaining to the available PBPK models were summarized.

RESULTS

Metals: Arsenic

Arsenic PBPK modeling

PBPK models of arsenic primarily address disposition of ingested inorganic arsenic in humans; one model has addressed the disposition of arsenic in rats. Most of the models derive from the work of Mann et al. (1996a), Yu (1993), or both.

Table A1. Diffusion-limited PBPK model of arsenic(V) (AsV), AsIII, methylarsonic acid (MMA), and dimethylarsinic acid (DMA) in hamsters, rabbits, humans, and mice (Mann et al., 1996a, b; Gentry et al., 2004)

Author(s)	Mann et al. (1996a, b); Gentry et al. (2004)
Species	Hamster and rabbit (Mann et al., 1996a), human (Mann et al., 1996b),
-	mouse (Gentry et al., 2004)
Species details	Not stated for hamster, rabbit or human; female B6C3F1 and
-	C57Bl/6N mice
Route(s)	Rabbit: intravenous (iv) injection; hamster: iv, intratracheal (it), by
	mouth (po); human: oral (single and repeated), inhalation (repeated);
	mouse: single oral (DMA), or drinking water (sodium arsenite)
Duration	Single bolus (iv, it); single or repeated bolus (po); 5 daily occupational
	inhalation exposures; 26 week drinking water (mouse)
Tissue dosimetry	Rabbit: amount of urinary AsV, AsIII, DMA, and total arsenic; plasma
	AsV, AsIII, and DMA amounts; liver, kidney, skin and other tissues
	total amounts of arsenic
	Hamster: amounts inorganic arsenic (1As), MMA, and DMA in urine,
	feces, liver, and kidney; total arsenic in urine, feces, and body; total
	arsenic and DMA amounts in skin and lung
	Human: amounts or amounts per g creatinine of iAs, MMA, DMA.
	and total As in urine
	Mouse: radioactivity in feces, liver, kidneys, lungs, and carcass
	(DMA), DMA in urine; after arsenate dose, radioactivity in urine,
	feces, liver, kidneys, lungs, skin, carcass and blood and AsV, AsIII,
	MMA and DMA excreted in urine; after arsenite dose, AsV, AsIII,
	MMA, and DMA in blood, liver, and urine
Model language	Simusolv 2.1
Code availability	Not provided; some equations provided
Comments/	In this model, AsV, AsIII, MMA, and DMA circulate and are described
Narrative	by linked multicompartmental PBPK models. Compartments in the
	model include the gastrointestinal (GI) tract lumen; plasma in
	equilibrium with red blood cells (RBC), liver, kidneys, lungs, skin, and
	other tissue; and hasopharyngeal, tracheobronchial, and pulmonary
	surfaces.
	In the model, arsenic deposited on airway surfaces is either absorbed
	into plasma, or cleared into the GI tract lumen. Arsenic absorbed from
	the GI tract lumen is transported to the liver, and unabsorbed GI tract
	arsenic is eliminated in feces; urinary elimination of arsenic is
	described as occurring from plasma. Arsenic in plasma may also be
	transported via plasma flow to tissues; tissue uptake of arsenic is
	assumed to be diffusion limited due to varying capillary properties
	(e.g., pore size, pore area, and capillary thickness). All arsenic species

are modeled as being subject to biliary clearance. AsIII loss from skin via desquamation was also modeled as irreversible binding to keratin. Physiological parameters were scaled allometrically as functions of body weight.

AsV reduction to AsIII and the reverse oxidation reaction were modeled as occurring in the plasma; AsV reduction, but not oxidation, was also assumed to occur in the kidney. Sequential methylation in the liver, governed by Michaelis-Menten kinetics, was assumed for metabolism of AsIII to MMA and MMA to DMA. Metabolic rate parameters and tissue affinity constants (partition coefficients) were determined by calibration to the available rat and hamster data. The last hamster parameters estimated were the absorption rates.

For the human model, optimized hamster/rabbit partition coefficients were used directly, whereas the absorption rates and metabolic parameters were fitted to the available human data. The authors suggest that the model is useful primarily for comparison of urinary excretion of arsenic metabolites after oral or inhalation exposure. Further, they caution that, "The constants estimated within the model should not be used separately, due to the large number of estimated parameters."

For the mouse model, the permeability coefficients were assumed to be the same as for the rabbit and hamster, but partition coefficients and metabolic parameters were estimated by fitting the model to the mousespecific data.

Preliminary results from the rabbit, hamster, and human models were also provided in Mann et al. (1994).

Author(s)	Berthet et al. (2010)
Species	Humans
Species details	Adult workers at rest or at an activity level of 50 W
Route(s)	Inhalation
Duration	300 work weeks; 1500 exposure days
Tissue dosimetry	No validation or calibration data were shown
Model language	Not stated
Code availability	Not provided. Mathematical equations were presented in a prior
	publication.
Comments /	The generic model structure (applied to 14 chemicals) consists of
Narrative	absorption into a central compartment, blood-flow mediated exchange
	of parent compound between the central compartment and a
	permeability-limited peripheral compartment, metabolism of the parent

Table A2. Berthet et al. (2010) human compartmental based toxicokinetic (CBTK) model for inorganic arsenic (iAs), MMA, and DMA

compound to up to 2 metabolites, excretion of parent compound from the central or peripheral compartments, and excretion of metabolites from the central compartment. For arsenic, the central compartment was equated to total body volume (TBV), with the peripheral compartment equated to liver. Sequential metabolism of iAs to MMA then DMA was assumed to proceed via Michaelis-Menten kinetics. Additional first order renal clearance was also assumed; it is not clear if renal clearance applied to all forms of arsenic, or only inorganic arsenic in this model. The oxidation/reduction reactions for AsV and AsIII included in Mann et al. (1996b) were not represented in the Berthet et al. (2010) arsenic model.

Author(s)	Yu (1993, 1998)
Species	Rats, mice, human
Species details	16.3 kg human child
Route(s)	Oral
Duration	Single administration for rodent calibration data (measured at 24 or 48
	h)
Tissue dosimetry	iAs in urine and feces and MMA and DMA excreted for rodents. No
	calibration or validation.
Model language	Not stated.
Code availability	Not provided. Mass balance equations are provided. The 4 th order
	Runge-Kutta method was used to generate solutions to the coupled
	differential equations
Comments/	The sole circulating moiety in the model was iAs; the author
Narrative	acknowledged that this construct lumps AsIII and AsV, and neglects
	the circulation of the metabolites MMA and DMA. Compartments in
	the model include the stomach lumen, GI tract lumen, intestinal tissue,
	liver, kidney, lung, (other) vessel-rich tissue, fat (rat only), muscle, and
	skin. In the model, iAs is cleared from the kidney to urine (time-
	varying in rat), from the liver into feces via biliary excretion (time-
	varying in rat), and from the GI tract lumen into feces, and
	independently metabolized to MMA and DMA in the liver only (i.e.,
	the methylation reactions are depicted as parallel, not sequential), via
	Michaelis-Menten kinetics. Partition coefficients were based on a
	numan poisoning case for fodents and the numan child, but the values
	used for the child model are different from the rodent model. Parameter
	California Environmental Protection Agency. The human partition
	coefficients for the iAs DRDK model are the same as those for AsV and
	A sill in further variants of the model (see below. Table A4. Tables
	A6-8) The work was described in a 1003 doctoral dissertation and
	1008 publication

Table A3. PBPK model of iAs (Yu 1993, 1998)

Author(s)	Yu (1993, 1999a, b)
Species	Human
Species details	16.3 kg child (1993, 1999a), 70 kg adult (1993, 1999 a, b)
Route(s)	Oral (AsV)
Duration	Single or multiple oral
Tissue dosimetry	No dose metrics used for calibration or validation
Model language	Not stated
Code availability	Not provided. Mass balance equations are provided. The 4 th order
	Runge-Kutta method was used to generate solutions to the coupled
	differential equations.
Comments/	In this version of the human model, the parent compound (AsV) and 3
Narrative	metabolites circulate and are described by linked multicompartmental
	PBPK models. Compartments in the model include the stomach lumen
	(AsV only), GI tract lumen (AsV only), intestinal tissue, liver, kidney,
	lung, (other) vessel-rich tissue, fat (rat only), muscle, and skin. In the
	model, AsV is cleared from the liver via biliary excretion and from the
	GI tract lumen into feces. AsV was assumed to be reduced to AsIII in all
	tissues by nominally second order reaction of AsV with glutathione
	(GSH), but no depletion of GSH is considered, rendering the process
	effectively first order. All arsenic species are modeled as being cleared
	from the kidney to urine. AsIII was assumed to be metabolized via
	Michaelis-Menten kinetics directly to both MMA and DMA; MMA is
	further assumed to also be methylated to DMA. Methylation is assumed
	to take place in the liver and kidney. Vmax values for methylation were
	scaled allometrically with a body weight scaling factor of 0.7. Partition
	coefficients were based on a human poisoning case, but the iAs partition
	coefficients differ from the partition coefficients used by the author for a
	rodent model relying on the same partitioning data (see above, 1 able
	A3). No comparisons to calibration or validation data were shown,
	although some simulations were said to be "consistent" with some
	experimental observations, while underpredicting and overpredicting
	others. The work was described in a 1993 doctoral dissertation and in
	publications from 1999 (a and b).

Table A4. PBPK model of AsV, AsIII, MMA, and DMA in humans (Yu 1993, 1999a, b)

Table A5. Bayesian PBPK model of AsV, AsIII, MMA, and DMA in humans (Dong et al., 2016)

A4bar (a)	Dong at al. (2016), Drimonily based on Vy (1000a b)
Author(s)	Dong et al. (2010); Primarily based on Yu (1999a, b)
Species	Human
Species details	Age-dependent body weight to simulate birth through adulthood
Route(s)	Oral (AsV, AsIII, MMA, DMA)
Duration	At least 65 years (upper end of US National Health and Nutrition
	Examination Survey [NHANES] population not stated)
Tissue dosimetry	Urinary AsIII levels were used for optimization

Model language	MATLAB
Code availability	Provided as supplementary material
Comments/	The structure and many of the parameter values for this model were
Narrative	taken from Yu (1999a, b) (Table A4), though the partition coefficients
	differ from Yu (1999a, b). The following parameters were optimized
	(using a Bayesian approach) based on fit to urinary AsIII data in
	reported in NHANES (2011-12): liver/blood partition coefficient for As
	III, Vmax for conversion of AsIII to MMA, and the urinary elimination
	rate of AsIII. The model used a liver blood flow rate that is not
	physiologically realistic (too low, as the value used reflects only the
	hepatic arterial flow, and omits the portal flow from the GI tract, spleen,
	and pancreas).

Table A6 . PBPK-pharmacodyn	amic (PD) model of AsV in	n humans (Ling and Liao, 2007)
------------------------------------	---------------------------	--------------------------------

Ling and Liao (2007); partially based on Yu (1999a)	
Human	
Children, adolescents and adults	
Oral (AsV)	
Chronic	
No dose metrics used for calibration or validation	
Not stated	
Not provided	
In this modification of the Yu (1999a) model, only AsV is considered.	
The stomach and GI tract lumen are not explicitly modeled, replaced by	
an assumed absorption efficiency of 85 percent (based on human case	
studies) and blood dissolution fraction of 0.2 (based on a	
physiologically based biokinetic model of cesium). The AsV urinary	
elimination rate of Yu (1999a) is applied to a "bladder" compartment	
that receives almost 40% of the total blood perfusion (based on rates	
from Mann et al. 1996b—equivalent to the kidney blood flow). The	
fecal elimination rate (rather than the biliary elimination rate) of Yu	
(1999a) is applied to the gastrointestinal tissue concentration of arsenic	
(the liver appears to be lumped into the GI tract tissue compartment in	
this model) The other compartments in the model were the lung skin	
and blood Partition coefficients were taken from Yu (1999a) No	
reduction or methylation of arsenic was incorporated into this version of	
the model. While sweat elimination was noted on the flow diagram the	
rate was apparently set at zero. No calibration or validation of the model	
was noted	
was noted.	
For the risk characterization, ingestion rates of and arsenic	
concentrations in various farmed seafood and groundwater were varied.	
as were body weight, bladder weight, urine elimination rate, and fecal	
elimination rate. Dose-response relationships (pharmacodynamic [PD]	

modeling) were fit to 3-parameter Hill equations based on target organ concentrations of arsenic.

Further application of the PBPK model: Ling and Liao (2009) used a very similar PK model, though absorption efficiency was reduced from 85% (based on arsenic case studies, per Ling and Liao, 2007) to 35% based on studies of polychlorinated biphenyls in fish. (Exposure scenarios and some of the PD modeling parameters were quite different from Ling and Liao, 2007.)

Author(s)	Liao et al. (2008); partially based on Yu (1999b) and Mann et al.
	(1996b)
Species	Human
Species details	Children; follow on work addresses adults (see Narrative, below)
Route(s)	Oral (AsV, AsIII)
Duration	Chronic
Tissue dosimetry	No dose metrics used for calibration or validation of Liao et al. (2008)
	model; urinary DMA used to validate the Chen et al. (2010) variation of
	the model; urinary DMA and total arsenic were used to validate the
	Chou et al. (2016) variant of the model.
Model language	MATLAB (stated in some, but not all publications in this series)
Code availability	Not provided; equations provided as an appendix
Comments/	The model first presented in this paper (and subsequently
Narrative	reutilized/extended in Liao et al., 2009; Chou et al., 2009; Chen et al.,
	2010; Liao et al., 2010; Ling et al. 2014) is a departure from the model
	previously used by Liao and coworkers (Table A6).
	This model combines elements of both the Mann et al. (1996b) and Yu (1999b) human models. As in those models, two species of iAs (AsV and AsIII) and two methylated forms (MMA and DMA) were described using compartmental models. The descriptions of the model structure in the text, the depictions in the diagrams, and the equations in the appendix often show inconsistencies. Referencing that is clearly in error is apparent. Non-physiological elements of model structure are depicted in diagrams or represented in equations. Since model code was not supplied, it is unclear if the errors were primarily transmission errors (present in the paper only) or whether they reflect errors that were part of the model and thus affect the presented results.
	Given the large level of effort that it would take to document the inconsistencies, only a limited number of examples are given. In some cases, portal blood flow exiting the GI tissues is depicted as returning to a common blood pool, and in others, it flows to the liver. Equations describing this relationship were consistently inaccurate, with GI mass

Table A7. PBPK-PD models of AsV, AsIII, MMA and DMA in humans

balance terms having hepatic blood flow returning to the GI. Biliary excretion was generally shown as systemic elimination, rather than elimination into GI tract contents. Oxidation/reduction reactions (AsV \leftrightarrow AsIII) stated in the text as occurring in blood, liver, and kidney, were present in the equations for all tissues present in the model (lung, skin, fat, muscle, kidney, liver, and GI tract, in Liao et al., 2008).

These oxidation/reduction reactions were described as first order, at the rate determined by Mann et al. (1996b). The sequential methylation of AsIII to MMA then DMA and the direct demethylation of AsIII to DMA were described as conforming to Michaelis-Menten kinetics, at rates consistent with those in Yu (1999b), with the modification of the MMA to DMA reaction based on the observed age-related variation of urinary DMA/MMA ratios in children and adults. MMA methylation is described on the figure and in the equations as saturable, but only a single rate parameter is reported in the table of metabolic rate constants. Possibly the Michaelis constant (KM) was the same as the AsIII methylation and demethylation KM, and was omitted from the table. Partition coefficients were also taken from Yu (1999b).

In addition to elimination via metabolism, elimination of all forms of arsenic were also described as occurring via losses of body water that sum to the water loss needed to balance daily water intake. Water loss was apportioned among the kidneys, skin, lungs, and GI tract at 60, 20, 12, and 8 percent, respectively, and presumably represent urine, sweat, conditioned exhaled breath, and fecal water content, respectively. Lung water elimination was listed in a table of parameter values, but not depicted in the model diagram or incorporated into the model equations.

Variations/extensions:

Liao et al. (2009). The adult model appears to differ from Liao et al. (2008) only with respect to the MMA methylation rate.

Chou et al. (2009). This model for occupationally-exposed adults adds a human respiratory tract model to describe arsenic exposure via the inhalation route. As in Liao et al. (2008), the MMA methylation is described on the figure and in the equations as saturable, but only a single rate parameter is reported in the table of metabolic rate constants. In this case, the rate is reported as a range (with no explanation) and the MMA methylation rate in the kidney is reported as being more than 3-fold faster than the rate in the liver. A 10-fold reduction in the kidney Vmax in the table would be more consistent with ratios in Liao et al. (2008, 2009) and Chen et al. (2010).

Chen et al. (2010). In this model for children and adults, the age-specific DMA/MMA ratios are computed based on a different data set than that used by Liao et al. (2008). This paper presents limited validation of

urinary DMA estimates in 4 groups that ate arsenic-containing oysters, clams, seaweed, or shrimp. In the mass balance equation for AsIII in the liver, the term delivery of portal-derived arsenic in blood mistakenly includes the liver blood flow rate rather than the GI blood flow rate. The MMA methylation rate for adults was estimated by allometric scaling of the rate used by Yu (1999b). Units on the Michaelis constants are listed as μ mol/h; presumably μ mol/L were the intended units.

Ling et al. (2014). In this publication, the authors apparently revert to the Liao et al. (2009) metabolism scheme and parameter values, rather than the adult metabolism parameter values in Chou et al. (2009) or Chen et al. (2010), or the altered metabolism scheme and values used in Liao et al. (2010)—see below, **Table A8**). The documentation was poor/incomplete. The mass balance equations in the supplementary material were incomplete, as the GI equations were omitted. The equations also contain several apparent typographical errors (e.g., C_{kin} for C_{skin} twice, Wbilizry for Wbiliary, K₃ and K₄ in place of K₁ and K₂) and the values of the reduction and oxidation first order rate constants (K₁ and K₂) were not provided or referenced.

Chou et al. (2016). This most recent publication in the series retains the un-physiological description of blood flow to the GI in the equations, and has some of the same typographical errors seen in other versions (e.g., in the mass balance equation for AsIII in liver, the second instance of QL should be QGI). The model was said to be a modification of that in Chen et al. (2010), but modifications and reasons for making them were not explicitly delineated. Stated values of methylation and elimination parameters frequently differ from those in Chen et al. (2010). Some differences may reflect typographical errors (e.g., 100 μ mol/L vs. 0.1 μ mol/L), but others cannot be reconciled on the basis of misplaced decimal points or different units (e.g., Vmax values for all the methylation reactions and the urinary elimination constants for MMA and DMA). In this model, predictions of urinary DMA and total arsenic were validated against NHANES data.

Author(s)	Liao et al. (2010); partially based on Yu (1999b) and Mann et al.
	(1996b)
Species	Human
Species details	Children
Route(s)	Oral (AsV, AsIII)
Duration	Chronic
Tissue dosimetry	None
Model language	Not stated
Code availability	Not provided; equations provided as an appendix

Comments/	For this model, a derivative of the Liao et al. 2008 model described in
Narrative	Table A7, the metabolism scheme was altered to include
	oxidation/reduction reactions of MMA (MMAV vs. MMAIII) and DMA
	(DMAV vs. DMAIII).

 Table A9. PBPK model of AsV, AsIII, MMAV, MMAIII, DMAV and DMAIII in humans

Author(s)	El-Masri and Kenyon (2008)
Species	Human
Species details	Adults
Route(s)	Oral (AsV, AsIII)
Duration	Days or chronic
Tissue dosimetry	Urinary iAs, MMA, and DMA
Model language	MATLAB; recoded into Berkeley Madonna by Ruiz et al. (2010); an additional MATLAB implementation was mapped on to a Generalized Toxicokinetic Modeling System for Mixtures (GTMM) by Sasso et al. (2010).
Code availability	Equations provided as an appendix
Comments/	This model, which was developed prior to that of Liao et al. (2010)
Narrative	(Table A8), includes oxidation/reduction reactions of iAs (AsV, AsIII), MMA (MMAV, MMAIII), and DMA (DMAV, DMAIII). Metabolism of AsIII to DMA is modeled as occurring both directly from AsIII and sequentially from AsIII to MMA to DMA. MMA is modeled as noncompetitively inhibiting AsIII methylation and AsIII is modeled as noncompetitively inhibiting MMA methylation. In this model, the oxidation/reduction reactions of MMA and DMA occur in the "lung" (pooled blood), liver, and kidney, with excretion to urine, but MMAIII and DMAIII are not described as circulating via blood flow. Tissues are described as perfusion limited, rather than diffusion limited. Pharmacokinetic parameter values were taken from a variety of sources, including animal studies (e.g., oral absorption rate), in vitro kinetic studies, and calibration to a human study. The model was validated against additional human data.

Table A10.	PBPK	model	of	DMA	in	mice
------------	------	-------	----	-----	----	------

Author(s)	Garcia et al. (2015); based on Evans et al. (2008)
Species	Mice
Species details	None
Route(s)	Oral, iv
Duration	Not stated
Tissue dosimetry	Arsenic in urine, feces, blood, lung, liver, kidney, or bladder
Model language	Not stated
Code availability	Equations provided as an appendix

Comments/	This model uses Bayesian approaches to update parameter values and
Narrative	assess parameter identifiability for partition coefficients, absorption rate,
	biliary excretion, and renal excretion.

Studies of arsenic kinetics in rats

Table ATT . Also the kinetics in the presence and absolute of lead (1.0) after As V dosing

Author(s)	Diacomanolis et al. (2013)
Species details	Adult Sprague-Dawley rat
Test article	Sodium arsenate (AsV)
Route(s)	iv (arsenic only) or po in water (arsenic only or As + Pb)
Duration	240 h
Tissue dosimetry	Total arsenic in blood (iv: 0 [pre-dose], 15, 30, 60 minutes, 3, 6, 12, 24,
	48, 72, 96, 10, 144, 192, 216, and 24 h post dose; po: 6, 24, 48, 72, 96,
	120, 144, 192, 216, and 240 h post dose) shown in figures. Urinary As
	(As + Pb dosing: collected at 24, 48, 72, 96, 120, 144, 192, 216, and
	240 h post dosing, reported as ng As/24 h urine, mean \pm SD or SE).
	Liver, kidney, and spleen arsenic at 24 h post oral dosing (As alone, or
	As + Pb)
Comments/	Arsenic "did not decline considerably over the experimental time" after
Narrative	reaching a peak early in the study period (10-70 h after dosing). Co-
	administration of Pb resulted in decreased blood arsenic concentrations,
	lower arsenic bioavailability, faster absorption of arsenic, and faster
	elimination of arsenic.

Table A12. Biliary and urinary excretion and tissue distribution of iAs in rats after iAs injection

Author(s)	Gregus and Klaassen (1986)
Species details	Adult male Sprague-Dawley rat (200-300 g)
Test article	Arsenic (III) trichloride
Route(s)	iv, in water
Duration	2 h (biliary excretion and tissue and plasma concentrations); 4 days
	(fecal and urinary excretion)
Tissue dosimetry	Radiolabel in liver, kidneys, spleen, lung, testes, brain, blood, and
	plasma.; biliary, fecal, and urinary excretion of radiolabel
Comments/	The arsenic data were previously published; this publication represents a
Narrative	compilation of comparable data for 18 metals collected using a
	consistent protocol. The radiolabeled forms were arsenic trichloride,
	bismuth nitrate, cadmium chloride, cesium chloride, chromium chloride,
	cobaltous chloride, cupric nitrate, gold chloride, ferrous sulfate, lead
	nitrate, manganese chloride, methyl mercuric chloride, mercuric
	chloride, selenious acid, silver nitrate, thallium nitrate, stannous
	chloride, and zinc chloride. In urinary and fecal excretion studies,
	excreta were collected for 24-hr periods for 4 days. Biliary excretion in

bile-cannulated rats was determined at 2 h after administration; tissue distribution was determined in the same rats upon completion of the biliary excretion assessment.
 Compared to other metals, AsIII exhibited relatively low total (fecal and urinary) excretion over four days ($16.9 \pm 0.37\%$ mean \pm standard error (SE) of 4-6 rats). After the first day, urinary excretion of AsIII was fairly consistent. Biliary excretion of arsenic was relatively high, compared to other metals. Likewise, bile:plasma ratios for AsIII were relatively high. Most metals had their highest concentrations in the liver or kidney.

Table A13. Biliary and urinary excretion and tissue distribution of iAs and its methylated metabolites in rats after iAs injection

Author(s)	Gregus et al. (2000), Csanaky et al. (2003)
Species details	Adult male Wistar rat
Test article	Sodium arsenite (AsIII), disodium hydrogen arsenate (AsV)
Route(s)	iv
Duration	2 h (urine and bile collection); 10 min or 2 h (tissue distribution)
Tissue dosimetry	AsIII, AsV (only in Gregus et al., 2000), monomethylarsonous acid
	(MMAsIII) in bile and urine (20 minute intervals). AsIII, AsV,
	MMAsIII, MMAsV, and DMAsV in blood, heart, liver, and kidney
Comments/	AsIII, AsV, and MMAsIII were measured in the bile and urine of rats in
Narrative	which the urinary bladder had been exteriorized and the bile ducts had
	been cannulated. AsV (Gregus et al., 2000 only) or AsIII (one dose level
	in Gregus et al., 2000, 3 dose levels in Csanaky et al., 2003) was
	administered by iv injections, and urine flow was promoted by
	administration of mannitol in saline. Only AsIII and MMAsIII were
	detectable in bile, while AsV and AsIII were excreted in urine. Csanaky
	et al. (2003) observed that AsIII excretion increased "almost
	proportionately to dose", AsIII concentration increases in tissue were
	greater than proportionate to dose, and excretion and tissue concentration
	of methylated metabolites increased less than dose.

Table A14. Arsenic kinetics after a single oral dose of AsIII

Author(s)	Naranmandura et al. (2007)
Species details	Adult male Wistar rat
Test article	Sodium arsenite (AsIII)
Route(s)	Oral, in water
Duration	7 days
Tissue dosimetry	Total arsenic in plasma, RBC, liver, and kidney 1, 3, 5, and 7 days after
	administration. 24-hr urinary As for each of 7 days post-dosing.
	Qualitative speciation (DMAV, MMAV, iAsV, arsenobetaine [AsB],

	dimethylmonoarsonic acid [DMMTAV]) information in tissues and urine
	was presented.
Comments/	As was primarily distributed to RBC as DMAV in the rat.
Narrative	

Table A15. Methylated arsenic distribution, excretion, and chemical forms after a single iv dose

Author(s)	Suzuki et al. (2004)
Species details	Adult male Wistar rat
Test article	Dimethylarsinic acid (DMAV) or monomethylarsonic acid (MMAV)
Route(s)	iv, in saline
Duration	Bile collection up to 3 h, tissue distribution at 10 minutes and 12 h
Tissue dosimetry	Total arsenic in bile (30-minute collections) up to 3 h; urine arsenic at 12
	h; total arsenic in plasma, RBC, liver, kidneys, muscle, skin, and urine at
	10 min and 12 h after administration; 24-h urinary arsenic for each of 7
	days post-dosing; qualitative speciation (DMAV, MMAV, arsenobetaine
	[AsB]), information in plasma, RBC, liver, bile and urine was presented
Comments/	MMA and DMA were both mostly excreted into the urine in the form in
Narrative	which they were administered.

Table A16. Methylated arsenic distribution, excretion, and chemical forms after a single oral or ip dose

Author(s)	Yoshida et al. (1997)	
Species details	Adult male F344 rat	
Test article	Dimethylarsinic acid (DMAV)	
Route(s)	Oral or ip	
Duration	Urine collection at 0, 2, 4, 6, 10, 24, and 48 h after administration.	
Tissue dosimetry	Total As concentrations of DMA, MMA, AsIII, trimethylarsine oxide	
	(TMAO), AsB, and an unidentified peak in urine, collected by forced	
	urination	
Comments/	Initially, DMA was the predominant form of As excreted, but later,	
Narrative	proportions of TMAO, then arsenite in urine increased.	

Metals: Cadmium

Cadmium PBPK modeling

The available PBPK models for cadmium were all developed to describe disposition in humans. Most of these models are based on the Kjellström-Nordberg (KN) model (Kjellström and Nordberg, 1978; Nordberg and Kjellström, 1979), which is physiologically based in the sense that the intercompartmental transfers are based on physiological/biochemical processes, but these values are typically optimized, with little species-specific physiological or chemical-specific physicochemical information incorporated, making them less amenable to interspecies extrapolation.

Author(s)	Kjellström and Nordberg, 1978; Nordberg and Kjellström, 1979)
Species	Humans
Species details	Up to age 79. Conversions for tissue content (mg) to concentration
	(mg/g) provided for Swedes age 1-79; Japanese/Swedish body weight
	ratios provided at age 5, 15, 20-24, 30-39, 40-49, 50-59, 60-69, and 70-
	79 years of age.
Route(s)	Inhalation (including smoking) and ingestion
Duration	Up to 79 years.
Tissue dosimetry	Cd in kidney cortex, liver, blood, and urine
Model language	Basic
Code availability	Not provided with original publication. Mathematical difference
	used different software (see Comments below)
Commontal	Systemic untake from inhelation and ingestion was described. A fraction
Voluments/ Narrativa	of inhaled Cd is assumed to be available to lung tissue and another
1141141190	fraction of inhaled Cd is assumed to be available for GI untake due to
	mucocilliary deposition and transport with the remainder of the inhaled
	Cd exhaled. Of the Cd deposited in the lung clearance is by first order
	transfer to the GI tract or first order systemic uptake. In addition to
	inhalation-derived Cd cleared to the GI tract, ingested Cd is also
	considered in the model. A fraction of the Cd from the oral tract is taken
	up into the intestinal tissue, from which it contributes to the daily
	systemic uptake, while the remainder is excreted unabsorbed via the
	feces. The combined uptake is initially split between two of the three
	"blood" compartments, one with a capacity limited fraction representing
	plasma metallothionein (B3) and the rest of the daily intake is
	apportioned to other plasma (B1). Cd in B1 is apportioned to other
	tissues, fecal excretion, the liver, and red blood cells (B2). The
	following processes are all assumed to be first order. Cd in red blood
	cells (B2) may be transferred to metallothionein (B3). Cd associated
	with plasma metallothionein (B3) is cleared into urine or into the $(D1)$
	kidney. Cd cleared from the kidney goes to urine or plasma (B1); the
	urinary excretion rate from the kidney increases after age 30, and
	continues to increase with age. Cd cleared from the liver goes to feces, plasma matallathionain (\mathbf{R}^2) or other plasma (\mathbf{R}^1) . Cd in the other
	tissues may be closered to blood (P1). In all, the kinetics of Cd in
	humans are described by 21 transfer coefficients
	numans are described by 21 transfer coefficients.
	Simulations of the KN model using Berkeley Madonna software were
	conducted by Ju et al. (2012), with no further validation of the model.
	Sasso et al. (2010) mapped a MATLAB version of the KN model on to
	their Generalized Toxicokinetic Modeling System for Mixtures
	(GTMM), with no parameter changes and validated the model against

Table B1. KN model for cadmium kinetics in humans (Kjellström and Nordberg, 1978; Nordberg and Kjellström, 1979)

the same kidney data as Diamond et al. (2001) (**Table B2**) and same NHANES 2003-2004 urinary data as Ruiz et al. (2010).

Béchaux et al. (2014) developed triangular distributions for the parameters of the KN model and used Bayesian approaches to infer time dependent dietary exposure to Cd, as a means to explain observed trends in urinary Cd for 1900 individuals (ages 18-75) in the 2006-2007 French Nutrition and Health Survey.

Author(s)	Choudhury et al. (2001), Diamond et al. (2001)
Species	Humans
Species details	Up to age 70
Route(s)	Oral (dietary ingestion)
Duration	Up to 70 years
Tissue dosimetry	Urinary and kidney Cd
Model language	ACSL 11
Code availability	Not provided; Berkeley Madonna code purported to be based on
	Diamond/Choudhury code provided by Amzal et al. (2009)
Comments/	The authors report that their model is a modification of the KN model
Narrative	(Table B2) with difference equations for intercompartmental transfer
	changed to differential equations and growth algorithms (body weight
	and organ weight) added to the model. The model was validated against
	NHANES III (1988-1994) urinary Cd data and kidney data (mostly
	postmortem) from Canada, the United Kingdom, and Sweden.
	No equations or personator values were provided for this model. Puiz at
	al (2010) report that they recoded the Diamond Choudbury model for
	use with Berkeley Madonna software. They report that their model
	reproduced the simulations from Choudhury et al. (2001) and they
	further tested the model against the NHANES 2003-2004 data
	However, of the 5 Cd model parameter values reported in Ruiz et al
	(2010) 4 differ from the values in the originally published KN model. It
	is not clear when these values were changed or by which researchers
	No model code was provided by Ruiz et al. (2010)
	The model code that provided by Rule et al. (2010)
	Amzal et al. (2009) provide supplementary Berkeley Madonna code
	they report is "based on the works by Diamond and others who
	essentially combined the Kjellström and Nordberg cadmium model
	with a model for lead biokinetics." Amzal et al. (2009) fitted two of the
	model's 29 parameters (absorption fraction and the fraction transferred
	from plasma to extravascular fluid) to urinary Cd data from a 2004-2007
	subcohort of women enrolled in the Swedish Mammography Cohort.
	Parameter values in the Amzal et al. (2009) model appear to differ from
	the KN model.

Table B2. Diamond/Choudhury model for cadmium kinetics in humans

Author(s)	Fransson et al. (2014)
Species	Humans
Species details	Up to age 70
Route(s)	Systemic uptake via diet and smoking
Duration	Up to 70 years
Tissue dosimetry	Whole blood, plasma, urinary, and kidney Cd
Model language	acslX
Code availability	Not provided
Comments/ Narrative	The authors report that their model is a modification of the systemic portion of the KN model (Table B1) with difference equations for intercompartmental transfer changed to differential equations and growth algorithms (body weight and organ weight) added to the model. Furthermore, because low Cd intake was assumed, a term for capacity- limitations with respect to metallothionein were omitted. Systemic daily intake was modified to reflect 2 components, a body weight dependent dietary contribution and a pack-year dependent smoking term, with start and stop years.
	No equations or code were provided for this model. The calibration data consisted of blood, plasma, 24 h urinary data, and kidney cortex biopsy Cd concentrations from 82 kidney donors age 27-70 years old with complete data sets. Validation data were available from an additional 25 participants with incomplete data. In contrast, the original KN model was calibrated using disparate data sets, rather than paired data. The values of five parameters which were determined to be structurally globally identifiable were estimated using a Bayesian approach; the others were left fixed at the values for the baseline KN model. These parameters describe the body-weight dependent component of systemic Cd uptake, the initial division of Cd uptake between plasma and plasma metallothionein, transfer from red blood cells to plasma metallothionein, transfer from plasma metallothionein, and the two parameters that describe elimination of Cd from the kidney via urinary excretion (the baseline rate, and the age-dependent component). The model was described by the authors as having "moderate" predictive capacity, but was deemed a substantial improvement over the original parameterization.

Table B3. Fransson et al. (2014) cadmium model calibrated using data from living kidney donors

Table B4. Berthet et al.	(2010) hum	nan CBTK mo	del for cadmium
--------------------------	------------	-------------	-----------------

Author(s)	Berthet et al. (2010)
Species	Humans
Species details	Adult workers at rest or at an activity level of 50 W
Route(s)	Inhalation

Duration	300 work weeks; 1500 exposure days
Tissue dosimetry	No validation or calibration data were shown
Model language	Not stated
Code availability	Not provided. Mathematical equations were represented in a prior
	publication (Pierrehumbert et al., 2002).
Comments /	The generic model structure (applied to 14 chemicals) consists of
Narrative	absorption into a central compartment, blood-flow mediated exchange of parent compound between the central compartment and a peripheral compartment, metabolism of the parent compound to up to 2 metabolites, excretion of parent compound from the central or peripheral compartments, and excretion of metabolites from the central compartment.
	For the cadmium model, the central compartment was equated to total body water (TBW), the peripheral compartment equated to the kidneys, no metabolism of cadmium assumed, and excretion was assumed to occur via renal clearance. The values of compound-specific parameters (TBW: blood affinity coefficient, kidney permeability coefficient, kidney: blood affinity coefficient, and renal clearance) were based on clearance half-lives and the blood concentration at steady state, but referenced to a paper on PBPK modeling of arsenic (Mann et al., 1996b).

Toxicokinetics of cadmium in the rat

 Table B5. Biliary excretion of exogenous cadmium after a single iv dose of cadmium

Author(s)	Sugawara et al. (1996)
Species details	Adult male Sprague-Dawley rat
Test article	Cadmium dichloride
Route(s)	iv, in saline
Duration	Bile collection for 1 h, tissue distribution at 1 h after injection.
Tissue dosimetry	Cd in bile (15-minute collections) up to 1 h; Cd in serum, liver, and
	kidneys, 1 h after administration
Comments/	Comparisons were made to disposition in a strain deficient in biliary
Narrative	excretion of GSH.

Table B6. Whole-body retention and organ distribution of radioactive cadmium after a single ip or oral dose of cadmium

Author(s)	Kostial (1984)
Species details	Random bred albino rats, age 1, 3, 6, 18, or 26 weeks at dosing
Test article	^{115m} Cd
Route(s)	Ip or orally by artificial feeding (1-week old rats) or gastric intubation
Duration	Single doses; dosimetry at 1 or 2 weeks after administration

Tissue dosimetry	Cd in whole body, "carcass" (whole body after removal of GI tract),
	kidney, liver, brain, and gut (including contents) at one or two weeks
	after dosing.
Comments/	Distribution was similar for the two routes of administration.
Narrative	

Table B7. Organ distribution of radioactive cadmium after a single oral dose of cadmium

Author(s)	Jackl et al. (1985)	
Species details	Adults male Wistar rats	
Test article	¹⁰⁹ Cd-labeled Cd ₃ -phytate or ¹⁰⁹ CdCl ₂	
Route(s)	Oral, via gastric intubation	
Duration	Single doses; dosimetry at 10 days after administration	
Tissue dosimetry	Cd in liver, kidney, heart, pancreas, intestine, forebrain, "smallbrain"	
	(cerebellum), spleen, testes, and tibia	
Comments/	Distribution was similar for the two test articles for rats receiving a	
Narrative	normal (high phytate) diet.	

Table B8. Organ distribution and clearance of radioactive cadmium after a single oral dose

Author(s)	Kanwar et al. (1980)
Species details	Male albino rats, 240-290 g
Test article	115m Cd as Cd(NO ₃) ₂
Route(s)	Oral
Duration	Single doses; dosimetry at several points 30 min to 28 days after
	administration
Tissue dosimetry	Cd in liver, kidney, spleen, and duodenum (5-cm long section next to
	the stomach)
Comments/	Clearance half time was longest in the kidney (30 days) and shortest in
Narrative	the duodenum (3.5) days. Clearance half-times were similar in liver (6.8
	days) and spleen (5.5 days).

Table B9. Organ distribution and clearance of radioactive tracer cadmium after single oral doses (four dose levels)

Author(s)	Kotsonis and Klaassen (1977)
Species details	Male Sprague-Dawley rats, 50-79 days old, 200-300 g
Test article	109 Cd with unlabeled CdCl ₂ (25, 50, 100, and 150 mg Cd/kg)
Route(s)	Oral
Duration	Single doses; dosimetry at 2 and 14 days after administration
Tissue dosimetry	Radioactivity in liver, kidney, spleen, heart, intestine (thoroughly
	washed), muscle (soleus and gastrocnemius), brain, pancreas, blood, and
	plasma

Comments/	Most tissue concentrations decreased ~50 percent between days 2 and
Narrative	14, with the exception of the liver (unchanged, at higher doses) and
	kidney (3-4-fold increase).

Table B10. Organ distribution and clearance of radioactive cadmium after a single iv dose

Author(s)	Horner and Smith (1975)
Species details	Adult male Sprague-Dawley rats
Test article	¹⁰⁹ Cd as CdCl ₂
Route(s)	iv in physiological saline
Duration	Single doses; tissue dosimetry at 5, 15, 30, and 60 min.; 5, 15, and 24 h,
	3, 10, 15, 20, 25, 30, 40, 50, and 60 days after administration
Tissue dosimetry	Cd in heart, lungs, liver, stomach, spleen, pancreas, duodenum (without
	contents), colon (without contents), adrenals, kidneys, testes, brain,
	salivary glands, thymus, muscle (rectus femoris, external oblique,
	triceps), femur, fat, hair, skin (with hair), plasma, RBC, whole blood,
	and residual carcass at times noted above, and daily fecal excretion.
Comments/	Cd levels in all tissues except kidney decreased as time progressed. The
Narrative	amount in the kidney increased during the duration of the study.

Table B11. Organ distribution of radioactive tracer cadmium after single iv or oral doses (four dose levels)

Author(s)	Lehman and Klaassen (1986)
Species details	Male Sprague-Dawley rats, 200-250 g
Test article	109 Cd as CdCl ₂
Route(s)	Oral (stomach tube) or iv
Duration	Single doses; dosimetry at 7 days after administration in oral and iv
	"disposition" study, 3 hours after dosing in oral absorption study
Tissue dosimetry	Radioactivity in liver, kidney, spleen, heart, intestine (initial 15 cm),
	muscle (gastrocnemius), brain, pancreas, lunges, testes, adrenal gland,
	femur, and blood
Comments/	Doses in the oral disposition study were 0.001, 0.01, 0.1, 1, and 10 mg
Narrative	Cd/kg, whereas the doses in the iv disposition study were 0.01, 0.1, 1,
	10, 100, or 1000 μ g/kg. In the oral absorption study, doses were either 1
	µg/kg or 10 mg/kg. Increased relative absorption was observed at higher
	doses.

Table B12. Biliary and urinary excretion and tissue distribution of cadmium in rats after cadmium injection

Author(s)	Gregus and Klaassen (1986)
Species details	Adult male Sprague-Dawley rat (200-300 g)
Test article	¹⁰⁹ Cd as CdCl ₂

Route(s)	iv in saline
Route(5)	
Duration	2 h (biliary excretion and tissue and plasma concentrations); 4 days
	(fecal and urinary excretion)
Tissue dosimetry	Radiolabel in liver, kidneys, spleen, lung, pancreas, intestine, stomach, testes, brain, blood, and plasma; biliary, fecal, and urinary excretion of radiolabel
Comments/	The Cd data were previously published; the above referenced
Narrative	publication represents a compilation of comparable data for 18 metals collected using a consistent protocol. A listing of the other tested metals may be found in Table A12 . In urinary and fecal excretion studies, excreta were collected for 24-h periods for 4 days. Biliary excretion in bile-cannulated rats was determined at 2 h after administration; tissue distribution was determined in the same rats upon completion of the biliary excretion assessment.
	Compared to other metals, Cd exhibited relatively low total (fecal and urinary) excretion over four days ($16.5 \pm 1.2\%$; SE of 4-6 rats). Urinary excretion of Cd was less than for any other metal evaluated. Biliary excretion of Cd increased with increasing dose. Bile:plasma ratios for Cd were relatively high. Expressed as % of dose/tissue weight or volume, Cd, along with tin, had the highest liver concentrations of the tested metals.

Table B13. Impact of dietary iron on liver and kidney cadmium content in after one week of cadmium ingestion via drinking water

Author(s)	Schümann et al. (1996)
Species details	Male Sprague-Dawley rats, four age groups (44, 49, 57, and 84 days)
Test article	CdCl ₂
Route(s)	Oral (drinking water)
Duration	Seven days
Tissue dosimetry	Cd in liver and kidney
Comments/	Higher tissue concentrations of Cd where observed in rats ingesting
Narrative	iron-deficient diets relative to those with diets containing marginal or
	high levels of iron.

Table B14. Impact of dose, time, and nutrient status on liver, spleen, and heart cadmium after intraperitoneal administration of cadmium

Author(s)	Yiin et al. (2000)
Species details	Male Sprague-Dawley rats, 330-420 g
Test article	CdCl ₂
Route(s)	ip in physiological saline
Duration	Single dose
Tissue dosimetry	Cd in liver, spleen, and heart

Comments/	In the dose-response portion, tissue Cd was determined 24 h after
Narrative	injection of 25, 125, 500, or 1250 µg Cd/kg. In the time-course study,
	Cd was measured 6, 12, 24, or 72 h after injection of 25 or 500 µg
	Cd/kg. In the study to assess the impact of selenium on cadmium
	disposition, tissue Cd was measured 6, 12, 24, and 72 h after
	administration of 500 μ g Cd/kg, with or without sodium selenate.

Table B15. Clearance of radioactivity from plasma of 21-day old rats and tissue distribution in 15-, 21-, or 63-day old rats after single iv injection of cadmium

Author(s)	Crowe and Morgan (1997)
Species details	Pregnant Wistar rats and their offspring
Test article	CdCl ₂ , ¹⁰⁹ CdCl ₂
Route(s)	iv in physiological saline
Duration	Single dose; plasma clearance up to 120 min. after injection, distribution
	2 h after injection
Tissue dosimetry	Cd in brain, liver, kidneys, heart, femurs, and blood cells (distribution
	study) and plasma (time course study)
Comments/	Plasma clearance in 21-day old rats did not substantially differ among
Narrative	control, iron-loaded, and iron deficient diets (fed to maternal rats
	starting on gestation day [GD] 20 and to young rats).

Table B16. Tissue distribution of cadmium in iron sufficient and iron deficient rats after single oral exposure

Author(s)	Park et al. (2002), Ryu et al. (2004)
Species details	Male Sprague-Dawley rats fed iron sufficient or iron deficient diet
Test article	CdCl ₂ , ¹⁰⁹ CdCl ₂
Route(s)	Oral gavage in saline
Duration	Single dose, distribution 24 or 48 h after administration
Tissue dosimetry	Cd in liver, kidney, lung, heart, brain, stomach, duodenum, jejunum, ileum, large intestine, testis, bone, and whole blood; GI contents were removed
Comments/ Narrative	Cd levels were higher in rats fed an iron-deficient diet.

Table B17. Tissue distribution of Cd in pregnant and nonpregnant rats after single oral gavage

Author(s)	Leazer et al. (2002)
Species details	Pregnant (GD 19 at dosing) and nonpregnant female Sprague-Dawley
-	rats, ~60 days old.
Test article	$CdCl_2$, ¹⁰⁹ $CdCl_2$
Route(s)	Oral gavage in physiological saline
Duration	Single dose; tissue levels 24 h after administration.

Tissue dosimetry	Cd in liver, kidneys, large intestine, duodenum, jejunum and ileum.
Comments/	Higher levels of Cd were found in pregnant rats all tissues analyzed, but
Narrative	the increase was not statistically significant in the kidney.

Metals: Chromium

Chromium PBPK modeling

Summary: Kirman et al. (2012, 2013b) developed a PBPK model of chromium (CrVI and CrIII) disposition in mice and rats after chronic oral dosing that was extended to humans (Kirman et al., 2013a). These researchers and others have subsequently refined the gastric reduction model and applied the model toward developing toxicity reference values. Berthet et al. (2010) applied a generic CBTK model to biomarker variability analysis and comparisons between ACGIH BEIs and the metrics predicted by the models when simulating 8 h of exposure to 14 chemicals at the TLV; one of those chemicals was chromium.

Author(s)	Berthet et al. (2010)
Species	Humans
Species details	Adult workers at rest or at an activity level of 50 W
Route(s)	Inhalation
Duration	300 work weeks; 1500 exposure days
Tissue dosimetry	No validation or calibration data were shown
Model language	Not stated
Code availability	Not provided. Mathematical equations were represented in a prior
	publication (Pierrehumbert et al., 2002).
Comments /	The generic model structure (applied to 14 chemicals) consists of
Narrative	absorption into a central compartment, blood-flow mediated exchange
	of parent compound between the central compartment and a peripheral
	compartment, metabolism of the parent compound to up to 2
	metabolites, excretion of parent compound from the central or
	peripheral compartments, and excretion of metabolites from the central
	compartment. For the chromium model, the central compartment was
	equated to total body water (TBW), with the peripheral compartment
	equated to richly perfused tissues (RP; heart, liver, and brain), no
	metabolism of chromium was assumed, and excretion was assumed to
	occur via renal clearance. The values of compound-specific parameters
	(TBW: blood affinity coefficient, RP permeability coefficient, RP:
	blood affinity coefficient, and renal clearance) were referenced to a
	paper on PBPK modeling of arsenic (Mann et al., 1996b).

Table C1. Berthet et al. (2010) human CBTK model for chromium

Table C2. Kirman whole-body chromium model development

Author(s)	Kirman et al. (2012, 2013a, b)
Species	Rats, mice, humans

Species details	Adult F344 rats B6C3F1 mice and humans Sex/gender not clearly
Species details	indicated for any of the three species
	indicated for any of the three species.
Route(s)	Oral (drinking water, feed)
Duration	4-369 days of dosing
Tissue dosimetry	Blood, bone, carcass, kidney, liver, stomach, erythrocytes, plasma,
	urine, oral cavity, duodenum, jejunum, ileum
Model language	acslX with Excel interface
Code availability	Provided as supplementary material online
Comments/	These papers describe development of PBPK models of CrVI and CrIII
Narrative	with detailed description of the GI tract (lumen and tissue). However,
	GI absorption parameters are scaled to segment length, and the length is
	not scaled by body weight. Thus, the model is not readily applicable
	across a range of body weights as formulated. The rodent models were
	calibrated/validated with multiple data sets, including new data
	presented in this paper. The human model calibration/validation relies
	on data for ex vivo CrVI reduction in human stomach fluid; in vivo
	plasma and urinary Cr excretion after CrIII exposures as chromium
	chloride or chromium picolinate, and one volunteer exposed to CrVI as
	sodium dichromate.

Author(s)	Monnot et al. (2014)
Species	Rats, mice, humans
Species details	Adult male and female Wistar, Sprague Dawley, and F344 rats; male
	Wistar Kyoto, Albino, Zucker, and unspecified rats; male and female
	BDF1 and B6C3F1 mice; female ICR mice; male C57BL/6 Cr mice;
	men and women
Route(s)	Oral, ip
Duration	1.5-365 days
Tissue dosimetry	Blood CrIII
Model language	acslXtreme
Code availability	Not stated
Comments/	The Kirman et al. (2012, 2013a, b) models were used to estimate blood
Narrative	CrIII levels associated with no observed effect levels (NOELs) and
	lowest observed adverse effect levels (LOELs) for hematological,
	hepatic or renal effects in this review. When blood levels were available
	from the rat, mouse, and human toxicology studies, the reported values
	were compared to model predictions, and were "reasonably accurate
	(within a factor of a few-fold) for most of the studies." For ip
	administration, the initial dose distribution was calibrated based on fit to
	experimental data (70% in systemic plasma, "with the remaining
	fraction equally distributed into each of the liver, kidney, and other
	tissue compartments").

Table C3. Application of Kirman whole-body chromium model to systemic toxicity reference values, with extension to ip route and further validation

Table C4. Application of Kirman whole-body chromium model to GI tract cancer reference

 values

Author(s)	Thompson et al. (2014)
Species	Mice, humans
Species details	Not stated
Route(s)	Oral
Duration	Chronic dosing
Tissue dosimetry	Computed "pyloric flux" and "intestinal flux"
Model language	Not stated, but see Table C2
Code availability	Not stated, but see Table C2
Comments/	In this paper, the Kirman et al. (2012, 2013a, b) models are applied to
Narrative	the development of chronic oral reference doses based on observations
	of intestinal cancer in mice.

Table C5. Refinement/extension of Kirman gastric reduction model of chromium and application to GI tract cancer reference values

Author(s)	Schlosser and Sasso (2014), Sasso and Schlosser (2015)
Species	Mice, rats, humans
Species details	See Table C2
Route(s)	Oral/ex vivo
Duration	1 h experiments
Tissue dosimetry	Gastric fluid concentration
Model language	AcslX
Code availability	.csl file provided as supplementary online material (Schlosser and
	Sasso, 2014); equations outlined in supplementary materials (Sasso and
	Schlosser, 2015)
Comments/	The Schlosser and Sasso (2014) paper describes modeling of previously
Narrative	published ex vivo studies of gastric reduction. The model was a
	refinement/extension of the model in Kirman et al. (2012). This new
	model was more complex (e.g., three pools of reducing agents for mice
	and rats), but sufficiently parsimonious for parameters to be identifiable.
	The improvement in fit was not described quantitatively, but is evident
	from visual inspection. It was asserted that this model "should provide
	better predictions of Cr-VI reduction when integrated into a
	corresponding PBPK model", but no publications were identified where
	this hypothesis has been tested. Kirman et al. (2016) noted that
	Schlosser and Sasso's optimization "results in lowering a parameter (Ka)
	that has been determined with a reasonable degree of certainty from a
	value of 773,000 to 1,070, which detracts from the chemistry-based
	approach, making it more of an empirical model." The analysis in Sasso
	and Schlosser (2015) used the Schlosser and Sasso (2014) model of the
	stomach. As noted by Kirman et al. (2016), resulting reference doses

were similar (within 2-fold) to those generated by Thompson et al. (2014) using the Kirman et al. (2012, 2013a, 2013b) models.

Table C6. Refinement/extension of Kirman gastric reduction model of chromium based on new human data

Author(s)	Kirman et al. (2016)
Species	Mice, rats, humans
Species details	See Table C2
Route(s)	Oral/ex vivo
Duration	Up to 4 h experiments
Tissue dosimetry	Gastric fluid concentration
Model language	Not stated, likely same as Kirman et al. (2012, 2013a, b); see Table C2
Code availability	Not stated
Comments /	This paper extends the previous models of gastric reduction of CrVI to
Narrative	CrIII (Kirman et al., 2012, 2013 a,b; Schlosser and Sasso, 2014).
	Various hypotheses regarding pools of reducing agents, pH dependence,
	and reaction kinetics (first vs. second order) were addressed via
	optimizations of the pharmacokinetic model to new data and data in the
	literature. The changes imply greater predicted efficiency in human
	detoxification at lower vs. higher drinking water concentrations of CrVI.

Toxicokinetics of chromium in the rat

Table C7. National Toxicology Program (NTP) (2008) study of sodium dichromate dehydrate in drinking water

Author(s)	National Toxicology Program (2008); also reported in Collins et al.
	(2010)
Species details	Adult male F344 rat
Test article	CrVI (sodium dichromate dihydrate)
Route(s)	Oral (drinking water)
Duration	4, 11, 180, 369 days
Tissue dosimetry	Total chromium in erythrocytes, plasma, liver, kidney, glandular
	stomach, forestomach, feces, urine
Comments/	These data were used for calibration of the Kirman model (Table C2).
Narrative	

Author(s)	National Toxicology Program (2010); also reported in Collins et al. (2010)
Species details	Adult male F344 rat
Test article	CrIII (chromium picolinate monohydrate).
Route(s)	Oral (drinking water)

Duration	4, 11, 180, 369 days
Tissue dosimetry	Total chromium in erythrocytes, plasma, liver, kidney, glandular
	stomach, forestomach, feces, urine
Comments/	These data were used for calibration of the Kirman model (Table C2).
Narrative	

Table C9. NTP (2010) single gavage studies of chromium picolinate

Author(s)	National Toxicology Program (2010)
Species details	Adult male F344 rat
Test article	CrIII (chromium picolinate monohydrate).
Route(s)	Oral (gavage, in aqueous slurry or propylene glycol)
Duration	Single administration
Tissue dosimetry	Total chromium excretion in feces, urine
Comments/	Excreta analyzed for total chromium at 8, 24, 48 h for both vehicles;
Narrative	aqueous also evaluated at 2, 4, and 12 h.

Table C10. ⁵¹CrCl₃ tracer iv study (data collection out to 11 days post-dose)

Author(s)	Onkelinx (1977)
Species details	Adult female Wistar rat
Test article	⁵¹ CrCl ₃
Route(s)	iv in 0.9% NaCl solution
Duration	Single administration
Tissue dosimetry	Plasma, erythrocytes, epiphyses, diaphyses, kidney spleen, liver, lung,
	pancreas, urine, feces
Comments/	⁵¹ Cr distribution was measured from 1-262 h after iv injection of ⁵¹ CrCl ₃
Narrative	

Table C11. ⁵¹Cr tracer iv and ip studies (data collected out to 7 weeks after dosing)

Author(s)	Laschinsky et al. (2012)
Species details	Adult female Wistar rat
Test article	⁵¹ Cr as picolinate, nicotinate, phenylalaninate, chloride, or proprionate
Route(s)	iv or ip; vehicle not specified (possibly water)
Duration	Single administration
Tissue dosimetry	Spleen, liver, kidney, lung, bone, heart, GI tract, carcass, urine, feces
Comments/	⁵¹ Cr distribution in organs was measured at 7 days after iv or ip
Narrative	injection. Feces and urine excretion were measured 2 days after iv or ip
	injection (variable spacing and number of time points for different test
	articles). The whole body-retention time course of ⁵¹ Cr after ip injection
	was measured for up to 7 weeks after dosing.

Author(s)	Grague and Vlaggan (1086)
Author(s)	Olegus allu Klaassell (1980)
Species details	Adult male Sprague-Dawley rat (200-300 g)
Test article	⁵¹ Cr as CrCl ₃
Route(s)	iv, in saline
Duration	2 h (biliary excretion and tissue and plasma concentrations); 4 days
	(fecal and urinary excretion)
Tissue dosimetry	Radiolabel in liver, kidneys, spleen, lung, pancreas, intestine, stomach, testes, brain, blood, and plasma. Biliary, fecal, and urinary excretion of radiolabel.
Comments/ Narrative	The above referenced publication represents a compilation of comparable data, some previously published, for 18 metals collected using a consistent protocol. A listing of the other tested metals may be found in Table A12. In urinary and fecal excretion studies, excreta were collected for 24-h periods for 4 days. Biliary excretion in bile- cannulated rats was determined at 2 h after administration; tissue distribution was determined in the same rats upon completion of the biliary excretion assessment. Compared to other metals, Cr was at the low end of the intermediate range for total (fecal and urinary) excretion over four days (20-50% excretion for the intermediate range; $21.5 \pm 3.1\%$ for Cr; SE of 4-6 rats). Likewise, urinary excretion of Cr was moderate, and decreased significantly after the first day. Biliary excretion of Cr decreased with increasing dose. Bile:plasma ratios for Cr were relatively low. Expressed as % of dose/tissue weight or volume, Cr was relatively highly concentrated in kidnave
	found in Table A12. In urinary and fecal excretion studies, excreta were collected for 24-h periods for 4 days. Biliary excretion in bile- cannulated rats was determined at 2 h after administration; tissue distribution was determined in the same rats upon completion of the biliary excretion assessment. Compared to other metals, Cr was at the low end of the intermediate range for total (fecal and urinary) excretion over four days (20-50% excretion for the intermediate range; $21.5 \pm 3.1\%$ for Cr; SE of 4-6 rats) Likewise, urinary excretion of Cr was moderate, and decreased significantly after the first day. Biliary excretion of Cr decreased with increasing dose. Bile:plasma ratios for Cr were relatively low. Expressed as % of dose/tissue weight or volume, Cr was relatively highly concentrated in kidneys.

Table C12. Biliary and urinary excretion and tissue distribution of ⁵¹Cr in rats after ⁵¹Cr injection

Author(s)	Afolaranmi and Grant (2013)
Species details	Adult male Sprague Dawley rat
Test article	CrIII as chloride (CrCl ₃), or CrVI as sodium dichromate dehydrate
	$(Na_2Cr_2O_2 2H_2O)$
Route(s)	ip in saline
Duration	Single administration
Tissue dosimetry	Spleen, liver, kidney, lung, heart, brain, testes, blood, urine, feces
Comments/	Chromium distribution in organs and cumulative amounts excreted in
Narrative	feces and urine were measured at 24 h after ip injection. Doses were
	variously expressed as amounts of compound per kg bodyweight and as
	amounts of metal/kg bodyweight. After CrIII dosing, CrIII was elevated
	relative to control in all matrices evaluated, but statistical significance
	was achieved only for the brain, although only 12.6% of the dose was

recovered in measured tissues, urine, and feces. For CrVI, 75.6% of the dose was recovered, and all increases were statistically significant.

Author(s)	Thomann et al. (1994)
Species details	Adult male F344 rat
Test article	CrVI as potassium chromate
Route(s)	Oral (drinking water)
Duration	Up to 6 weeks of exposure
Tissue dosimetry	Blood, spleen liver, kidney,
Comments/	Rats ingested 100 ppm CrVI as potassium chromate in water for up to 6
Narrative	weeks. Cr was measured in listed tissues at 1, 3, and 6 weeks into the
	accumulation phase; bone and carcass were also measured during the
	depuration phase (from 6 h to 12 weeks after cessation of exposure).

Table C14. Kinetics of potassium chromate in drinking water

Metals: Cobalt

Cobalt PBPK modeling

No PBPK models of cobalt disposition in rats were identified in the literature. Two models of cobalt kinetics in humans were identified. The basis of the Berthet et al. (2010) model was not clear, and no validation was provided. The Leggett (2008) human biokinetic model describes intercompartmental transfers of cobalt in a manner that is not amenable to interspecies extrapolation, but does provide a framework that could be considered as a basis for interpretation of data from other species. Unice et al. (2012) extended the Leggett (2008) model in order to estimate oral bioavailability of cobalt.

Author(s)	Berthet et al. (2010)
Species	Humans
Species details	Adult workers at rest or at an activity level of 50 W
Route(s)	Inhalation
Duration	300 work weeks; 1500 exposure days
Tissue dosimetry	No validation or calibration data were shown
Model language	Not stated
Code availability	Not provided. Mathematical equations were represented in a prior
	publication (Pierrehumbert et al., 2002).
Comments /	The generic model structure (applied to 14 chemicals) consists of
Narrative	absorption into a central compartment, blood-flow mediated exchange
	of parent compound between the central compartment and a peripheral
	compartment, metabolism of the parent compound to up to 2
	metabolites, excretion of parent compound from the central or
	peripheral compartments, and excretion of metabolites from the central
	compartment.

Table D1. Berthet et al. (2010) human CBTK model for cobalt

For the cobalt model, the central compartment was equated to total body water (TBW), with the peripheral compartment equated to the richly perfused tissues, there was no metabolism of cobalt assumed, and excretion was assumed to occur via urinary elimination. The values of compound-specific parameters (TBW: blood affinity coefficient, richly perfused tissues permeability coefficient, richly perfused tissue: blood affinity coefficient, and urinary excretion) were based on clearance and transfer half-lives and the blood concentration at steady state, but referenced to a paper on PBPK modeling of arsenic (Mann et al., 1996b).

Author(s)	Leggett (2008)
Species	Humans
Species details	Adult humans
Route(s)	Systemic model, paired with standard ICRP models for inhalation and
	absorption
Duration	Calibrated with human data on time scales of hours to days
Tissue dosimetry	Urinary excretion, fecal excretion, blood content, and whole body retention
Model language	Not stated; Unice et al. (2012) coded the Leggett cobalt model in Berkeley Madonna version 8.3.9.
Code availability	Not provided
Comments/	The cobalt biokinetic model reused a model structure previously
Narrative	developed for alkaline earth elements. All kinetic processes were assumed to be first order. The model was primarily developed to be consistent with data from human subjects injected with ⁶⁰ CoCl ₂ and ⁵⁸ CoCl ₂ . The human data was supplemented with laboratory animal data on distribution of cobalt among liver, kidneys, skeleton, and other tissues.
	Blood is described as two subcompartments. Blood 1 exchanges with other tissues, but Blood 2 has a longer retention time and exchanges only with Blood 1.
	The liver is also described as having two subcompartments. Liver1 both receives transferred cobalt from Blood 1 and returns cobalt to Blood 1. Liver1 also transfers cobalt to the small intestine contents via bile and to Liver2 for longer-term retention. Cobalt from Liver 2 is slowly transferred back to Blood 1. The small intestinal contents, in addition to receiving cobalt from Liver 1, also receive cobalt directly from Blood 1, and is the pathway for fecal excretion of systemic cobalt.
	Kidneys are likewise described in terms of two compartments, a urinary path (Kidney1) and a slow-turnover pool (Kidney2: other kidney tissue).

Table D2. Leggett (2008) human biokinetic model for cobalt

Kidney2 exchanges cobalt only with Blood1. Kidney1 cobalt represents transfer from blood filtered by the glomerulus, which is then transferred to the urinary bladder, and cobalt from the urinary bladder is then then excreted in urine. A direct transfer from Blood1 to urinary bladder contents is meant to be representative of cobalt that is filtered from blood by the glomerulus but not retained in urinary path tissue.
The skeleton is described as cortical and trabecular regions. Cobalt is transferred from Blood1 to both trabecular and cortical surfaces; from each surface, cobalt is then transferred to trabecular and cortical volumes, respectively. Cobalt is returned to blood from the bone volumes by turnover.
Other (soft) tissues are divided into three compartments ST0, ST1, and ST2, with faster, intermediate, and slower turnover, respectively. These three compartments receive cobalt from Blood1 and return it to Blood1.
Leggett (2008) shows comparisons of model predictions to the data from three studies where cobalt was administered by iv injection: both urinary and fecal excretion for a single subject, plasma content, and cumulative urinary excretion. Unice et al. (2012) present further comparisons with data from oral exposures, with predictions for a range of absorption fractions.

Toxicokinetics of cobalt in the rat

Table D3. Cobalt blood and tissue levels time course (36 h) after single gavage of cobalt chloride

Author(s)	Ayala-Fierro et al. (1999), Firriolo et al. (1999)
Species details	Adult male Fischer 344 rat (200-300 g)
Test article	CoII as chloride (CoCl ₂) hexahydrate (Ayala-Fierro et al., 1999) or CoII
	as Co naphthenate (CoNap).
Route(s)	Oral (gavage) in ethanol:Emulphor (2:1) mixture or iv (CoCl ₂ only) in
	saline
Duration	Single administration
Duration	Single administration; data to 36 h after administration
Tissue dosimetry	Oral: Liver, kidney, heart, blood, urine, and feces (time course); large
	intestine, small intestine, and stomach tissue; large intestine, small
	intestine, and stomach content (terminal only for CoCl ₂ ; time course for
	CoNap), and testes and spleen (CoNap only). iv: blood, urine, and feces
	only
Comments/	Cobalt distribution in blood, organs, and GI content and cumulative
Narrative	amounts excreted in feces and urine were measured after administration.
	After oral administration, blood and tissue levels were determined at
	various intervals from 0.5 to 36 h postdosing. Urinary and fecal
	excretion was measured at 8, 12, 16, 24, and 36 h after gavage dosing,

12, 24, and 36 h after iv administration and the oral blood study. At 36 h after iv dosing of CoCl₂, 75% of administered cobalt was eliminated in urine and 10% in feces. After oral dosing of the same compound, 27% was eliminated in urine and 68% in feces, indicating 25-30% absorption by the oral route. In the oral CoCl₂ study, peak blood and tissue concentrations of cobalt were achieved 6-8 h after administration. Distribution patterns for Co derived from CoCl₂ and CoNap were similar.

Table D4. Cobalt whole-body time course (8 days) and terminal distribution after single gavage administration of cobalt chloride

Author(s)	Nishimura et al. (1976)
Species details	Wistar rats 7, 14, 21, or 100 days old (sex not stated; Nishimura et al.,
	1976); 120-day old males (Inaba et al., 1982)
Test article	CoII as chloride, ⁶⁰ CoCl ₂
Route(s)	Oral (gavage) in distilled water
Duration	Single administration
Duration	Single administration
Tissue dosimetry	Whole body time course. Adults only: terminal cobalt content of liver,
	kidney, GI tract with contents, cumulative urinary and fecal excretion
	(~days 1, 2, 3, 5, 7, and 9) (Nishimura et al., 1976). In Inaba et al.
	(1982), terminal cobalt concentrations were determined in blood; heart,
	lungs, spleen and pancreas (grouped), liver, kidneys, GI tract with
	content, femurs, muscle, testicles, and remaining carcass relative to
	whole-body concentration.
Comments/	Nishimura et al. (1976): Whole body retention was higher after iv than
Narrative	po dosing. For po dosing of animals of various ages, adults retained less
	cobalt than younger animals. The liver and kidney had substantial
	fractions of the body burden at termination. The highest relative
	concentrations were found in the kidneys and liver by Inaba et al.
	(1982).

Table D5. Biliary and urinary excretion and tissue distribution of ⁵⁷Co in rats after ⁵⁷Co injection

Author(s)	Gregus and Klaassen (1986)
Species details	Adult male Sprague-Dawley rat (200-300 g)
Test article	⁵⁷ Co as CoCl ₂
Route(s)	iv, in saline
Duration	2 h (biliary excretion and tissue and plasma concentrations); 4 days
	(fecal and urinary excretion)
Tissue dosimetry	Radiolabel in liver, kidneys, spleen, lung, pancreas, intestine, stomach,
	testes, brain, blood, and plasma. Biliary, fecal, and urinary excretion of
	radiolabel
Comments/ Narrative	The above referenced publication represents a compilation of comparable data, some previously published, for 18 metals collected using a consistent protocol. A listing of the other tested metals may be found in Table A12. In urinary and fecal excretion studies, excreta were collected for 24-h periods for 4 days. Biliary excretion in bile- cannulated rats was determined at 2 h after administration; tissue distribution was determined in the same rats upon completion of the biliary excretion assessment.
------------------------	---
	Compared to other metals, cobalt was the most rapidly excreted (fecal and urinary excretion over four days; $87.7 \pm 14\%$ for cobalt; SE of 4-6 rats). Likewise, urinary excretion of cobalt was dramatically higher than that of other metals; $72.6 \pm 13\%$ over days 1-4, vs. 26.5% of excreted in urine for cesium, the next most highly excreted compound. Biliary excretion of cobalt was relatively high and increased with increasing dose. Bile:plasma ratios for cobalt were intermediate, compared to other tested metals. Expressed as % of dose/tissue weight or volume, cobalt was relatively highly concentrated in kidneys.

Author(s)	Afolaranmi and Grant (2013)
Species details	Adult male Sprague Dawley rat
Test article	CoII as chloride (CoCl ₂)
Route(s)	ip in saline
Tissue dosimetry	Spleen, liver, kidney, lung, heart, brain, testes, blood, urine, feces
Comments /	Cobalt distribution in organs and cumulative amounts excreted in feces
Narrative	and urine were measured 24 h after injection. Doses variously expressed
	as amounts of compound per kg bodyweight and as amounts of metal/kg
	bodyweight. After cobalt dosing, statistically significant increases in
	cobalt levels were observed in all biological matrices evaluated. The
	cobalt recovered was 41.6% of the dose.

Table D6. Co ion distribution in the rat 24 h after a single ip dose

Table D7. Measurements of ⁶⁰Co organ burdens in rats and their use in calculations of equilibrium dose-rates to various organs of man

Author(s)	Smith et al. (1971)
Species details	Sprague-Dawley rat (adult male)
Test article	60 Co as 60 CoCl ₂
Route(s)	Oral, ad lib. or gastric intubation (⁶⁰ CoCl ₂ in water)
Duration	Ad lib. 6 – 170 days or gastric intubation 20 days or ad lib. 20 days
Tissue dosimetry	Equilibrium dose-rate (mrad/week) due to absorbed ⁶⁰ Co in whole body,
	liver, kidneys, skeleton, pancreas, spleen, muscle, stomach, salivary
	gland, small intestines, upper large intestine and lower large intestine.

Commontal	Costric intubation was compared to ad lib. to normalize abcorntion of
Comments/	Gastric intubation was compared to ad no. to normalize absorption of
Narrative	⁶⁰ Co when comparing single-dose gastric intubation data from other
	studies to data in this study. Given the data at the time the paper was
	written regarding the metabolism of 60 Co in humans, the maximum
	permissible concentration would be similar to the value derived from the
	study in rats. However, due to the longer term retention in humans,
	organ dose rates of absorbed ⁶⁰ Co may be around twenty times greater
	than predicted by extrapolating from rat to human. Author says the
	results suggest that the MPC of ⁶⁰ Co in water is similar to that
	determined in the rat studies $(4.5 \times 10^{-5} \mu \text{Ci}^{-60} \text{Co/mL})$ and is in good
	agreement with the ICRP value.

Author(s)	Barnaby, Smith, and Thompson (1967)
Species details	Albino and Sprague-Dawley rats (both were specified) (male; age not
_	stated; size varies, but likely corresponds to young adult to adult rats)
Test article	⁶⁰ CoCl ₂ in 0.9% NaCl
Route(s)	iv, ip, or gastric intubation
Duration	1-132 days, depending on group and end point analyzed
Tissue dosimetry	Whole body retention is compared between iv, ip, and oral
	administration, but the iv group was small enough that only the ip and
	oral data was used in dosimetry analysis. Fractional retention of ⁶⁰ Co
	following oral administration is calculated for total body, liver, skeleton,
	muscle, kidneys, gut, pelt, pancreas, salivary gland, spleen, brain,
	adrenals, thymus, and testes. The same end points were analyzed for ip
	with the additions of the urogenital system minus kidney, the lung and
	trachea, and the eyes, but with the exception of the testes which are
	probably included in the urogenital system.
Comments /	The author makes the following conclusions: The critical organ
Narrative	following ip administration of ⁵⁶ Co and ⁵⁸ Co to man would be the liver,
	but the pancreas would be critical organs for the longer-lived ⁵⁷ Co and
	⁶⁰ Co isotopes. Eighty percent of cobalt radioisotopes pass unabsorbed
	through the GI tract following oral administration. Following ingestion
	of radioisotopes of cobalt, the retention in the male gonads will result in
	a very low dose. Tissue elimination curves fit to an exponential decay
	indicated similar clearance half-lives after ip and oral dosing. Total
	body, kidneys, and salivary gland had the fastest clearance; clearance
	rates were slightly slower from pancreas, spleen, brain, pelt, lungs, and
	testes, but similar within that group, and somewhat slower from muscle
	and skeleton.

Table D8. Tissue dosimetry of the radioisotopes of cobalt after ip and oral administration

Author(s)	Jansen et al. (1995)
Species details	Wistar rat (adult male) and human (healthy adult male)
Test article	⁵⁵ Co from ⁵⁵ CoCl ₂
Route(s)	Catheter injection leading to right atrium for rat, iv for human
Duration	55 hours
Tissue dosimetry	Rat PET scans were made at 0.5, 24, and 48 h after administration to
·	find areas of radioactive accumulation. Postmortem distribution to the
	rat heart, kidney, lung, testis, liver, pancreas, spleen, stomach, and skin
	was determined at 55 h after administration. Urine and feces of rats
	were collected continuously. In the human study, blood was drawn at
	regular intervals for 5 h.
Comments/	Liver time course data (not shown) were used to derive an effective
Narrative	half-life of 10.4 h, and biological half-life of 25.5 h for ⁵⁵ Co in the rat.
	Approximately 50% of the dose was associated with the liver, 40% was
	excreted in urine, and 5% excreted in feces. Authors believe an estimate
	of dose commitment to the total body can be obtained by considering
	only the liver burden in combination with the bladder and GI burden.

Table D9. Distribution and clearance of cobalt after iv administration

Table D10. Comparative pharmacokinetics of radionuclides in mammals (mouse, rat, monkey, and dog)

Author(s)	Thomas et al. (1976)
Species details	RF mice, Sprague-Dawley rat (male), Macaca speciose monkeys,
	Beagle dog. Age/size not stated.
Test article	60 Co as 60 CoCl ₂
Route(s)	Tail vein iv to rodents, iv saphenous vein to monkeys, iv cephalic vein
	to dogs, all in normal saline. Intragastric (ig) administration to rats
	(vehicle not clear—possibly saline) under anesthesia. Orally to rats in
	solution of 2.9% dextrose and 0.12% saccharin, orally to monkeys as the
	isotope absorbed into sugar cubes, orally to dogs using a gelatin capsule.
	All routes were single dose.
Duration	Rat had multiple time points including 7 days (ig), 22 days (ig), 461
	days (iv), 167 days (iv) and 147 days (oral)
Tissue dosimetry	Retention was measured whole body, liver, spleen, bone, brain, muscle,
-	kidney, heart, lung, and gonads, but starts around day 20 and was
	measured for oral and iv only. Measured whole body retention only after
	ig dose. Ratios of urinary to fecal elimination were reported daily for the
	first 4 days after administration, and for longer periods thereafter, but
	absolute amounts eliminated were not presented.
Comments/	Author believes that cobalt is a metabolite with which an extrapolation
Narrative	from rodent data to man may be very deceiving, because of species
	dependence observed in non-rodents.

Author(s)	Hollins and McCullough (1970)
Species details	Albino rats (adult male)
Test article	⁵⁸ Co from ⁵⁸ CoCl ₂ in carrier-free form
Route(s)	ip for tissue distribution, ip or "force fed" for whole body exposure
Duration	Tissue distribution: 1, 2, 3, 5, 7, 10, 15, 21, 40, and 72 days; whole body
	up to 386 days
Tissue dosimetry	19 tissues listed, as well as whole body data
Comments/	A detailed whole-body time course after iv administration was
Narrative	presented. Tissue: whole body ratios were presented for kidney, liver,
	bone marrow, and blood were presented for days 1-10; tissue/body
	ratios for days 10-72 were presented as averages for each of the tissues
	and blood.

Table D11. Whole body clearance and tissue distribution after ip administration of cobalt

Table D12. Gastrointestinal Iron and Cobalt absorption and Iron Status in Young Rats and
 Guinea Pigs

Author(s)	Naylor and Harrison (1995)
Species details	Harwell Mouth Tumour Rats (male) and Dunkin-Hartley guinea pigs,
_	age 1-200 days at dosing
Test article	⁵⁷ Co and ⁵⁹ Fe in 0.01M HNO ₃ and equal parts of 0.07 M citrate
Route(s)	Orally in above solution or ip in above solution
Duration	1-14 days
Tissue dosimetry	Whole body only
Comments/	Whole-body retention at 2 weeks after dosing was assessed at ages 1,
Narrative	10, 20, 25, 30, 60, and 200 days. A time course of whole body activity
	after administration to 20-day old rats was reported, with data 1, 2, 3, 4,
	7, 10, and 14 days after dosing.

Table D13. Absorption	of cobalt from the GI tract of the rat

Author(s)	Taylor (1961)
Species details	Adult inbred "August" strain rats (male)
Test article	⁵⁸ Co as Co++, Co+++, CoCl ₃ , or CoCl ₂
Route(s)	iv injection or gastric intubation
Duration	3 days
Tissue dosimetry	Whole body only
Comments/	When administered iv as a complex with serum protein or with glycine,
Narrative	cumulative 1-day and 3-day urinary elimination averaged 64 and 73%,
	respectively. Gastric administration with cow's milk, lactose, August rat
	serum, glycine, casein, histidine, lysine, or EDTA influenced the
	absorption of cobalt (range of 11 to 43 percent). When administered
	with glycine, the percent absorption of cobalt was generally observed to
	decrease as the dose increased.

Author(s)	Onkelinx (1976)
Species details	Wistar rats (female), ages 35, 60, and 116 days at dosing
Test article	⁵⁷ CoCl ₂ in 0.5M HCl diluted by 33 with distilled water
Route(s)	iv injection or infusion into jugular
Duration	1 h to 11 days
Tissue dosimetry	Liver, spleen, pancreas, kidney, bone, plasma (total and ultrafiltered)
	and whole body concentrations (time course), cumulative 3-day
	excretion in urine and feces, blood concentrations during iv infusion (up
	to 11 h).
Comments/	Three-day urinary excretion increased with age, and fecal excretion
Narrative	decreased with age, with average urinary elimination of 66 to 76 %, and
	fecal excretion of 5 to 10% of dose.

Table D14. Compartment analysis of cobalt(II) metabolism in rats of various ages

Table D15. Toxicokinetics of cobalt after ip, ig, subcutaneous (sc), and intratracheal administration

Author(s)	Roschchin et al. (1989)
Species details	Albino rats (male; age or size not stated)
Test article	⁵⁶ Co in the form of sulphate
Route(s)	Single doses ig, ip, sc, and intratracheally
Duration	Single dose; data for 5 minutes – 15 d after administration
Tissue dosimetry	Data shown for blood and plasma (1, 4, and 24 h after dosing; all routes)
	and fecal and urinary excretion (days 1, 2, 8, and total for 8 days; ip and
	intratracheal routes only)
Comments/	The largest accumulation was reportedly in liver, kidneys, and lungs,
Narrative	but data were not shown. Blood and plasma levels at 24 h after dosing
	were typically $\sim 1/10^{\text{th}}$ of the concentrations observed 10 minutes after
	dosing. For ip and intratracheal dosing, total urinary and fecal
	elimination over 8 days ranged from 70 to 86% of initial dose, with the
	50-69% excreted in urine within the first 24 h.

 Table D16. Tissue distribution of cobalt after iv injection

Author(s)	Edel et al. (1994)
Species details	Sprague-Dawley rats (adult male)
Test article	⁵⁷ Co as CoCl ₂ in saline
Route(s)	Single dose iv or ip or daily ip for 7 days
Duration	Single dose iv (data at 24 h after dosing) or ip (data at 100 days after
	dosing), or daily ip dose for 3 days or 7 days before data collection
Tissue dosimetry	Blood (plasma and RBC), lung, kidney, liver, spleen, ribs, femur, skull,
	large intestine, small intestine, pancreas, heart, stomach, skin, testis,
	epididymis, and vas deferens.

Comments/	The distribution to all of the listed tissues was determined for single iv
Narrative	injection or single ip injection. For repeated ip injection, data were
	reported only for lung, kidney, liver, spleen, large intestine, small
	intestine, pancreas, testis, and epididymis.

Table D17. Disposition kinetics of cobalt mesoporphyrin in mouse, rat, monkey, and dog

Author(s)	Feng et al. (1997)	
Species details	Adult male Wistar and obese Zucker rats	
Test article	[¹⁴ C]CoMP ([¹⁴ C] cobalt mesoporphyrin trisodium bisglycinate)	
Route(s)	Single dose iv or intramuscular (im) injection	
Duration	Data at 10 minutes – 60 days after dose	
Tissue dosimetry	Plasma concentration; daily fecal and urinary elimination; tissue	
	radioequivalents for adrenal, blood, heart, kidney, liver, lung, lymph	
	node, pituitary, spleen, thymus, and brain; whole-body autoradiography.	
Comments/	Plasma time courses for Wistar and Zucker rats were reported out to ~19	
Narrative	and 21 days, respectively, after iv injection and, for Wistar rats only, ~6	
	days after sc administration, and as much as ~28 days after im injection.	
	Elimination after im administration to the Wistar rat was primarily via	
	feces (total of 54% over 7 days, peaking on day 2), with limited urinary	
	elimination (total of 1% over 7 days, with 0.5% on day 1). Tissue	
	clearance after im injection generally appeared biphasic, with highest	
	early concentrations in the liver, but at and after day 10, kidney had the	
	highest levels of radioequivalents.	

Table D18. Blood and tissue concentration and urinary and fecal elimination time courses of cobalt after iv injection

Author(s)	Weber et al. (2012)	
Species details	Adult F344 rats (male and female)	
Test article	60 CoCl ₂ in 0.1M HCl	
Route(s)	Single dose iv via a jugular vein catheter	
Duration	Blood and tissue data at 1, 4, and 24 h, 2, 4, 8, 16, and 28 days; urine	
	and feces collected daily.	
Tissue dosimetry	Blood, liver, spleen, kidneys, lungs, muscle, GI tract, gonads (testes or	
	ovaries), bone (femur), pelt, eviscerated carcass, and soft tissue remains	
	(brain, eyes, thymus, pancreas, heart, tongue and any other small tissues	
	not defined above); daily urine and fecal samples.	
Comments/	Within 8 days, 93 % of the administered dose had been eliminated,	
Narrative	primarily via urine (61% eliminated in urine within 1 day).	

Table D19	Pharmacokinetics	of cobalt	chloride and	cobalt-prot	oporphyrin
-----------	------------------	-----------	--------------	-------------	------------

Author(s)	Rosenberg (193)
Species details	Adult Sprague-Dawley rats (male)

Test article	CoCl ₂ in saline or cobalt protoporphyrin in NaOH, NaCl	
Route(s)	Single dose subcutaneously	
Duration	30 minutes – 4 weeks	
Tissue dosimetry	Whole blood, plasma, red blood cells, kidney, spleen, liver, testes	
Comments/	After administration of cobalt chloride, plasma levels of cobalt peaked	
Narrative	within 30 minutes, while after cobalt protoporphyrin administration,	
	peak plasma concentrations were not achieved until 24 h after dose	
	administration. Tissue concentrations were measured 4 weeks after	
	dosing; levels were highest in the kidney.	

Table D20 . Cobalt distribution after iv injection	
---	--

Author(s)	Korf et al. (1998)
Species details	Wistar rat (adult male)
Test article	⁵⁷ Co from ⁵⁷ CoCl ₂
Route(s)	Catheter injection leading to right atrium for rat, iv
Duration	24 hours
Tissue dosimetry	Liver, kidney, lung, heart, spleen
Comments/	Radiolabel distribution was measured 24 h after iv injection;
Narrative	radioactivity was present primarily in liver and kidney. However, since
	data were presented only as ratios to concentration found in the heart,
	they are unlikely to usefully inform any model development.

Table D21. Cobalt excretion and tissue distribution after iv injection

Author(s)	Levitskaia et al. (2011)	
Species details	Male Wistar-Han rats	
Test article	⁶⁰ Co from ⁶⁰ CoCl ₂	
Route(s)	Indwelling jugular vein cannula injection	
Duration	48 hours	
Tissue dosimetry	24 & 48 hours for urine and feces, 48 hours for liver, kidney, skin,	
	muscle, femur, heart, blood, lung, spleen, and brain	
Comments /	Radiolabel was excreted primarily in urine during the first day after	
Narrative	dosing (~60% of dose). The radioactivity recovered in the carcass at 48	
	h after dosing totaled 14 percent of the initial dose. The highest	
	concentrations were found in kidney and liver. When considered as	
	percentage of total dose, the largest proportions were found in liver,	
	muscle, skeleton, skin, and kidney (3.8, 0.98, 0.97, 0.88, and 0.79%,	
	respectively).	

Metals: Lead (Pb)

Pb PBPK modeling

PBPK models of Pb in the rat have been developed by O'Flaherty (1991) and Dalley et al. (1990). The Dalley et al. (1990) model was limited to the kinetics of Pb administered by iv injection, and its performance with regard to predicting observed blood and tissue concentrations was poor. The O'Flaherty (1991) rat model was develop using data from repeated dose exposures of 31 days or more, but was successfully extended to descriptions of shorter term data by Timchalk et al. (2001). For validated human models of Pb (Vork et al., 2013 and O'Flaherty, 2013), the reader is referred to Sweeney (2015). The Berthet et al. (2010) human PBPK model of Pb, described below, has not been validated.

Author(s)	Dalley et al. (1990)	
Species	Rat	
Species details	None provided; but model was "normalized for a 250 g rat"	
Route(s)	iv	
Duration	Single dose; data to 120 h post dosing	
Tissue dosimetry	No validation or calibration data were shown	
Model language	IMSL (International Mathematics and Statistical Library, Houston, TX)	
Code availability	Not provided; mathematical equations were provided in the appendix	
Comments/	The model consisted of the following compartments: plasma, RBC,	
Narrative	liver, lung, bone, kidney and carcass. The anatomical equivalent for the	
	"carcass" is unclear, as the volume of 25 ml is insufficient to account for	
	the other, unspecified tissues. Mass balance equations for the liver and	
	carcass were implemented as flow limited compartments, while lung,	
	bone, and kidney were described as membrane limited. While the model	
	diagram indicates Pb loss via urine and biliary excretion, only "intrinsic	
	clearance" from the liver is included in the equations for the Pb model,	
	and no value for that parameter is reported. The model was calibrated	
	using data previously collected by the authors. The calibration data	
	consisted of blood, femur, kidney, and liver concentrations of Pb	
	collected 0.5, 2, 12, 40, and 120 h after dosing with lead acetate. The	
	earliest measured concentrations of Pb in blood were substantially	
	underestimated by the model, and clearance from all tissues except bone	
	appeared to be underestimated.	

Table E1. PBPK model for injected (iv) Pb in the rat

Author(s)	O'Flaherty (1991, 1993); rat model extended by Timchalk et al. (2001).
Species	Rat and human
Species details	Rat model based on data from Long-Evans and Sprague-Dawley rats;
	does not account for pregnancy, lactation, aging or disease

Route(s)	Drinking water ingestion by rats; does not account for exposure during gestation and suckling (O'Flaherty, 1991). Gavage, ip (Timchalk et al., 2001).
Duration	Exposures of 31 days to 18 months (O'Flaherty, 1991).
Tissue dosimetry	Blood, bone (total skeleton); partition coefficients for liver, kidney, and bone set based on study data that was not shown.
Model language	Not stated
Code availability	Not provided; some mathematical equations were provided in the appendix
Comments/	The O'Flaherty (1991) model consisted of the following compartments:
Narrative	plasma (including binding), liver, kidney, other well-perfused tissues, bone, and other poorly perfused tissues. Exchange of lead with bone tissue is described as being diffusion limited. Plasma clearance is described as occurring from the plasma. The plasma clearance rate was estimated from data that were not shown. The model calibration/validation was based on three studies conducted by the authors, with varying designs: some of the time course data were collected during continuous exposures, while others reflect Pb clearance after exposure. In general, the clearance data were better described by the model than the accumulation data.
	Timchalk et al. (2001) extended the O'Flaherty (1991) model to include simulation of Pb in rat saliva, using previously collected time course data (5 blood and saliva samples over 21 days) by the ip route (3 doses to Sprague Dawley rats; spacing not specified by Timchalk et al.). The extended model was then used to evaluate further experiments by the oral route in F344 rats (blood and saliva concentrations 24 h after gavage dosing with 20, 50, 100, 200, and 500 mg Pb/kg body weight). Agreement between the model and data were good (model predictions typically within the standard deviation of the experimental data). A human model with a similar structure was published by O'Flaherty (1993). For a detailed assessment of this model, the reader is directed to Sweeney (2015).

 Table E3. Berthet et al. (2010) human CBTK model for Pb

Author(s)	Berthet et al. (2010)
Species	Humans
Species details	Adult workers at rest or at an activity level of 50 W
Route(s)	Inhalation
Duration	300 work weeks; 1500 exposure days
Tissue dosimetry	No validation or calibration data were shown
Model language	Not stated
Code availability	Not provided. Mathematical equations were represented in a prior
-	publication (Pierrehumbert et al., 2002).

Comments/	The generic model structure (applied to 14 chemicals) consists of
Narrative	absorption into a central compartment, blood-flow mediated exchange of parent compound between the central compartment and a peripheral compartment, metabolism of the parent compound to up to 2 metabolites, excretion of parent compound from the central or peripheral compartments, and excretion of metabolites from the central compartment.
	For the Pb model, the central compartment was equated to total body volume (TBV), with the peripheral compartment equated to the skeleton, there was no metabolism of Pb assumed, and excretion was assumed to occur via renal clearance. The values of compound-specific parameters (TBV: blood affinity coefficient, bone: blood partition coefficient, and renal clearance) were based on clearance half-lives and renal clearance from Araki et al. (1986).

Leggett+ human PBPK model

Vork et al. (2013) extended a human PBPK model developed by Leggett. A detailed assessment of this model can be found in Sweeney (2015).

Toxicokinetics of lead in the rat

Table E4. Biliary and urinary excretion and tissue distribution of ²¹⁰Pb in rats after ²¹⁰Pb injection

Author(s)	Gregus and Klaassen (1986)
Species details	Adult male Sprague-Dawley rats (200-300 g)
Test article	²¹⁰ Pb as lead nitrate, with cold lead acetate
Route(s)	iv, in saline
Duration	2 h (biliary excretion and tissue and plasma concentrations); 4 days (fecal and urinary excretion)
Tissue dosimetry	Radiolabel in liver, kidneys, spleen, lung, pancreas, intestine, stomach, testes, brain, blood, and plasma. Biliary, fecal, and urinary excretion of radiolabel
Comments/ Narrative	Pb data were previously published; the above referenced publication represents a compilation of comparable data for 18 metals collected using a consistent protocol. A listing of the other tested metals may be found in Table A12. In urinary and fecal excretion studies, excreta were collected for 24-h periods for 4 days. Biliary excretion in bile- cannulated rats was determined for 2 h after administration; tissue distribution was determined in the same rats upon completion of the biliary excretion assessment.

Compared to other metals, Pb exhibited intermediate total (fecal and urinary) excretion over four days (20-50% for intermediate excretion; $37.8 \pm 2.5\%$ for Pb; SE of 4-6 rats). Fecal excretion of Pb was also in the intermediate range, while urinary excretion of Pb was considered to be in the low range. Biliary excretion of Pb was in the intermediate range and decreased with increasing dose. Bile:plasma ratios for Pb were relatively high, compared to other tested metals. Expressed as % of dose/tissue weight or volume, liver Pb levels increased with dose, while kidney levels decreased with dose.

Author(s)	Timchalk et al. (2006)
Species details	Adult male Sprague-Dawley rats
Test article	Lead acetate
Route(s)	Gavage (vehicle not stated)
Duration	Study 1: single gavage, samples at 0, 30 min, 1, 5, 12, and 24-h after dosing. Study 2: 5 sequential daily gavage doses, with samples collected 5 days after final dose
Tissue dosimetry	Pb in whole blood, RBC, plasma, saliva, parotid saliva gland, and femur.
Comments/ Narrative	Pb was readily detected in tested matrices, including early saliva samples, peaking in blood at 1 h after dosing. Pb concentration in bone increased throughout Study 1 (up to 24 h). Saliva and blood Pb levels 1 h or more after dosing exhibited a linear correlation ($r^2 = 0.922$); the correlation was stronger when only data 24 h or 5 days after dosing were considered ($r^2 = 0.983$). The authors did not compare these data to their earlier PBPK model for Pb in rat blood and saliva (Timchalk et al., 2001).

Table E5. Pb in saliva and blood after oral exposure

Metals: Nickel

Nickel PBPK modeling

The only identified PBPK model for nickel that describes disposition outside of the lung was that reported by Menzel (1988). Unfortunately, the model was not described in adequate detail to warrant further consideration.

Toxicokinetics of nickel in the rat

Table F1. Uptake and distribution of orally administered nickel in relation to solubility

Author(s)	Ishimatsu et al. (1995)
Species details	Adult male Wistar rats

Test article	Nickel metal, nickel oxide (green), nickel oxide (black), nickel subsulfide, nickel sulfide, nickel sulfate, nickel chloride, and nickel nitrate.
Route(s)	Gavage in starch saline
Duration	Single administration; measurements at 24 h
Tissue dosimetry	Nickel in lung, liver, kidney, spleen, pancreas, heart, brain, blood, and
	cumulative 24 h urinary excretion.
Comments/	At 24 h after dosing, amounts of nickel in tissues of rats administered
Narrative	nickel oxide (green) were not significantly different from control rats.
	Based on amounts in organs, blood, and urine, estimated absorbed
	fractions ranged from 0.01% of nickel oxide (green) to 33.8% of nickel
	nitrate. On a per gram tissue basis, nickel concentrations after
	administration of other nickel compounds were highest in the kidney for
	all compounds, but the % of total in the organs was higher for the more
	soluble compounds (e.g., 80-90% of recovered nickel).

Table F2. Uptake distribution of nickel from in situ intestinal perfusion

Author(s)	Arnich et al. (2000)
Spacios datails	Adult male Wister rate
Species details	Adult Inale Wistar Tats
Test article	Nickel chloride
Route(s)	Intestinal perfusion in saline
Duration	Single 30 or 60-minute session of perfusion with nickel-containing solution
Tissue dosimetry	Nickel concentration in blood and small intestine after 60 minutes
	(multiple nickel concentrations), concentrations after 30-60 minutes of
	perfusion in blood, duodenum, jejunum, jejunum, brain, heart, liver, lungs,
	enleen kidneys and testicles
<u> </u>	
Comments/	Intestinal perfusion was implemented via catheterization of the
Narrative	duodenum, with effluent collection via catheterization of the ileum.
	After perfusion with saline only (15 min., 2 ml/min), perfusion with
	nickel-containing solution was conducted for 30-60 minutes. Nickel
	concentrations in brain did not differ from control after 30 or 60 min of
	perfusion. In other tissues, nickel concentrations were elevated at 30
	minutes (some) and 60 minutes (all except brain), with concentrations
	increased at 60 min relative to 30 min for jejunum, ileum, lungs, spleen,
	testicles, and blood. The relationships between tissue or blood
	concentration vs. perfusate concentrations were interpreted as
	supporting active transfer of nickel in the jejunum and passive transfer
	in the ileven Deceden new intestinal tissue concentrations, the outborn
	in the neum. Based on non-intestinal tissue concentrations, the authors
	estimated that 1.2% of the nickel perfused based through the intestinal
	barrier and was available for distribution to blood and other tissues.

Author(s)	Tempelton et al. (1994)
Species details	Adult male Wistar rats
Test article	Isotopically-enriched nickel metal (⁶¹ Ni, ⁶² Ni), ⁶³ NiCl ₂
Route(s)	Intravenous injection in saline
Duration	Single administration; data reporting to 80 h after dosing
Tissue dosimetry	Plasma concentration
Comments/	Plasma concentrations were reported at 1, 6, and 24 h after dosing with
Narrative	3.3 mg/kg nickel chloride. Plasma concentrations after doses of 0.12,
	0.36, 1.1, and 3.3 mg/kg were also reported, but the timing was not
	specified. Based on comparison to the time course at a 3.3 mg/kg, the
	time may have been 1 h after dosing.

Table F3. Plasma clearance and urinary elimination after iv administration of nickel

Table F4. Plasma clearance and urinary and fecal elimination after iv administration of nickel

Author(s)	Onkelinx et al. (1973)
Species details	Adult male Wistar rats
Test article	⁶³ NiCl ₂
Route(s)	Intravenous injection or infusion in saline
Duration	Single administration or continuous infusion (6.6., 23.5, or 30 h); data
	reporting to 9 d after dosing
Tissue dosimetry	Plasma concentration, total urinary and total fecal excretion
Comments/	Within three days after a single injection, 78% of nickel was eliminated
Narrative	in urine and 15% in feces. Plasma concentrations were measured from 1
	h to 9 days post-dosing; biphasic elimination was indicated. Under
	conditions of continuous intravenous infusion, plasma nickel
	concentrations were measured at 6.6, 23.5 and 30 h after the beginning
	of infusion.

Table F5. Plasma clearance, tissue dosimetry, and urinary and fecal elimination after iv administration of nickel

Author(s)	Smith and Hackley (1968)
Species details	Adult female Sprague-Dawley rats
Test article	⁶³ NiCl ₂
Route(s)	Intravenous injection in saline
Duration	Single administration; data reporting to 72 h after dosing
Tissue dosimetry	Kidney, adrenal, ovary, lung, heart, eye, thymus, pancreas, spleen, liver,
	skin, GI tract, muscle, teeth, femur, brain, adipose, carcass, plasma, and
	whole blood concentrations, percent of dose excreted in urine and feces
	(hourly amount per collection period and cumulative excretion).
Comments /	Distribution studies were conducted in two studies with differing doses
Narrative	and collection times, with fewer times but more tissues in the second
	study. In the first study, urinary and fecal excretion were also assessed.

Urinary excretion peaked in the first collection period (0-2 h), with fecal excretion peaking at the 6-8 h period. Tissue concentrations were highest in the kidney, but the % of dose in the kidney consistently was lower in the high-dose study at comparable collection times, while % dose/tissue volume tended to be similar in other tissues.

Table F6. Nickel time course in plasma, tissue distribution, and urinary and fecal elimination
after ip injection of nickel chloride and biliary excretion after im injection

Author(s)	Sunderman et al. (1976)
Species details	Adult female Fischer 344 rats
Test article	⁶³ NiCl ₂
Route(s)	Intraperitoneal or intramuscular injection in saline
Duration	Single administration, data reporting to 5 days
Tissue dosimetry	Plasma (time course), kidney, liver, lung, heart, and spleen (6 h)
	concentrations, urinary and fecal excretion (% of dose) for 24-h (or
	smaller) intervals; biliary excretion (concentration and % dose) for 3 h
	after im injection.
Comments/	Plasma nickel concentrations were determined at 10, 20, and 40
Narrative	minutes, 1, 1.5, 2, 6, ad 24 h after ip injection of nickel chloride. At 6 h
	after dosing, the highest nickel concentrations were found in the
	kidneys. Urinary excretion was ~36 % of dose within 6 h, 65% within
	24 h, and declined to 7.4, 1.9, 0.94, and 0.55 % of dose on days 2, 3, 4,
	and 5 postdosing. Fecal elimination was approximately 0.95% on day 1,
	and 0.65% of dose on day 2. Biliary excretion of nickel in cannulated
	rats receiving nickel via im injection was 0.17% of dose in 3 h.

Table F7. Plasma nickel levels after ip injection of nickel chloride

Author(s)	Harkin et al. (2003)
Species details	Adult male Sprague-Dawley rats
Test article	Nickel chloride
Route(s)	Intraperitoneal injection in saline
Duration	Single administration, data reported out to 80 h
Tissue dosimetry	Single administration; feces, urine, and serum collected up to 7 days, per
	the authors, but time course data were reported for up to 80 h.
Comments/	Cumulative excretion of nickel up to 80 h was 60 percent of dose in
Narrative	urine and 5.4 % of dose in feces. Time course data indicate that roughly
	two thirds of that urinary excretion occurred within the first 12 h. Serum
	clearance was fit to a biexponential formula with half-lives of 0.21 and
	7.1 h.

Author(s)	Marzouk and Sunderman (1985)
Species details	Adult male Fischer 344 rats
Test article	Nickel chloride (⁶³ NiCl ₂)
Route(s)	Subcutaneous injection in saline
Duration	Single exposure, detailed time course with radioactive nickel for 6 h. At higher doses of nonradioactive nickel chloride, plasma was collected at 6, 16, and 30 h after injection, and bile was collected from 1-6 and 11-16 h after injection.
Tissue dosimetry	Plasma and bile concentrations and biliary excretion rate as expressed as mass and as percent of dose.
Comments/ Narrative	Bile concentrations of nickel were highest during the 1-2 h interval after dosing, and then declined exponentially. Plasma nickel levels declined with a half-life of 3 h. At the low dose (1.7 μ mol/kg), 6 h cumulative biliary excretion of nickel was 0.26% of dose, and the higher doses, 1-6 h biliary excretion was 0.095% and 0.077% of dose at 125 and 250 μ mol/kg, respectively.

Table F8. Plasma and bile concentrations and biliary elimination rate of nickel after subcutaneous injection of nickel chloride

Table F9. Tissue levels and urinary and biliary elimination of nickel after subcutaneous injection of nickel chloride

Author(s)	Srivastava et al. (1988a, b), Athar et al. (1987)
Species details	Adult male and female albino rats
Test article	Nickel chloride (⁶³ NiCl ₂)
Route(s)	Subcutaneous injection; vehicle not stated
Duration	Single exposure, urinary and tissue data at 16 h (Srivastava et al., 1988a, b) biliary data after 3 h and urinary data after 1, 2, and 3 days (Athar et al., 1987)
Tissue dosimetry	Liver, kidney, lung, spleen, heart, and plasma concentrations, total urinary and biliary elimination.
Comments/	The highest nickel concentrations were found in the kidney and
Narrative	approximately 50% of the administered dose was eliminated in urine and 1 percent via feces within 16 h of injection. Partial hepatectomy had no significant impact on clearance or distribution of nickel. Excretion in bile accounted for 0.41% of dose within 3 h of dosing. Urinary elimination accounted for 54, 63, and 68 % of dose at 1, 2, and 3 days after dosing.

Table F10. Time course of tissue levels of nickel after intraperitoneal injection of nickel chloride

Author(s)	Gupta et al. (2000)
Species details	Adult male albino rats
Test article	Nickel chloride (⁶³ NiCl ₂)

Route(s)	ip injection; vehicle not stated
Duration	Single exposure, data at 1,2, and 4 h after dosing
Tissue dosimetry	Nickel concentrations in adrenals, brain, and pancreas
Comments/	The highest concentrations in these tissues were observed 1 h after
Narrative	dosing.

Table F11. Tissue levels of nickel after gavage administration of nickel chloride

Author(s)	Tallkvist et al. (1994)
Species details	Male Sprague-Dawley rats (age unclear; rats were 3 weeks old at the
	start of the experiment, and were on specific diets for 15-25 days prior
	to evaluation)
Test article	Nickel chloride (⁶³ NiCl ₂)
Route(s)	Gastric intubation, in saline
Duration	Single exposure, data at 24 h after dosing
Tissue dosimetry	Concentrations of nickel in kidney, lungs, liver, cerebrum, heart, spleen,
	pancreas, eyes, and serum
Comments/	The highest nickel concentrations were found in the kidney and
Narrative	cerebrum. Tissues from iron-deficient rats had consistently higher
	concentrations of nickel than what was observed in iron-sufficient rats.

Table F12. Tissue levels of nickel after gavage or ip administration of nickel chloride

Author(s)	Tallkvist and Tjälve (1997)
Species details	Male Sprague-Dawley rats, 7 weeks old
Test article	Nickel chloride (⁶³ NiCl ₂)
Route(s)	Gastric intubation or intraperitoneal injection, in saline
Duration	Single exposure, data at 3, 6, 24, 48 and 120 h after dosing (oral) or 24 h
	only (ip)
Tissue dosimetry	Concentrations and percent of dose of nickel in kidney, skin, lungs,
	liver, testis, and serum
Comments/	The highest nickel concentrations were found in the kidney for both oral
Narrative	and ip exposure. In iron-sufficient rats, tissue and serum concentrations
	were highest at 6 h after oral dosing with the exception of the kidney,
	where concentrations were highest at 3 h after dosing. Tissues from
	iron-deficient rats had consistently higher concentrations of nickel than
	what was observed in iron-sufficient rats.

Table F13. Tissue levels of nickel after ip administration of nickel chloride and the effect of coexposure to cadmium chloride

Author(s)	Li et al. (2010)
Species details	Adult female Wistar rats
Test article	Nickel chloride (⁶³ NiCl ₂)

Route(s)	Intraperitoneal injection, in saline
Duration	Single exposure, tissue data at 3 and 24 h after dosing; blood data at 14 points between dosing and 3 h; urinary and fecal excretion up to 24 h after dosing.
Tissue dosimetry	Nickel concentration in blood, brain, eye, ovary, bladder, retroperitoneal fat, bone, muscle, spleen, blood vessel, kidney, uterus, large intestine, small intestine, heart, pancreas, stomach, liver, lung, and hair. Excretion (% of total) in urine and feces for 0-3, 3-6, and 6-24 h after dosing; feces amounts for 0-3 and 3-6 h were combined.
Comments/ Narrative	The highest nickel concentrations were found in the kidney and uterus. In the absence of cadmium approximately 89 percent of the dose of nickel was eliminated in urine, and 4.6 percent eliminated in feces within 24 h. Based on the blood, tissue, and urine time courses of nickel, the presence of cadmium appeared to delay nickel absorption and inhibit the elimination of absorbed nickel.

Solvents: allyl alcohol

Allyl alcohol PBPK modeling

One PBPK model for allyl alcohol was identified in the literature. Mielke et al. (2011) used an in silico algorithm to predict tissue:plasma partition coefficients on the basis of other chemical-specific properties, but assumed no metabolism of allyl alcohol would occur. The oral absorption fraction was reportedly derived from in vivo rat data, but the details of the derivation were unclear. No validation of the model was shown.

rat
r

Author(s)	Mielke et al. (2011)
Species	Rat
Species details	None provided
Route(s)	Oral
Duration	Not specified
Tissue dosimetry	No validation or calibration data were shown
Model language	Not stated
Code availability	Not provided. Details were reported as having been described
	elsewhere.
Comments/	The generic model structure (applied to 29 chemicals) consisted of a
Narrative	fraction of the administered dose being delivered to the portal vein to
	transport to the liver, seven perfusion-limited organ compartments, and
	arterial and venous blood. Tissue:plasma partition coefficients were
	calculated using a published algorithm which relies on inputs regarding
	pKa, logP, and the fraction unbound. The values of these inputs were
	reported for all 29 chemicals, but it was not clear whether the values
	used for allyl alcohol were measured values or computed. The model
	does not include any metabolism or excretion, though allyl alcohol is

known to be metabolized to acrolein. The fractional absorption was assumed to be 20% based on experimental data in rats. The source cited was a reference sheet in French, and it was not clear how the value of 20% absorption was derived. Based on the judgment of this report's lead author (LMS), the absorption is likely much greater, but the apparent availability (perhaps estimated via urinary elimination, etc.) is reduced due to the high reactivity of allyl alcohol and/or its metabolites.

Toxicokinetics of allyl alcohol in the rat (<1 *week of exposure*)

Author(s)	Belinsky et al. (1984)
Species details	Adult female Sprague-Dawley rats
Test article	Allyl alcohol
Route(s)	Intraperitoneal injection, in normal saline
Duration	Single exposure, one measurement 30 minutes after dosing.
Tissue dosimetry	Concentrations in blood collected from the portal vein and vena cava
Comments/	Blood concentrations of allyl alcohol were measured 30 minutes after ip
Narrative	injection of 42 mg/kg allyl alcohol, a level that produced liver necrosis.
	The concentrations were 1210 ± 240 and $530 \pm 210 \ \mu M$ in the portal
	vein and vena cava, respectively.

Table G2. Blood levels of allyl alcohol after ip administration

Table	G3 .	Blood	and	liver	levels	of all	vl alcohol	after i	o administration
-------	-------------	-------	-----	-------	--------	--------	------------	---------	------------------

Author(s)	Anand et al. (2003, 2005)		
Species details	Adult male Sprague-Dawley rats		
Test article	Allyl alcohol		
Route(s)	Intraperitoneal injection, in distilled water		
Duration	Single exposure, data up to 60 minutes after dosing.		
Tissue dosimetry	Blood and liver concentrations		
Comments/	Blood and liver concentrations of allyl alcohol were measured at 5, 10,		
Narrative	15, 30, 45, and 60 (Anand et al., 2003 only) minutes after injection of		
	AA alone, or in a binary mixture (with chloroform) or ternary mixture		
	(with chloroform and trichloroethylene). Data were presented only for		
	20 and 35 mg/kg doses, although the methods sections indicated		
	additional doses to be tested. Blood levels of AA peaked at the first		
measurement (5 minutes), while liver levels peaked at 10 minutes af			
	dosing, and rapidly declined. Co-administration had a limited impact on		
	blood and liver concentrations of allyl alcohol.		

Solvents: bromobenzene

Bromobenzene PBPK modeling

No PBPK models describing the disposition of bromobenzene in any species were identified.

Toxicokinetics of bromobenzene in the rat

Table H1. Plasma and tissue levels of bromobenzene and excretion of urinary metabolites after ip administration

Author(s)	Reid et al. (1971)		
Species details	Adult male Sprague-Dawley rats		
Test article	Bromobenzene, ³ H-bromobenzene or ¹⁴ C-bromobenzene		
Route(s)	Intraperitoneal injection, in sesame oil		
Duration	Single exposure, plasma and tissue concentrations up to 24 h after		
	dosing, urinary metabolites cumulative to 4, 8, and 24 h after dosing.		
Tissue dosimetry	Plasma, liver, kidney, brain heart, lung, stomach, and fat concentrations;		
	total, mercapturic, and phenolic metabolites.		
Comments/	Plasma and all tissue concentrations were reported at 4 and 24 h after a		
Narrative	750 mg/kg ip dose; further time course data for earlier and intermediate		
	times were shown graphically for fat, liver, and plasma, with peaks at		
	around 2 h after dosing, and initial gradual decline until 12 h, then a		
	more steep decline between 12 and 24 h (with no intervening sampling		
to clarify points of inflection). An additional plasma bromobenzene tin			
	course was collected for a 225 mg/kg ip dose, which displayed a peak at		
	about 2 h, gradual decline to 6 h, more rapid decline to a sample at		
	about 11 h, then slow decline between that sample and the 24 h sample.		
	In rats given a 750 mg/kg ip dose, extensive centrilobular hepatic		
	necrosis was observed 24 h after dosing and liver and plasma		
	concentrations of bromobenzene were measured. At the 225 mg/kg		
	dose, approximately 85% of the dose was excreted in urine within 24 h,		
	chiefly as mercapturic acids and phenolic metabolites.		

Table H2. Plasma, tissue, and whole body levels of bromobenzene and urinary levels of metabolites after iv or administration

Author(s)	Zampaglione et al. (1973)
Species details	Adult male Sprague-Dawley rats
Test article	Bromobenzene or ¹⁴ C-bromobenzene
Route(s)	Intravenous injection in plasma or intraperitoneal injection in sesame oil
Duration	Single exposure, plasma, tissue, and whole-body concentrations up to 70 min after in dosing liver concentrations up to 24 h after in dosing
	Urinary metabolites cumulative to 48 h after dosing.
Tissue dosimetry	Plasma, liver, fat, and whole body concentrations of (spleen, brain,
	heart, and testes not shown); urinary bromophenyl mercapturic acid, 1-

	bromophenol, bromocatechol, bromophenyldihydrodiol, and 3-			
	bromophenol.			
Comments/	Triphasic declines of bromobenzene in plasma and liver (shown in			
Narrative	paper) and spleen, brain heart and testes (not shown in paper) were			
	observed within 70 minutes after administration of a tracer dose via iv			
	injection; levels in adipose increased for roughly 20 minutes, then			
	displayed a limited decline. Whole body bromobenzene levels			
	demonstrated a rapid biphasic decline after iv administration (9.8 minute			
initial half-life), with 60-70 percent biotransformation within 30				
	minutes; whole body radioactivity was constant during the 70-minute			
	experiment. After administration of a hepatotoxic dose via ip injection			
	in sesame oil, liver concentrations increased for two hours, slowly			
	declined until 10 h after dosing, then declined more rapidly (final			
	measurement 24 h after dosing). After a nontoxic (0.5 mmol/kg) iv dose,			
70% of the dose was excreted as mercapturic acids, 21% as phe				
	as bromocatechol, and 4% as the dihydrodiol. In contrast, after a toxic ip			
	dose (10 mmol/kg), mercapturic acids decreased to 48% of dose and			
	phenols increased to 41% of dose.			

Table H2. Biliary excretion of bromobenzene-GSH conjugates after injection of bromobenzene

 into the portal vein

Author(s)	Madhu and Klaassen (1992)			
Species details	Adult male rats (strain not specified)			
Test article	Bromobenzene			
Route(s)	Injected into the portal vein in saline			
Duration	Single exposure, bile collection for 90 minutes after exposure (15-			
	minute intervals).			
Tissue dosimetry	Biliary excretion rate of bromobenzene-GSH conjugates.			
Comments/	The biliary excretion rate of bromobenzene-GSH conjugates was			
Narrative	approximately proportional to dose for doses of 62, 125, and 250 µmol			
	bromobenzene/kg, but less than proportional at 500 µmol/kg, a dose			
	which significantly depleted hepatic GSH.			

 Table H3. Blood concentrations of bromobenzene after 4 h of inhalation

Author(s)	Aarstad et al. (1990)
Species details	Adult male Sprague-Dawley rats
Test article	Bromobenzene
Route(s)	Inhalation (dynamic chamber, 6 air changes/h)
Duration	4 h
Tissue dosimetry	Blood bromobenzene
Comments/	The blood concentrations were 10 and 102 mg/L after 4 h of inhalation
Narrative	of bromobenzene, respectively, in which target concentration in the
	chambers 2342 250 and 1000 ppm (1.61 and 6.42 mg/L), respectively.

The chamber concentration time course indicated that steady state levels of inhaled concentration were achieve ~45 minutes into the 4-h exposure.

Solvents: carbon tetrachloride

Carbon tetrachloride PBPK modeling

Several publications describe PBPK models for the disposition carbon tetrachloride in the rat (see below). While most addressed the inhalation route of exposure, quantification of uptake from ip and gavage administration was also assessed via exhaled breath. A human PBPK model for carbon tetrachloride was developed by Paustenbach et al. (1988) using in vivo data, and has been adapted by other modelers.

Author(s)	Gargas et al. (1986, 1990); Evans and Andersen (1995); El-Masri et al., 1996: Semino et al. (1997): Thrall et al. (2000)
Species	Rat
Species details	Male Fischer 344
Route(s)	Inhalation (closed chamber), intraperitoneal injection of neat chemical (rats placed in exhalation chamber), and gavage (corn oil and Emulphor vehicles)
Duration	4-6 h inhalation
Tissue dosimetry	Not measured in inhalation and ip studies—disposition inferred from changes in chamber concentration; blood concentrations and exhaled breath chamber concentrations after gavage dosing
Model language	Simusolv (Gargas et al., 1990), Simusolv v. 3.0 (Evans and Andersen, 1995)
Code availability	Not provided; equations previously presented elsewhere. Equations for oral absorption (Semino et al., 1997) were provided.
Comments/	The generic model structure employed by Gargas et al. (1986, 1990)
Narrative	(applied to as many as eight chemicals in the listed series of papers) consisted of an inhalation chamber, a blood/air gas exchange compartment, four perfusion limited tissue compartments (liver, fat, slowly perfused tissues and rapidly perfused tissues), and a venous blood mixing equation. Potential nonspecific losses to the chamber and/or animal fur, etc. were provided for in the model. Blood:air and tissue:air (liver, fat, and muscle) partition coefficients were measured by Gargas et al. (1986), with the slowly perfused tissue partition coefficient set at a value double the measured muscle: air partition coefficient. Tissue:blood partition coefficients were computed as the ratio of tissue:air to blood:air partition coefficient. Metabolism was limited to the liver and for carbon tetrachloride, was described as saturable. The metabolic parameters were determined by best fit to closed chamber

Table I1. Gargas et al. (1986) PBPK model inhaled carbon tetrachloride in the rat

concentration time course data with initial concentrations of 0.65, 10,
100, and 230 ppm. In both Gargas et al. (1986 and 1990), the VmaxC
was reported as 0.4 mg/h-kg ^{0.7} and KM = 0.25 mg/L. Evan and
Andersen (1995) slightly modified the model by including a lung tissue
compartment (with no metabolism), use the Gargas et al. (1986, 1990)
value of 0.25 mg/L for the KM, and a lower value for Vmax (0.11 mg/h,
or $VmaxC = 0.3 mg/h/kg^{0.7}$ for a 0.225 kg rat). Evans and Andersen
(1995) found that predicted chamber concentration were more sensitive
to Vmax and Km values at lower initial concentrations. Thrall et al.
(2000) determined that the same metabolic parameters derived by
Gargas et al. (1986, 1990) also adequately simulated a new set of closed
chamber uptake data that they collected (initial concentrations of 34, 40,
163, 316, and 1293 ppm).
El-Masri et al. (1996) calibrated the rate of uptake of carbon
tetrachloride from ip injection using the Gargas et al. (1986) model to
predict carbon tetrachloride concentrations in an exhalation chamber (<
1 h after dosing). Semino et al. (1997) described disposition of carbon
tetrachloride delivered by gavage in a corn oil or Emulphor vehicle
(data also reported in Kim et al., 1990), using a multicompartmental
description of the gastrointestinal tract. Semino et al. (1997) optimized
absorption rates, fractional availability for uptake, and transit time for
each of 9 sub-compartments to describe disposition in three individual
rats, which resulted in multiple pulses in rat blood concentrations in
 these studies. The generalizability of these parameters was unclear.

	$E = (1, (1004)) E = 10^{\circ} (1006) M = (1, (2007))$
Author(s)	Evans et al. (1994); Evans and Simmons (1996), Yoon et al. (2007)
Species	Rat
Species details	Male Fischer 344
Route(s)	Inhalation; closed chamber
Duration	6 h
Tissue dosimetry	Not measured; disposition inferred from declines in chamber
	concentration
Model language	Simusolv v. 3.0 (Evans et al., 1994; Evans and Simmons, 1996);
	acslXtreme, version 2.0.1.7 (Yoon et al., 2007)
Code availability	Not provided; equations previously presented elsewhere.
Comments/	The generic model structure employed by Gargas et al. (1986, 1990),
Narrative	described above, (Table I1) was also used by Evans and colleagues.
	Blood:air and tissue:air (liver, fat, and muscle) partition coefficients
	were measured by Evans et al. (1994). Blood or tissue:air values
	determined by Evans et al. (1994) were slightly higher than the Gargas
	et al. (1986) values for blood (21%), liver (14%) and muscle (47%), but
	lower for fat (22%). As a result, tissue:blood partition coefficients were
	only modestly changed for muscle and liver, but the change in the

Table I2. Evans et al. (1994) PBPK model inhaled carbon tetrachloride in the rat

fat:blood partition coefficient was more substantial (decreased by 35%). Following the precedent of Gargas et al. (1986), Evans et al. (1994) also used a value of 2x the measured muscle:air value to compute the tissue:blood partition coefficient for slowly perfused tissues. The metabolic parameters were determined by best fit to closed chamber concentration time course data with initial concentrations of 25, 100, 250 and 1000 ppm. Compared to Gargas et al. (1986 and 1990), the VmaxC was approximately the same (0.37 vs. 0.4 mg/h-kg^{0.7}). The Evans et al. (1994) KM of 1.3 mg/L was larger than the Gargas et al. values (0.25 mg/L).

Yoon et al. (2007) modified the Gargas et al. (1986)/Evans et al. (1994) model structure to accommodate lung and kidney tissue compartments with possible metabolism and non-metabolizing brain and GI tissue compartments for an analysis of potential extrahepatic metabolism of volatile organic compounds. Yoon et al. (2007) used the Evans et al. (1994) partition coefficients in their optimizations, and yielded optimal values of KM = 1.10 (similar to that of Evans et al. (1994), but a VmaxC of 0.13 mg/h-kg^{0.75}. Considering that Simusolv and acslXtreme are similar, it is unclear if the difference between Evans et al (1994) and Yoon et al. (2007) is the result of somewhat different anatomical parameters, model structure (splitting out specific richly perfused tissues), or differences in optimization approaches (e.g., heteroscedasticity).

Table I3. Paustenbach et al. (1988) PBPK model inhaled carbon tetrachloride in the rat, monkey and human

Author(s)	Paustenbach et al. (1988); Thrall et al. (2000) (only human model based
	on Paustenbach model); Mumtaz et al. (2012).
Species	Rat, monkey, and human
Species details	Male Sprague-Dawley or Fischer 344 rats; rhesus monkeys; adult
_	humans
Route(s)	Inhalation; rats: closed chamber (see Gargas et al., 1986), open
	chamber; humans: constant concentrations
Duration	Rats: 6-11.5 h per day, up to 12 days (5 days on, 2 days off, 5 days on);
	humans: 70 or 180 minutes.
Tissue dosimetry	Disposition inferred in part from declines in chamber concentration; ¹⁴ C
-	in urine, feces, exhaled as CCl4 or CO2, and in fat
Model language	Not stated in Paustenbach et al. (1988); Thrall et al. 2000: Simusolv
	3.0; Mumtaz et al. (2012); Berkeley Madonna
Code availability	Not provided; equations previously presented elsewhere.
Comments/	The model structure was the same as used by Gargas et al. (1986),
Narrative	described above (Table I1), as were the rat partition coefficients. A
	human blood:air partition coefficient was reported by Paustenbach, but
	it is not clear what values for tissue:blood partition coefficients were

used for humans (i.e., computed rat tissue:blood ratios, or human tissue: blood ratios estimated as rat tissue:air value divided by the human tissue:air value). The metabolic parameters derived for smaller F344 rats (Gargas et al., 1986) were adjusted to fit the repeated exposure data for larger Sprague-Dawley rats (previously reported by Paustenbach and colleagues), with KM the same as the Gargas et al. (1986, 1990) value of 0.25 mg/L, but with VmaxC = 0.65 mg/r-kg^{0.7}. The same partitioning and biochemical parameters were applied to simulation of data for monkeys and human volunteers collected by other researchers. The human data consisted of post exposure exhaled breath measurements of carbon tetrachloride. The physiological parameters that Paustenbach et al. (1988) used for humans included a fat volume of only 10 percent. Thrall et al. (2000) used the Paustenbach et al. (1988) physiological values, human partition coefficients, and KM, but based their VmaxC value on in vitro metabolism data, adjusted for in vivo (optimized): in vitro ratios determined for rats, mice, and humans. Mumtaz et al. (2012) report using chemical-specific parameters of Thrall et al. (2000) as the basis for their human PBPK model of carbon tetrachloride, paired with physiological parameters standardized for use in predicting the human toxicokinetics for various parameters. Their model includes liver, kidney, skin, fat, slowly perfused tissue, richly perfused tissues, blood, and air exchange. The Mumtaz et al. (2012) uses the original Paustenbach et al. (1988) value for VmaxC (not the value Thrall et al., 2000 derived from in vitro data) adjusted for the change in body weight scaling coefficient (from 0.7 to 0.75), and blood:air partition coefficient. The tissue: blood partition coefficients reported by Mumtaz et al. (2012) are consistent with the approach of estimating human tissue:blood partition coefficients as the rat tissue:air partition coefficient divided by the human blood:air partition coefficient. The Mumtaz et al. (2012) simulations of human exhaled breath data were visibly different from those of Thrall et al. (2000). The use of different anatomical/physiological parameters (e.g., body fat percentage, cardiac output, alveolar ventilation rate) may contribute to the observed differences in the simulations.

Toxicokinetics of carbon tetrachloride in the rat

Author(s)	Yoshida et al. (1999)
Species details	Adult male Sprague-Dawley rats
Test article	Carbon tetrachloride
Route(s)	Inhalation (closed chamber)
Duration	6 h
Tissue dosimetry	None; disposition was inferred from chemical disappearance

Comments/	Chemical distribution within and losses to the closed chamber system
Narrative	were characterized in the absence of a rat. Chemical disappearance in
	the presence of a rat was then attributed to net uptake into the rat and
	metabolism. Five different starting concentrations (1 ppm or less) were
	used to evaluate chemical kinetics. Using a three-compartment model
	(tank, chamber, and rat), first order rates of carbon tetrachloride
	exhalation and metabolism were derived. The exhalation rate constant
	was observed to exceed the metabolism rate constant, consistent with
	findings of Reynolds et al. (1984a, b) in rats exposed by gavage (see
	below, Table I6).

Table I5. Radiolabel body burden and clearance after inhalation of 20 ppm ¹⁴C-carbon tetrachloride by rats

Author(s)	Benson et al. (2001)
Species details	Adult male Fischer 344 rats
Test article	¹⁴ C-labeled carbon tetrachloride
Route(s)	Inhalation (nose-only)
Duration	4 h exposure, specimen collection up to 48 h (excreta)
Tissue dosimetry	Radiolabel in urine, feces, exhaled air (fractionated into volatiles
	[carbon tetrachloride and chloroform] and carbon dioxide), blood, lung,
	liver, kidneys, brain, spleen, perirenal fat, and carcass.
Comments /	While excreta collection over several intervals and blood and tissue
Narrative	collection reportedly occurred at the conclusion of exposure, and 2, 6,
	24, and 48 h after exposure, only data from the conclusion of exposure
	and at 48 h were explicitly reported. Data from intermediate time points
	were likely used in the derivation of elimination half-lives, but were not
	presented for inspection. Elimination of radiolabel from blood and lung
	was monophasic during the 48 h of monitoring after exposure, while
	elimination from liver and kidney was biphasic.

Table I6 . Exhalation and excretion of ¹⁴ C-carb	oon tetrachloride after gavage
--	--------------------------------

Author(s)	Reynolds et al. (1984a, b)
Species details	Adult male Sprague Dawley rats
Test article	¹⁴ C-labeled carbon tetrachloride
Route(s)	Gavage in mineral oil
Duration	Single exposure, specimen collection up to 24 h
Tissue dosimetry	Exhaled ¹⁴ CCl ₄ , ¹⁴ CO ₂ , and CHCl ₃ ; ¹⁴ C in urine and feces, and ¹⁴ C
	bound in liver
Comments/	Exhaled air was collected for intervals of increasing duration during the
Narrative	first 24 h after dosing with 0, 0.1, 0.3, 2, 4, 10, or 26 mmol/kg in
	mineral oil. Urine and feces collection intervals were less clearly
	delineated, but only 24-h cumulative data were reported. As dose
	increased, a decreasing proportion of radiolabel was recovered as CO ₂ .

Author(s)	Kim et al. (1990), Sanzgiri and Bruckner (1997)
Species details	Adult male Sprague Dawley rats
Test article	Carbon tetrachloride
Route(s)	Intravenous injection in polyethylene glycol (PEG) 400; gavage as neat
	chemical or in corn oil, water, and various concentrations of Emulphor
	(0.25, 1, 2.5, 5, or 10%) as an aqueous emulsion. Equal doses of carbon
	tetrachloride were used in the various trials (25 mg/kg).
Duration	Single exposure, blood collection up to 19 h after dosing
Tissue dosimetry	Blood carbon tetrachloride
Comments/	Serial blood samples were taken with decreasing frequency (2- to 60-
Narrative	minute intervals for 19 h for gavage dosing in corn oil and for up to 9 h
	for other routes and vehicles. In the tested range, Emulphor produced no
	hepatotoxicity and kinetics were unaltered by the differences in
	Emulphor concentrations. Pure (neat) chemical and chemical in corn oil
	were more slowly absorbed and displayed lower peak concentrations.
	The time course for carbon tetrachloride (plotted as average blood
	concentration for 5 rats) displayed two distinct peaks.

Table I6. Serial blood concentrations of carbon tetrachloride in rats after iv dosing and gavage dosing in various vehicles

Table I7. Effect of route and pattern of exposure on blood and tissue concentrations of carbon tetrachloride after equal systemic doses via inhalation, gavage, and oral infusion

Author(s)	Sanzgiri et al. (1995, 1997),
Species details	Adult male Sprague Dawley rats
Test article	Carbon tetrachloride
Route(s)	Inhalation, gavage or gastric infusion in aqueous Emulphor emulsion
Duration	Single gavage, 2 h inhalation or gastric infusion, blood collection up to
	12 h after dosing, tissue collection up to 24 h after dosing.
Tissue dosimetry	Carbon tetrachloride in blood, liver, kidney, skeletal muscle, heart, lung,
	brain, perirenal fat, spleen (not shown), and GI tract (not shown;
	inhalation only)
Comments/	2-hr inhalation exposures were conducted at 100 and 1000 ppm through
Narrative	a one-way breathing valve; the minute volume and the difference
	between inhaled and exhaled concentrations were determined so that
	total systemically absorbed dose could be computed. The systemic doses
	computed for the inhalation studies were then used for the gavage
	studies and for two-hour gastric infusions. Time course data for blood
	were available for both high and low doses (Sanzgiri et al., 1995), while
	tissue data were available only for high doses.

ACKNOWLEDGEMENTS

This work was funded by Work Unit Number H1608.

DISCLAIMER

The views expressed in this article are those of the authors and do not necessarily reflect the official policy or position of the Department of the Navy, Department of Defense, nor the U.S. Government.

REFERENCES

Aarstad K, Becker R, Dahl J, Dybing E, Nilsen OG. Short term inhalation of bromobenzene: methodology and absorption characteristics in mouse, rat and rabbit. Pharmacol Toxicol. 1990 Oct;67(4):284-7.

Afolaranmi GA, Grant MH. The effect of ascorbic acid on the distribution of soluble Cr and Co ions in the blood and organs of rats. J Appl Toxicol. 2013 Mar;33(3):220-6. doi: 10.1002/jat.1744.

Amzal B, Julin B, Vahter M, Wolk A, Johanson G, Akesson A. Population toxicokinetic modeling of cadmium for health risk assessment. Environ Health Perspect. 2009 Aug;117(8):1293-301. doi: 10.1289/ehp.0800317.

Anand SS, Mumtaz MM, Mehendale HM. Dose-dependent liver regeneration in chloroform, trichloroethylene and allyl alcohol ternary mixture hepatotoxicity in rats. Arch Toxicol. 2005 Nov;79(11):671-82.

Anand SS, Murthy SN, Vaidya VS, Mumtaz MM, Mehendale HM. Tissue repair plays pivotal role in final outcome of liver injury following chloroform and allyl alcohol binary mixture. Food Chem Toxicol. 2003 Aug;41(8):1123-32.

Arnich N, Lanhers MC, Cunat L, Joyeux M, Burnel D. Nickel absorption and distribution from rat small intestine in situ. Biol Trace Elem Res. 2000 May;74(2):141-51.

Athar M, Misra M, Srivastava RC. Evaluation of chelating drugs on the toxicity, excretion, and distribution of nickel in poisoned rats. Fundam Appl Toxicol. 1987 Jul;9(1):26-33.

Barnaby CF, Smith T, Thompson BD. Dosimetry of the radioisotopes of cobalt. Phys Med Biol. 1968 Jul;13(3):421-33.

Béchaux C, Bodin L, Clémençon S, Crépet A. PBPK and population modelling to interpret urine cadmium concentrations of the French population. Toxicol Appl Pharmacol. 2014 Sep 15;279(3):364-72. doi: 10.1016/j.taap.2014.06.026.

Belinsky SA, Matsumura T, Kauffman FC, Thurman RG. Rates of allyl alcohol metabolism in periportal and pericentral regions of the liver lobule. Mol Pharmacol. 1984 Jan;25(1):158-64.

Benson JM, Tibbetts BM, Thrall KD, Springer DL. Uptake, tissue distribution, and fate of inhaled carbon tetrachloride: comparison of rat, mouse, and hamster. Inhal Toxicol. 2001 Mar;13(3):207-17.

Berthet A, de Batz A, Tardif R, Charest-Tardif G, Truchon G, Vernez D, Droz PO. Impact of biological and environmental variabilities on biological monitoring--an approach using toxicokinetic models. J Occup Environ Hyg. 2010 Mar;7(3):177-84. doi: 10.1080/15459620903530052. Erratum in: J Occup Environ Hyg. 2011 May;8(5):D37-8.

Chen BC, Chou WC, Chen WY, Liao CM. Assessing the cancer risk associated with arseniccontaminated seafood. J Hazard Mater. 2010 Sep 15;181(1-3):161-9. doi: 10.1016/j.jhazmat.2010.04.112.

Chou WC, Chen JW, Liao CM. Contribution of inorganic arsenic sources to population exposure risk on a regional scale. Environ Sci Pollut Res Int. 2016 Jul;23(14):14173-82. doi: 10.1007/s11356-016-6557-9.

Choudhury H, Harvey T, Thayer WC, Lockwood TF, Stiteler WM, Goodrum PE, Hassett JM, Diamond GL. Urinary cadmium elimination as a biomarker of exposure for evaluating a cadmium dietary exposure--biokinetics model. J Toxicol Environ Health A. 2001 Jul 6;63(5):321-50.

Collins BJ, Stout MD, Levine KE, Kissling GE, Melnick RL, Fennell TR, Walden R, Abdo K, Pritchard JB, Fernando RA, Burka LT, Hooth MJ. Exposure to hexavalent chromium resulted in significantly higher tissue chromium burden compared with trivalent chromium following similar oral doses to male F344/N rats and female B6C3F1 mice. Toxicol Sci. 2010 Dec;118(2):368-79. doi: 10.1093/toxsci/kfq263.

Crowe A, Morgan EH. Effect of dietary cadmium on iron metabolism in growing rats. Toxicol Appl Pharmacol. 1997 Jul;145(1):136-46.

Dalley JW, Gupta PK, Hung CT. A physiological pharmacokinetic model describing the disposition of lead in the absence and presence of L-ascorbic acid in rats. Toxicol Lett. 1990 Feb;50(2-3):337-48.

Diacomanolis V, Noller BN, Ng JC. Interaction effects of lead on bioavailability and pharmacokinetics of arsenic in the rat. Environ Geochem Health. 2013 Dec;35(6):757-66. doi: 10.1007/s10653-013-9527-x.

Edel J, Pozzi G, Sabbioni E, Pietra R, Devos S. Metabolic and toxicological studies on cobalt. Sci Total Environ. 1994 Jun 30;150(1-3):233-44.

El-Masri HA, Kenyon EM. Development of a human physiologically based pharmacokinetic (PBPK) model for inorganic arsenic and its mono- and di-methylated metabolites. J Pharmacokinet Pharmacodyn. 2008 Feb;35(1):31-68.

El-Masri HA, Thomas RS, Sabados GR, Phillips JK, Constan AA, Benjamin SA, Andersen ME, Mehendale HM, Yang RS. Physiologically based pharmacokinetic/pharmacodynamic modeling

of the toxicologic interaction between carbon tetrachloride and Kepone. Arch Toxicol. 1996;70(11):704-13.

Evans MV, Andersen ME. Sensitivity analysis and the design of gas uptake inhalation studies. Inhal Toxicol. 1995;7:1075-1094.

Evans MV, Dowd SM, Kenyon EM, Hughes MF, El-Masri HA. A physiologically based pharmacokinetic model for intravenous and ingested dimethylarsinic acid in mice. Toxicol Sci. 2008 Aug;104(2):250-60. doi: 10.1093/toxsci/kfn080.

Feng MR, Rossi DT, Strenkoski C, Black A, Dehart P, Lovdahl M, McNally W. Disposition kinetics of cobalt mesoporphyrin in mouse, rat, monkey and dog. Xenobiotica. 1998 Apr;28(4):413-26.

Garcia RI, Ibrahim JG, Wambaugh JF, Kenyon EM, Setzer RW. Identifiability of PBPK models with applications to dimethylarsinic acid exposure. J Pharmacokinet Pharmacodyn. 2015 Dec;42(6):591-609. doi: 10.1007/s10928-015-9424-2.

Gargas ML, Andersen ME, Clewell HJ 3rd. A physiologically based simulation approach for determining metabolic constants from gas uptake data. Toxicol Appl Pharmacol. 1986 Dec;86(3):341-52.

Gargas ML, Clewell HJ III, Andersen ME. Gas uptake inhalation techniques and the rates of metabolism of chloromethanes, chloroethanes, and chloroethylene in the rat. Inhal Toxicol. 1990;2:295-319.

Gregus Z, Klaassen CD. Disposition of metals in rats: a comparative study of fecal, urinary, and biliary excretion and tissue distribution of eighteen metals. Toxicol Appl Pharmacol. 1986 Aug;85(1):24-38.

Gupta S, Ahmad N, Husain MM, Srivastava RC. Involvement of nitric oxide in nickel-induced hyperglycemia in rats. Nitric Oxide. 2000 Apr;4(2):129-38.

Harkin A, Hynes MJ, Masterson E, Kelly JP, O'Donnell JM, Connor TJ. A toxicokinetic study of nickel-induced immunosuppression in rats. Immunopharmacol Immunotoxicol. 2003 Nov;25(4):655-70.

Hollins JG, McCullough RS. Radiation dosimetry of internal contamination by inorganic compounds of cobalt: an analysis of cobalt metabolism in rats. Health Phys. 1971 Aug;21(2):233-46.

Horner DB, Smith JC. The distribution of tracer doses of cadmium in the normal rat. Arch Environ Contam Toxicol. 1975;3(3):307-18.

Ishimatsu S, Kawamoto T, Matsuno K, Kodama Y. Distribution of various nickel compounds in rat organs after oral administration. Biol Trace Elem Res. 1995 Jul;49(1):43-52.

Jackl GA, Rambeck WA, Kollmer WE. Retention of cadmium in organs of the rat after a single dose of labeled cadmium-3-phytate. Biol Trace Elem Res. 1985 Mar;7(2):69-74. doi: 10.1007/BF02916564.

Jansen HM, Knollema S, van der Duin LV, Willemsen AT, Wiersma A, Franssen EJ, Russel FG, Korf J, Paans AM. Pharmacokinetics and dosimetry of cobalt-55 and cobalt-57. J Nucl Med. 1996 Dec;37(12):2082-6.

Ju YR, Chen WY, Liao CM. Assessing human exposure risk to cadmium through inhalation and seafood consumption. J Hazard Mater. 2012 Aug 15;227-228:353-61. doi: 10.1016/j.jhazmat.2012.05.060.

Kanwar KC, Kaushal SC, Mehra RK. Clearance of orally administered 115mCd from rat tissues. Experientia. 1980 Aug 15;36(8):1004-5.

Kim HJ, Bruckner JV, Dallas CE, Gallo JM. Effect of dosing vehicles on the pharmacokinetics of orally administered carbon tetrachloride in rats. Toxicol Appl Pharmacol. 1990 Jan;102(1):50-60.

Kirman CR, Hays SM, Aylward LL, Suh M, Harris MA, Thompson CM, Haws LC, Proctor DM. Physiologically based pharmacokinetic model for rats and mice orally exposed to chromium. Chem Biol Interact. 2012 Oct 25;200(1):45-64. doi:10.1016/j.cbi.2012.08.016. Erratum in: Chem Biol Interact. 2013 Aug 25;204(3):201-6.

Kirman CR, Aylward LL, Suh M, Harris MA, Thompson CM, Haws LC, Proctor DM, Lin SS, Parker W, Hays SM. Physiologically based pharmacokinetic model for humans orally exposed to chromium. Chem Biol Interact. 2013 Jun 25;204(1):13-27. doi: 10.1016/j.cbi.2013.04.003.

Kirman CR, Suh M, Hays SM, Gürleyük H, Gerads R, De Flora S, Parker W, Lin S, Haws LC, Harris MA, Proctor DM. Reduction of hexavalent chromium by fasted and fed human gastric fluid. II. Ex vivo gastric reduction modeling. Toxicol Appl Pharmacol. 2016 Sep 1;306:120-33. doi: 10.1016/j.taap.2016.07.002.

Kjellström T, Nordberg GF. A kinetic model of cadmium metabolism in the human being. Environ Res. 1978 Jul;16(1-3):248-69.

Korf J, Veenma-van der Duin L, Brinkman-Medema R, Niemarkt A, de Leij LF. Divalent cobalt as a label to study lymphocyte distribution using PET and SPECT. J Nucl Med. 1998 May;39(5):836-41.

Kostial K. Effect of age and diet on renal cadmium retention in rats. Environ Health Perspect. 1984 Mar;54:51-6.

Kotsonis FN, Klaassen CD. Toxicity and distribution of cadmium administered to rats at sublethal doses. Toxicol Appl Pharmacol. 1977 Sep;41(3):667-80.

Laschinsky N, Kottwitz K, Freund B, Dresow B, Fischer R, Nielsen P. Bioavailability of chromium(III)-supplements in rats and humans. Biometals. 2012 Oct;25(5):1051-60. doi: 10.1007/s10534-012-9571-5.

Leazer TM, Liu Y, Klaassen CD. Cadmium absorption and its relationship to divalent metal transporter-1 in the pregnant rat. Toxicol Appl Pharmacol. 2002 Nov 15;185(1):18-24.

Leggett RW. The biokinetics of inorganic cobalt in the human body. Sci Total Environ. 2008 Jan 25;389(2-3):259-69.

Lehman LD, Klaassen CD. Dosage-dependent disposition of cadmium administered orally to rats. Toxicol Appl Pharmacol. 1986 Jun 15;84(1):159-67.

Levitskaia TG, Creim JA, Curry TL, Luders T, Peterson JM, Thrall KD, Levinson B. Evaluation of Cuprimine® and Syprine® for decorporation of radioisotopes of cesium, cobalt, iridium and strontium. Health Phys. 2011 Aug;101(2):118-27. doi: 10.1097/HP.0b013e318208ceb6.

Liao CM, Lin TL, Hsieh NH, Chen WY. Assessing the arsenic-contaminated rice (Oryza sativa) associated children skin lesions. J Hazard Mater. 2010 Apr 15;176(1-3):239-51. doi: 10.1016/j.jhazmat.2009.11.019.

Liao CM, Shen HH, Chen CL, Hsu LI, Lin TL, Chen SC, Chen CJ. Risk assessment of arsenicinduced internal cancer at long-term low dose exposure. J Hazard Mater. 2009 Jun 15;165(1-3):652-63. doi: 10.1016/j.jhazmat.2008.10.095.

Liao CM, Lin TL, Chen SC. A Weibull-PBPK model for assessing risk of arsenic-induced skin lesions in children. Sci Total Environ. 2008 Mar 25;392(2-3):203-17. doi: 10.1016/j.scitotenv.2007.12.017.

Ling MP, Liao CM. Risk characterization and exposure assessment in arseniasis-endemic areas of Taiwan. Environ Int. 2007 Jan;33(1):98-107.

Ling MP, Liao CM. A human PBPK/PD model to assess arsenic exposure risk through farmed tilapia consumption. Bull Environ Contam Toxicol. 2009 Jul;83(1):108-14. doi: 10.1007/s00128-009-9764-y.

Madhu C, Klaassen CD. Bromobenzene-glutathione excretion into bile reflects toxic activation of bromobenzene in rats. Toxicol Lett. 1992 Apr;60(2):227-36.

Mann S, Droz PO, Vahter M. A physiologically based pharmacokinetic model for the four major arsenic species in mammals. In: Arsenic Exposure and Health, Chappell WR, Abernathy CO and Cothern CR, eds.

Mann S, Droz PO, Vahter M. A physiologically based pharmacokinetic model for arsenic exposure. II. Validation and application in humans. Toxicol Appl Pharmacol. 1996 Oct;140(2):471-86.

Mann S, Droz PO, Vahter M. A physiologically based pharmacokinetic model for arsenic exposure. I. Development in hamsters and rabbits. Toxicol Appl Pharmacol.1996 Mar;137(1):8-22.

Marzouk A, Sunderman FW Jr. Biliary excretion of nickel in rats. Toxicol Lett. 1985 Sep;27(1-3):65-71.

Menzel DB. Planning and using PB-PK models: an integrated inhalation and distribution model for nickel. Toxicol Lett. 1988 Oct;43(1-3):67-83.

Mielke H, Anger LT, Schug M, Hengstler JG, Stahlmann R, Gundert-Remy U. A physiologically based toxicokinetic modelling approach to predict relevant concentrations for in vitro testing. Arch Toxicol. 2011 Jun;85(6):555-63. doi: 10.1007/s00204-010-0612-y.

Monnot AD, Christian WV, Paustenbach DJ, Finley BL. Correlation of blood Cr(III) and adverse health effects: Application of PBPK modeling to determine non-toxic blood concentrations. Crit Rev Toxicol. 2014 Aug;44(7):618-37. doi: 10.3109/10408444.2014.926472.

Mumtaz MM, Ray M, Crowell SR, Keys D, Fisher J, Ruiz P. Translational research to develop a human PBPK models tool kit-volatile organic compounds (VOCs). J Toxicol Environ Health A. 2012;75(1):6-24. doi: 10.1080/15287394.2012.625546.

National Toxicology Program. NTP toxicology and carcinogenesis studies of chromium picolinate monohydrate (CAS No. 27882-76-4) in F344/N rats and B6C3F1 mice (feed studies). Natl Toxicol Program Tech Rep Ser. 2010 Jun;(556):1-194.

National Toxicology Program. Toxicology and carcinogenesis studies of sodium dichromate dihydrate (CAS No. 7789-12-0) in F344/N rats and B6C3F1 mice (drinking water studies). Natl Toxicol Program Tech Rep Ser. 2008 Jul;(546):1-192.

Naylor GP, Harrison JD. Gastrointestinal iron and cobalt absorption and iron status in young rats and guinea pigs. Hum Exp Toxicol. 1995 Dec;14(12):949-54.

Nordberg GF, Kjellström T. Metabolic model for cadmium in man. Environ Health Perspect. 1979 Feb;28:211-7.

O'Flaherty EJ. Physiologically based models for bone-seeking elements. II. Kinetics of lead disposition in rats. Toxicol Appl Pharmacol. 1991 Nov;111(2):313-31.

O'Flaherty EJ. 1993. Physiologically based models for bone-seeking elements. IV. Kinetics of lead disposition in humans. Toxicol Appl Pharmacol. 118:16-29.

Onkelinx C. Compartment analysis of cobalt (II) metabolism in rats of various ages. Toxicol Appl Pharmacol. 1976 Nov;38(2):425-38.

Onkelinx C. Compartment analysis of metabolism of chromium(III) in rats of various ages. Am J Physiol. 1977 May;232(5):E478-84

Onkelinx C, Becker J, Sunderman FW Jr. Compartmental analysis of the metabolism of ⁶³Ni(II) in rats and rabbits. Res Commun Chem Pathol Pharmacol. 1973 Sep;6(2):663-76.

Park JD, Cherrington NJ, Klaassen CD. Intestinal absorption of cadmium is associated with divalent metal transporter 1 in rats. Toxicol Sci. 2002 Aug;68(2):288-94.

Paustenbach DJ, Clewell HJ 3rd, Gargas ML, Andersen ME. A physiologically based pharmacokinetic model for inhaled carbon tetrachloride. Toxicol Appl Pharmacol. 1988 Nov;96(2):191-211.

Pierrehumbert G, Droz PO, Tardif R, Charest-Tardif G, Truchon G. Impact of human variability on the biological monitoring of exposure to toluene, phenol, lead, and mercury: II. Compartmental based toxicokinetic modelling. Toxicol Lett. 2002 Aug 5;134(1-3):165-75.

Reid WD, Christie B, Krishna G, Mitchell JR, Moskowitz J, Brodie BB. Bromobenzene metabolism and hepatic necrosis. Pharmacology. 1971;6(1):41-55.

Reynolds ES, Treinen RJ, Farrish HH, Moslen MT. Metabolism of [¹⁴C]carbon tetrachloride to exhaled, excreted and bound metabolites. Dose-response, time-course and pharmacokinetics. Biochem Pharmacol. 1984 Nov 1;33(21):3363-74.

Reynolds ES, Treinen RJ, Farrish HH, Moslen MT. Relationships between the pharmacokinetics of carbon tetrachloride conversion to carbon dioxide and chloroform and liver injury. Arch Toxicol Suppl. 1984;7:303-6.

Rosenberg DW. Pharmacokinetics of cobalt chloride and cobalt-protoporphyrin. Drug Metab Dispos. 1993 Sep-Oct;21(5):846-9.

Roshchin AV, Kazimov MA, Ordzhonikidze EK. Toxicokinetics of cobalt and the problems of biological monitoring. J Hyg Epidemiol Microbiol Immunol. 1989;33(4):369-77.

Ruiz P, Fowler BA, Osterloh JD, Fisher J, Mumtaz M. Physiologically based pharmacokinetic (PBPK) tool kit for environmental pollutants--metals. SAR QSAR Environ Res. 2010 Oct;21(7-8):603-18. doi: 10.1080/1062936X.2010.528942.

Ryu DY, Lee SJ, Park DW, Choi BS, Klaassen CD, Park JD. Dietary iron regulates intestinal cadmium absorption through iron transporters in rats. Toxicol Lett. 2004 Aug 30;152(1):19-25.

Sanzgiri UY, Srivatsan V, Muralidhara S, Dallas CE, Bruckner JV. Uptake, distribution, and elimination of carbon tetrachloride in rat tissues following inhalation and ingestion exposures. Toxicol Appl Pharmacol. 1997 Mar;143(1):120-9.

Sanzgiri UY, Bruckner JV. Effect of Emulphor, an emulsifier, on the pharmacokinetics and hepatotoxicity of oral carbon tetrachloride in the rat. Fundam Appl Toxicol. 1997 Mar;36(1):54-61.

Sanzgiri UY, Kim HJ, Muralidhara S, Dallas CE, Bruckner JV. Effect of route and pattern of exposure on the pharmacokinetics and acute hepatotoxicity of carbon tetrachloride. Toxicol Appl Pharmacol. 1995 Sep;134(1):148-54.

Sasso AF, Isukapalli SS, Georgopoulos PG. A generalized physiologically-based toxicokinetic modeling system for chemical mixtures containing metals. Theor Biol Med Model. 2010;7:17. doi:10.1186/1742-4682-7-17.

Sasso AF, Schlosser PM. An evaluation of in vivo models for toxicokinetics of hexavalent chromium in the stomach. Toxicol Appl Pharmacol. 2015 Sep 15;287(3):293-8. doi: 10.1016/j.taap.2015.06.016.

Schlosser PM, Sasso AF. A revised model of ex-vivo reduction of hexavalent chromium in human and rodent gastric juices. Toxicol Appl Pharmacol. 2014 Oct 15;280(2):352-61. doi: 10.1016/j.taap.2014.08.010.

Schümann K, Friebel P, Schmolke G, Elsenhans B. State of iron repletion and cadmium tissue accumulation as a function of growth in young rats after oral cadmium exposure. Arch Environ Contam Toxicol. 1996 Nov;31(4):483-7.

Smith JC, Hackley B. Distribution and excretion of nickel-63 administered intravenously to rats. J Nutr. 1968 Aug;95(4):541-6.

Smith T, Thompson BD, Barnaby CF. Measurements of ⁶⁰Co organ burdens in rats and their use in calculations of equilibrium dose-rates to various organs of man. Health Phys. 1971 Feb;20(2):195-204.

Srivastava RC, Athar M, Hasan SK, Misra LR. Influence of partial hepatectomy on the metabolic disposition of nickel in rats. Bull Environ Contam Toxicol. 1988 Mar;40(3):439-43.

Srivastava RC, Franklin SB, Srivastava SK, Behari JR, Hasan SK. Distribution of nickel in diethylmaleate (DEM) pre-treated rats: protective role of glutathione and histidine. Ind Health. 1988;26(3):183-5.

Stevens H, Knollema S, Piers DA, Van de Wiele C, Jansen HM, De Jager AE, De Reuck J, Dierckx RA, Korf J. Cobalt-57 as a SPET tracer in the visualization of ischaemic brain damage in patients with middle cerebral artery stroke. Nucl Med Commun. 1998 Jun;19(6):573-80.

Sugawara N, Lai YR, Arizono K, Ariyoshi T. Biliary excretion of exogenous cadmium, and endogenous copper and zinc in the Eisai hyperbilirubinuric (EHB) rat with a near absence of biliary glutathione. Toxicology. 1996 Aug 1;112(1):87-94.

Sunderman FW Jr, Kasprzak K, Horak E, Gitlitz P, Onkelinx C. Effects of triethylenetetramine upon the metabolism and toxicity of 63NiCl2 in rats. Toxicol Appl Pharmacol. 1976 Oct;38(1):177-88.

Sweeney LM. Evaluation of pharmacokinetic models for the disposition of lead (Pb) in humans, in support of application to occupational exposure limit derivation. Pre-decisional. Prepared for the Office of the Under Secretary of Defense, Installations and Environment—Environment, Safety and Occupational Health. NAMRU-D report number 16-11. November 9, 2015. http://www.dtic.mil/dtic/tr/fulltext/u2/1000455.pdf

Tallkvist J, Tjälve H. Effect of dietary iron-deficiency on the disposition of nickel in rats. Toxicol Lett. 1997 Jul 21;92(2):131-8.

Tallkvist J, Wing AM, Tjälve H. Enhanced intestinal nickel absorption in iron-deficient rats. Pharmacol Toxicol. 1994 Nov;75(5):244-9.

Taylor DM. The absorption of cobalt from the gastrointestinal tract of the rat. Phys Med Biol. 1962 Jan;6:445-51.

Templeton DM, Xu SX, Stuhne-Sekalec L. Isotope-specific analysis of Ni by ICP-MS: applications of stable isotope tracers to biokinetic studies. Sci Total Environ. 1994 Jun 6;148(2-3):253-62.

Thomann RV, Snyder CA, Squibb KS. Development of a pharmacokinetic model for chromium in the rat following subchronic exposure. I. The importance of incorporating long-term storage compartment. Toxicol Appl Pharmacol. 1994 Oct;128(2):189-98.

Thomas RG, Furchner JE, London JE, Drake GA, Wilson JS, Richmond CR. Comparative metabolism of radionuclides in mammals--X. Retention of tracer-level cobalt in the mouse, rat, monkey and dog. Health Phys. 1976 Oct;31(4):323-33.

Thompson CM, Kirman CR, Proctor DM, Haws LC, Suh M, Hays SM, Hixon JG, Harris MA. A chronic oral reference dose for hexavalent chromium-induced intestinal cancer. J Appl Toxicol. 2014 May;34(5):525-36. doi: 10.1002/jat.2907.

Thrall KD, Vucelick ME, Gies RA, Zangar RC, Weitz KK, Poet TS, Springer DL, Grant DM, Benson JM. Comparative metabolism of carbon tetrachloride in rats, mice, and hamsters using gas uptake and PBPK modeling. J Toxicol Environ Health A. 2000 Aug 25;60(8):531-48.

Unice KM, Monnot AD, Gaffney SH, Tvermoes BE, Thuett KA, Paustenbach DJ, Finley BL. Inorganic cobalt supplementation: prediction of cobalt levels in whole blood and urine using a biokinetic model. Food Chem Toxicol. 2012 Jul;50(7):2456-61. doi: 10.1016/j.fct.2012.04.009.

Vork K, Carlisle J, Brown JP. 2013. Estimating workplace air and worker blood lead concentrations using an updated physiologically-based pharmacokinetic (PBPK) model. October 2013. Office of Environmental Health Hazard Assessment, California Environmental Protection Agency.

Weber W, Doyle-Eisele M, Seilkop SK, Guilmette R. Biokinetics of systemically distributed ⁶⁰Co in the rat: an experimental model useful in evaluating medical countermeasures for internal contamination. Health Phys. 2012 Oct;103(4):474-83. doi: 10.1097/HP.0b013e31826248d1.

Yiin SJ, Chern CL, Sheu JY, Lin TH. Cadmium-induced liver, heart, and spleen lipid peroxidation in rats and protection by selenium. Biol Trace Elem Res. 2000 Winter;78(1-3):219-30.

Yoon M, Madden MC, Barton HA. Extrahepatic metabolism by CYP2E1 in PBPK modeling of lipophilic volatile organic chemicals: impacts on metabolic parameter estimation and prediction of dose metrics. J Toxicol Environ Health A. 2007 Sep;70(18):1527-41.

Yoshida T, Andoh K, Fukuhara M. Estimation of absorption of trihalomethanes and carbon tetrachloride in low-level exposure by inhalation pharmacokinetic analysis in rats. Arch Environ Contam Toxicol. 1999 Apr;36(3):347-54.

Yu D. Two problems in risk. Doctoral dissertation, University of California, Los Angeles. 1993

Yu D. Uncertainties in a pharmacokinetic modeling for inorganic arsenic. J Environ Sci Health. 1998 33(7):1369-1390.

Yu D. A pharmacokinetic modeling of inorganic arsenic: a short-term oral exposure model for humans. Chemosphere. 1999 Dec;39(15):2737-47.

Yu D. A physiologically based pharmacokinetic model of inorganic arsenic. Regul Toxicol Pharmacol. 1999 Apr;29(2 Pt 1):128-41.

Zampaglione N, Jollow DJ, Mitchell JR, Stripp B, Hamrick M, Gillette JR. Role of detoxifying enzymes in bromobenzene-induced liver necrosis. J Pharmacol Exp Ther. 1973 Oct;187(1):218-27.